US010977151B2

a2 United States Patent

Harutyunyan et al.

US 10,977,151 B2
Apr. 13, 2021

(10) Patent No.:
45) Date of Patent:

(54) PROCESSES AND SYSTEMS THAT (56) References Cited
DETERMINE EFFICIENT SAMPLING RATES
OF METRICS GENERATED IN A U.S. PATENT DOCUMENTS
DISTRIBUTED COMPUTING SYSTEM .
2007/0025485 Al* 2/2007 Caselliccceee. GO5B 21/02
— 375/355
(71) Applicant: VMware, Inc., Palo Alto, CA (US) 201400089402 AL* 32014 Liyanage ... HO4L 3132
(72) Inventors: Ashot Nshan Harutyunyan, Yerevan . 709/204
(AM); Arnak Poghosyan, Yerevan (Continued)
(AM); Naira Movses Grigoryan,
Yerevan (AM) OTHER PUBLICATIONS
(73) Assignee: VMware, Inc., Palo Alto, CA (US) Sarah Johansson and Jimmy Johansson, Interactive Dimensionality
Reduction Through User-defined Combinations of Quality Metrics,
(*) Notice: Subject to any disclaimer, the term of this Nov./Dec. 2009, IEEE Transactions on visualization and Computer
patent is extended or adjusted under 35 Graphics, vol. 15, No. 6, pp. 993-996 (Year: 2009).*
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 16/408,149 Primary Examiner — Djenane M Bayard
. No.: X
(22) Filed: May 9, 2019 57 ABSTRACT
i icati Processes and systems described herein are directed to
(65) Prior Publication Data 5€S o > ¢
determining efficient sampling rates for metrics generated by
US 2020/0356459 Al Nov. 12, 2020 various different metric sources of a distributed computing
(51) Int. Cl system. In one aspect, processes and systems retrieve the
Gll0;$ F 1 1/34 (2006.01) metrics from metric data storage and determine non-constant
GO6F 17/18 (2006.01) metrics of the metrics generated by the various metric
HO4L 1226 (2006.01) sources. Processes and systems separately determine an
(52) US.Cl ' efficient sampling rate for each non-constant metric by
cpe . GOGF 11/3466 (2013.01); GOGF 17/18 constructing a plurality of corresponding reduced metrics,
""""" (2013.01); HoO4 1 4308 (2013.01) each reduced metric comprising a different subsequence of
(58) Field of Classification Se ar,ch the corresponding metric. Information loss is computed for
CPC ... HO4L 67/18: HO4L 12/00: HOAL 25/40: each reduced metric. An efficient sampling rate is deter-
HO4L, 27’/0008; HO4L, ’27/361; H04Ij mined for each metric based on the information losses
27/364; HO4L 27/365; HOAL 27/366; created by constructing the reduced metrics. The efficient
HO4L, 27/367; HO4L, 41/0266; HO4L sampling rates are applied to corresponding streams of
41/069; HO4L, 41/12; HO4L 43/024; HO4L, run-time metric values and may also be used to resample the
43/0817; HO4L 43/0876; HO4L, 43/106; corresponding metric already stored in metric data storage,
HO4L 51/32; HO4L 67/10; HOAL 67/1002; reducing storage space for the metrics.
HO04L 43/08; GO6F 19/00; GO6F 19/3418;
(Continued) 21 Claims, 32 Drawing Sheets
1902
/ 1904
Monitoring server C//\
1916 T 1930 Metric data storage
1914 — 1912 : :
R : / r“"""—“—“‘“"———-“—“—*“@2—2—-' 1908 ——. 19)06
! .
: L
) : bl os N N Il
Metric Run-time N eﬁigzniiiau;lpn{?n P Determine efficient |_ ! : Metic |
source metric | oo EE sampling rate , 5 ete
| [
. ; S 1 M :
-~ 1918 L 1926 e S Reduced
: ! Reduce metric with | 1 metric
! 1924 —~ efficient sampling —
f !
1 Sample and record rate | . S
e (T ! 1910 —: 1928
\%—-"/

US 10,977,151 B2
Page 2

(58) Field of Classification Search

CPC ... GOG6F 19/3481; GO6F 2209/5019; GO6F
9/5077; GO6F 17/18; GO6F 9/4856; GO6F
16/285; GO6F 1/3228; GO6F 1/3296;
GOG6F 2209/5022; GO6F 9/3877; GO6F
9/4843; GOGF 9/4887; GOGF 9/5094;
GOG6F 11/3006; GO6F 11/3409; GOGF
11/3442; GOG6F 11/3452; GO6F 16/24568,;
GOG6F 16/24578; GO6F 16/2474; GO6F
16/283; GO6F 16/335; GO6F 16/36; GOGF
16/9535; GO6F 17/142; GO6F 1/3209;
GOG6F 1/3234; GO6F 2009/4557; GO6F
2009/45583; GOGF 2009/45595; GO6F
2209/815; GOGF 2201/835; GOGF
2209/508; GO6F 30/20; GOGF 3/017,
GOG6F 40/30; GO6F 9/45558; GOGF
9/5022; GO6F 9/5027; GO6F 9/5061;
GOG6F 9/5083; GO6F 9/5088; GOGF
11/3466

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2017/0061501 Al* 3/2017 Horwich G06Q 30/0275
2019/0034827 Al* 1/2019 Grechka GO6N 20/00
2019/0050710 Al1* 2/2019 Wang GO6N 3/04
2019/0250949 Al* 82019 Chen GO6F 9/505

* cited by examiner

U.S. Patent Apr. 13,2021 Sheet 1 of 32 US 10,977,151 B2

102 103
e

CPU — CPU

by

MEMORY
10— |

104 / CPU C CPU

_105 108

— 112
__| SPECIALIZED
— PROCESSOR / BRIDGE
/ 14 e
118
120
a
BRIDGE

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

! l\\‘ ! _ f _ 1\\— ! 197
122 123 124 125

MASS
126 STORAGE

DEVICE

FIG. 1

128

U.S. Patent Apr. 13,2021 Sheet 2 of 32 US 10,977,151 B2

S

/—216
FIG. 2

U.S. Patent Apr. 13,2021 Sheet 3 of 32 US 10,977,151 B2

N
i: —— >
=L -
N _ o7 u
N = —
EN 7 3™
_QZ E / |
- /_

FIG. 3

/——316

I

|AL|/|y Amy

US 10,977,151 B2

Sheet 4 of 32

Apr. 13,2021

U.S. Patent

alempiey

8vy —

wa)sAg
funesadp

swelboud
uonesyddy

/ , \ |
N \ / N
\ /] /]
abelo)g
ssey o/l oll $10$5890.(Aowsy
T T T
vy ey 0cy 8l
sassaippe/sieisibal| sassaippe/siasibai SUolONASUI |
pabajaud pabajald-uou pabayiaud suogonsu; pabapd-uou
SIaALQ by ysel |
SonaQ wWajsAS aji4 Juswabeuepy Alowspy JoINpayeS \
SEMSUI SO gy p— | stensur SO
09BLIB1U! 1E9-UIoISh SIgjsibal pUe sassaippe Aiowsw | |
HON S pue suoponisul pabspaud-uou
8y 14
9ty 19% vey 294 4%

US 10,977,151 B2

Sheet 5 of 32

Apr. 13,2021

U.S. Patent

VS 9ld 005
e N2
spelols o/l 0/l $10$5990.d Alowspy ~ c0s
ssepy
T N
SSSSAIPPE/ISSIDSI| S9s5aIppe/ieisibal SUOTONITSUT } 7 P e @om
pabajiaud _ pabojiald-uou pabayiaud suoponsu; pebajiniid-uoN
SIBALIP B0IABD SI9ALD BOIABD
10JIUOJy — 05
\\\\w@_\,_\\/\\ . [pusey WA aujyoely _més\\\l 819
S35SaIpPE/ISjSibal| sa55aippe/Iaisibal SuoHINgSUl - = 809
pabajaud pobajiald-uou pabayiaud suoponusul pebejiad-uoN
918
SO SO SO SO SO
118
uoneaidde uopeoydde uoneoydde uonesi|dde uogieoydde
£ Il

Eml\

US 10,977,151 B2

Sheet 6 of 32

Apr. 13,2021

U.S. Patent

0vS /

slempley <

cvs /

walshg Bugelado <

4% \

1ehe
uonezZientiiA

045 /

¢s9

<

SOUIYOBN <
[BNHIA

a4 9l

J< N
sbeioys $J0SS9004 Aowa
ssepy Ol O/l d W
T 7K
|
aoB}1a1U| [[E0-Walshs sig}sibas pue $8ssalppe Aiolistl
: pue suolanisul pafispaud-uou
uoyezifeniip
S0 50 SO
89S / 95 /
uofjesydde uoljesydde uopeoydde
856 / 1567 956/

swesbold
s uogesddy

abeyoed 400

o
~
o
ﬂa — 119
”)i 824n0sal
= y .
= 9 9lI4 .
W —¢l9
= 8|1} 891n0S8l
0v9 S N/ oy saunosal | %y
/o ////
||||||||||||||||||||| N
, \\ //// \ .
~ A RN :
m mmﬂmw_“_mw_ %omywwmvmo \ \ \ oIl TNX £¢s / /// AN — 119
= prioul ey sjeayeo | 7 AN // N 3|y ebewy ysip
- I <adopauzs | NN
2 ;o m o NN ,//// aju obew ysip | ~ 019
2 I <U01j98[j07) WaSAS [BNUIA/> NN
= : : \
7 S : N // ojeoys) 470 | 7 809
<U0}J08S BIEMpIBH [ENYIA/> ‘O 909
g9 : €9 S wsenen ap0 |
- <U0I)08G BIempIeH [eNIA> N
m 9€9 / <U0}J09]|00 WaISAS [enUiA> Joyduase 400 | 7 709
o / <UO1}08G YomjaN/>
= 0€9 m Y
R ay1y 80Inosal Jo 1s9big <UOIOS HIOMIBN> ,
= > - <U0}9BS YSIQ/> /
T T 8¢9 m / 209
a|l} 821n0sa1 Jo Js8big <U0IsS ¥sia>)/
oy eBeuut ysip 4o ys3big 979 %Ammocmmﬁmm\ > \\
o)y ebewr ysip jo1s8b1g | <83IUBIBOY> \
aBeyoed jo159610 / < mqo_m>cm_v/ .
/‘ <9

U.S. Patent

029 |\

Jewo4 uoezienuip uadp

US 10,977,151 B2

Sheet 8 of 32

Apr. 13,2021

U.S. Patent

, Old
J8)ua) eje([easAyd
OQ @,: 811 I~V —GLL s M
- L
v i / 4 \ / \ 7 L~ 014
¢0L
~_) y y 1743
_ T T L=
/" 74 v AT \[
4
80/
4 vel 4
/ /
/ [004 82IN0S8Y
/
|
Gel |
9¢.
0¢L
181U87) Bleq [BNMIA (29

US 10,977,151 B2

Sheet 9 of 32

Apr. 13,2021

U.S. Patent

¢c8)/ 1C8 /

8 Ol

0¢8
/

¢08 /

08
|/

aIemplel aremplep alempleyy alempieH
908 — aseqejep
18ke] 18ken 12ken 12ReT | L¢ 181U=p
uonezZienpiA uopezijenyin uonezilenpin 908 — 1 Luonezienuin eyeq [enuin
]][] || () [-
(o]]| |0 (]| ([)| g s
s wswabeuepy
e N e G uag s
cg 79 s 4 fenuiA |y /
uabe DaA 0 wsbe DA 6 E e <
[™ e 77N\
/ / / y 018
< RN v\r 818/
/1 " swsbeuew jsoH N /
/ <\ /
|\\ S82IA19G 9107 // /\/
918 / , /T~ juswoebeueuw 82inosay
e — | / 18|npayos yse |
|L\ $99IMIBS PaANgUISI ™~/ buibboj 1o uono9}j00 soNsNelS
dnyoeg 718 \ \ ™~ SIUBAS % SUAJY
uonesBiw A 9AI - A 8oepa)U| Juswabeuep ™ putuoisinosd A
Anqerieay ybiH - A\ / = uoneanbiyuod WA
18|npayog 82Inossy pajnguisiq - P uoyjeinBiyuod Jsoy
~ _ .
018 — = cls

