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METHODS AND SYSTEMS THAT FIG . 4 illustrates generalized hardware and software 
EFFICIENTLY STORE METRIC DATA components of a general - purpose computer system , such as 

a general - purpose computer system having an architecture 
TECHNICAL FIELD similar to that shown in FIG . 1 . 

FIGS . 5A - D illustrate two types of virtual machine and 
The current document is directed to computer - system virtual - machine execution environments . 

monitoring and management and , in particular , to collection , FIG . 6 illustrates an OVF package . 
generation , and storage of metric data used for monitoring , FIG . 7 illustrates virtual data centers provided as an 
management , and administration of computer systems . abstraction of underlying physical - data - center hardware 

10 components . 
BACKGROUND FIG . 8 illustrates virtual machine components of a VI 

management - server and physical servers of a physical data 
Early computer systems were generally large , single center above which a virtual - data - center interface is pro 

vided by the VI - management - server . processor systems that sequentially executed jobs encoded FIG . 9 illustrates a cloud - director level of abstraction . on huge decks of Hollerith cards . Over time , the parallel FIG . 10 illustrates virtual - cloud - connector nodes ( “ VCC evolution of computer hardware and software produced nodes ” ) and a VCC server , components of a distributed main - frame computers and minicomputers with multi - task system that provides multi - cloud aggregation and that ing operation systems , increasingly capable personal com includes a cloud - connector server and cloud - connector puters , workstations , and servers , and , in the current envi- 20 nodes that cooperate to provide services that are distributed 
ronment , multi - processor mobile computing devices , across multiple clouds . 
personal computers , and servers interconnected through FIG . 11 illustrates a distributed data center or cloud 
global networking and communications systems with one computing facility that includes a metric - data collection 
another and with massive virtual data centers and virtualized and - storage subsystem . 
cloud - computing facilities . This rapid evolution of computer 25 FIG . 12 illustrates the many different types of metric data 
systems has been accompanied with greatly expanded needs that may be generated by virtual machines and other physi 
for computer - system monitoring , management , and admin- cal and virtual components of a data center , distributed 
istration . Currently , these needs have begun to be addressed computing facility , or cloud - computing facility . 
by highly capable automated data - collection , data analysis , FIG . 13 illustrates metric - data collection within a distrib 
monitoring , management , and administration tools and 30 uted computing system . 
facilities . Many different types of automated monitoring , FIG . 14 illustrates a metric - data set and uncompressed 
management , and administration facilities have emerged , storage of the metric - data set . 
providing many different products with overlapping func FIG . 15 illustrates the distribution of metric - data values in 
tionalities , but each also providing unique functionalities the metric - data set discussed above with reference to FIG . 
and capabilities . Owners , managers , and users of large - scale 35 14 . 
computer systems continue to seek methods , systems , and FIG . 16 illustrates one implementation of the currently 
technologies to provide secure , efficient , and cost - effective disclosed metric - data - start compression method . 
data - collection and data analysis tools and subsystems to FIG . 17 illustrates a comparison between the original 
support monitoring , management , and administration of metric - data set , used in the example of FIGS . 14-16 , and a 
computing facilities , including cloud - computing facilities 40 decompressed metric - data set obtained by decompressing 
and other large - scale computer systems . the compressed metric - data set illustrated in FIG . 16 . 

FIG . 18 superimposes a connected - line - segment repre 
SUMMARY sentation of the original metric - data set and the correspond 

ing decompressed metric - data set . 
The current document is directed to methods and systems 45 FIGS . 19-21 illustrate compression of the metric - data set 

that collect metric data within computing facilities , includ- shown in FIG . 14 using different decompression parameter 
ing large data centers and cloud computing facilities . In a values than used in the decompression illustrated in FIGS . 
described implementation , lower and higher metric - data- 16-18 . 
value thresholds are used to partition collected metric data FIGS . 22A - E illustrates one implementation of a metric 
into outlying metric data and inlying metric data . The 50 data collection - and - storage subsystem within a distributed 
inlying metric data is quantized to compress the inlying computing system that collects , compresses , and stores a 
metric data and adjacent data points having the same quan- multidimensional metric - data set for subsequent analysis 
tized metric - data values are eliminated , to further compress and use in monitoring , managing , and administrating the 
the inlying metric data . The resulting compressed data distributed computing system . 
includes original metric - data representations for outlier data 55 FIGS . 23A - C provides a control - flow diagrams that illus 
points and compressed metric - data representations for inlier trate the method for decompressing metric data compressed 
data points , providing accurate restored metric - data values by the currently disclosed metric - data - compression method . 
for significant data points when compressed metric data is 
decompressed . DETAILED DESCRIPTION 

60 

BRIEF DESCRIPTION OF THE DRAWINGS The current document is directed to methods and systems 
that collect metric data within computing facilities , includ 

FIG . 1 provides a general architectural diagram for vari- ing large data centers and cloud - computing facilities , that 
ous types of computers . compress the metric - data for efficient storage , and that 
FIG . 2 illustrates an Internet - connected distributed com- 65 subsequently decompress the compressed multidimensional 

puter system . metric - data for analysis and for management and adminis 
FIG . 3 illustrates cloud computing . tration purposes . In a first subsection , below , a detailed 
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description of computer hardware , complex computational busses or serial interconnections , in turn , connect the CPUs 
systems , and virtualization is provided with reference to and memory with specialized processors , such as a graphics 
FIGS . 1-10 . In a second subsection , the currently disclosed processor 118 , and with one or more additional bridges 120 , 
methods and systems for collecting and exporting perfor- which are interconnected with high - speed serial links or 
mance data are discussed . 5 with multiple controllers 122-127 , such as controller 127 , 

that provide access to various different types of mass - storage Computer Hardware , Complex Computational devices 128 , electronic displays , input devices , and other Systems , and Virtualization such components , subcomponents , and computational 
resources . It should be noted that computer - readable data The term “ abstraction ” is not , in any way , intended to 10 

mean or suggest an abstract idea or concept . Computational storage devices include optical and electromagnetic disks , 
electronic memories , and other physical data - storage abstractions are tangible , physical interfaces that are imple 

mented , ultimately , using physical computer hardware , data devices . Those familiar with modern science and technology 
storage devices , and communications systems . Instead , the appreciate that electromagnetic radiation and propagating 
term “ abstraction ” refers , in the current discussion , to a 15 signals do not store data for subsequent retrieval , and can 
logical level of functionality encapsulated within one or transiently “ store ” only a byte or less of information per 
more concrete , tangible , physically - implemented computer mile , far less information than needed to encode even the 
systems with defined interfaces through which electroni- simplest of routines . 
cally - encoded data is exchanged , process execution Of course , there are many different types of computer 
launched , and electronic services are provided . Interfaces 20 system architectures that differ from one another in the may include graphical and textual data displayed on physical number of different memories , including different types of 
display devices as well as computer programs and routines hierarchical cache memories , the number of processors and 
that control physical computer processors to carry out vari the con ctivity of the processors with other system com 
ous tasks and operations and that are invoked through ponents , the number of internal communications busses and 
electronically implemented application programming inter- 25 serial links , and in many other ways . However , computer 
faces ( “ APIs ” ) and other electronically implemented inter systems generally execute stored programs by fetching 
faces . There is a tendency among those unfamiliar with instructions from memory and executing the instructions in modern technology and science to misinterpret the terms one or more processors . Computer systems include general 
“ abstract ” and “ abstraction , " when used to describe certain purpose computer systems , such as personal computers aspects of modern computing . For example , one frequently 30 ( “ PCs ” ) , various types of servers and workstations , and encounters assertions that , because a computational system higher - end mainframe computers , but may also include a is described in terms of abstractions , functional layers , and plethora of various types of special - purpose computing interfaces , the computational system is somehow different 
from a physical machine or device . Such allegations are devices , including data - storage systems , communications 
unfounded . One only needs to disconnect a computer system 35 routers , network nodes , tablet computers , and mobile tele 
or group of computer systems from their respective power phones . 
supplies to appreciate the physical , machine nature of com FIG . 2 illustrates an Internet - connected distributed com 
plex computer technologies . One also frequently encounters puter system . As communications and networking technolo 
statements that characterize a computational technology as gies have evolved in capability and accessibility , and as the 
being “ only software , ” and thus not a machine or device . 40 computational bandwidths , data - storage capacities , and 
Software is essentially a sequence of encoded symbols , such other capabilities and capacities of various types of com 
as a printout of a computer program or digitally encoded puter systems have steadily and rapidly increased , much of 
computer instructions sequentially stored in a file on an modern computing now generally involves large distributed 
optical disk or within an electromechanical mass - storage systems and computers interconnected by local networks , 
device . Software alone can do nothing . It is only when 45 wide - area networks , wireless communications , and the 
encoded computer instructions are loaded into an electronic Internet . FIG . 2 shows a typical distributed system in which 
memory within a computer system and executed on a a large number of PCs 202-205 , a high - end distributed 
physical processor that so - called “ software implemented ” mainframe system 210 with a large data - storage system 212 , 
functionality is provided . The digitally encoded computer and a large computer center 214 with large numbers of 
instructions are an essential and physical control component 50 rack - mounted servers or blade servers all interconnected 
of processor - controlled machines and devices , no less essen- through various communications and networking systems 
tial and physical than a cam - shaft control system in an that together comprise the Internet 216. Such distributed 
internal - combustion engine . Multi - cloud aggregations , computing systems provide diverse arrays of functionalities . 
cloud - computing services , virtual - machine containers and For example , a PC user sitting in a home office may access 
virtual machines , communications interfaces , and many of 55 hundreds of millions of different web sites provided by 
the other topics discussed below are tangible , physical hundreds of thousands of different web servers throughout 
components of physical , electro - optical - mechanical com- the world and may access high - computational - bandwidth 
puter systems . computing services from remote computer facilities for 

