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const int MaxDim = 4 ; 
const int MaxClusters = 20 ; 2302 const int MaxOutliers = 50 ; 
const int MaxData = 200 ; 
const double Threshold = 0.5 ; 
const int BigNumber = OxFFFFFFF ; 

2303 

typedef struct 
{ 

double coordinates [ MaxDim ] ; 
} Point ; 

2304 

typedef struct 
{ 

double distance ; 
int index : 

} Distindex ; 

2305 

2306 
typedef double ( * Dist ) ( Point x , Point y , int dim ) ; 

FIG . 23A 
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class clusteredData 
{ 

private : 
2307 Point * dataPoints ; 

int numDataPoints ; 2308 
Dist dist ; 2309 
int k : 2310 
int i ; 2311 
int numD ; - 2312 
Point * clusters ; 2313 
Point * newClusters ; 2314 
int split ; 2315 

2316 
Point clusters 1 [ MaxClusters ] ; 2317 Point clusters2 [ MaxClusters ] ; 
double minOutlier Distance ; 2318 
bool already [ MaxData ) ; 2319 
DistIndex distances [ MaxData ) ; 2320 
double indexed Distances [ MaxData ) ; 2321 
int clusterAssignments [ MaxData ) ; 2322 

void init ( ) ; 2323 
void randomlnitialClusters ( ) ; 2324 
void clusterDataPoints ( ) ; 2325 
void recluster ( ) ; 2326 
bool convergence ( ) ; 2327 

2328 public : 
void cluster ( Point * data , int num , int numDimensions , Dist d , int K , int L ) ; 

} ; 

FIG . 23B 



U.S. Patent May 4 , 2021 Sheet 38 of 51 US 10,997,009 B2 

int compare ( const void * a , const void * b ) 
{ 

DistIndex * A ; 
DistIndex * B ; 
A = ( DistIndex * ) a ; 
B = ( DistIndex * ) b ; 

2330 

if ( A- > distance < B- > distance ) return 1 ; 
if ( A- > distance == B- > distance ) return 0 ; 
return -1 ; 2336 

} 2332 2333 2334 . / 2335 2337 
void clusteredData :: cluster ( Point * data , int num , int numDimensions , Dist d , int K , int L ) 
{ 

dataPoints = data ; 
numDataPoints = num ; 
dist = d ; 2338 
k = K : 
1 = L ; 
numD = num Dimensions ; 
clusters = clusters 1 ; 2339 newClusters = clusters 2 : ; 

2340 
init ( ) ; 2341 randomlnitialClusters ( ) ; 
clusterDataPoints ( ) ; 2342 while ( true ) 
{ 2344 

recluster ( ) ; 2345 if ( convergence ( ) ) break ; 

} 23 

2343 2346 

if ( clusters == clusters 1 
{ 

clusters = clusters2 ; 
newClusters = clusters 1 ; 

} 
else 
{ 

clusters = clusters1 ; 
newClusters = clusters 2 : 

} 
clusterDataPoints ( ) ; 2347 

} 
} 

FIG . 230 
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void clusteredData :: init ( ) 
{ 

int i ; 
2350 

for ( i = 0 ; i < numDataPoints ; i ++ ) already [ i ] = false ; 
} 

void clusteredData :: randomlnitialClusters ( ) 
{ 

int i = 0 ; 
intj , nxt ; 
int multiplier ; 

multiplier = ( numDataPoints / RAND_MAX ) + 1 ; 
while ( i < k ) 
{ 2352 nxt = ( rand ( ) % numDataPoints ) * multiplier ; 

while ( nxt > numDataPoints ) nxt - = rand ( ) % ( numDataPoints / 2 ) ; 
if ( already [ nxt ] ) continue ; 
else 2353 
{ 

already [ nxt ] = true ; 
for ( i = 0 ; j < numD ; j ++ ) 
{ 

clusters [ i ] .coordinates [ ] = dataPoints [ nxt ] .coordinates [ j ] ; 
} 
i ++ ; 

} 

2351 

2354 

} 

FIG . 23D 
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void clusteredData recluster ( ) 
{ 

bool valid ; 
int i , j ; 
double sum [ MaxClusters ] [ MaxDim ) ; 
int kCount [ MaxClusters ] ; 