US 10,977,151 B2

Sheet 10 of 32

Apr. 13,2021

U.S. Patent

¢06 /

N

| i m
| | |
| l !
m__&cmosmu_m:cs
_ _ _
w
_

/
—_—/

J/ /
mw _ ; v /
| | > —_
m_m«cm_c elep __m:ts GZ6

- J019811p phojo \\ e

7

Id I
e 7
s 7/

i 1
/ 7 /7 s/ 7
106 — £ 940, %940, 1 o0 % D 7940 , 7€ 940, 72980, 7 | 9¥0
L6 \ \

616 wvm‘\t@ @E\\ _

706 —\ 126
7 — 016 v
4 T /
/ ! /
h L SIBjuUdd 94‘6 |enuiA - 10}931p n:mw ‘‘‘‘‘‘‘ .
! N
¢ D0 e | D40 T T
f | jood yiomjau woy Buluosinold ylompeN

Y, sBoejen eips|y pue siejdway
— uoheinByuoy 1sjusn) ele(enuip uoneziuehl
0O
¢l6 VA ™~ pue uoneinByuoy uoneziuebio

//mch_mSQa_mEmoEmo_m:t_>\
~ —_—

0¢6 e

8depsiul SW OAA

$39IAJ8g 10}981I(] PNojD

aoeLI0)U| Juswebeueypy

1743
J0J981Ip PNojo \v

US 10,977,151 B2

Sheet 11 of 32

Apr. 13,2021

U.S. Patent

|
[
. | |
0l 9lI4 | |
| 710L 010} 2101 !
! apou JOA “
|
8pou HOA “ T JBMBS DON " u
_ _ _ | it | |
" " “ ST | “
" “ | 1. ¢eeol M |
| a0 |
! ! ! 910} N _
2001 |l\ f | i “ "
v s A \N N 4 N B |
8101 /‘
| ALk - 200}
B = - \am— SN 2 Jejuo0
! ! \:L 8pou 90N apou 9o, ~/ oo
00— b0l 6101 £001
181u89
BJEp [eNpiA o A,
9pou QA 2

ao

ll\ SPON JOA
9001

v
S80IAI8S PNOJo /\[/’ 7001

Ayed g // 0zZ01
\

l\ \ 8pouU DOA
G0olL

US 10,977,151 B2

Sheet 12 of 32

Apr. 13,2021

U.S. Patent

b1 Ol

1ofe|

alemplely

oy

SEVC]
wasAg Bunesadp <

yoy —

o
0V -~

mmv\
4117

@o:\

S0L)

147

~ 0Ll

-
L N
sbesoig $10558904 IS
< sse/y ol o 0553901 owo
T T T
A
1 sessalppe/sialsibal | Sessalppe/siaisibal | suononjsul
8@ m_mé . nwmmﬂ_zaéoc pabspiud suogonasu; pabayiaud-tou
S weyshs Jwibpy yse |
0N9Q o] Juswabeuepy Alowsyy 1OIMPaYOS
auepRlul SO | S HENT RN
a0eLIB)UI [[Eo-Ws)SAS sio]s1bal pue sassalppe Alowsiu pue
: suogonsu; pabajiaud-uou
UOHEZIEENHIA [9AR]-S0
Jauiejuod Isuieju0d Jaulejuoo
L1
OLLL 6011 8011

US 10,977,151 B2

Sheet 13 of 32

Apr. 13,2021

U.S. Patent

N N
18he| abeio)g
crempier < sop ol o/l $10$88001d Kiowaly
— W
¢0S
T T T
\
f mmmmwwwmﬂmm%sﬁ wmwwm%ﬂmmwwwE mmmmw__%w_ suogonysul pafisjiaid-uoN T
SIALD B0IAD ‘ SI9NIP S0IAap
Y0G TS 10U]
9 [pulay WA [BUISM WA SUIYOEN [eniip
| 1 O e
\huﬁt\%\xw@wmmﬁum:ma_nmh sassappe/is)sibal SUOROTFSUS |
omm L pabayaud pefepaud-uou pabajiaud suoponsu; pabafiad-uoN]
S0 Iseng
uonezieniiA jsas-
2071 P JezieniiA [9Ael-SO
v0cl JoUIRJU0D J8UIBJUOD JBUIBJUOD
00¢1
8021 L0c1 90¢1

— 906

| — V09

US 10,977,151 B2

Sheet 14 of 32

Apr. 13,2021

U.S. Patent

v051
N\

18jua) eleq |eaishud

/

\ 9lEl
/

[44%"

Johe; uonezienuip

Nomﬁ\

U.S. Patent Apr. 13,2021 Sheet 15 of 32 US 10,977,151 B2

\ 1402

Time

FIG. 14A

apnyduwy

1404 — |

US 10,977,151 B2

Sheet 16 of 32

Apr. 13,2021

U.S. Patent

avl Ol

{4
/A 6LEL

gL qel elel -
18jus) eleq [eAISAUd \ glel \ 9lel \ plel \ ziel \
- / / / /
ovel) - 806l
g R R VR A O I O Y N 6 O | "l Ad_ 1T _ _ __
Z i
i I- . \\\
o 0LEl r
el Sola
\\\ SouyBp r A e
. 7
. / solapy > //,/.vo// 1454"
, SolBp N
, > A
/ Z
901— ¢

lafe] uonezienuip

Nomﬁ\

US 10,977,151 B2

Sheet 17 of 32

Apr. 13,2021

U.S. Patent

Il Ol

18ju8) eleQ [BoIsAyd roel /4 0zel

CCel ~— \

vivl

SOLIBY

SO

ah
Jahg] uojiezijeniip NOM\. —\ 1\

U.S. Patent Apr. 13,2021 Sheet 18 of 32 US 10,977,151 B2
1503
/
1505 1507
T
: Time (Iy >
1501
FIG. 15A
1504
P
1506 1508

/—\——””’\2\—/\/\ u:-%

f

< A 2
A 4

Time 8 l;

1502

FIG. 15B

US 10,977,151 B2

Sheet 19 of 32

Apr. 13,2021

U.S. Patent

T
029} -~ 929}

91 Ol

SNET

A

6191

)

A

. SHET

8191

)

SNET

A

abel0)s ejep ouiap

—

——

7091

omew | omew | 90In0S

pioosy | awp-uny | SNEN
Gl9l c 1
S ¢l9l 8091

omew | omew | 90In0s

ploosy | awp-uny | INET
plol 1 1
{ 1191 L091

WNENT TRENT 82IN0S

pioday | swn-uny | INET
J8n8s BuLojuopy N N
019} 9091

N

¢091

U.S. Patent

Apr. 13,2021 Sheet 20 of 32 US 10,977,151 B2

1704

1706

Metric value

L4 .
®%cense®®

Time R
1702
o FIG. 17A

® 1708
=
- o] Il Yo O
g .Oob - -.O.r\ O.O. .D‘O.
s > o® Ce
[&] L] o] ~H® o
= o s ot 0,
jo. ~® Ce, O.O L1s)
oy ece” Secece *oe0

Time %
1702
FIG. 17B

1804

Metric value

JLH%TIJﬂh]IﬂJJhﬂnJLLHWﬂnH{ILLHJL”

Time
1808 1802
FIG. 18A
1804
% i)
=L tllste irL plie Lleitle 1550 m,v,s/,Msz;,ojzm

Time

1806 $802
FIG. 18B

US 10,977,151 B2

Sheet 21 of 32

Apr. 13,2021

U.S. Patent

6l 'Ol

- 286) — - omfz
8261 . ——016l e e) oy
f | - pi0oe1 pue ajdures |
< _ Bundwes jus . _
. | yIm oujew 8onpay 9761 _
paonpay _ , "
b “ L] f i
o:m | “ | s Buydwes S Buid Sje P m
e | ey auwispeg || oo
| Ve H _ w |
N : I ¢Col [
9061 — 806l b e e 4

abelo)s eep almap

v061

8l6l ™
omew | 90In0S
sum-uny | WNETN
cl6l S vi6l
9161

U.S. Patent Apr. 13,2021 Sheet 22 of 32 US 10,977,151 B2

2002

s

Time Iy

-~ 2008
2012
2010

~_|
2010
/

2006

FIG. 20

ty

/ sanjeA oLe

2004

US 10,977,151 B2

Sheet 23 of 32

Apr. 13,2021

U.S. Patent

¢ Ol4
\.%::::":::::__n 4444
0Loc |t
,,M,,,, w 1z
201z
hm___w\obb . «xo.ﬂflx?ir\\\ﬁ;ﬁ ‘‘‘‘‘‘‘ v|\|/
9012
8002
8012 ¢00¢
1 fousnbayy annejoy f& | y
T AT A
: ¢0l¢
— H | SO A
- VA
T.W 9012
o& mu
900¢

3

¥00¢

sanfeA ole

¥00¢

US 10,977,151 B2

Sheet 24 of 32

Apr. 13,2021

U.S. Patent

Y¢e 9ld
G 12
F 20
o ,of:ooo, \\ - T\) e
vocz 3904
8007 —— c0ee
2012 ¢00¢
\ fousnbay) sne|oy f\é o] :
9022 W | / \ g& £
_f : m \>/ — VA / Novm/ m

sanjeA omaw

1
/!lltlll(lll

nm /\ < @SN< <
/ 9002

¥00¢ v00¢

o_mN

US 10,977,151 B2

Sheet 25 of 32

Apr. 13,2021

U.S. Patent

80l¢
X Kousnbaly aAejoy

4¢c Ol

1 :

g00c — / 80¢C

¢00¢

fs awi| 1y

N N AAITS

L

901L¢

900¢
¥00¢

San|eA olN8

¥00¢

US 10,977,151 B2

Sheet 26 of 32

Apr. 13,2021

U.S. Patent

801¢

_ g

*d

J¢¢ 94
wa
2012
ommmg @EN
. O G
8002 —1 ! wFNN 9lcc
2002
1 fousnbaiy enne|ey fz au| y
y27e : | > / \ > P01z |
: 2012
_ mu | AT
m 9012
9002

\

¥00¢

sanjen oms

US 10,977,151 B2

Sheet 27 of 32

Apr. 13,2021

U.S. Patent

801¢
X fausnbaly snejoy

©_J

¢00¢

o

dc¢c¢ 9l4

:

800¢

¥00¢

900¢

sanjen oL

v00¢

US 10,977,151 B2

Sheet 28 of 32

Apr. 13,2021

U.S. Patent

c0¢ee

{N&fv

€¢ 9l

O UONQUISIP OlJ8LU 8UI[8SEq YJM SUONGUISIP JL1}8L Paonpal Jo SUOIRUIGUIOD

%) %) Cdo) (Od09) Efv (Bd°d) ?%,5

(O1g0g)

[EEE2]

0 [T

I|,»..4Q\Qr\

$S07 UoheUWLoU|

=

v0€EC
-1

US 10,977,151 B2

Sheet 29 of 32

Apr. 13,2021

U.S. Patent

¥¢ Ol

A

J{\ 901z

v061

J19AI8S Butiojluopy

X

80¥¢

T
=
o
OCHQS_ < . ‘ c® ol w
psonpay | \(\3 g
clve 5
ﬂy 0lve 4
14274 ajel buidwes ojel
ETEENIE > Buiduwes jusioiye
oeiols EfEp AN HNt e Buisn ajdueg
T

N

co6l

sanjeA oL}

20IN0S
E

l

14074

U.S. Patent Apr. 13,2021 Sheet 30 of 32 US 10,977,151 B2

Method that determines
efficient sampling rates for
metrics generated by metric
sources of a DCS

!A

*‘
Retrieve a metric from metric L——
data storage

v

Determine variability of L —— 2502
the metric

2501

Variability
greater than threshold
?