FIG . 1 provides a general architectural diagram for vari- running complex computational tasks . 
ous types of computers . The computer system contains one 60 Until recently , computational services were generally 
or multiple central processing units ( " CPUs ” ) 102-105 , one provided by computer systems and data centers purchased , 
or more electronic memories 108 interconnected with the configured , managed , and maintained by service - provider 
CPUs by a CPU / memory - subsystem bus 110 or multiple organizations . For example , an e - commerce retailer gener 
busses , a first bridge 112 that interconnects the CPU / ally purchased , configured , managed , and maintained a data 
memory - subsystem bus 110 with additional busses 114 and 65 center including numerous web servers , back - end computer 
116 , or other types of high - speed interconnection media , systems , and data - storage systems for serving web pages to 
including multiple , high - speed serial interconnects . These remote customers , receiving orders through the web - page 
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interface , processing the orders , tracking completed orders , operating system and hardware interface 416 generally 
and other myriad different tasks associated with an e - com- comprising a set of non - privileged computer instructions 
merce enterprise . 418 , a set of privileged computer instructions 420 , a set of 

FIG . 3 illustrates cloud computing . In the recently devel- non - privileged registers and memory addresses 422 , and a 
oped cloud - computing paradigm , computing cycles and 5 set of privileged registers and memory addresses 424. In 
data - storage facilities are provided to organizations and general , the operating system exposes non - privileged 
individuals by cloud - computing providers . In addition , instructions , non - privileged registers , and non - privileged 
larger organizations may elect to establish private cloud- memory addresses 426 and a system - call interface 428 as an 
computing facilities in addition to , or instead of , subscribing operating - system interface 430 to application programs 432 
to computing services provided by public cloud - computing 10 436 that execute within an execution environment provided 
service providers . In FIG . 3 , a system administrator for an to the application programs by the operating system . The 
organization , using a PC 302 , accesses the organization's operating system , alone , accesses the privileged instructions , 
private cloud 304 through a local network 306 and private- privileged registers , and privileged memory addresses . By 
cloud interface 308 and also accesses , through the Internet reserving access to privileged instructions , privileged reg 
310 , a public cloud 312 through a public - cloud services 15 isters , and privileged memory addresses , the operating sys 
interface 314. The administrator can , in either the case of the tem can ensure that application programs and other higher 
private cloud 304 or public cloud 312 , configure virtual level computational entities cannot interfere with one 
computer systems and even entire virtual data centers and another's execution and cannot change the overall state of 
launch execution of application programs on the virtual the computer system in ways that could deleteriously impact 
computer systems and virtual data centers in order to carry 20 system operation . The operating system includes many 
out any of many different types of computational tasks . As internal components and modules , including a scheduler 
one example , a small organization may configure and run a 442 , memory management 444 , a file system 446 , device 
virtual data center within a public cloud that executes web drivers 448 , and many other components and modules . To a 
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous 
public cloud to remote customers of the organization , such 25 levels of abstraction above the hardware level , including 
as a user viewing the organization's e - commerce web pages virtual memory , which provides to each application program 
on a remote user system 316 . and other computational entities a separate , large , linear 

Cloud - computing facilities are intended to provide com- memory - address space that is mapped by the operating 
putational bandwidth and data - storage services much as system to various electronic memories and mass - storage 
utility companies provide electrical power and water to 30 devices . The scheduler orchestrates interleaved execution of 
consumers . Cloud computing provides enormous advan- various different application programs and higher - level 
tages to small organizations without the resources to pur- computational entities , providing to each application pro 
chase , manage , and maintain in - house data centers . Such gram a virtual , stand - alone system devoted entirely to the 
organizations can dynamically add and delete virtual com- application program . From the application program’s stand 
puter systems from their virtual data centers within public 35 point , the application program executes continuously with 
clouds in order to track computational - bandwidth and data- out concern for the need to share processor resources and 
storage needs , rather than purchasing sufficient computer other system resources with other application programs and 
systems within a physical data center to handle peak com- higher - level computational entities . The device drivers 
putational - bandwidth and data storage demands . Moreover , abstract details of hardware - component operation , allowing 
small organizations can completely avoid the overhead of 40 application programs to employ the system - call interface for 
maintaining and managing physical computer systems , transmitting and receiving data to and from communications 
including hiring and periodically retraining information- networks , mass - storage devices , and other I / O devices and 
technology specialists and continuously paying for operat- subsystems . The file system 436 facilitates abstraction of 
ing - system and database - management - system upgrades . mass - storage - device and memory resources as a high - level , 
Furthermore , cloud - computing interfaces allow for easy and 45 easy - to - access , file - system interface . Thus , the development 
straightforward configuration of virtual computing facilities , and evolution of the operating system has resulted in the 
flexibility in the types of applications and operating systems generation of a type of multi - faceted virtual execution 
that can be configured , and other functionalities that are environment for application programs and other higher - level 
useful even for owners and administrators of private cloud- computational entities . 
computing facilities used by a single organization . While the execution environments provided by operating 
FIG . 4 illustrates generalized hardware and software systems have proved to be an enormously successful level of 

components of a general - purpose computer system , such as abstraction within computer systems , the operating - system 
a general - purpose computer system having an architecture provided level of abstraction is nonetheless associated with 
similar to that shown in FIG . 1. The computer system 400 is difficulties and challenges for developers and users of appli 
often considered to include three fundamental layers : ( 1 ) a 55 cation programs and other higher - level computational enti 
hardware layer or level 402 ; ( 2 ) an operating - system layer or ties . One difficulty arises from the fact that there are many 
level 404 ; and ( 3 ) an application - program layer or level 406 . different operating systems that run within various different 
The hardware layer 402 includes one or more processors types of computer hardware . In many cases , popular appli 
408 , system memory 410 , various different types of input- cation programs and computational systems are developed 
output ( “ I / O ” ) devices 410 and 412 , and mass - storage 60 to run on only a subset of the available operating systems , 
devices 414. Of course , the hardware level also includes and can therefore be executed within only a subset of the 
many other components , including power supplies , internal various different types of computer systems on which the 
communications links and busses , specialized integrated operating systems are designed to run . Often , even when an 
circuits , many different types of processor - controlled or application program or other computational system is ported 
microprocessor - controlled peripheral devices and control- 65 to additional operating systems , the application program or 
lers , and many other components . The operating system 404 other computational system can nonetheless run more effi 
interfaces to the hardware level 402 through a low - level ciently on the operating systems for which the application 

50 
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program or other computational system was originally tar- number of virtual machines need not be equal to the number 
geted . Another difficulty arises from the increasingly dis- of physical processors or even a multiple of the number of 
tributed nature of computer systems . Although distributed processors . 
operating systems are the subject of considerable research The virtualization layer includes a virtual machine - moni 
and development efforts , many of the popular operating 5 tor module 518 ( “ VMM ” ) that virtualizes physical proces 
systems are designed primarily for execution on a single sors in the hardware layer to create virtual processors on 
computer system . In many cases , it is difficult to move which each of the virtual machines executes . For execution 
application programs , in real time , between the different efficiency , the virtualization layer attempts to allow virtual 
computer systems of a distributed computer system for machines to directly execute non - privileged instructions and 
high - availability , fault - tolerance , and load balancing pur- 10 to directly access non - privileged registers and memory . 
poses . The problems are even greater in heterogeneous However , when the guest operating system within a virtual 
distributed computer systems which include different types machine accesses virtual privileged instructions , virtual 
of hardware and devices running different types of operating privileged registers , and virtual privileged memory through 
systems . Operating systems continue to evolve , as a result of the virtualization - layer interface 508 , the accesses result in 
which certain older application programs and other compu- 15 execution of virtualization - layer code to simulate or emulate 
tational entities may be incompatible with more recent the privileged resources . The virtualization layer addition 
versions of operating systems for which they are targeted , ally includes a kernel module 520 that manages memory , 
creating compatibility issues that are particularly difficult to communications , and data - storage machine resources on 
manage in large distributed systems . behalf of executing virtual machines ( “ VM kernel ” ) . The 