2363 

for ( i = 0 ; i < k ; i ++ ) 
{ 

for ( j = 0 ; j < numD ; j ++ ) sum [ i ] [ j ] = 0 ; 
kCount [ i ] = 0 ; 

} 

w 

2364 

for ( i = 0 ; i < numDataPoints ; i ++ ) 
{ 

valid = false ; 
if ( indexedDistances [ i ] minOutlier Distance ) 
{ 

for ( j = 0 ; j < split ; j ++ ) 
2365 { 

if ( distances [ i ] .index - i ) valid = true ; 
} 

} 
else if ( indexedDistances [ i ] < minOutlier Distance ) valid = true ; 
if ( valid ) 
{ 

for ( j = 0 ; j < numD ; j ++ ) sum [ clusterAssignments [ i ] ] [ i ] + = 2366 dataPoints [ i ] .coordinates [ i ] ; 
kCount [ clusterAssignments [ i ] ] ++ ; 

} 
} 
for ( i = 0 ; i < k ; i ++ ) 

for ( j = 0 ; j < numD ; j ++ ) 2367 
newClusters [ i ] .coordinates [ i ] = sum [ i ] [ j ] = k Count [ i ] ; 

} 

FIG . 23F 
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char Trule [ 5 ] = { ' t ' , ' r ' , ' u ' , ' e ' , ' lo ' } ; 
char * T Trule ; 
char Frule [ 6 ] = { ' f ' , ' a ' , ' l ' , ' s ' , ' e ' , ' 10 ' } ; 
char * F Frule ; 
const int MAX_RULE 1000 ; 2504 

} 2502 
2506 typedef enum label { NORMAL , ABNORMAL , UNKNOWN } Label ; 

class node ; 
node * null 0 ; 2507 

class rule 
{ 

public : 
void setRule ( char * r ) ; 
void applyRule ( data * in , data * T , data * F ) ; 
bool applyRule ( datum * d ) ; 
rule & operator ( rule & r ) ; 2510 
rule ( char * r ) ; 2511 

2508 
2509 

} ; 

class attributes 
{ 

public : 
int num ( ) ; 2513 
int getDataIndex ( int a_index ) ; 
void remove ( int a_index ) ; 
attributes & operator ( attributes & a ) ; 
attributes ( ) ; 

} ; 

2512 

class datum 
{ 

2514 
public : 

double getElement ( int index ) ; 
} ; 

FIG . 25A 
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class data 
{ 

2516 
public : 

int getNum ( ) ; 
datum getDatum ( int index ) ; 
Label getLabel ( int index ) ; 
double getEntropy ( ) ; 
data ( ) ; 

2517 
2518 

} ; 
2519 

2522 
2523 

2521 D a set of observations 
N { DE D1 label ( d ) normal } 
A ( de D1 label ( d ) abnormal } 

INI INI -H ( d ) entropy of D 
IDI 

T { D1 , D2 } where D Di + D2 

2524 = logz ( | A | 
101 

log2 ( 16 ) Ali 
DI 2520 

W 2525 

2526 gain ( DD1 , D2 ) H ( D ) – 1D ! H ( D ) 1D1 

2527 

2530 

class node 
{ 

private : 2531 node * Tptr ; 
node * Fptr ; 2532 
Label Tlabel ; 2533 
Label Flabels 2534 rule r ; 2535 

public : 
node * getTptr ( ) ; 
void setTptr ( node * p ) ; 
node * getFptr ( ) ; 
void setFptr ( node * p ) ; 
Label getTlabel ( ) ; 2536 
void settlabel ( Label 1 ) ; 
Label getFlabel ( ) ; 
void setFlabel ( Label 1 ) ; 
void setRule ( rule r ) ; 
void applyRule ( data * in , data * T , data * F ) ( r.applyRule ( in , T , F ) ; } ; 
bool applyRule ( datum * d ) { r.applyRule ( d ) ; } ; 
node ( ruler ) ; 

} ; 2539 2538 

2537 

FIG . 25B 
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void copyRule ( char * r1 , char * r2 ) 
{ 
} 2540 

double determine rule ( data & d , int a_index , char * r ) 
{ 
} 

2541 

int i ; 2544 

node * grow_decision_tree ( data & d , attributes & a ) 
{ 

2543 
rule r ( t ) ; 
node * n = new node ( r ) ; 
char r1 [ MAX_RULE ) ; 2545 
char maxR [ MAX_RULE ) ; 
double gain ; 
double maxGain 
int maxAtt ; 
data dT , DF ; 
attributes al ; 