2503

2504

Determine efficient Y
sampling rate

{

Use efficient sampling rate to
reduce run-time metric values of
the metric

!

Use efficient sampling rate to | ——~{___~ 2506
reduce recorded metric in metric
data storage

2505

N

FIG. 25

U.S. Patent Apr. 13,2021 Sheet 31 of 32 US 10,977,151 B2

Determine variability of
the metric

Compute mean of the metric
over the historical time window

v

Compute standard deviation o L~ 2602
of the metric over the historical
time window

2601

FIG. 26

U.S. Patent Apr. 13,2021 Sheet 32 of 32

Determine efficient
sampling rate

Compute baseline metric 2701
distribution —~
Po

Y 2702
Initialize step size ~
n

l¢
*‘
Compute reduce meftric by 2703
retaining every n-th metric value ™"
and discarding other metric
values of the metric

2704
h 4 /_/

Compute reduced metric
distribution Decrement n
P

l A
Compute information loss L 2705
JSD{P,P)

2706

JSD(Po,P) < Th
?

2708
b~

Determine efficient sampling
rate for reduced metric

FIG. 27

US 10,977,151 B2

2707

US 10,977,151 B2

1
PROCESSES AND SYSTEMS THAT
DETERMINE EFFICIENT SAMPLING RATES
OF METRICS GENERATED IN A
DISTRIBUTED COMPUTING SYSTEM

TECHNICAL FIELD

This disclosure is directed to automated processes and
systems that determine efficient sampling rates of metrics
generated by metric sources of a distributed computing
system.

BACKGROUND

Electronic computing has evolved from primitive,
vacuum-tube-based computer systems, initially developed
during the 1940s, to modern electronic computing systems
in which large numbers of multi-processor computer sys-
tems, such as server computers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with numerous components that provide enormous
computational bandwidths and data-storage capacities.
These large, distributed computing systems are made pos-
sible by advances in computer networking, distributed oper-
ating systems and applications, data-storage appliances,
computer hardware, and software technologies.

Because distributed computing systems have an enor-
mous number of computational resources, various manage-
ment systems have been developed to collect performance
information about the resources. For example, a typical
management system may collect hundreds of thousands, or
millions, of streams of time-series metric data, called “met-
rics.” A metric may represent the amount of a resource in use
over time, an error rate, data transmission rate, or collective
usage of multiple resources over time. The metrics are
typically collected at high sampling rates to monitor, as close
as possible, real-time performance of a distributed comput-
ing infrastructure, such as performance of hardware and
applications running in a distributed computing system.
Ideally, high sampling rates enable real-time identification
of abnormalities that impact stability and continuous avail-
ability of services. For example, when an abnormality is
identified in real time, IT administrators can execute reme-
dial measures to correct the problem before the abnormality
creates a significant interruption in services. However, col-
lecting large numbers of metrics at high sampling rates
creates problems, such as increasing costs of storing of
metric data and delays detection of performance abnormali-
ties because of time delays created by having to process
large numbers of metric data values collected per unit time.
IT administrators seek processes and systems that decreases
the cost of storing metrics and reduces the time to identi-
fying performance problems without losing vital informa-
tion used to detect abnormal behavior of resources.

SUMMARY

Processes and systems described herein are directed to
determining efficient sampling rates for metrics generated by
various different metric sources of a distributed computing
system. In one aspect, processes and systems retrieve the
metrics from metric data storage. Each metric is evaluated to
determine whether the metric is a non-constant metric.
Processes and systems determine an efficient sampling rate
for each non-constant metric by constructing a plurality of

25

30

35

40

45

55

2

corresponding reduced metrics. Each reduced metric com-
prises a different subsequence of the corresponding metric.
An information loss is computed for each reduced metric.
The information loss quantitatively represents an amount of
information lost in constructing a reduced metric from a
metric. Processes and systems determine an efficient sam-
pling rate for each metric based on the information losses
created by constructing the corresponding reduced metrics.
The efficient sampling rates are applied to streams of run-
time metric values of the corresponding metrics, reducing
storage space of the streams of run-time metric values. The
efficient sampling rates may also be used to resample the
corresponding metrics already stored in metric data storage,
reducing storage space of the metrics. Processes and systems
do not reduce the sampling rates of metrics that exhibit a
high variability over time. Processes and systems avoid
information losses by leaving sampling rates of high vari-
ability metrics unchanged. Sampling rates of high variability
metrics that are left unchanged are efficient sampling rates.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an architectural diagram for various types of
computers.

FIG. 2 shows an Internet-connected distributed computer
system.

FIG. 3 shows cloud computing.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system.

FIGS. 5A-5B show two types of virtual machine (“VM”)
and VM execution environments.

FIG. 6 shows an example of an open virtualization format
package.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center.

FIG. 9 shows a cloud-director level of abstraction.

FIG. 10 shows virtual-cloud-connector nodes.

FIG. 11 shows an example server computer used to host
three containers.

FIG. 12 shows an approach to implementing containers
on a VM.

FIG. 13 shows an example of a virtualization layer located
above a physical data center.

FIG. 14A shows a plot of an example metric represented
as a sequence of time series data associated with a resource
of a distributed computing system.

FIGS. 14B-14C show examples of metrics transmitted
from physical and virtual objects of a distributed computing
system to a monitoring server.

FIGS. 15A-15B show plots of example non-constant and
constant metrics over time.

FIG. 16 shows an example of a monitoring server that
records metrics generated by various different metric
sources in metric storage.

FIGS. 17A-17B show plots of an example low-variation
metric sampled at two different sampling rates.

FIGS. 18A-18B show plots of an example high-variation
metric sampled at two different sampling rates.

FIG. 19 shows an example of a monitoring server that
determines an efficient sampling rate for each metric
received and uses the efficient sampling rate to sample and
record the metric in metric storage.

FIG. 20 shows a plot of a baseline metric.

US 10,977,151 B2

3

FIG. 21 shows construction of a baseline metric distribu-
tion P, from the metric shown in FIG. 20.

FIGS. 22A-22D show plots of reduced metrics and cor-
responding reduced metric distributions.

FIG. 23 shows a plot of example losses of information for
reduced metrics.

FIG. 24 shows an example of a monitoring server apply
an efficient sampling rate to run-time metric values produced
by a metric source.

FIG. 25 is a flow diagram illustrating an example imple-
mentation a method that reduces storage of metrics gener-
ated by metric sources of a distributed computing system.

FIG. 26 is a flow diagram illustrating an example imple-
mentation of the “determine variability of the metric” step
referred to in FIG. 25.

FIG. 27 is a flow diagram illustrating an example imple-
mentation of the “determine efficient sampling rate” step
referred to in FIG. 25.

DETAILED DESCRIPTION

This disclosure is directed to automated computational
processes and systems that determine efficient sampling
rates of corresponding metrics generated by metric sources
of a distributed computing system. In a first subsection,
computer hardware, complex computational systems, and
virtualization are described. Processes and systems for
determining efficient sampling rates of corresponding met-
rics are described below in a second subsection.

Computer Hardware, Computational Systems, and Virtu-
alization

The term “abstraction” is not, in any way, intended to
mean or suggest an abstract idea or concept. Computational
abstractions are tangible, physical interfaces that are imple-
mented using physical computer hardware, data-storage
devices, and communications systems. Instead, the term
“abstraction” refers, in the current discussion, to a logical
level of functionality encapsulated within one or more
concrete, tangible, physically-implemented computer sys-
tems with defined interfaces through which electronically-
encoded data is exchanged, process execution launched, and
electronic services are provided. Interfaces may include
graphical and textual data displayed on physical display
devices as well as computer programs and routines that
control physical computer processors to carry out various
tasks and operations and that are invoked through electroni-
cally implemented application programming interfaces
(“APIs”) and other electronically implemented interfaces.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that “software implemented” functional-
ity is provided. The digitally encoded computer instructions
are a physical control component of processor-controlled
machines and devices. Multi-cloud aggregations, cloud-
computing services, virtual-machine containers and virtual
machines, containers, communications interfaces, and many
of the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

FIG. 1 shows a general architectural diagram for various
types of computers. Computers that receive, process, and
store event messages may be described by the general

10

15

20

25

30

35

40

45

55

60

65

4

architectural diagram shown in FIG. 1, for example. The
computer system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
interconnects. These busses or serial interconnections, in
turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or
more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various dif-
ferent types of mass-storage devices 128, electronic dis-
plays, input devices, and other such components, subcom-
ponents, and computational devices. It should be noted that
computer-readable data-storage devices include optical and
electromagnetic disks, electronic memories, and other
physical data-storage devices. Those familiar with modem
science and technology appreciate that electromagnetic
radiation and propagating signals do not store data for
subsequent retrieval, and can transiently “store” only a byte
or less of information per mile, far less information than
needed to encode even the simplest of routines.

There are many different types of computer-system archi-
tectures that differ from one another in the number of
different memories, including different types of hierarchical
cache memories, the number of processors and the connec-
tivity of the processors with other system components, the
number of internal communications busses and serial links,
and in many other ways. However, computer systems gen-
erally execute stored programs by fetching instructions from
memory and executing the instructions in one or more
processors. Computer systems include general-purpose
computer systems, such as personal computers (“PCs”),
various types of server computers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

FIG. 2 shows an Internet-connected distributed computer
system. As communications and networking technologies
have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
many PCs 202-205, a high-end distributed mainframe sys-
tem 210 with a large data-storage system 212, and a large
computer center 214 with large numbers of rack-mounted
server computers or blade servers all interconnected through
various communications and networking systems that
together comprise the Internet 216. Such distributed com-
puting systems provide diverse arrays of functionalities. For
example, a PC user may access hundreds of millions of
different web sites provided by hundreds of thousands of
different web servers throughout the world and may access
high-computational-bandwidth computing services from
remote computer facilities for running complex computa-
tional tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,

US 10,977,151 B2

5

configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web server computers, back-end
computer systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

FIG. 3 shows cloud computing. In the recently developed
cloud-computing paradigm, computing cycles and data-
storage facilities are provided to organizations and individu-
als by cloud-computing providers. In addition, larger orga-
nizations may elect to establish private cloud-computing
facilities in addition to, or instead of, subscribing to com-
puting services provided by public cloud-computing service
providers. In FIG. 3, a system administrator for an organi-
zation, using a PC 302, accesses the organization’s private
cloud 304 through a local network 306 and private-cloud
interface 308 and accesses, through the Internet 310, a
public cloud 312 through a public-cloud services interface
314. The administrator can, in either the case of the private
cloud 304 or public cloud 312, configure virtual computer
systems and even entire virtual data centers and launch
execution of application programs on the virtual computer
systems and virtual data centers in order to carry out any of
many different types of computational tasks. As one
example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the devices to purchase,
manage, and maintain in-house data centers. Such organi-
zations can dynamically add and delete virtual computer
systems from their virtual data centers within public clouds
in order to track computational-bandwidth and data-storage
needs, rather than purchasing sufficient computer systems
within a physical data center to handle peak computational-
bandwidth and data-storage demands. Moreover, small orga-
nizations can completely avoid the overhead of maintaining
and managing physical computer systems, including hiring
and periodically retraining information-technology special-
ists and continuously paying for operating-system and data-
base-management-system upgrades. Furthermore, cloud-
computing interfaces allow for easy and straightforward
configuration of virtual computing facilities, flexibility in
the types of applications and operating systems that can be
configured, and other functionalities that are useful even for
owners and administrators of private cloud-computing
facilities used by a single organization.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, different types of input-output
(“1/0”) devices 410 and 412, and mass-storage devices 414.
Of course, the hardware level also includes many other