For all of these reasons , a higher level of abstraction , 20 VM kernel , for example , maintains shadow page tables on 
referred to as the “ virtual machine , ” has been developed and each virtual machine so that hardware - level virtual - memory 
evolved to further abstract computer hardware in order to facilities can be used to process memory accesses . The VM 
address many difficulties and challenges associated with kernel additionally includes routines that implement virtual 
traditional computing systems , including the compatibility communications and data - storage devices as well as device 
issues discussed above . FIGS . 5A - D illustrate several types 25 drivers that directly control the operation of underlying 
of virtual machine and virtual - machine execution environ- hardware communications and data - storage devices . Simi 
ments . FIGS . 5A - B use the same illustration conventions as larly , the VM kernel virtualizes various other types of I / O 
used in FIG . 4. FIG . 5A shows a first type of virtualization . devices , including keyboards , optical - disk drives , and other 
The computer system 500 in FIG . 5A includes the same such devices . The virtualization layer essentially schedules 
hardware layer 502 as the hardware layer 402 shown in FIG . 30 execution of virtual machines much like an operating system 
4. However , rather than providing an operating system layer schedules execution of application programs , so that the 
directly above the hardware layer , as in FIG . 4 , the virtual- virtual machines each execute within a complete and fully 
ized computing environment illustrated in FIG . 5A features functional virtual hardware layer . 
a virtualization layer 504 that interfaces through a virtual- FIG . 5B illustrates a second type of virtualization . In FIG . 
ization - layer / hardware - layer interface 506 , equivalent to 35 5B , the computer system 540 includes the same hardware 
interface 416 in FIG . 4 , to the hardware . The virtualization layer 542 and software layer 544 as the hardware layer 402 
layer provides a hardware - like interface 508 to a number of shown in FIG . 4. Several application programs 546 and 548 
virtual machines , such as virtual machine 510 , executing are shown running in the execution environment provided 
above the virtualization layer in a virtual - machine layer 512 . by the operating system . In addition , a virtualization layer 
Each virtual machine includes one or more application 40 550 is also provided , in computer 540 , but , unlike the 
programs or other higher - level computational entities pack- virtualization layer 504 discussed with reference to FIG . 5A , 
aged together with an operating system , referred to as a virtualization layer 550 is layered above the operating 
" guest operating system , ” such as application 514 and guest system 544 , referred to as the “ host OS , ” and uses the 
operating system 516 packaged together within virtual operating system interface to access operating - system - pro 
machine 510. Each virtual machine is thus equivalent to the 45 vided functionality as well as the hardware . The virtualiza 
operating - system layer 404 and application - program layer tion layer 550 comprises primarily a VMM and a hardware 
406 in the general - purpose computer system shown in FIG . like interface 552 , similar to hardware - like interface 508 in 
4. Each guest operating system within a virtual machine FIG . 5A . The virtualization - layer / hardware - layer interface 
interfaces to the virtualization - layer interface 508 rather than 552 , equivalent to interface 416 in FIG . 4 , provides an 
to the actual hardware interface 506. The virtualization layer 50 execution environment for a number of virtual machines 
partitions hardware resources into abstract virtual - hardware 556-558 , each including one or more application programs 
layers to which each guest operating system within a virtual or other higher - level computational entities packaged 
machine interfaces . The guest operating systems within the together with a guest operating system . 
virtual machines , in general , are unaware of the virtualiza- While the traditional virtual - machine - based virtualization 
tion layer and operate as if they were directly accessing a 55 layers , described with reference to FIGS . 5A - B , have 
true hardware interface . The virtualization layer ensures that enjoyed widespread adoption and use in a variety of different 
each of the virtual machines currently executing within the environments , from personal computers to enormous dis 
virtual environment receive a fair allocation of underlying tributed computing systems , traditional virtualization tech 
hardware resources and that all virtual machines receive nologies are associated with computational overheads . 
sufficient resources to progress in execution . The virtualiza- 60 While these computational overheads have been steadily 
tion - layer interface 508 may differ for different guest oper- decreased , over the years , and often represent ten percent or 
ating systems . For example , the virtualization layer is gen- less of the total computational bandwidth consumed by an 
erally able to provide virtual hardware interfaces for a application running in a virtualized environment , traditional 
variety of different types of computer hardware . This allows , virtualization technologies nonetheless involve computa 
as one example , a virtual machine that includes a guest 65 tional costs in return for the power and flexibility that they 
operating system designed for a particular computer archi- provide . Another approach to virtualization is referred to as 
tecture to run on hardware of a different architecture . The operating - system - level virtualization ( " OSL virtualiza 
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tion ” ) . FIG . 5C illustrates the OSL - virtualization approach . including live migration from one host computer to another , 
In FIG . 5C , as in previously discussed FIG . 4 , an operating various types of high - availability and distributed resource 
system 404 runs above the hardware 402 of a host computer . sharing , and other such features . Containers provide share 
The operating system provides an interface for higher - level based allocation of computational resources to groups of 
computational entities , the interface including a system - call 5 applications with guaranteed isolation of applications in one 
interface 428 and exposure to the non - privileged instructions container from applications in the remaining containers 
and memory addresses and registers 426 of the hardware executing above a guest operating system . Moreover , 
layer 402. However , unlike in FIG . 5A , rather than appli- resource allocation can be modified at run time between 
cations running directly above the operating system , OSL containers . The traditional virtualization layer provides flex 
virtualization involves an OS - level virtualization layer 560 10 ible and easy scaling and a simple approach to operating 
that provides an operating - system interface 562-564 to each system upgrades and patches . Thus , the use of OSL virtu 
of one or more containers 566-568 . The containers , in turn , alization above traditional virtualization , as illustrated in 
provide an execution environment for one or more applica- FIG . 5D , provides much of the advantages of both a tradi 
tions , such as application 570 running within the execution tional virtualization layer and the advantages of OSL virtu 
environment provided by container 566. The container can 15 alization . Note that , although only a single guest operating 
be thought of as a partition of the resources generally system and OSL virtualization layer as shown in FIG . 5D , a 
available to higher - level computational entities through the single virtualized host system can run multiple different 
operating system interface 430. While a traditional virtual- guest operating systems within multiple virtual machines , 
ization layer can simulate the hardware interface expected each of which supports one or more containers . 
by any of many different operating systems , OSL virtual- 20 A virtual machine or virtual application , described below , 
ization essentially provides a secure partition of the execu- is encapsulated within a data package for transmission , 
tion environment provided by a particular operating system . distribution , and loading into a virtual - execution environ 
As one example , OSL virtualization provides a file system to ment . One public standard for virtual - machine encapsulation 
each container , but the file system provided to the container is referred to as the “ open virtualization format " ( " OVF ” ) . 
is essentially a view of a partition of the general file system 25 The OVF standard specifies a format for digitally encoding 
provided by the underlying operating system . In essence , a virtual machine within one or more data files . FIG . 6 
OSL virtualization uses operating - system features , such as illustrates an OVF package . An OVF package 602 includes 
name space support , to isolate each container from the an OVF descriptor 604 , an OVF manifest 606 , an OVF 
remaining containers so that the applications executing certificate 608 , one or more disk - image files 610-611 , and 
within the execution environment provided by a container 30 one or more resource files 612-614 . The OVF package can 
are isolated from applications executing within the execu- be encoded and stored as a single file or as a set of files . The 
tion environments provided by all other containers . As a OVF descriptor 604 is an XML document 620 that includes 
result , a container can be booted up much faster than a a hierarchical set of elements , each demarcated by a begin 
virtual machine , since the container uses operating - system- ning tag and an ending tag . The outermost , or highest level , 
kernel features that are already available within the host 35 element is the envelope element , demarcated by tags 622 
computer . Furthermore , the containers share computational and 623. The next - level element includes a reference ele 
bandwidth , memory , network bandwidth , and other compu- ment 626 that includes references to all files that are part of 
tational resources provided by the operating system , without the OVF package , a disk section 628 that contains meta 
resource overhead allocated to virtual machines and virtu- information about all of the virtual disks included in the 
alization layers . Again , however , OSL virtualization does 40 OVF package , a networks section 630 that includes meta 
not provide many desirable features of traditional virtual- information about all of the logical networks included in the 
ization . As mentioned above , OSL virtualization does not OVF package , and a collection of virtual machine configu 
provide a way to run different types of operating systems for rations 632 which further includes hardware descriptions of 
different groups of containers within the same host system , each virtual machine 634. There are many additional hier 
nor does OSL - virtualization provide for live migration of 45 archical levels and elements within a typical OVF descrip 
containers between host computers , as does traditional vir- tor . The OVF descriptor is thus a self - describing XML file 
tualization technologies . that describes the contents of an OVF package . The OVF 
FIG . 5D illustrates an approach to combining the power manifest 606 is a list of cryptographic - hash - function - gener 

and flexibility of traditional virtualization with the advan- ated digests 636 of the entire OVF package and of the 
tages of OSL virtualization . FIG . 5D shows a host computer 50 various components of the OVF package . The OVF certifi 
similar to that shown in FIG . 5A , discussed above . The host cate 608 is an authentication certificate 640 that includes a 
computer includes a hardware layer 502 and a virtualization digest of the manifest and that is cryptographically signed . 
layer 504 that provides a simulated hardware interface 508 Disk image files , such as disk image file 610 , are digital 
to an operating system 572. Unlike in FIG . 5A , the operating encodings of the contents of virtual disks and resource files 
system interfaces to an OSL - virtualization layer 574 that 55 612 are digitally encoded content , such as operating - system 
provides container execution environments 576-578 to mul- images . A virtual machine or a collection of virtual machines 
tiple application programs . Running containers above a encapsulated together within a virtual application can thus 
guest operating system within a virtualized host computer be digitally encoded as one or more files within an OVF 
provides many of the advantages of traditional virtualization package that can be transmitted , distributed , and loaded 
and OSL virtualization . Containers can be quickly booted in 60 using well - known tools for transmitting , distributing , and 
order to provide additional execution environments and loading files . A virtual appliance is a software service that is 
associated resources to new applications . The resources delivered as a complete software stack installed within one 
available to the guest operating system are efficiently par- or more virtual machines that is encoded within an OVF 
titioned among the containers provided by the OSL - virtu- package . 
alization layer 574. Many of the powerful and flexible 65 The advent of virtual machines and virtual environments 
features of the traditional virtualization technology can be has alleviated many of the difficulties and challenges asso 
applied to containers running above guest operating systems ciated with traditional general - purpose computing . Machine 
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and operating - system dependencies can be significantly servers and migrating virtual machines among physical 
reduced or entirely eliminated by packaging applications servers to achieve load balancing , fault tolerance , and high 
and operating systems together as virtual machines and availability . 
virtual appliances that execute within virtual environments FIG . 8 illustrates virtual - machine components of a VI 
provided by virtualization layers running on many different 5 management - server and physical servers of a physical data 
types of computer hardware . A next level of abstraction , center above which a virtual - data - center interface is pro 
referred to as virtual data centers which are one example of vided by the VI - management - server . The VI - management 
a broader virtual - infrastructure category , provide a data server 802 and a virtual - data - center database 804 comprise 
center interface to virtual data centers computationally con the physical components of the management component of 
structed within physical data centers . FIG . 7 illustrates 10 the virtual data center . The VI - management - server 802 