-1 ; 

w 

2542 

if ( a.num ( ) > 0 ) 2546 
{ 

for ( i 0 ; i < a.num ( ) ; i ++ ) 
{ 

gain = determine_rule ( d , a.getDataIndex ( i ) , r1 ) ; 
if ( gain > maxGain ) 
{ 2547 maxGain gain ; 

maxatt i ; 
copyRule ( maxR , r1 ) ; 

} 
} 

} 
if ( a.num ) 0 || maxGain < = 0 ) 2548 
{ 

n- > setTptr ( null ) ; 
n- > setTlabel ( UNKNOWN ) ; 2549 
return n ; 

} 
r.setRule ( maxR ) ; 2550 n- > setRule ( r ) ; 
n- > applyRule ( & d , & dt , & dF ) ; 2552 

a ; 
a1.remove ( i ) ; 2553 

= 

a1 

n- > setTptr ( grow_decision_tree ( dt , a1 ) ) ; 
n- > setFptr ( grow_decision_tree ( df , a1 ) ) ; } 2554 

} 

FIG . 25C 
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2563 2561 2562 

node * build_decision_tree ( data & d , attributes & a ) 
{ 

rule r ( t ) ; 
2564 if ( d.getNum ( ) < 1 ) return null ; 

node * n = new node ( r ) ; 
if ( d.getEntropy ( ) == 0 ) 2565 
{ 

n- > setTptr ( null ) ; 
n- > setFptr ( null ) ; 

if ( d.getLabel ( 0 ) NORMAL ) 
{ 2560 

n- > setTlabel ( NORMAL ) ; 2566 n- > setFlabel ( ABNORMAL ) ; 
} 
else 
{ 

n- > setTlabel ( ABNORMAL ) ; 
n- > setFlabel ( NORMAL ) ; 

} 
return n ; 

} 
2567 n- > setTptr ( grow_decision_tree ( d , a ) ) ; 

return n ; 
} 

2571 2573 2572 
label evaluate ( datum * d , node * decision_tree ) 
{ 

label res ; 
bool applyRes ; 
node * nxt ; 

2574 
applyRes = decision_tree- > applyRule ( d ) ; 

2575 if ( applyRes ) 
{ 

nxt = decision_tree- > getTptr ( ) ; 
if ( nxt == null ) return decision_tree- > getTlabel ( ) ; 

} 2476 else 2577 
{ 

2578 nxt = decision_tree- > getFptr ( ) ; 
if ( nxt == null ) return decision_tree- > getFlabel ( ) ; 

} 
return evaluate ( d , nxt ) ; 

} 2580 

2570 

FIG . 25D 
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METHODS AND SYSTEMS THAT DETECT operational anomalies and relevant to identifying specific 
AND CLASSIFY INCIDENTS AND information that can be used for administering , managing , 
ANOMALOUS BEHAVIOR USING and maintaining distributed computer systems . 
METRIC - DATA OBSERVATIONS 

SUMMARY 
TECHNICAL FIELD 

The current document is directed to methods and systems 
The current document is directed to distributed computer for detecting , within the enormous volumes of status , infor 

systems and , in particular , to methods and subsystems that mational , and error data continuously generated , collected , 
detect and classify , from enormous volumes of status , infor- 10 and processed within a distributed computer system , the 
mational , and error data continuously generated , collected , occurrences of abnormal events and operational behaviors 
and processed within a distributed computer system , the within the distributed computer system and , more generally , 
occurrences of abnormal events and operational behaviors detects the occurrences of specific types events and opera within the distributed computer system and , more generally , tional behaviors . The currently described methods and sys detect the occurrences of specific types of events and 15 tems continuously collect metric data from various metric operational behaviors . data sources , generate sequence of metric - data 

BACKGROUND observations , each metric - data observation comprising a set 
of temporally aligned metric data , and employ principle 