20

30

35

40

45

50

6

components, including power supplies, internal communi-
cations links and busses, specialized integrated circuits,
many different types of processor-controlled or micropro-
cessor-controlled peripheral devices and controllers, and
many other components. The operating system 404 inter-
faces to the hardware level 402 through a low-level oper-
ating system and hardware interface 416 generally compris-
ing a set of non-privileged computer instructions 418, a set
of privileged computer instructions 420, a set of non-
privileged registers and memory addresses 422, and a set of
privileged registers and memory addresses 424. In general,
the operating system exposes non-privileged instructions,
non-privileged registers, and non-privileged memory
addresses 426 and a system-call interface 428 as an oper-
ating-system interface 430 to application programs 432-436
that execute within an execution environment provided to
the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
different application programs and higher-level computa-
tional entities, providing to each application program a
virtual, stand-alone system devoted entirely to the applica-
tion program. From the application program’s standpoint,
the application program executes continuously without con-
cern for the need to share processor devices and other system
devices with other application programs and higher-level
computational entities. The device drivers abstract details of
hardware-component operation, allowing application pro-
grams to employ the system-call interface for transmitting
and receiving data to and from communications networks,
mass-storage devices, and other /O devices and subsystems.
The file system 446 facilitates abstraction of mass-storage-
device and memory devices as a high-level, easy-to-access,
file-system interface. Thus, the development and evolution
of the operating system has resulted in the generation of a
type of multi-faceted virtual execution environment for
application programs and other higher-level computational
entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within different types of
computer hardware. In many cases, popular application
programs and computational systems are developed to run
on only a subset of the available operating systems and can
therefore be executed within only a subset of the different

US 10,977,151 B2

7

types of computer systems on which the operating systems
are designed to run. Often, even when an application pro-
gram or other computational system is ported to additional
operating systems, the application program or other com-
putational system can nonetheless run more efficiently on
the operating systems for which the application program or
other computational system was originally targeted. Another
difficulty arises from the increasingly distributed nature of
computer systems. Although distributed operating systems
are the subject of considerable research and development
efforts, many of the popular operating systems are designed
primarily for execution on a single computer system. In
many cases, it is difficult to move application programs, in
real time, between the different computer systems of a
distributed computer system for high-availability, fault-tol-
erance, and load-balancing purposes. The problems are even
greater in heterogeneous distributed computer systems
which include different types of hardware and devices
running different types of operating systems. Operating
systems continue to evolve, as a result of which certain older
application programs and other computational entities may
be incompatible with more recent versions of operating
systems for which they are targeted, creating compatibility
issues that are particularly difficult to manage in large
distributed systems.

For the above reasons, a higher level of abstraction,
referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 5A-B show two
types of VM and virtual-machine execution environments.
FIGS. 5A-B use the same illustration conventions as used in
FIG. 4. FIG. 5A shows a first type of virtualization. The
computer system 500 in FIG. 5A includes the same hardware
layer 502 as the hardware layer 402 shown in FIG. 4.
However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment shown in FIG. 5A features a
virtualization layer 504 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 506, equivalent to inter-
face 416 in FIG. 4, to the hardware.

The virtualization layer 504 provides a hardware-like
interface to VMs, such as VM 510, in a virtual-machine
layer 511 executing above the virtualization layer 504. Each
VM includes one or more application programs or other
higher-level computational entities packaged together with
an operating system, referred to as a “guest operating
system,” such as application 514 and guest operating system
516 packaged together within VM 510. Each VM is thus
equivalent to the operating-system layer 404 and applica-
tion-program layer 406 in the general-purpose computer
system shown in FIG. 4. Each guest operating system within
a VM interfaces to the virtualization layer interface 504
rather than to the actual hardware interface 506. The virtu-
alization layer 504 partitions hardware devices into abstract
virtual-hardware layers to which each guest operating sys-
tem within a VM interfaces. The guest operating systems
within the VMs, in general, are unaware of the virtualization
layer and operate as if they were directly accessing a true
hardware interface. The virtualization layer 504 ensures that
each of the VMs currently executing within the virtual
environment receive a fair allocation of underlying hardware
devices and that all VMs receive sufficient devices to
progress in execution. The virtualization layer 504 may
differ for different guest operating systems. For example, the
virtualization layer is generally able to provide virtual

25

35

40

45

8

hardware interfaces for a variety of different types of com-
puter hardware. This allows, as one example, a VM that
includes a guest operating system designed for a particular
computer architecture to run on hardware of a different
architecture. The number of VMs need not be equal to the
number of physical processors or even a multiple of the
number of processors.

The virtualization layer 504 includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the VMs executes. For execution effi-
ciency, the virtualization layer attempts to allow VMs to
directly execute non-privileged instructions and to directly
access non-privileged registers and memory. However,
when the guest operating system within a VM accesses
virtual privileged instructions, virtual privileged registers,
and virtual privileged memory through the virtualization
layer 504, the accesses result in execution of virtualization-
layer code to simulate or emulate the privileged devices. The
virtualization layer additionally includes a kernel module
520 that manages memory, communications, and data-stor-
age machine devices on behalf of executing VMs (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each VM so that hardware-level virtual-
memory facilities can be used to process memory accesses.
The VM kernel additionally includes routines that imple-
ment virtual communications and data-storage devices as
well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer 504
essentially schedules execution of VMs much like an oper-
ating system schedules execution of application programs,
so that the VMs each execute within a complete and fully
functional virtual hardware layer.

FIG. 5B shows a second type of virtualization. In FIG. 5B,
the computer system 540 includes the same hardware layer
542 and operating system layer 544 as the hardware layer
402 and the operating system layer 404 shown in FIG. 4.
Several application programs 546 and 548 are shown run-
ning in the execution environment provided by the operating
system 544. In addition, a virtualization layer 550 is also
provided, in computer 540, but, unlike the virtualization
layer 504 discussed with reference to FIG. SA, virtualization
layer 550 is layered above the operating system 544, referred
to as the “host OS,” and uses the operating system interface
to access operating-system-provided functionality as well as
the hardware. The virtualization layer 550 comprises pri-
marily a VMM and a hardware-like interface 552, similar to
hardware-like interface 508 in FIG. SA. The hardware-layer
interface 552, equivalent to interface 416 in FIG. 4, provides
an execution environment VMs 556-558, each including one
or more application programs or other higher-level compu-
tational entities packaged together with a guest operating
system.

In FIGS. 5A-5B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic

US 10,977,151 B2

9

disks, and other such devices. The term ““virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A VM or virtual application, described below, is encap-
sulated within a data package for transmission, distribution,
and loading into a virtual-execution environment. One pub-
lic standard for virtual-machine encapsulation is referred to
as the “open virtualization format” (“OVF”). The OVF
standard specifies a format for digitally encoding a VM
within one or more data files. FIG. 6 shows an OVF package.
An OVF package 602 includes an OVF descriptor 604, an
OVF manifest 606, an OVF certificate 608, one or more
disk-image files 610-611, and one or more device files
612-614. The OVF package can be encoded and stored as a
single file or as a set of files. The OVF descriptor 604 is an
XML document 620 that includes a hierarchical set of
elements, each demarcated by a beginning tag and an ending
tag. The outermost, or highest-level, element is the envelope
element, demarcated by tags 622 and 623. The next-level
element includes a reference element 626 that includes
references to all files that are part of the OVF package, a disk
section 628 that contains meta information about all of the
virtual disks included in the OVF package, a network section
630 that includes meta information about all of the logical
networks included in the OVF package, and a collection of
virtual-machine configurations 632 which further includes
hardware descriptions of each VM 634. There are many
additional hierarchical levels and elements within a typical
OVF descriptor. The OVF descriptor is thus a self-describ-
ing, XML file that describes the contents of an OVF pack-
age. The OVF manifest 606 is a list of cryptographic-hash-
function-generated digests 636 of the entire OVF package
and of the various components of the OVF package. The
OVF certificate 608 is an authentication certificate 640 that
includes a digest of the manifest and that is cryptographi-
cally signed. Disk image files, such as disk image file 610,
are digital encodings of the contents of virtual disks and
device files 612 are digitally encoded content, such as
operating-system images. A VM or a collection of VMs
encapsulated together within a virtual application can thus
be digitally encoded as one or more files within an OVF
package that can be transmitted, distributed, and loaded
using well-known tools for transmitting, distributing, and
loading files. A virtual appliance is a software service that is
delivered as a complete software stack installed within one
or more VMs that is encoded within an OVF package.

The advent of VMs and virtual environments has allevi-
ated many of the difficulties and challenges associated with
traditional general-purpose computing. Machine and oper-
ating-system dependencies can be significantly reduced or
eliminated by packaging applications and operating systems
together as VMs and virtual appliances that execute within
virtual environments provided by virtualization layers run-
ning on many different types of computer hardware. A next
level of abstraction, referred to as virtual data centers or
virtual infrastructure, provide a data-center interface to
virtual data centers computationally constructed within
physical data centers.

20

25

40

45

50

55

10

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents. In FIG. 7, a physical data center 702 is shown below
a virtual-interface plane 704. The physical data center con-
sists of a virtual-data-center management server computer
706 and any of different computers, such as PC 708, on
which a virtual-data-center management interface may be
displayed to system administrators and other users. The
physical data center additionally includes generally large
numbers of server computers, such as server computer 710,
that are coupled together by local area networks, such as
local area network 712 that directly interconnects server
computer 710 and 714-720 and a mass-storage array 722.
The physical data center shown in FIG. 7 includes three
local area networks 712, 724, and 726 that each directly
interconnects a bank of eight server computers and a mass-
storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple VMs. Different physical data centers may
include many different types of computers, networks, data-
storage systems and devices connected according to many
different types of connection topologies. The virtual-inter-
face plane 704, a logical abstraction layer shown by a plane
in FIG. 7, abstracts the physical data center to a virtual data
center comprising one or more device pools, such as device
pools 730-732, one or more virtual data stores, such as
virtual data stores 734-736, and one or more virtual net-
works. In certain implementations, the device pools abstract
banks of server computers directly interconnected by a local
area network.

The virtual-data-center management interface allows pro-
visioning and launching of VMs with respect to device
pools, virtual data stores, and virtual networks, so that
virtual-data-center administrators need not be concerned
with the identities of physical-data-center components used
to execute particular VMs. Furthermore, the virtual-data-
center management server computer 706 includes function-
ality to migrate running VMs from one server computer to
another in order to optimally or near optimally manage
device allocation, provides fault tolerance, and high avail-
ability by migrating VMs to most effectively utilize under-
lying physical hardware devices, to replace VMs disabled by
physical hardware problems and failures, and to ensure that
multiple VMs supporting a high-availability virtual appli-
ance are executing on multiple physical computer systems
so that the services provided by the virtual appliance are
continuously accessible, even when one of the multiple
virtual appliances becomes compute bound, data-access
bound, suspends execution, or fails. Thus, the virtual data
center layer of abstraction provides a virtual-data-center
abstraction of physical data centers to simplify provisioning,
launching, and maintenance of VMs and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the devices of individual server com-
puters and migrating VMs among server computers to
achieve load balancing, fault tolerance, and high availability.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server computer and physical
server computers of a physical data center above which a
virtual-data-center interface is provided by the virtual-data-
center management server computer. The virtual-data-center
management server computer 802 and a virtual-data-center
database 804 comprise the physical components of the
management component of the virtual data center. The
virtual-data-center management server computer 802
includes a hardware layer 806 and virtualization layer 808
and runs a virtual-data-center management-server VM 810

US 10,977,151 B2

11

above the virtualization layer. Although shown as a single
server computer in FIG. 8, the virtual-data-center manage-
ment server computer (“VDC management server”) may
include two or more physical server computers that support
multiple VDC-management-server virtual appliances. The
virtual-data-center management-server VM 810 includes a
management-interface component 812, distributed services
814, core services 816, and a host-management interface
818. The host-management interface 818 is accessed from
any of various computers, such as the PC 708 shown in FIG.
7. The host-management interface 818 allows the virtual-
data-center administrator to configure a virtual data center,
provision VMs, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
VMs within each of the server computers of the physical
data center that is abstracted to a virtual data center by the
VDC management server computer.