includes a hardware layer 806 and virtualization layer 808 , virtual data centers provided as an abstraction of underlying and runs a virtual - data - center management - server virtual physical - data - center hardware components . In FIG . 7 , a machine 810 above the virtualization layer . Although shown physical data center 702 is shown below a virtual - interface as a single server in FIG . 8 , the VI - management - server ( “ VI plane 704. The physical data center consists of a virtual 15 management server ” ) may include two or more physical infrastructure management server ( “ VI - management server computers that support multiple VI - management 
server ” ) 706 and any of various different computers , such as server virtual appliances . The virtual machine 810 includes 
PCs 708 , on which a virtual - data - center management inter a management - interface component 812 , distributed ser 
face may be displayed to system administrators and other vices 814 , core services 816 , and a host - management inter 
users . The physical data center additionally includes gener- 20 face 818. The management interface is accessed from any of 
ally large numbers of server computers , such as server various computers , such as the PC 708 shown in FIG . 7. The 
computer 710 , that are coupled together by local area management interface allows the virtual - data - center admin 
networks , such as local area network 712 that directly istrator to configure a virtual data center , provision virtual 
interconnects server computer 710 and 714-720 and a mass- machines , collect statistics and view log files for the virtual 
storage array 722. The physical data center shown in FIG . 7 25 data center , and to carry out other , similar management 
includes three local area networks 712 , 724 , and 726 that tasks . The host - management interface 818 interfaces to 
each directly interconnects a bank of eight servers and a virtual - data - center agents 824 , 825 , and 826 that execute as 
mass - storage array . The individual server computers , such as virtual machines within each of the physical servers of the 
server computer 710 , each includes a virtualization layer and physical data center that is abstracted to a virtual data center 
runs multiple virtual machines . Different physical data cen 30 by the VI management server . 

The distributed services 814 include a distributed - re ters may include many different types of computers , net 
works , data - storage systems and devices connected accord source scheduler that assigns virtual machines to execute 

within particular physical servers and that migrates virtual ing to many different types of connection topologies . The machines in order to most effectively make use of compu virtual - data - center abstraction layer 704 , a logical abstrac 35 tational bandwidths , data storage capacities , and network tion layer shown by a plane in FIG . 7 , abstracts the physical capacities of the physical data center . The distributed ser data center to a virtual data center comprising one or more vices further include a high - availability service that repli 
resource pools , such as resource pools 730-732 , one or more cates and migrates virtual machines in order to ensure that 
virtual data stores , such as virtual data stores 734-736 , and virtual machines continue to execute despite problems and 
one or more virtual networks . In certain implementations , 40 failures experienced by physical hardware components . The 
the resource pools abstract banks of physical servers directly distributed services also include a live - virtual - machine 
interconnected by a local area network . migration service that temporarily halts execution of a 

The virtual - data - center management interface allows pro- virtual machine , encapsulates the virtual machine in an OVF 
visioning and launching of virtual machines with respect to package , transmits the OVF package to a different physical 
resource pools , virtual data stores , and virtual networks , so 45 server , and restarts the virtual machine on the different 
that virtual - data - center administrators need not be con- physical server from a virtual machine state recorded when 
cerned with the identities of physical - data - center compo- execution of the virtual machine was halted . The distributed 
nents used to execute particular virtual machines . Further- services also include a distributed backup service that pro 
more , the VI - management - server includes functionality to vides centralized virtual - machine backup and restore . 
migrate running virtual machines from one physical server 50 The core services provided by the VI management server 
to another in order to optimally or near optimally manage include host configuration , virtual - machine configuration , 
resource allocation , provide fault tolerance , and high avail- virtual - machine provisioning , generation of virtual - data 
ability by migrating virtual machines to most effectively center alarms and events , ongoing event logging and statis 
utilize underlying physical hardware resources , to replace tics collection , a task scheduler , and a resource - management 
virtual machines disabled by physical hardware problems 55 module . Each physical server 820-822 also includes a host 
and failures , and to ensure that multiple virtual machines agent virtual machine 828-830 through which the virtual 
supporting a high - availability virtual appliance are execut- ization layer can be accessed via a virtual - infrastructure 
ing on multiple physical computer systems so that the application programming interface ( “ API ” ) . This interface 
services provided by the virtual appliance are continuously allows a remote administrator or user to manage an indi 
accessible , even when one of the multiple virtual appliances 60 vidual server through the infrastructure API . The virtual 
becomes compute bound , data - access bound , suspends data - center agents 824-826 access virtualization - layer server 
execution , or fails . Thus , the virtual data center layer of information through the host agents . The virtual - data - center 
abstraction provides a virtual - data - center abstraction of agents are primarily responsible for offloading certain of the 
physical data centers to simplify provisioning , launching , virtual - data - center management - server functions specific to 
and maintenance of virtual machines and virtual appliances 65 a particular physical server to that physical server . The 
as well as to provide high - level , distributed functionalities virtual - data - center agents relay and enforce resource allo 
that involve pooling the resources of individual physical cations made by the VI management server , relay virtual 
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machine provisioning and configuration - change commands data - center concept within private and public clouds . How 
to host agents , monitor and collect performance statistics , ever , this level of abstraction does not fully facilitate aggre 
alarms , and events communicated to the virtual - data - center gation of single - tenant and multi - tenant virtual data centers 
agents by the local host agents through the interface API , into heterogeneous or homogeneous aggregations of cloud 
and to carry out other , similar virtual - data - management 5 computing facilities . 
tasks . FIG . 10 illustrates virtual - cloud - connector nodes ( “ VCC 

The virtual - data - center abstraction provides a convenient nodes ” ) and a VCC server , components of a distributed 
and efficient level of abstraction for exposing the computa- system that provides multi - cloud aggregation and that 
tional resources of a cloud - computing facility to cloud- includes a cloud - connector server and cloud - connector 
computing - infrastructure users . A cloud - director manage- 10 nodes that cooperate to provide services that are distributed 
ment server exposes virtual resources of a cloud - computing across multiple clouds . VMware vCloudTM VCC servers and 
facility to cloud - computing - infrastructure users . In addition , nodes are one example of VCC server and nodes . In FIG . 10 , 
the cloud director introduces a multi - tenancy layer of seven different cloud - computing facilities are illustrated 
abstraction , which partitions virtual data centers ( “ VDCs ” ) 1002-1008 . Cloud - computing facility 1002 is a private 
into tenant - associated VDCs that can each be allocated to a 15 multi - tenant cloud with a cloud director 1010 that interfaces 
particular individual tenant or tenant organization , both to a VI management server 1012 to provide a multi - tenant 
referred to as a “ tenant . ” A given tenant can be provided one private cloud comprising multiple tenant - associated virtual 
or more tenant - associated VDCs by a cloud director man- data centers . The remaining cloud computing facilities 
aging the multi - tenancy layer of abstraction within a cloud- 1003-1008 may be either public or private cloud - computing 
computing facility . The cloud services interface ( 308 in FIG . 20 facilities and may be single - tenant virtual data centers , such 
3 ) exposes a virtual - data - center management interface that as virtual data centers 1003 and 1006 , multi - tenant virtual 
abstracts the physical data center . data centers , such as multi - tenant virtual data centers 1004 
FIG . 9 illustrates a cloud - director level of abstraction . In and 1007-1008 , or any of various different kinds of third 

FIG . 9 , three different physical data centers 902-904 are party cloud - services facilities , such as third - party cloud 
shown below planes representing the cloud - director layer of 25 services facility 1005. An additional component , the VCC 
abstraction 906-908 . Above the planes representing the server 1014 , acting as a controller is included in the private 
cloud - director level of abstraction , multi - tenant virtual data cloud - computing facility 1002 and interfaces to a VCC node 
centers 910-912 are shown . The resources of these multi- 1016 that runs as a virtual appliance within the cloud 
tenant virtual data centers are securely partitioned in order to director 1010. A VCC server may also run as a virtual 
provide secure virtual data centers to multiple tenants , or 30 appliance within a VI management server that manages a 
cloud - services - accessing organizations . For example , a single - tenant private cloud . The VCC server 1014 addition 
cloud - services provider virtual data center 910 is partitioned ally interfaces , through the Internet , to VCC node virtual 
into four different tenant - associated virtual - data centers appliances executing within remote VI management servers , 
within a multi - tenant virtual data center for four different remote cloud directors , or within the third - party cloud 
tenants 916-919 . Each multi - tenant virtual data center is 35 services 1018-1023 . The VCC server provides a VCC server 
managed by a cloud director comprising one or more interface that can be displayed on a local or remote terminal , 
cloud - director servers 920-922 and associated cloud - direc- PC , or other computer system 1026 to allow a cloud 
tor databases 924-926 . Each cloud - director server or servers aggregation administrator or other user to access VCC 
runs a cloud - director virtual appliance 930 that includes a server - provided aggregate - cloud distributed services . In 
cloud - director management interface 932 , a set of cloud- 40 general , the cloud computing facilities that together form a 
director services 934 , and a virtual - data - center management- multiple - cloud - computing aggregation through distributed 
server interface 936. The cloud - director services include an services provided by the VCC server and VCC nodes are 
interface and tools for provisioning multi - tenant virtual data geographically and operationally distinct . 
center virtual data centers on behalf of tenants , tools and 
interfaces for configuring and managing tenant organiza- 45 Currently Disclosed Methods and Systems 
tions , tools and services for organization of virtual data 
centers and tenant - associated virtual data centers within the FIG . 11 illustrates a distributed data center or cloud 
multi - tenant virtual data center , services associated with computing facility that includes a metric - data collection 
template and media catalogs , and provisioning of virtual- and - storage subsystem . The distributed data center includes 
ization networks from a network pool . Templates are virtual 50 four local data centers 1102-1105 , each of which includes 
machines that each contains an OS and / or one or more multiple computer systems , such as computer system 1106 
virtual machines containing applications . A template may in local data center 1102 , with each computer system run 
include much of the detailed contents of virtual machines ning multiple virtual machines , such as virtual machine 1108 
and virtual appliances that are encoded within OVF pack- within computer system 1106 of local data center 1102. Of 
ages , so that the task of configuring a virtual machine or 55 course , in many cases , the computer systems and data 
virtual appliance is significantly simplified , requiring only centers are virtualized , as are networking facilities , data 
deployment of one OVF package . These templates are stored storage facilities , and other physical components of the data 
in catalogs within a tenant's virtual - data center . These center , as discussed above with reference to FIGS . 7-10 . In 
catalogs are used for developing and staging new virtual general , local data centers may often contain hundreds or 
appliances and published catalogs are used for sharing 60 thousands of servers that each run multiple virtual machines . 
templates in virtual appliances across organizations . Cata- Several virtual machines , such as virtual machines 1110 
logs may include OS images and other information relevant 1111 in a local data center 1102 , may provide execution 
to construction , distribution , and provisioning of virtual environments that support execution of applications dedi 
appliances . cated to collecting and storing metric data regularly gener 