During the past seven decades , electronic computing has 20 component analysis to transform the metric - data observa 
evolved from primitive , vacuum - tube - based computer sys tions to facilitate reduction of the dimensionality of the 
tems , initially developed during the 1940s , to modern elec- metric - data observations . The currently described methods 
tronic computing systems in which large numbers of multi- and systems then employ clustering methods to identify 
processor servers , work stations , and other individual outlying transformed - metric - data observations , accordingly 
computing systems are networked together with large - ca- 25 label the transformed metric - data observations to generate a 
pacity data - storage devices and other electronic devices to training dataset , and then apply one or more of various types 
produce geographically distributed computing systems with of machine learning techniques to the training dataset in 
hundreds of thousands , millions , or more components that order to generate an abnormal - observation detector that can 
provide enormous computational bandwidths and data - stor- be used to detect , in real time , abnormal metric - data obser 
age capacities . These large , distributed computing systems 30 vations as they are generated within the distributed comput 
are made possible by advances in computer networking , ing system . 
distributed operating systems and applications , data - storage 
appliances , computer hardware , and software technologies . BRIEF DESCRIPTION OF THE DRAWINGS 
However , despite all of these advances , the rapid increase in 
the size and complexity of computing systems has been 35 FIG . 1 provides a general architectural diagram for vari 
accompanied by numerous scaling issues and technical ous types of computers . 
challenges , including technical challenges associated with FIG . 2 illustrates an Internet - connected distributed com 
communications overheads encountered in parallelizing puter system . 
computational tasks among multiple processors , component FIG . 3 illustrates cloud computing . In the recently devel 
failures , and distributed - system management . As new dis- 40 oped cloud computing paradigm , computing cycles and 
tributed - computing technologies are developed , and as gen- data - storage facilities are provided to organizations and 
eral hardware and software technologies continue to individuals by cloud - computing providers . 
advance , the current trend towards ever - larger and more FIG . 4 illustrates generalized hardware and software 
complex distributed computing systems appears likely to components of a general - purpose computer system , such as 
continue well into the future . 45 a general - purpose computer system having an architecture 

In modern computing systems , individual computers , similar to that shown in FIG . 1 . 
subsystems , and components generally output large volumes FIGS . 5A - B illustrate two types of virtual machine and 
of status , informational , and error data . In large , distributed virtual - machine execution environments . 
computing systems , terabytes of status , informational , and FIG . 6 illustrates an OVF package . 
error data may be generated each day . The status , informa- 50 FIG . 7 illustrates virtual data centers provided as an 
tional , and error data generally contain information that can abstraction of underlying physical - data - center hardware 
be used to detect the potential for serious failures and components . 
operational deficiencies in the computer systems prior to the FIG . 8 illustrates virtual - machine components of a vir 
accumulation of a sufficient number of failures and system- tual - data - center management server and physical servers of 
degrading events to lead to subsequent data loss , component 55 a physical data center above which a virtual - data - center 
and subsystem failures , and down time . The information interface is provided by the virtual - data - center management 
contained in the data may also be used to detect and 
ameliorate various types of security breaches and security FIG . 9 illustrates a cloud - director level of abstraction . In 
issues , to intelligently manage and maintain distributed FIG . 9 , three different physical data centers 902-904 are 
computing systems , and to diagnose many different classes 60 shown below planes representing the cloud - director layer of 
of operational problems , hardware - design deficiencies , and abstraction 906-908 . 
software - design deficiencies . It has proved to be a challeng- FIG . 10 illustrates virtual - cloud - connector nodes ( “ VCC 
ing task for system administrators , system designers and nodes ” ) and a VCC server , components of a distributed 
developers , and system users to identify , within the enor- system that provides multi - cloud aggregation and that 
mous quantities of status , informational , and error data 65 includes a cloud - connector server and cloud - connector 
generated in distributed computing systems , specific infor- nodes that cooperate to provide services that are distributed 
mation relevant to predicting , detecting , and diagnosing across multiple clouds . 

server . 
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FIG . 11 illustrates a simple example of event - message electronically implemented application programming inter 
logging and analysis . faces ( “ APIs ” ) and other electronically implemented inter 
FIG . 12 shows a small , 11 - entry portion of a log file from faces . There is a tendency among those unfamiliar with 

a distributed computer system . modern technology and science to misinterpret the terms 
FIG . 13 illustrates the event - message - processing 5 " abstract ” and “ abstraction , ” when used to describe certain 

approach represented by the currently disclosed methods aspects of modern computing . For example , one frequently 
and systems . encounters assertions that , because a computational system 
FIGS . 14A - C illustrate the generation of time sequences is described in terms of abstractions , functional layers , and 

of metric data from a generally large set of metric - data interfaces , the computational system is somehow different 
10 from a physical machine or device . Such allegations are 