The distributed services 814 include a distributed-device
scheduler that assigns VMs to execute within particular
physical server computers and that migrates VMs in order to
most effectively make use of computational bandwidths,
data-storage capacities, and network capacities of the physi-
cal data center. The distributed services 814 further include
a high-availability service that replicates and migrates VMs
in order to ensure that VMs continue to execute despite
problems and failures experienced by physical hardware
components. The distributed services 814 also include a
live-virtual-machine migration service that temporarily halts
execution of a VM, encapsulates the VM in an OVF pack-
age, transmits the OVF package to a different physical server
computer, and restarts the VM on the different physical
server computer from a virtual-machine state recorded when
execution of the VM was halted. The distributed services
814 also include a distributed backup service that provides
centralized virtual-machine backup and restore.

The core services 816 provided by the VDC management
server VM 810 include host configuration, virtual-machine
configuration, virtual-machine provisioning, generation of
virtual-data-center alerts and events, ongoing event logging
and statistics collection, a task scheduler, and a device-
management module. Each physical server computers 820-
822 also includes a host-agent VM 828-830 through which
the virtualization layer can be accessed via a virtual-infra-
structure application programming interface (“API”). This
interface allows a remote administrator or user to manage an
individual server computer through the infrastructure APIL.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server information through the host agents. The
virtual-data-center agents are primarily responsible for off-
loading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server computer. The virtual-data-center agents
relay and enforce device allocations made by the VDC
management server VM 810, relay virtual-machine provi-
sioning and configuration-change commands to host agents,
monitor and collect performance statistics, alerts, and events
communicated to the virtual-data-center agents by the local
host agents through the interface API, and to carry out other,
similar virtual-data-management tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional devices of a cloud-computing facility to cloud-com-
puting-infrastructure users. A cloud-director management
server exposes virtual devices of a cloud-computing facility
to cloud-computing-infrastructure users. In addition, the

10

15

20

25

30

35

40

45

50

55

60

65

12

cloud director introduces a multi-tenancy layer of abstrac-
tion, which partitions VDCs into tenant-associated VDCs
that can each be allocated to a particular individual tenant or
tenant organization, both referred to as a “tenant.” A given
tenant can be provided one or more tenant-associated VDCs
by a cloud director managing the multi-tenancy layer of
abstraction within a cloud-computing facility. The cloud
services interface (308 in FIG. 3) exposes a virtual-data-
center management interface that abstracts the physical data
center.

FIG. 9 shows a cloud-director level of abstraction. In FIG.
9, three different physical data centers 902-904 are shown
below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The devices of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director server computers 920-922 and associated
cloud-director databases 924-926. Each cloud-director
server computer or server computers runs a cloud-director
virtual appliance 930 that includes a cloud-director manage-
ment interface 932, a set of cloud-director services 934, and
a virtual-data-center management-server interface 936. The
cloud-director services include an interface and tools for
provisioning multi-tenant virtual data center virtual data
centers on behalf of tenants, tools and interfaces for con-
figuring and managing tenant organizations, tools and ser-
vices for organization of virtual data centers and tenant-
associated virtual data centers within the multi-tenant virtual
data center, services associated with template and media
catalogs, and provisioning of virtualization networks from a
network pool. Templates are VMs that each contains an OS
and/or one or more VMs containing applications. A template
may include much of the detailed contents of VMs and
virtual appliances that are encoded within OVF packages, so
that the task of configuring a VM or virtual appliance is
significantly simplified, requiring only deployment of one
OVF package. These templates are stored in catalogs within
a tenant’s virtual-data center. These catalogs are used for
developing and staging new virtual appliances and published
catalogs are used for sharing templates in virtual appliances
across organizations. Catalogs may include OS images and
other information relevant to construction, distribution, and
provisioning of virtual appliances.

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this
level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-
erogeneous or homogeneous aggregations of cloud-comput-
ing facilities.

FIG. 10 shows virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are shown 1002-

US 10,977,151 B2

13

1008. Cloud-computing facility 1002 is a private multi-
tenant cloud with a cloud director 1010 that interfaces to a
VDC management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

As mentioned above, while the virtual-machine-based
virtualization layers, described in the previous subsection,
have received widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have steadily
decreased, over the years, and often represent ten percent or
less of the total computational bandwidth consumed by an
application running above a guest operating system in a
virtualized environment, traditional virtualization technolo-
gies nonetheless involve computational costs in return for
the power and flexibility that they provide.

While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems, OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system for use by containers. A con-
tainer is a software package that uses virtual isolation to
deploy and run one or more applications that access a shared
operating system kernel. Containers isolate components of
the host used to run the one or more applications. The
components include files, environment variables, dependen-
cies, and libraries. The host OS constrains container access
to physical resources, such as CPU, memory and data
storage, preventing a single container from using all of a
host’s physical resources. As one example, OSL virtualiza-
tion provides a file system to each container, but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system of the host. In essence, OSL virtu-
alization uses operating-system features, such as namespace
isolation, to isolate each container from the other containers
running on the same host. In other words, namespace
isolation ensures that each application is executed within the
execution environment provided by a container to be iso-
lated from applications executing within the execution envi-

25

30

40

45

50

55

14

ronments provided by the other containers. A container
cannot access files not included the container’s namespace
and cannot interact with applications running in other con-
tainers. As a result, a container can be booted up much faster
than a VM, because the container uses operating-system-
kernel features that are already available and functioning
within the host. Furthermore, the containers share compu-
tational bandwidth, memory, network bandwidth, and other
computational resources provided by the operating system,
without the overhead associated with computational
resources allocated to VMs and virtualization layers. Again,
however, OSL virtualization does not provide many desir-
able features of traditional virtualization. As mentioned
above, OSL virtualization does not provide a way to run
different types of operating systems for different groups of
containers within the same host and OSL-virtualization does
not provide for live migration of containers between hosts,
high-availability functionality, distributed resource schedul-
ing, and other computational functionality provided by
traditional virtualization technologies.

FIG. 11 shows an example server computer used to host
three containers. As discussed above with reference to FIG.
4, an operating system layer 404 runs above the hardware
402 of the host computer. The operating system provides an
interface, for higher-level computational entities, that
includes a system-call interface 428 and the non-privileged
instructions, memory addresses, and registers 426 provided
by the hardware layer 402. However, unlike in FIG. 4, in
which applications run directly above the operating system
layer 404, OSL virtualization involves an OSL virtualization
layer 1102 that provides operating-system interfaces 1104-
1106 to each of the containers 1108-1110. The containers, in
turn, provide an execution environment for an application
that runs within the execution environment provided by
container 1108. The container can be thought of as a
partition of the resources generally available to higher-level
computational entities through the operating system inter-
face 430.

FIG. 12 shows an approach to implementing the contain-
ers on a VM. FIG. 12 shows a host computer similar to the
host computer shown in FIG. 5A, discussed above. The host
computer includes a hardware layer 502 and a virtualization
layer 504 that provides a virtual hardware interface 508 to a
guest operating system 1102. Unlike in FIG. 5A, the guest
operating system interfaces to an OSL-virtualization layer
1104 that provides container execution environments 1206-
1208 to multiple application programs.

Although only a single guest operating system and OSL
virtualization layer are shown in FIG. 12, a single virtualized
host system can run multiple different guest operating sys-
tems within multiple VMs, each of which supports one or
more OSL-virtualization containers. A virtualized, distrib-
uted computing system that uses guest operating systems
running within VMs to support OSL-virtualization layers to
provide containers for running applications is referred to, in
the following discussion, as a “hybrid virtualized distributed
computing system.”

Running containers above a guest operating system within
a VM provides advantages of traditional virtualization in
addition to the advantages of OSL virtualization. Containers
can be quickly booted in order to provide additional execu-
tion environments and associated resources for additional
application instances. The resources available to the guest
operating system are efficiently partitioned among the con-
tainers provided by the OSL-virtualization layer 1204 in
FIG. 12, because there is almost no additional computational
overhead associated with container-based partitioning of

US 10,977,151 B2

15

computational resources. However, many of the powerful
and flexible features of the traditional virtualization tech-
nology can be applied to VMs in which containers run above
guest operating systems, including live migration from one
host to another, various types of high-availability and dis-
tributed resource scheduling, and other such features. Con-
tainers provide share-based allocation of computational
resources to groups of applications with guaranteed isolation
of applications in one container from applications in the
remaining containers executing above a guest operating
system. Moreover, resource allocation can be modified at
run time between containers. The traditional virtualization
layer provides for flexible and scaling over large numbers of
hosts within large distributed computing systems and a
simple approach to operating-system upgrades and patches.
Thus, the use of OSL virtualization above traditional virtu-
alization in a hybrid virtualized distributed computing sys-
tem, as shown in FIG. 12, provides many of the advantages
of both a traditional virtualization layer and the advantages
of OSL virtualization.

Processes and Systems for Determining Efficient
Sampling Rates of Metrics Generated by Metric
Sources of a Distributed Computing System

FIG. 13 shows an example of a virtualization layer 1302
located above a physical data center 1304. For the sake of
illustration, the virtualization layer 1302 is separated from
the physical data center 1304 by a virtual-interface plane
1306. The physical data center 1304 is an example of a
distributed computing system. The physical data center 1304
comprises physical objects, including a management server
computer 1308, any of various computers, such as PC 1310,
on which a virtual-data-center (“VDC”) management inter-
face may be displayed to system administrators and other
users, server computers, such as server computers 1312-
1319, data-storage devices, and network devices. The server
computers may be networked together to form networks
within the data center 1904. The example physical data
center 1304 includes three networks that each directly
interconnects a bank of eight server computers and a mass-
storage array. For example, network 1320 interconnects
server computers 1312-1319 and a mass-storage array 1322.
Different physical data centers may include many different
types of computers, networks, data-storage systems and
devices connected according to many different types of
connection topologies. The virtualization layer 1302
includes virtual objects, such as VMs, applications, and
containers, hosted by the server computers in the physical
data center 1304. The virtualization layer 1302 may also
include a virtual network (not illustrated) of virtual switches,
routers, load balancers, and network interface cards formed
from the physical switches, routers, and network interface
cards of the physical data center 1304. Certain server
computers host VMs and containers as described above. For
example, server computer 1314 hosts two containers 1324,
server computer 1326 hosts four VMs 1328, and server
computer 1330 hosts a VM 1332. Other server computers
may host applications as described above with reference to
FIG. 4. For example, server computer 1318 hosts four
applications 1334. The virtual-interface plane 1306 abstracts
the resources of the physical data center 1304 to one or more
VDCs comprising the virtual objects and one or more virtual
data stores, such as virtual data stores 1338 and 1340. For
example, one VDC may comprise VMs 1328 and virtual
data store 1338.