Considering FIGS . 7 and 9 , the VI management server 65 ated by other virtual machines and additional virtual and 
and cloud - director layers of abstraction can be seen , as physical components of the data center . Metric - data collec 
discussed above , to facilitate employment of the virtual- tion may be , in certain cases , carried out by event - logging 
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subsystems . In other cases , metric - data collection may be portion of FIG . 13. Each metric - data message , such as 
carried out by metric - data collection subsystems separate metric - data message 1308 shown in greater detail in inset 
from event - logging subsystems . The other local data centers 1310 , generally includes a header 1312 , an indication of the 
1103-1105 may similarly include one or more virtual metric - data type 1314 , a timestamp , or date / time indication 
machines that run metric - data - collection and storage appli- 5 1316 , and a floating - point value 1318 representing the value 
cations 1112-1117 . of the metric at the point in time represented by the time 

The metric - data - collection and storage applications may stamp 1316. In general , the metric - data collection - and 
cooperate as a distributed metric - data - collection - and - stor- storage subsystem 1302 processes the received messages , as 
age facility within a distributed monitoring , management , indicated by arrow 1320 , to extract a timestamp / metric - data 
and administration component of the distributed computing 10 value pair 1322 that is stored in a mass - storage device or 
facility . These virtual machines , or additional virtual data - storage appliance 1324 in a container associated with 
machines within the distributed computing facility , may the metric - data type and metric - data source . Alternatively , 
provide execution environments for a variety of different the timestamp / metric - data - value pair may be stored along 
data - analysis , management , and administration applications with additional information indicating the type of data and 
that use the collected metrics data to monitor , characterize , 15 data source in a common metric - data container or may be 
and diagnose problems within the distributed computing stored more concisely in multiple containers , each associ 
facility . While abstract and limited in scale , FIG . 11 provides ated with a particular data source or a particular type of 
an indication of the enormous amount metric data that may metric data , such as , for example , storing timestamp / metric 
be generated and stored within a distributed computing data - value pairs associated with indications of a metric 
facility , given that each virtual machine and other physical 20 datatype in a container associated with a particular metric 
and virtual components of the distributed computing facility data source . 
can generate hundreds or thousands of different metric data As indicated by expression 1326 in FIG . 13 , assuming a 
points at relatively short , regular intervals of time . distributed cloud computing facility running 100,000 virtual 

FIG . 12 illustrates the many different types of metric data machines , each generating 1000 different types of metric 
that may be generated by virtual machines and other physi- 25 data values every 5 minutes , and assuming that each time 
cal and virtual components of a data center , distributed stamp / metric - data - value pair comprises two 64 - bit values , 
computing facility , or cloud - computing facility . In FIG . 12 , or 16 bytes , the distributed cloud - computing facility may 
each metric is represented as 2 - dimensional plot , such as generate 320 MB of metric data per minute 1328 , equivalent 
plot 1202 , with a horizontal axis 1204 representing time , a to 19.2 GB of metric data per hour or 168 TB of metric data 
vertical axis 1206 representing a range of metric values , and 30 per year . When additional metric - data - type identifiers and 
a continuous curve representing a sequence of metric - data data - source identifiers are stored along with the timestamp / 
points , each metric - data point representable as a timestamp / metric - data - value pair , the volume of stored metric data 
metric - data - value pair , collected at regular intervals . collected per period of time may increase by a factor of 2 or 
Although the plots show continuous curves , metric data is more . Thus , physical storage of metric data collected within 
generally discrete , produced at regular intervals within a 35 a distributed computer system may represent an extremely 
computing facility by a virtual or physical computing- burdensome data - storage overhead . Of course , that data 
facility component . A given type of component may produce storage overhead also translates into a very high computa 
different metric data than another type of component . For tional - bandwidth overhead , since the stored metric data is 
purposes of the present discussion , it is assumed that the generally retrieved from the data - storage appliance or appli 
metric data is a sequence of timestamp / floating - point - value 40 ances and processed by data - analysis , monitoring , manage 
pairs . Of course , data values for particular types of metrics ment , and administration subsystems . The volume of metric 
may be represented as integers rather than floating - point data generated and stored within a distributed computing 
values or may employ other types of representations . As facility thus represents a significant problem with respect to 
indicated by the many ellipses in FIG . 12 , such as ellipses physical data - storage overheads and computational - band 
1210 and 1212 , the set of metric - data types collected within 45 width overheads for distributed computing systems , and this 
a distributed computing facility may include a very large problem tends to increase over time as distributed comput 
number of different metric types . The metric - data - type rep- ing facilities include ever greater numbers of physical and 
resentations shown in FIG . 12 can be considered to be a virtual components and as additional types of metric data are 
small , upper , left - hand corner of a large matrix of metric collected and processed by increasingly sophisticated moni 
types that may include many hundreds or thousands of 50 toring , management , and administration subsystems . 
different metric types . As shown in FIG . 12 , certain metric The currently disclosed methods and systems have been 
types have linear or near - linear representations 1214-1216 , developed to address the problem discussed above , in the 
other metric types may be represented by periodic or oscil- preceding paragraph , as well as additional problems asso 
lating curves 1218 , and others may have more complex ciated with the collection , storage , and analysis of metric 
forms 1220 . 55 data within distributed computing systems . FIG . 14 illus 
FIG . 13 illustrates metric - data collection within a distrib- trates a metric - data set and uncompressed storage of the 

uted computing system . As discussed above with reference metric - data set . At the top of FIG . 14 , the plot 1402 shows 
to FIG . 11 , a distributed computing system may include a portion of a metric - data set collected from time t , 1404 to 
numerous virtual machines that provide execution environ- time tz , 1406. The metric - data set comprises a sequence of 
ments for dedicated applications that collect and store metric 60 timestamp / metric - data - value pairs , also referred to as “ data data on behalf of various data - analysis , monitoring , man- points . ” In FIG . 14 , each data point is represented , in plot 
agement , and administration subsystems . In FIG . 13 , rect- 1402 , as a shaded disk , such as the shaded disk 1408 
angle 1302 represents a metric - data - collection application . corresponding to a data point representing the timestamp / 
The metric - data - collection application receives a continuous metric - data - value pair ty / 4.0 . As discussed above , in this 
stream of messages 1304 from a very large number of 65 example , the data points are regularly spaced , in time , 
metric - data sources , each represented by a separate message forming a temporal sequence of metric - data values . The 
stream , such as message stream 1306 , in the left - hand horizontal axis 1412 of plot 1402 represents time and the 
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vertical axis 1410 plot 1402 represents metric - data values . together define the extent of the main central peak of data 
For the purposes of the current discussion , metric - data points and that together partition the full range of metric 
values are considered to be floating - point representations of data values into a lower outlying range 1510 , a central inlier 
scaler values . However , in general , any of range 1508 , and a higher outlying range 1512. The data 
types of metric - data - value representations may be used for 5 points with metric - data values in the central inlying range 
metric - data sets . Timestamps are commonly represented by are considered to be inlier data points and data points with 
a large integer that indicates the number of time units that metric - data values in either of the two outlying ranges are 
have transpired since an arbitrary point in time . Again , considered to be outlier data points . Of course , the data 
however , the timestamps associated with the metric - data points of a metric - data set may not be trimodally distributed , 
values may be expressed in any of many different ways . 10 as in the current example . Nonetheless , in general , a metric 
Although , in the current example , the data points are regu- data set can generally be considered to comprise lower 
larly spaced in time , the currently disclosed methods can be outlier data points , higher outlier data points , and inlier data 
applied to metric - data sets in which the data points are not points defined by a lower metric - data - value threshold L and 
regularly spaced in time . a higher metric - data - value threshold H. 
As shown by the data - point representation 1416 below 15 FIG . 16 illustrates one implementation of the currently 

plot 1402 in FIG . 14 , each data point is represented as a disclosed metric - data - start compression method . Plot 1402 
timestamp 1418 followed by a metric - data value 1420 stored of the metric - data set is again shown at the top of FIG . 16 . 
in consecutive bytes in a computer memory and / or in Horizontal dashed line 1602 represents the lower threshold 
consecutive bytes in a mass - storage device . The number of ( 1514 in FIG . 15 ) and horizontal dashed line 1604 represents 
bytes used to encode the timestamp 1418 and the metric - data 20 the higher threshold ( 1516 in FIG . 15 ) . Numerical values for 
value 1420 may vary with different implementations and the lower threshold 1606 and the higher threshold 1608 are 
different computer - hardware platforms . Commonly , the provided below the plot in FIG . 16 for the current example . 
timestamp and the metric - data value may each be encoded Expression 1610 in FIG . 16 is used to compute a quantiza 
in 32 bits , or 4 bytes , or may be encoded in 64 bits , or 8 tion - interval width , which is the difference between the 
bytes , depending on the hardware platforms and various 25 numerical values of the higher and lower thresholds divided 
design choices . As indicated by representation 1430 below by a number and of desired quantization intervals . An index 
diagram 1420 in FIG . 14 , the metric - data set illustrated in k 1612 ranges from 0 to n . A set of thresholds ck for the 
plot 1402 can be stored as a sequence of timestamp / metric- quantization intervals is computed using expression 1614. In 
data - value pairs in memory and / or in a mass - storage device . the current example , the value of n is 4 ( 1616 in FIG . 16 ) , 
The length of the stored metric - data set is , as shown in 30 the quantization - interval width is 1.75 ( 1618 in FIG . 16 ) , 
expression 1432 , the product of the number of data points , and the n + 1 = 5 quantization thresholds 1620 are : Co = 2.5 , 
57 , and the sum of the sizes of the representations of the c = 4.25 , c2 = 6.0 , C3 = 7.75 , and C4 = 9.5 . The lower quantiza 
timestamp and metric - data value . Assuming 8 - byte repre tion intervals are numbered by an index 1 that ranges from 
sentations for each timestamp and metric - data value , the O to n - 2 1622. All but the highest quantization interval are 
length of the memory - resident or mass - storage - device - resi- 35 defined by the ranges 1624 , while the highest quantization 
dent metric - data set is 912 bytes 1434 . interval is defined by the range 1626. The quantization 
FIG . 14 additionally shows a number of other units threshold co corresponds to the lowest threshold L repre 

commonly used for data representation , including an integer sented by the dashed line 1602 in plot 1402. The quantiza 
1436 , generally 2 , 4 , 8 , or 16 bytes 1438 , a byte 1438 tion threshold C4 corresponds to the highest threshold rep 
comprising 8 bits , a bit 1440 , and a nibble 1442 , comprising 40 resented by the dashed line 1604 in plot 1402. The remaining 
2 or 4 bits , in the following discussion . A bit 1440 is the quantization thresholds C1 , C2 , and cz correspond to horizon 
smallest unit of data storage and data representation in a tal dashed lines 1630 , 1631 , and 1632 , respectively . 
digital computer , and represents one of two values { 0,1 } . Table 1636 illustrates determination of a representative 
These additional units of data representation are used in metric - data value for each quantization interval . Each row in 
various compressed representations of the metric - data set , 45 table 1636 represents one of the four quantization intervals 
discussed below . in the current example . For example , row 1638 represents 
FIG . 15 illustrates the distribution of metric - data values in the first quantization interval I. defined by the metric - data 

the metric - data set discussed above with reference to FIG . value range [ 2.5 , 4.25 ) ( 1640 and 1642 in FIG . 16 ) . This 
14. Plot 1402 from FIG . 14 is again shown at the top of FIG . range corresponds to the horizontal strip in plot 1402 that 
15. In table 1502 , the numbers of data points for each of the 50 includes horizontal dashed line 1602 and that is bounded , 
metric - data values that occur in the metric - data set are from above , by horizontal dashed line 1630. There are 10 
tabulated . In plot 1504 , the tabulated numbers of data points data points 1644 in this quantization interval . The sum of the 
for each of the metric - data values are represented as a metric - data values for those 10 data points is 38.5 ( 1646 in 
histogram . The histogram can be thought of as a rotation of FIG . 16 ) . In one implementation , a representative metric 
table 1502 by / 2 radians and replacing the numbers of data 55 data value for this quantization interval is computed as the 
points with vertical line segments with lengths proportional average metric - data value for the data points in the quanti 
to the numbers of data points . The tallest column 1506 in the zation interval , 3.85 ( 1648 in FIG . 16 ) in the current 
histogram represents 12 occurrences of the metric - data value example . A similar determination is made for the represen 
5.0 . As clearly shown by the histogram , there is a central tative metric - data values for the second 1650 and third 1652 
range of metric - data values corresponding to a large central 60 quantization intervals . The fourth quantization interval 1654 
peak 1508 in the histogram to which the majority of data contains no data points 1656 in the current example . The 
points belongs . In addition , there is a relatively small range representative metric - data value for the fourth quantization 
of metric - data values 1510 to the left of the central peak and interval 1658 , 8.63 , is computed as the average value of the 
a relatively small range of metric - data values 1512 to the metric - data values corresponding to the quantization thresh 
right of the central peak . For the illustrated metric - data set , 65 olds that define the fourth quantization interval . 
it is natural to define a lower metric - data - value threshold L The information contained in table 1638 is used to com 
1514 and a higher metric - data - value threshold H 1516 that press the metric - data set according to one implementation of 
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the currently disclosed metric - data compression method . 16-18 . FIGS . 19-21 use the same illustration conventions 
The compressed metric - data set is illustrated by represen- used in FIGS . 16-18 . At the top of FIG . 19 , a plot 1902 of 
tation 1660 in FIG . 16. A first integer 1662 stores the number the metric - data set is provided in similar fashion to plot 1402 
of outlier data points below the lower threshold L. The first in FIG . 14. However , in this second example , n = 2 and there 
integer is followed by uncompressed timestamps / metric- 5 are therefore only 2 quantization intervals 1904 and 1906 for 
data - value pairs representing the outlier data points below the inlier data points and thus only two rows in the table 
the threshold level L 1664. A second integer 1666 stores a 1908. Diagram 1910 illustrates the compressed metric - data 
number of outlier data points above the higher threshold H. set in similar fashion to illustration of the compressed data 
The second integer is followed by uncompressed time- set by representation 1660 in FIG . 16. When only two 
stamps / metric - data - value pairs representing the outlier data 10 quantization intervals are used , the compressed metric - data 
points above the higher threshold age 1668. A third integer set comprises only 209 bytes ( 1912 in FIG . 19 ) . FIG . 20 
1670 stores the number n and is followed by the metric - data illustrates a comparison between the original metric - data set 
values representative of the n quantization intervals 1672 . and the compressed / decompressed metric - data set , in the 
Finally , the compressed inlier data - point representations same fashion as in FIG . 17 , and FIG . 21 shows the original 
1674 complete the compressed metric - data set . The repre- 15 metric - data set superimposed together with the compressed / 
sentations of the inlier data points , in the final portion 1674 decompressed metric - data set , as in FIG . 18. A comparison 
of the compressed metric - data set , each includes a time- of FIG . 20 with FIG . 17 and a comparison of FIG . 21 with 
stamp and a short integer that represents the quantization FIG . 18 reveals that a decrease in the number of quantization 
interval in which the data point lies . In the current example , intervals has resulted in a greater error or disparity between 
the quantization interval is encoded in a 2 - bit short integer , 20 the original metric - data set and the corresponding com 
such as nibble 1676. As mentioned above , 2 or more pressed / decompressed metric - data set . Thus , the number of 
adjacent data points in a temporal sequence having the same quantization intervals is one significant parameter control 
quantization interval are compressed to a single data - point ling the characteristics of the currently disclosed compres 
representation . As indicated by expression 1678 in FIG . 16 , sion method . In general , decreasing the number of quanti 
the length , in bytes , of the compressed metric - data set is 292. 25 zation intervals increases the error but also increases the 
Of course , with larger metric - data sets , larger compression degree of compression . However , the quantitative effects of 
ratios are normally achieved , since the overhead for storing varying this parameter differs for different types of metric 
the 3 integers and the representative metric - data values for data sets . For metric - data sets with high variability , the 
the quantization intervals becomes insignificant . For many degree of compression and the error increase non - linearly , 
types of metric - data sets , elimination of redundant inlier 30 but relatively gradually with a decrease in the number of 
data points in the compressed metric - data set can lead to quantization intervals . For low - variability metric - data sets , 
very high compression ratios . the error remains low as number of quantization intervals is 