25

40

45

55

16

In the following discussion, the term “resource” refers to
a physical resource of a distributed computing system, such
as, but are not limited to, a processor, a core, memory, a
network connection, network interface, data-storage device,
a mass-storage device, a switch, a router, and other any other
component of the physical data center 1304. Resources of a
server computer and clusters of server computers may form
a resource pool for creating virtual resources of a virtual
infrastructure used to run virtual objects. The term
“resource” may also refer to a virtual resource, which may
have been formed from physical resources used by a virtual
object. For example, a resource may be a virtual processor
formed from one or more cores of a multicore processor,
virtual memory formed from a portion of physical memory,
virtual storage formed from a sector or image of a hard disk
drive, a virtual switch, and a virtual router. The term “object”
refers to a physical object or a virtual object for which metric
data can be collected. Examples of physical objects include
a server computer, network device, a workstation, and a PC.
Examples of virtual objects include an application, a VM, a
virtual network device, and a container. A “complex com-
putational system” is composed of physical and/or virtual
objects. A complex computational system may comprise the
distributed computing system itself, such a data center, or
any physical and/or virtual objects of a distributed comput-
ing system. For example, a complex computational system
may be a single server computer, a cluster of server com-
puters, or a network of server computers. A complex com-
putational system may be a set of VMs, containers, appli-
cations, or a VDC of a tenant. A complex computational
system may be a set of physical objects and the virtual
objects hosted by the physical objects.

Automated processes and systems described herein are
implemented in a monitoring server that collects numerous
streams of time-dependent metric data generated by various
different metric sources to monitor resources, objects, and
complex computational systems of a distributed computing
system. Each stream of metric data is time series data
generated by a metric source. A metric source may be an
operating system of an object, an object, or a resource. A
stream of metric data associated with a resource comprises
a sequence of time-ordered metric values that are recorded
at spaced points in time called “time stamps.” A stream of
metric data is simply called a “metric” and is denoted by

V==) =

where

N, is the number of metric values in the sequence;

x,=x(t,) is a metric value;

1, is a time stamp indicating when the metric value was

recorded in a data-storage device; and

subscript i is a time stamp index i=1, ..., N,.

FIG. 14A shows a plot of an example metric associated
with a resource. Horizontal axis 1402 represents time.
Vertical axis 1404 represents a range of metric value ampli-
tudes. Curve 1406 represents a metric as time series data. In
practice, a metric comprises a sequence of discrete metric
values in which each metric value is recorded in a data-
storage device. FIG. 14 includes a magnified view 1408 of
three consecutive metric values represented by points. Each
point represents an amplitude of the metric at a correspond-
ing time stamp. For example, points 1410-1412 represent
three consecutive metric values (i.e., amplitudes) x, ;, X,,
and x,,, recorded in a data-storage device at corresponding
time stamps t,_;, t, and t,,;,. The example metric may
represent usage of a physical or virtual resource. For
example, the metric may represent CPU usage of a core in

M

US 10,977,151 B2

17

a multicore processor of a server computer over time. The
metric may represent the amount of virtual memory a VM
uses over time. The metric may represent network through-
put for a server computer. Network throughput is the number
of bits of data transmitted to and from a physical or virtual
object and is recorded in megabits, kilobits, or bits per
second. The metric may represent network traffic for a server
computer. Network traffic at a physical or virtual object is a
count of the number of data packets received and sent per
unit of time.

In FIGS. 14B-14C, a monitoring server 1414 collects
numerous metrics associated with numerous physical and
virtual resources. The monitoring server 1414 may be imple-
mented in one or more VMs to collect and process the
metrics as described below. As shown in FIGS. 14B-14C,
directional arrows represent metrics sent from physical and
virtual resources to the monitoring server 1414. In FIG. 14B,
PC 1310, server computers 1308 and 1312-1315, and mass-
storage array 1346 send metrics to the monitoring server
1414. Clusters of server computers may also send metrics to
the monitoring server 1414, such as cluster of server com-
puters 1312-1315 that send metrics to the monitoring server
1414. In FIG. 14C, the operating systems, VMs, containers,
applications, and virtual storage may independently send
metrics to the monitoring server 1414, depending on when
the metrics are generated. For example, certain objects may
metric values as the metric values are generated while other
objects may send sequences of metric values in blocks at
certain times or in response to a request from the monitoring
server 1414.

Physical and virtual objects may generate tens, hundreds,
or thousands of associated metrics that are sent to the
monitoring server 1414. For example, metric sources of a
single server computer may send to the monitoring server
1414 hundreds of metrics that represent usage of each core
of a multicore core processor, memory usage, storage usage,
network throughput, error rates, datastores, disk usage,
average response times, peak response times, thread counts,
and power usage, just to name a few. A single virtual object,
such as a VM, is a metric source that may send to the
monitoring server 1414 hundreds of associated metrics that
monitor both physical and virtual resource usage, such as
virtual CPU usage, virtual memory usage, virtual disk usage,
virtual storage space, number of data stores, average and
peak response times for various physical and virtual
resources of the VM, network throughput, and power usage,
just to name a few.

Each metric may have a different associated sampling
rate, which is the number of metric values recorded per unit
of time. For example, certain metrics, such as CPU usage
and memory usage, may be recorded every second, every
tenth of a second, or every hundredth of a second. By
contrast, other metrics, such as error rates and power usage,
may be recorded every hour or two hours.

Processes and systems omit constant and nearly constant
metrics because constant and nearly constant metrics are not
useful in identifying abnormal performance of a resource, an
object, or a complex computational system. In certain imple-
mentations, metrics with fewer than a fixed percentage of
non-constant metric values are omitted. For example, met-
rics with less than 5% non-constant metric values may be
omitted. In other implementations, constant or nearly con-
stant metrics may be identified by the magnitude of the
standard deviation of each metric over time. The standard
deviation is a measure of the amount of variation or degree
of variability of a metric. A large standard deviation indi-
cates large variability in the metric. A small standard devia-

10

25

30

40

45

18

tion indicates low variability in the metric. The standard
deviation is compared to a variability threshold to determine
whether the metric has acceptable variation for detection of
abnormal behavior of an object or a complex computational
system.

The standard deviation of a metric may be computed by:

1 M R (2a)
o= Vv‘; (i —)
where the mean of the metric is given by
1 M (2b)
H= VVZ Xi

When the standard deviation o>¢,, where €, is a variability
threshold (e.g., £,=0.01), the metric v is non-constant and is
retained. Otherwise, when the standard deviation o=e_,, the
metric v is constant and is omitted from determining the
state of the complex computational system.

FIGS. 15A-15B show plots of example non-constant and
constant metrics over time. Horizontal axes 1501 and 1502
represent time. Vertical axis 1503 represents a range of
metric values for a first metric v,. Vertical axis 1504
represents the same range of metric values for a second
metric v,. Curve 1505 represents the metric v, over a time
interval between time stamps t; and t,. Curve 1506 repre-
sents the metric v, over the same time interval. FIG. 15A
includes a plot an example first distribution 1507 of the first
metric centered about a mean value p,. FIG. 15B includes a
plot an example second distribution 1508 of the second
metric centered about a mean value p,. The distributions
1507 and 1508 reveal that the first metric 1505 has a much
higher degree of variability than the second metric, which is
nearly constant over the time interval.

A typical monitoring server collects and stores metrics at
high sampling rates to ideally monitor, in real time, dynamic
performance of resources, objects, and complex computa-
tion systems, resulting in large amounts of storage space
dedicated to storing metrics. FIG. 16 shows an example of
a monitoring server 1602 that records metrics generated by
various different metric sources in metric data storage 1604.
The metric sources 1606-1608 generate corresponding run-
time metrics 1610-1612. Blocks 1614-1616 represent sepa-
rate storage operations that each receive and record the
run-time metrics 1620-1612 in the metric data storage 1804
as corresponding stored metrics 1618-1620. For the sake of
simplicity, ellipsis 1622 represents additional metric sources
and run-time metrics, ellipsis 1624 represents separate
recording operations performed on the additional metric
sources. Ellipsis 1626 represents addition metrics stored in
the metric data storage 1604.

Using high sampling rates to record every metric received
by the monitoring server is unnecessary for many of the
metrics received by the monitoring server. For example, a
metric that varies slowly over time relative to the high
sampling rate used to record the metric leads to recording
redundant metric values (i.e., recording redundant informa-
tion). On the other hand, a high sampling rate may be
necessary to monitor metrics with a high relative variability
over time. Storing large numbers of metrics, each with a
large number of metric values, leads to increased storage

US 10,977,151 B2

19

cost and the large density of metric values created by high
sampling rates slows detection of performance problems.

FIGS. 17A-17B show plots of an example low-variation
metric sampled at two different sampling rates. Horizontal
axes 1702 represent time. Vertical axes 1704 represent a
range of metric values. Solid dots, such as solid 1706,
represent metric values recorded in a data storage device at
regularly spaced time stamps. In FIG. 17A, metric values of
the low-variation metric are recorded in the data storage
device with a high sampling rate. In FIG. 17B, the metric
values of the same metric are recorded in the data storage
device with a low sampling rate. Open dots in FIG. 17B,
such as open dot 1708, represent metric values that are not
recorded due to the low sampling rate. The low-frequency
sampling rate records the same variation in the low-variation
metric over time with half as many metric values. The
low-frequency sampling rate is an example of a sampling
rate that may be used to record metric values without losing
information regarding variations of the metric over time.
The low-frequency sampling rate used to record the metric
values in FIG. 17B is a more efficient sampling rate than the
high sampling rate used to record the metric values in FIG.
17 A because the same information related to variation in the
metric overtime are recorded with fewer metric values.

FIGS. 18A-18B show plots of an example high-variation
metric sampled at two different sampling rates. Horizontal
axes 1802 represent time. Vertical axes 1804 represent a
range of metric values. Solid dots represent metric values
recorded in a data storage device at time samples. In FIG.
18A, metric values of the high-variation metric are recorded
in the data storage device with a high sampling rate. In FIG.
18B, the metric values are recorded in the data storage
device with a low sampling rate. Open dots in FIG. 18B
represent metric values not recorded as a result of the low
sampling rate. The low sampling rate does not record the
same variation in the high-variation metric over time as the
high sampling rate. For example, omitted metric values in
time interval 1806 of FIG. 18B fail to account for variations
in the metric in comparison to the metric values recorded in
the same time interval 1808 of FIG. 18A. As a result, the low
sampling rate used to record the metric in FIG. 18B is less
efficient than the high sampling rate used to record the same
metric in FIG. 18A.

Processes and systems described below determine an
efficient sampling rate for each metric stored in metric data
storage. An efficient sampling rate ideally reduces the num-
ber of metric values used to record the metric and avoids an
unacceptable information loss. Each efficient sampling rate
may be used as the sampling rate for recording run-time
metric values of the corresponding metric to reduce the
amount of storage used to record the metric. Each efficient
sampling rate may also be used to resample the correspond-
ing metric already stored in the metric database, thereby
reducing the amount of storage space occupied by the
metric. On the other hand, reducing the sampling rates of
metrics that exhibit a high variability over time may result
in unacceptable information losses, as described above with
reference to FIG. 18A-18B. Processes and systems avoid
such information losses by leaving sampling rates of high
variability metrics unchanged. Sampling rates of high vari-
ability metrics that are left unchanged are efficient sampling
rates.

FIG. 19 shows an example of a monitoring server 1902
that determines an efficient sampling rate for each metric
received and uses the efficient sampling rate to sample and
record the metric in metric data storage 1904. In FIG. 19,
dashed line block 1906 represents a metric recorded in the

10

15

20

25

30

35

40

45

50

55

60

65

20

metric data storage 1904. Ellipsis 1908 and 1910 represent
additional metrics stored in the metric data storage 1904 but
are not represented for simplicity of illustration. The moni-
toring server 1902 receives run-time metric values 1912
from a metric source 1914. Ellipsis 1916 and 1918 represent
additional run-time metrics generated by corresponding
metric sources sent to the monitoring server 1902. The
monitoring server 1902 performs a sample and record opera-
tion 1920. In block 1922, an efficient sampling rate is
determined, as described below, based on the metric 1906
recorded in the metric data storage 1904. In block 1924, if
the efficient sampling rate does not lead to an information
loss, the efficient sampling rate may be used to reduce the
metric 1906 by discarding redundant metric values as
described below. In block 1926, the efficient sampling rate
is used to reduce the number run-time metric values 1912.
A reduced metric 1928 replaces the metric 1906, which
occupies less storage space in the metric data storage 1904.
On the other hand, if it is determined in block 1922 that
reducing the metric 1906 leads to an unacceptable informa-
tion loss, the run-time metric values 1912 and the metric
1906 are not reduced. Ellipsis 1930 and 1932 represent
repeating the sample and record operations 1920 for other
metrics sent to the monitoring server 1902 and stored in the
metric data storage 1904.

The determination of an efficient sampling rate in block
1922 of FIG. 19 is performed by incrementally reducing the
metric values of a recorded metric, creating a plurality of
reduced metrics. Each reduced metric comprises a different
subsequence of metric values of a metric. The efficient
sampling rate used sample run-time metric values of a
metric and resample the stored metric to reduce storage
space is the sampling rate of the reduced metric with an
acceptable information loss, as explained below.

FIG. 20 shows a plot of a metric initially recorded in
metric data storage. Horizontal axis 2002 represents time.
Vertical axis 2004 represents a range of metric values. Curve
2006 represents metric values recorded over a historical time
window bounded by time stamps t, and t,. FIG. 20 includes
a magnified view 2008 of a portion of the metric 2006 in a
time interval 2010, revealing metric values represented by
solid dots at regularly space time stamps determined by a
high-frequency sampling rate used to record metric values of
the metric. For example, dot 2012 represents a metric value,
X,, recorded at a time stamp t,. In the following discussion,
the metric 2006 shown in FIG. 20 is used as a basis for
constructing reduced metrics and assessing the information
loss associated with each reduced metric.

The range of metric values, such as the range of metric
values represented by vertical axis 2004, is partitioned into
metric value intervals. Let K denote the number of intervals
obtained from partitioning a range of metric values. A
relative frequency of metric values in each metric value
interval is computed for the metric by

Nk (3)
Poi = Now
where
subscript k=1, 2, . . . , K;

subscript “0” denotes a baseline metric;

Np,, is the number of metric values of the metric recorded
in the historical time window; and

1, ;. is the number of metric values in the k-th metric value
interval of the range of metric values.

US 10,977,151 B2

21

The relative frequencies form a metric distribution given by

Po={poy - - - Dok} (©)]

FIG. 21 shows construction of a baseline metric distribu-
tion P, from the metric shown in FIG. 20. The baseline
metric distribution is created by partitioning the range of
metric values into a plurality of adjacent metric value
intervals. For example, the range of metric values repre-
sented by vertical axis 2004 is partitioned into intervals with
the boundaries of each metric value interval identified by
regularly spaced marks located along vertical axis 2004,
such as metric value interval 2102. Each metric value
interval encompasses a sub-range of the full range of metric
values recorded within the historical time window. The
number of metric values within each metric value interval is
counted over the historical time window. For example, lines
2104 and 2106 extended parallel to the time axis 2002 over
the historical time window represent boundaries of the
metric value interval 2102. Metric values of the metric 2006
located between the boundaries 2104 and 2106 of the
interval 2102 are counted. In magnified view 2008, six
points of the metric are located between the boundaries 2104
and 2106. The number of metric values within each interval
are divided by the number of metric values recorded in the
historical time window to obtain the relative frequency of
metric values in each metric value interval, as described
above with reference to Equation (3). FIG. 21 shows a plot
of an example baseline metric distribution P,. Horizontal
axis 2108 represents a range of relative frequencies. Each
bar of the baseline metric distribution represents the relative
frequency of metric values within a corresponding metric
value interval of the range of metric values. For example, bar
2110 represents the relative frequency of metric values in the
metric value interval 2102.

A number of reduced metrics are constructed from dif-
ference subsequences of the metric. Each reduced metric
comprises a different number of metric values and has an
associated sampling rate. For example, consider a metric
originally recorded in metric data storage. Reduced metrics
are determined by sequentially retaining larger subse-
quences of metric values. Starting with the first metric value
X, every n-th metric value of the metric is retained and
metric values between every n-th metric value are discarded
to obtain a reduced metric:
®

(),
VReduced =KX Lo X 142+« -+ » Xivgns -)

where

Veeaueea™ 18 a subsequence of the metric v;

n is a positive integer step size; and

q is an integer O=q=(N -1)/n.

Initially, the step size n may be set to a large number and is
decremented for each reduced metric. For example, the step
size may initially be set to 20 (i.e., n=20). A first reduced
metric may be constructed by retaining every 20? metric
value of the metric (i.e., discarding metric values between
every 20-th metric value). A second reduced metric may be
constructed by retaining every 19” metric value of the
metric (i.e., discarding metric values between every 19-th
metric value). Subsequence reduced metrics are constructed
by decrementing the step size.

A reduced metric distribution is constructed for each
reduced metric constructed from a metric. The relative
frequency of metric values in each metric value interval of
the partitioned range of metric values is computed by

40

50

22
i
Pik = N‘kv ©
where
subscript “1” denotes the i-th reduced metric;

N, , is the number of metric values in the i-th reduced
metric; and
n, ; is the number of metric values in the k-th metric value
interval of the partitioned range of metric values.
The relative frequencies of the i-th reduced metric form an
i-th reduced metric distribution given by

M

FIGS. 22A-22D show plots of examples of reduced
metrics with respect to the metric in FIG. 21 and example
corresponding reduced metric distributions for each reduced
metric. Hach reduced metric is constructed by retaining a
different subsequence of metric values of the metric. In FIG.
22A, the metric is reduced by retaining every tenth metric
value and discarding metric values of the metric between
every tenth metric value of the metric. For example, in
magnified view 2008 solid dots 2202 and 2204 represent
retained metric values. FIG. 22A shows a plot of a reduced
metric distribution P,, computed from the reduced metric.
For example, bar 2206 represents the relative frequency of
metric values in the interval 2102. In FIG. 22B, the metric
is reduced by retaining every seventh metric value and
discarding metric values between every seventh metric value
of the metric. For example, in magnified view 2008 solid
dots 2208, 2210, and 2212 represent retained metric values.
FIG. 22B shows a plot of a reduced metric distribution P,
computed from the reduced metric. For example, bar 2214
represents the relative frequency of metric values in the
interval 2102. In FIG. 22C, the metric is reduced by retain-
ing every fifth metric value and discarding metric values
between every fifth metric value of the metric. For example,
in magnified view 2008 solid dots 2216, 2218, 2220, and
2222 represent retained metric values. FIG. 22C also shows
a plot of a reduced metric distribution P; computed from the
reduced metric. For example, bar 2224 represents the rela-
tive frequency of metric values in the interval 2102. In FIG.
22D, the metric is reduced by retaining every other metric
value and discarding each metric value between every other
metric value of the metric. For example, in magnified view
2008 solid dots, such as solid dot 2226, represent retained
metric values resulting from retaining every other metric
value. The relative frequencies are computed for each metric
value interval of the range of metric values. FIG. 22D shows
a plot of a reduced metric distribution P, computed from the
reduced metric. For example, bar 2228 represents the rela-
tive frequency of metric values in the interval 2102.

Comparisons of each of the reduced metric distributions
in FIGS. 22A-22D with the baseline metric distribution in
FIG. 21 reveal that as the number of metric values retained
for each reduced metric are increased, the corresponding
reduced metric distributions converge on the baseline metric
distribution. The difference between a reduced metric dis-
tribution and the baseline metric distribution indicates an
information loss created by discarding metric values to of
the metric to obtain the reduced metric. For example, the
reduced metric distribution P,, obtained from retaining
every tenth metric value appears noticeably different from
the baseline distribution P,. By contrast, the reduced metric

US 10,977,151 B2

23

distribution P, obtained by retaining every other metric
value is noticeably similar to the baseline metric distribution
P,.

Processes and systems compute an information loss for
each reduced metric constructed from the metric based on
the reduced metric distribution and the baseline metric
distribution. The information loss is computed using the
Jensen-Shannon divergence given by:

K K K (8)
1
JSD(Py, P;) = —Z m;logmiy + 3 Z pilogpi + Z poslogpo
=1 =1 =1

where
Pik * Pok

Mg =)

The Jensen-Shannon divergence lies between 0 and 1 and
serves as a quantitative measure of the information loss in
constructing a reduced metric from the metric. A Jensen-
Shannon divergence value close to zero indicates the
reduced and baseline metric distributions are similar and
there has been little information lost in constructing the
reduced metric. For example, if JISD(P,, P,)=0, the baseline
metric distribution P, and the reduced metric distribution P,
are nearly identical and essentially no information has been
lost in constructing the reduced metric. By contrast, the
closer a Jensen-Shannon divergence value is to one, the
further the reduced metric distribution is from the baseline
metric distributions and information has been lost in con-
structing the reduced metric. For example, if ISD(P,, P,)=~1,
the baseline metric distribution P, and the reduced metric
distribution P, are substantially different and essentially little
to no information contained in the metric has been retained
in the reduced metric.

An information-loss threshold, denoted by Th,, ., may be
used to quantitatively determine if the information loss in
constructing a reduced metric is acceptable. When the
following condition is satisfied

Thios>ISD(Po.P) (92)

the information loss in constructing the reduced metric
associated with the reduced metric distribution P, is accept-
able. By contrast, when the following condition is satisfied

Thyse=JSD(Po,P;) (9b)

the information loss in constructing the reduced metric with
the reduced metric distribution P, is not acceptable. The
information-loss threshold may vary, depending on the
resource, object, or complex computational system associ-
ated with the metric. Information-loss thresholds may, for
example, range from about 0.01 to about 0.05. For example,
an information-loss threshold may be 0.04. The sampling
rate of a reduced metric with the largest information loss that
does not exceed the information-loss threshold may be used
as the efficient sampling rate.

FIG. 23 shows a plot of example losses of information for
reduced metrics between a reduced metric obtained by
retaining every tenth metric value and a reduced metric
obtained by retaining every other metric. Combinations of
reduced metric distributions with a baseline metric distribu-
tion are identified along horizontal axis 2302. Vertical axis
2304 is an information loss range between 0 and 1. Each bar
represents an information loss between a reduced metric
distribution and the baseline metric distribution, using the
Jensen-Shannon divergence of Equation (8). For example,

10

15

20

30

35

40

45

50

55

60

65

24

bar 2306 is the information loss in constructing a reduced
metric obtained by discarding every sixth metric value of the
metric based on the reduced metric distribution P4 and the
baseline metric distribution P,. Dashed line 2308 represents
an information-loss threshold, Th,, . Reduced metrics with
information losses less than the information-loss threshold
2308 are acceptable. On the other hand, reduced metrics
with information losses greater than the information-loss
threshold 2308 are not acceptable. The sampling rate of a
reduced metric with the largest corresponding information
loss that does not exceed the information-loss threshold
2308 is as an efficient sampling rate for the metric. For
example, bar 2310 represents the largest information loss
computed for a reduced metric obtained by discarding every
fifth metric value from the metric.

An efficient sampling rate is the sampling rate of the
reduced metric with the largest reduction in metric values
and a corresponding information loss that does not exceed
the information-loss threshold. When time stamps of the
metric values are separated by a regular time interval, the
efficient sampling rate is given by

1 10

Fefficient = E

where At is a regular time interval between consecutive time
stamps of metric values of the reduced metric with the
largest information loss less that is than the information-loss
threshold.