FIG . 17 illustrates a comparison between the original decreased until the number of quantization intervals reaches 
metric - data set , used in the example of FIGS . 14-16 , and a a small integer value , such as 2 or 3 , and then rapidly 
decompressed metric - data set obtained by decompressing 35 increases when the quantization interval is further 
the compressed metric - data set illustrated in FIG . 16. A plot decreased . By contrast , the degree of compression increases 
of the original metric - data set 1702 is shown at the top of gradually as the number of quantization intervals decreases 
FIG . 17 , and a similar plot of the decompressed metric - data over a much broader range of numbers of quantization 
set 1704 is shown below plot 1702. Because each inlier data intervals . The error rate , degree of compression , and use 
point is represented by the representative metric - data value 40 fulness of decompressed metric data may also vary signifi 
for its quantization interval , the detailed variations in sub- cantly depending on the choice of lower and higher thresh 
sequences of data points with slightly varying metric - data olds L and H. 
values , such as subsequence 1706 in the original metric - data FIGS . 22A - E illustrates one implementation of a metric 
set , are lost or flattened in the corresponding decompressed data collection - and - storage subsystem within a distributed 
metric - data set 1708. However , outlier data points , such as 45 computing system that collects , compresses , and stores a 
outlier data points 1710 and 1712 in the original metric - data multidimensional metric - data set for subsequent analysis 
set , are unaltered 1714 and 1716 in the decompressed data and use in monitoring , managing , and administrating the 
set . distributed computing system . FIG . 22A illustrates , at a 
FIG . 18 superimposes a connected - line - segment repre- high - level , various phases of data collection , compression , 

sentation of the original metric - data set and the correspond- 50 and storage for a metric - data set . In FIG . 22A , phases are 
ing decompressed metric - data set . In the plot 1802 shown in indicated by circled integers at the right - hand edge of the 
FIG . 18 , the original metric - data set is represented by a figure , such as the circled integer “ 1 ” 2202 indicating the 
segmented , solid - line curve 1804 and the corresponding first phase of metric - data - set collection , compression , and 
decompressed metric - data set is represented by a segmented , storage . During the first phase , data points 2203 are received 
dashed - line curve 1806. Both curves are generated by con- 55 and stored 2204 without compression . In a second phase , 
necting data points with straight - line segments . As can be when a sufficient number of data points have been collected 
readily observed from plot 1802 , the overall shape and form to undertake parameter - value determination , received data 
of the original metric - data set and the corresponding decom- points 2205 are stored in a second container 2206 while 
pressed metric - data set are quite similar . An error value or parameter - value determination is carried out on the initially 
metric can be computed for the compression / decompression 60 stored data points 2207. Once parameter values have been 
of the metric - data set according to expression 1810 in FIG . determined , the initially stored data points are compressed to 
18. The error value is the average difference in the metric- generate an initial set of compressed data points 2208. In a 
data values for an original data point and the corresponding third phase , once continuous compression is possible , sub 
compressed / decompressed data point . sequently received data points 2209 are continuously com 
FIGS . 19-21 illustrate compression of the metric - data set 65 pressed for storage 2210 while , concurrently , the remaining 

shown in FIG . 14 using different decompression parameter uncompressed data points 2211 are compressed 2212. Dur 
values than used in the decompression illustrated in FIGS . ing continuous compression , the subsystem keeps track of 
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the number of outlier data points below the lower threshold received ” event is generated when new metric data is queued 
2213 , the number of outlier data points above the higher to the queue . The parameter n 2245 specifies the number of 
threshold 2214 , and the number of inlier data points 2215 . quantization intervals . The sizes of the stored timestamps 
When the ratio of outlier data points to inlier data points 2246 , uncompressed metric - data values 2247 , and integers 
increases above a threshold value , or when the ratio of the 5 2248 , and compressed metric - data values , or quantization 
number of outlier data points below the lower threshold to interval identifiers 2249 together specify the number of 
the number of outlier data points above the higher threshold bytes or bits used for storing compressed metric data . The 
falls over a threshold distance below , or rises more than the parameters Co , C1 , ... , C , specify the quantization thresholds 
threshold distance above , 1.0 , a fourth phase is entered in 2250 and the parameters m? , m2 , m , specify the 
which subsequently received data points 2216 continue to be 10 representative metric - data - values for each of the quantiza 
compressed and stored 2217 but are also stored without tion intervals 2252. The variables L , H , and Q store the 
compression in a separate container 2218. This dual storage number of outliers below the lower threshold , the number of 
continues until a sufficient number of new data points have outliers above the higher threshold , and the number of inlier 
been received to undertake a new parameter determination data points added to the compressed metric data 2253. The 
2219 , during a fifth phase 2220. Once the new parameter 15 variable numEntries 2254 stores an indication of the number 
determination is finished , subsequently received data points of data points that have been received for compression and 
2221 are compressed according to the new parameter values , storage . The variable phase 2255 indicates the current phase 
during a sixth phase , while the data points compressed of metric - data reception , compression , and storage , dis 
according to the previous parameter values 2222 and 2223 cussed above with reference to FIG . 22A . The array Files 
are combined to generate a container 2224 containing com- 20 2256 contains file pointers for various containers currently 
pressed data points . Phase 6 continues until the ratio of being used to store uncompressed and compressed data 
outlier data points to inlier data points increases above a points . The integers aFile , bFile , cFile , ... 2257 are indexed 
threshold value , or until the ratio of the number of outlier into the Files array . The variable last_d 2258 stores an 
data points below the lower threshold to the number of indication of the last quantization interval stored in a com 
outlier data points above the higher threshold falls over a 25 pressed inlier data point . 
threshold distance below or rises more than the threshold FIG . 22D provides a control - flow diagram for the handler 
distance above 1.0 , at which point the subsystem transitions “ receive metrics , ” called in step 2235 of FIG . 22B . In step 
again to phase four . This process produces a series of 2260 , the handler “ receive metrics ” acquires access to the 
containers containing compressed data points for a metric- input queue ( 2244 in FIG . 22C ) . This may involve a sema 
data set . Of course , the process can be concurrently carried 30 phore operation or other such operation that provides exclu 
out for multiple metric - data sets by a data collection , com- sive access to the input queue pointers . In step 2261 , the 
pression , and storage subsystem . Note that , during continu- routine " receive metrics ” dequeues the least recently queued 
ous compression , the different classes of compressed data metric data d from the input queue , releases access to the 
points are stored in separate containers or sub - containers input queue to enable subsequently received metric data to 
2226-2228 . These separate containers or sub - containers are 35 be queued to the input queue , and increments the variable 
easily combined to produce compressed metric data accord- numEntries . When the current phase is phase 1 , as deter 
ing to the format illustrated in diagrams 1660 in FIGS . 16 mined in step 2262 , then , in step 2263 , the received metric 
and 1910 in FIG . 19 . data d is written , without compression , to a current container 
FIG . 22B illustrates an event - handling loop within the ( 2204 in FIG . 22A ) . When the number of entries has 

metric - data collection - and - storage subsystem . The metric- 40 increased above a threshold value , as determined in step 
data collection - and - storage subsystem continuously waits 2264 , a call is made , in step 2265 , to an “ initiate transition 
for a next event to occur , in step 2230 and , when a next event to phase 2 ” routine , which undertakes a parameter - value 
occurs , carries out a determination of the event type in order determination based on the initially stored metric data , as 
to handle the event . Once the event has been handled , and discussed above with reference to FIG . 22A . Otherwise , the 
when there are more events queued for handling , as deter- 45 handler “ receive metrics ” returns . When the current phase is 
mined in step 2231 , a next event is dequeued , in step 2232 , phase 2 , as determined in step 2266 , then , in step 2267 , the 
and the event handling process continues . Otherwise , control received metric data d is written , without compression , to a 
flows to step 2230 where the metric - data collection - and- current container ( 2206 in FIG . 22A ) and the handler 
storage subsystem waits for a next event . When the currently “ receive metrics ” returns . When the current phase is phase 
considered event is a metric - data - received event , as deter- 50 4 , as determined in step 2268 , then , in step 2269 , the 
mined in step 2234 , a " receive metrics ” handler is called , in received metric data d is written , without compression , to a 
step 2235 , to handle reception of the metric data . When the current container ( 2218 in FIG . 22A ) and , when the number 
next occurring event is a phase - 2 - to - phase - 3 transition of received data points exceeds a threshold value , as deter 
event , as determined in step 2236 , a “ transition to phase 3 ” mined in step 2270 , a call is made , in step 2271 , to a 
handler is called , in step 2237. When the currently consid- 55 “ transition to phase 5 ” routine , which undertakes a new 
ered event is a transition - from - phase - 5 - to - phase - 6 event , as parameter - value determination based on recently stored , 
determined in step 2238 , a “ transition to phase 6 " handler is uncompressed , metric data . When the metric - data value at 
called , in step 2239. Ellipses 2240 indicate that many the time point is less than the lower threshold , as determined 
different additional types of events are handled by the event in step 2272 , the data point is written , in uncompressed 
loop illustrated in FIG . 22B . A default handler 2242 handles 60 form , to the container or sub - container to which outlier data 
rare and unexpected events . points below the lower threshold are written , in step 2273 , 
FIG . 22C illustrates various parameters , variables , and and the variable L is incremented . Similarly , when the 