On the other hand, when the time interval between
consecutive time stamps is irregular or corrupted, the time
interval may be approximated as the mode of the consecu-
tive time stamps differences. The efficient sampling rate is
given by

1 an

Fefficient = ——
eficient = 2

where mode is the mode of irregular time intervals between
consecutive time stamps of metric values of the reduced
metric with the largest information loss that is less than the
information-loss threshold.

The efficient sampling rate may then be used to reduce the
size of the metric recorded in metric data storage and reduce
the number of run-time metric values of the metric sent to
the monitoring server. For example, the metric recorded in
metric data storage may be resampled according to the
efficient sampling over the full history, thereby reducing the
amount of storage space dedicated to the metric. Run-time
metric values of the metric may be sampled at the efficient
sampling rate applied to the metric value received from the
metric source.

FIG. 24 shows an example of the monitoring server 1902
sampling run-time metric values produced by a metric
source at an efficient sampling rate. Plot 2402 shows a
sequence of run-time metric values sent from a metric
source 2404 to the monitoring server 1902. In the example
of FIG. 14, an efficient sampling rate is determined in block
2406, as described above and used in block 2408. Plot 2410
shows the sequence of run-time metric values sampled
according to the efficient sampling rate with discarded
metric values represented by open dots, such as open dot
2412. The sampled metric values are then stored in the
metric data storage 1904 as a reduced metric 2414.

US 10,977,151 B2

25

Processes and systems may be used to reduces run-time
and stored metric values of metrics to detect abnormal
behavior of resource, objects, and complex computational
systems. Processes and systems may execute remedial mea-
sures to correct the abnormalities. For example, if a resource
or an object is discovered to exhibit abnormal behavior,
remedial measures may be triggered. The remedial measures
may include generating recommendations to correct the
abnormal or potential abnormal state of the resource or
object or the remedial measures may include automatically
executing steps to correct the abnormal state, such as recon-
figuring a virtual network of a VDC or migrating VMs,
containers, or applications from one server computer to
another. Remedial measures may include, but are not limited
to, powering down server computers, replacing VMs dis-
abled by physical hardware problems and failures, spinning
up cloned VMs on additional server computers to ensure that
the services provided by the abnormally behaving VMs are
accessible to demand for services.

The methods described below with reference to FIGS.
25-27 are stored in one or more data-storage devices as
machine-readable instructions that when executed by one or
more processors of a computer system, such as the computer
system shown in FIG. 1, determine the state of a complex
computational system of a distributed computing system.

FIG. 25 is a flow diagram illustrating an example imple-
mentation a method that reduces storage of metrics gener-
ated by metric sources of a distributed computing system. In
block 2501, a metric is retrieved from metric data storage, as
described above with reference to FIG. 19. In block 2502, a
“determine variability of the metric” procedure is per-
formed. In decision block 2503, if the variability is greater
than a variability threshold, control flows to block 2504. In
block 2504, a “determine efficient sampling rate” procedure
is performed. In block 2505, the efficient sampling rate
determined in block 2504 is used to reduce the run-time
metric values of the metric as described above with refer-
ence to FIG. 24. In block 2506, the efficient sampling rate
determined in block 2504 is used to reduce the number of
metric values of the metric recorded in metric data storage.
In decision block 2507, the computational steps represented
by blocks 2502-2506 are repeated for another metric in
metric data storage.

FIG. 26 is a flow diagram illustrating an example imple-
mentation of the “determine variability of the metric” step
referred to in block 2502 of F1G. 25. In block 2601, the mean
of the metric is computed as described above with reference
to Equation (2b). In block 2602, the standard deviation of the
metric is computed as described above with reference to
Equation (2a).

FIG. 27 is a flow diagram illustrating an example imple-
mentation of the “determine efficient sampling rate” step
referred to in block 2504 of FIG. 25. In block 2701, a
baseline metric distribution is computed for the metric as
described above with reference to Equations (3) and (4) and
FIG. 21. In block 2702, a step size denoted by n is initialized
and used to create a reduced metric as described above with
reference to Equation (5) and FIGS. 22A-22D. In block
2703, the metric is reduced by the step size to obtain a
reduced metric, as described above with reference to Equa-
tion (5) and FIGS. 22A-22D. In block 2704, a reduced
metric distribution is computed as described above with
reference to Equations (6) and (7) and FIGS. 22A-22D. In
block 2705, an information loss is computed between the
reduced metric distribution and the baseline metric distri-
bution using the Jensen-Shannon divergence given by Equa-
tion (8). In decision block 2706, when the information loss

10

15

20

25

30

35

40

45

50

55

60

65

26

is greater than an information-loss threshold, as described
above with reference to Equation (9a), control flows to block
2707. In block 2707, the step size is decremented. For
example, the step size may be decremented by one. Alter-
natively, the step size may be decremented by two or more.
On the other hand, when the information loss is less than the
information-loss threshold, as described above with refer-
ence to Equation (9b), control flows to block 2708. In block
2708, an efficient sampling rate corresponding to the
reduced metric with the largest information loss and is less
than the information-loss threshold is determined as
described above with reference to Equation (10) or Equation
(1D).

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be appar-
ent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. In a process that determines an efficient sampling rate
of a metric generated by a metric source of a distributed
computing system, the improvement comprising:

retrieving a metric from metric data storage;

determining a plurality of reduced metrics based on the
metric, each reduced metric comprising a different
subsequence of metric values of the metric;

determining an information loss for each reduced metrics
with respect to the metric;

determining an efficient sampling rate based on the infor-

mation losses of the reduced metrics; and

applying the efficient sampling rate to a stream of run-

time metric values generated by the metric source,
thereby reducing storage space of the run-time metric
values.

2. The process of claim 1 further comprising applying the
efficient sampling rate to metric values of the metric stored
in the metric storage, thereby reducing storage space of the
metric.

3. The process of claim 1 further comprises:

computing a mean of metric values of the metric;

computing a standard deviation of metric values of the

metric based on the mean; and

discarding the metric if the standard deviation is less than

a standard deviation threshold.

4. The process of claim 1 wherein determining a plurality
of reduced metrics comprises computing different reduced
metrics, each reduced metric constructed by retaining a
different subsequence of metric values of the metric and
discarding metric values of the metric between the retained
metric values.

5. The process of claim 1 wherein determining an infor-
mation loss for each reduced metric with respect to the
metric comprises:

computing a baseline metric distribution of the metric;

and

for each reduced metric

computing a reduced metric distribution, and

computing information loss between the reduced met-
ric distribution and the baseline metric distribution
using Jensen-Shannon divergence.

US 10,977,151 B2

27

6. The process of claim 1 wherein determining the effi-
cient sampling rate comprises:

comparing the corresponding information loss of each

reduced metric to an information-loss threshold;
identifying the reduced metric with the largest informa-
tion loss that is less than the information-loss threshold
as corresponding to the efficient sampling rate;
determining a sampling rate of the reduced metric; and
setting the efficient sampling rate to the sampling rate of
the reduced metric.
7. The process of claim 1 wherein determining the sam-
pling rate of the reduced metric comprises:
determining time intervals between time stamps of the
reduced metric over the historical time window;

when the time intervals are regular time intervals, setting
the sampling rate to the reciprocal of the time intervals;
and

when the time intervals are irregular, setting the sampling

rate to the reciprocal of the mode the intervals.

8. A computer system that reduces data storage space of
a metric generated by a metric source of a distributed
computing system, the system comprising:

one or more Processors:

one or more data-storage devices; and

machine-readable instructions stored in the one or more

data-storage devices that when executed using the one

or more processors controls the system to execute

operations comprising:

retrieving a metric from the one or more data storage
devices;

determining a plurality of reduced metrics based on the
metric, each reduced metric comprising a different
subsequence of metric values of the metric:

determining an information loss for each reduced met-
rics with respect to the metric;

determining an efficient sampling rate based on the
information losses of the reduced metrics;

applying the efficient sampling rate to a stream of
run-time metric values generated by the metric
source; and

recording the run-time metric values in the one or more
data-storage devices.

9. The system of claim 8 further comprising applying the
efficient sampling rate to metric values of the metric stored
in the metric storage.

10. The system of claim 8 further comprises:

computing a mean of metric values of the metric;

computing a standard deviation of metric values of the

metric based on the mean; and

discarding the metric if the standard deviation is less than

a standard deviation threshold.

11. The system of claim 8 wherein determining a plurality
of reduced metrics comprises computing different reduced
metrics, each reduced metric constructed by retaining a
different subsequence of metric values of the metric and
discarding metric values of the metric between the retained
metric values.

12. The system of claim 8 wherein determining an infor-
mation loss for each reduced metric with respect to the
metric comprises:

computing a baseline metric distribution of the metric:

and

for each reduced metric

computing a reduced metric distribution. and

computing information loss between the reduced met-
ric distribution and the baseline metric distribution
using Jensen-Shannon divergence.

w

20

25

30

35

40

45

50

55

60

28

13. The system of claim 8 wherein determining the
efficient sampling rate comprises:

comparing the corresponding information loss of each

reduced metric to an information-loss threshold;
identifying the reduced metric with the largest informa-
tion loss that is less than the information-loss threshold
as corresponding to the efficient sampling rate;
determining a sampling rate of the reduced metric; and
setting the efficient sampling rate to the sampling rate of
the reduced metric.
14. The system of claim 8 wherein determining the
sampling rate of the reduced metric comprises:
determining time intervals between time stamps of the
reduced metric over the historical time window;

when the time intervals are regular time intervals, setting
the sampling rate to the reciprocal of the time intervals;
and

when the time intervals are irregular, setting the sampling

rate to the reciprocal of the mode the intervals.
15. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to execute operations comprising:
retrieving a metric from metric data storage;
determining a plurality of reduced metrics based on the
metric, each reduced metric comprising a different
subsequence of metric values of the metric;

determining an information loss for each reduced metrics
with respect to the metric;

determining an efficient sampling rate based on the infor-

mation losses of the reduced metrics;

applying the efficient sampling rate to a stream of run-

time metric values generated by the metric source; and
recording the sampled run-time metric values a metric
data storage.

16. The medium of claim 15 further comprising applying
the efficient sampling rate to metric values of the metric
stored in the metric storage.

17. The medium of claim 1 further comprises:

computing a mean of metric values of the metric;

computing a standard deviation of metric values of the
metric based on the mean; and

discarding the metric if the standard deviation is less than

a standard deviation threshold.

18. The medium of claim 15 wherein determining a
plurality of reduced metrics comprises computing different
reduced metrics, each reduced metric constructed by retain-
ing a different subsequence of metric values of the metric
and discarding metric values of the metric between the
retained metric values.

19. The medium of claim 15 wherein determining an
information loss for each reduced metric with respect to the
metric comprises:

computing a baseline metric distribution of the metric;

and
for each reduced metric
computing a reduced metric distribution, and
computing information loss between the reduced met-
ric distribution and the baseline metric distribution
using Jensen-Shannon divergence.
20. The medium of claim 15 wherein determining the
efficient sampling rate comprises:
comparing the corresponding information loss of each
reduced metric to an information-loss threshold;

identifying the reduced metric with the largest informa-
tion loss that is less than the information-loss threshold
as corresponding to the efficient sampling rate;

US 10,977,151 B2
29 30

determining a sampling rate of the reduced metric; and

setting the efficient sampling rate to the sampling rate of
the reduced metric.

21. The medium of claim 15 wherein determining the

sampling rate of the reduced metric comprises: 5

determining time intervals between time stamps of the
reduced metric over the historical time window;

when the time intervals are regular time intervals, setting
the sampling rate to the reciprocal of the time intervals;
and 10

when the time intervals are irregular, setting the sampling
rate to the reciprocal of the mode the intervals.

#* #* #* #* #*