data structures employed in the subsequently described metric - data value of the data point is greater than the higher 
implementation of the “ receive metrics ” handler called in threshold value , determined in step 2274 , the data point is 
step 2235 of FIG . 22B . Received metric data is initially 65 written to the container or sub - container to which outlier 
stored in a circular buffer 2244 within the metric - data data points with metric - data values above the higher thresh 
collection - and - storage subsystem , and a “ metric data old are written , in step 2275 , and the variable H is incre 
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mented . After writing the outlier data point to the appropri- priately incremented . The variable H contains the number of 
ate container or sub - container , when the current phase is higher - threshold outliers in the compressed data . In step 
phase 3 or phase 6 , as determined in step 2276 , and when 2312 , the pointer variable Hptr is set to the value stored in 
new parameter values are needed , as determined in step the variable nxt and the variable nxt is incremented past the 
2277 , a call is made to a “ transition - 2 - phase 4 " routine , in 5 higher - threshold outliers to the third integer in the com 
step 2278 to return to phase 4 in order to undertake new pressed data . In step 2314 , the number of quantization 
parameter - values determination . In the current phase is not intervals n is extracted from the compressed data via the 
phase 3 or phase 6 , or after the call to the “ transition - 2 - phase variable nxt and the variable nxt is appropriately incre 
4 ” routine , the handler “ receive metrics ” returns . When the mented . In the for - loop of steps 2316-2319 , the representa 
currently considered data point is an inlier data point , the 10 tive metric - data values for the n quantization intervals are 
routine “ quantize ” is called , in step 2279 , to replace the extracted and stored in the array m [ ] . Finally , in step 2320 , 
metric - data value with a representative metric - data value for the routine " process ” is called to decompress the com 
the quantization - interval in which the currently considered pressed data points and insert decompressed outlier data 
data point resides . When the representative metric - data points into the container C2 . 
value is equal to the last representative metric - data value 15 FIG . 23B provides a control - flow diagram for the routine 
observed , as determined in step 2280 , the routine “ receive " process , ” called in step 2320 of FIG . 23A . In step 2322 , the 
metrics ” returns , since the currently disclosed compression routine “ process ” receives the parameters L , Lptr , H , Hptr , 
method eliminates adjacent compressed data points in a nxt , C1 , C2 , and m [ ] . In step 2324 , the routine “ process ” 
common quantization interval , as discussed above with determines the time interval i between data values in the 
reference to FIGS . 14-21 . Otherwise , the quantized data 20 compressed metric - data set . This determination can be made 
point is written to the container or sub - container to which by scanning through the inlier - data - point representations to 
inlier data points are written . In step 2781 , the variable Q is find the smallest consistent interval between two data points . 
incremented , and the variable last_d is set to the currently In step 2326 , the variable t is set to the minimum timestamp 
considered data point . New parameter values are needed , as value in the 3 data partitions that include the 2 outlier 
determined in step 2277 , when , as discussed above , the ratio 25 partitions and the inlier partition minus the time interval i . In 
of lower - threshold outlier data points to higher - threshold the while - loop of steps 2328-2335 , uncompressed and com 
outlier data points depart significantly from the value 1.0 or pressed data points are extracted from the compressed - data 
when the ratio of the total number of outlier data points to container C1 and written to the decompressed data container 
the number of inlier data points rises above a threshold C2 . The while - loop continues until the sum of the remaining 
value . Other types of considerations may also factor into the 30 number of outlier data points and inlier data points falls to 
decision , in alternative implementations . It is assumed that 0. In step 2329 , a routine “ next ” is called to retrieve a next 
arguments are passed by reference when a routine modifies decompressed data point . In step 2330 , the variable fin is set 
the argument values for use by the calling routine and when to the value of the timestamp in the next decompressed data 
a large data structure , such as an array , is passed as an point retrieved by the routine “ next . ” In step 2331 , the 
argument . 35 timestamp data point is set to the expected value t + i . Then , 
FIG . 22E provides a control - flow diagram for the routine in step 2332 , the next decompressed data point is written to 

" quantize , ” called in step 2279 of FIG . 22D . In step 2282 , the container C2 . When the current timestamp value asso 
the routine “ quantize ” receives a data point d . In the for - loop ciated with the next data point is approximately equal to the 
of steps 2283-2287 , the routine “ quantize ” successively contents of the variable fin , as determined in step 2333 , then , 
compares the metric - data value in the received data point d 40 in step 2334 , the variable t is set to fin + i and the while - loop 
to the quantization thresholds until the quantization interval of steps 2328-2335 terminates . Otherwise , the current time 
to which the data point belongs is found . When the appro- stamp in the next decompressed data point is incremented by 
priate quantization interval is found , the metric - data value of i , in step 2335 , and control returns to step 2332 to write a 
the data point d is replaced with a representative metric - data next data point that had been eliminated in the compressed 
value for the determined quantization interval , in either step 45 data . When there is at least one remaining outlier or inlier 
2285 or step 2288 . data point in the compressed container , as determined in step 
FIGS . 23A - C provides a control - flow diagrams that illus- 2336 , control returns to step 2329 for a next iteration of the 

trate the method for decompressing metric data compressed while - loop of steps 2228-2336 . Otherwise , the routine “ pro 
by the currently disclosed metric - data - compression method . cess ” returns . 
FIG . 23 a provides a control - flow diagram for the routine 50 FIG . 23C provides a control - flow diagram for the routine 
“ decompress . ” In step 2302 , the routine “ decompress ” “ next , ” called in step 2329 of FIG . 23B . In step 2340 , the 
receives a reference to container C1 containing compressed routine “ next ” receives the arguments Lptr , Hptr , Hptr , L , H , 
metric data and an empty container C2 into which decom- Q , C1 , m [ ] , and nxt . In step 2342 , the routine “ next ” sets the 
press data is written . In step 2304 , the routine “ decompress ” metric - data value for the data point referenced by nxt to a 
sets a reference next to the file address of the first integer in 55 large floating - point value . When there is another lower 
the C1 container . Note that , for simplicity of illustration , the threshold outlier data point to extract from the compressed 
contents of the containers are referenced using pointers data , as determined in step 2344 , the contents of the data 
similar to referencing of memory locations by pointers . In point referenced by nxt is set to that outlier data point and 
step 2306 , the variable L is set to the contents of the first the variable nextT is set to “ low , ” in step 2346. When there 
integer , which indicates the number of lower - threshold out- 60 is another higher - threshold outlier to extract from the com 
liers contained in the compressed data , and the reference pressed data , as determined in step 2348 , and when the 
next is appropriately incremented . In step 2308 , the pointer timestamp associated with the next higher - threshold outlier 
variable Lptr is set to the value of the pointer variable nxt is less than the timestamp associated with the data point 
and the variable nxt is incremented past the uncompressed referenced by the variable nxt , as determined in step 2350 , 
lower - threshold outliers to reference the second integer . In 65 the contents of the data point referenced by nxt is set to the 
step 2310 , the variable H is set to the value of the second higher - threshold outlier , in step 2352 and the variable nextT 
integer in the compressed data in the variable nxt is appro- is set to “ high . ” When there is a remaining inlier data point 



US 10,901,869 B2 
25 26 

in the compressed data , as determined in step 2354 , and determining a next time in a time sequence of metric 
when a timestamp associated with that data point is less than data points generated by decompressing the stored 
the timestamp associated with the data point referenced by metric data , 
nxt , as determined in step 2356 , the contents the data point when an unextracted outlier metric data point corre 
referenced by nxt is set to the next inlier data point in the 5 sponds to the next time , 
compressed data , in step 2358 , and the variable nextT is set extracting the outlier metric data point , and 
to " quant . ” When the variable nextT stores the value appending the extracted metric data point to the “ quant , ” as determined in step 2360 , the metric - data value time sequence of metric data points , for the data point referenced by nxt is set to the represen when an unextracted compressed inlier metric data tative metric - data - value for the quantization interval of the 10 point corresponds to the next time , compressed data point to generate a decompressed data extracting the compressed inlier metric data point , point , in step 2362. Otherwise , when the value of the 
variable nextT is “ high , ” as determined in step 2364 , the decompressing the compressed inlier metric data 
variable Hptr is appropriately incremented , in step 2366 . point , and 
Otherwise the variable Lptr is appropriately incremented , in 15 appending the decompressing the inlier metric 
step 2668 . data point to the time sequence of metric data 

The present invention has been described in terms of points , and 
particular embodiments , it is not intended that the invention when no unextracted inlier metric data point corre 
be limited to these embodiments . Modifications within the sponds to the next time , appending a copy of the 
spirit of the invention will be apparent to those skilled in the 20 most recently decompressed inlier metric data 
art . For example , any of many different implementation and point to the time sequence of metric data points . 
design parameters , including choice of operating system , 2. The metric - data storage subsystem of claim 1 wherein 
virtualization layer , hardware platform , programming lan- each received metric data point is representable as a time 
guage , modular organization , control structures , data struc- stamp / metric - data - value pair . 
tures , and other such design and implementation parameters 25 3. The metric - data storage subsystem of claim 2 wherein 
can be varied to generate a variety of alternative implemen- outlier metric data points include : 
tations of the current disclosed methods and systems . In lower - threshold - outlier metric data points with metric alternative implementations , different formats for com data values less than a lowest - valued quantization pressed metric - data containers may be used , including for threshold metric - data value ; and mats that place the various counts of data points and the 30 higher - threshold - outlier metric data points with metric representative metric - data values for quantization intervals data values greater than a highest - valued quantization into a header . Decompressed metric data can be used in a threshold metric - data value . large variety of analytical and monitoring subsystems that 
monitor the operational status of a large data center or 4. The metric - data storage subsystem of claim 3 wherein 
distributed computing system and that carry out automated 35 the extracted compression parameters include : 
remedial actions to address detected problems and anoma a number n that indicates a number of representative 
lies . quantization - interval metric - data values ; 

The invention claimed is : the representative quantization - interval metric - data val 
ues : 1. A metric - data storage subsystem within a distributed an indication of a number of lower - threshold - outlier met computer system , the metric - data collection - and - storage 40 subsystem comprising : ric data points ; 

one or more processors ; an indication of a number of higher - threshold - outlier 
one or more memories ; metric data points ; and 
one or more data - storage devices ; an indication of a number of stored inlier metric data 
one or more virtual machines instantiated by computer 45 points . 

instructions stored in one or more of the one or more 5. The metric - data storage subsystem of claim 3 wherein 
memories and executed by one or more of the one or decompressing a compressed inlier metric data point com 
more processors that together decompress stored metric prises : 

using a quantization - interval identifier included in the 
receiving a reference to a container containing com- 50 compressed inlier metric data point to replace the 

pressed metric data points , quantization - interval identifier with a corresponding 
extracting compression parameters from the container , representative quantization - interval metric - data value 
and for the quantization interval identified by the quantiza 

while unextracted metric data points remain in the tion - interval identifier . 
container , 

data by 