FIG . 15 illustrates the equivalence between an observa unfounded . One only needs to disconnect a computer system 
tion made at a particular time point and a P - dimensional or group of computer systems from their respective power 
vector in a P - dimensional space . supplies to appreciate the physical , machine nature of com 

FIG . 16 illustrates representation of observations , each plex computer technologies . One also frequently encounters 
consisting of a set of metric data values for each data source 15 statements that characterize a computational technology as 
obtained at , or calculated for , a particular time point , as a being " only software , " and thus not a machine or device . 
matrix . Software is essentially a sequence of encoded symbols , such 

FIG . 17 illustrates scaling and normalization of the set of as a printout of a computer program or digitally encoded 
observations represented by a matrix ? . computer instructions sequentially stored in a file on an 
FIGS . 18 and 19 illustrate eigenvectors and eigenvalues . 20 optical disk or within an electromechanical mass - storage 
FIGS . 20A - B illustrate the principal - component - analysis device . Software alone can do nothing . It is only when 

( “ PCA ” ) method . encoded computer instructions are loaded into an electronic 
FIGS . 21A - I and FIGS . 22A - B illustrate data - set cluster- memory within a computer system and executed on a 

ing using a modified K - means clustering process . physical processor that so - called “ software implemented ” 
FIGS . 23A - G provide a simple C ++ implementation of 25 functionality is provided . The digitally encoded computer 

one version of the modified K - means clustering process . instructions are an essential and physical control component 
FIGS . 24A - F illustrates a machine - learning technique of processor - controlled machines and devices , no less essen 

based on decision trees . tial and physical than a cam - shaft control system in an 
FIGS . 25A - D provides a pseudocode example for con- internal - combustion engine . Multi - cloud aggregations , 

struction of a decision tree and traversal of a decision tree to 30 cloud - computing services , virtual machine containers and 
determine the nature of an unlabeled observation . virtual machines , communications interfaces , and many of 
FIGS . 26A - B provide control - flow diagrams that illustrate the other topics discussed below are tangible , physical 

the currently disclosed method and system for discovering components of physical , electro - optical - mechanical com 
root causes . puter systems . 

FIG . 1 provides a general architectural diagram for vari 
DETAILED DESCRIPTION ous types of computers . Computers that receive , process , 

and store event messages may be described by the general 
The current document is directed to methods and systems architectural diagram shown in FIG . 1 , for example . The 

that detect the occurrences of abnormal events and opera- computer system contains one or multiple central processing 
tional behaviors that occur within distributed computer 40 units ( “ CPUs ” ) 102-105 , one or more electronic memories 
systems . In a first subsection , below , a detailed description 108 interconnected with the CPUs by a CPU / memory 
of computer hardware , complex computational systems , subsystem bus 110 or multiple busses , a first bridge 112 that 
virtualization , and generation of status , informational , and interconnects the CPU / memory - subsystem bus 110 with 
error data is provided with reference to FIGS . 1-13 . In a additional busses 114 and 116 , or other types of high - speed 
second subsection , implementations of the currently dis- 45 interconnection media , including multiple , high - speed serial 
closed methods and systems are introduced and described in interconnects . These busses or serial interconnections , in 
detail with reference to FIGS . 14A - 26B . turn , connect the CPUs and memory with specialized pro 

cessors , such as a graphics processor 118 , and with one or 
Computer Hardware , Complex Computational more additional bridges 120 , which are interconnected with 

Systems , Virtualization , and Generation of Status , 50 high - speed serial links or with multiple controllers 122-127 , 
Informational , and Error Data such as controller 127 , that provide access to various dif 

ferent types of mass - storage devices 128 , electronic dis 
The term " abstraction ” is not , in any way , intended to plays , input devices , and other such components , subcom 

mean or suggest an abstract idea or concept . Computational ponents , and computational resources . It should be noted 
abstractions are tangible , physical interfaces that are imple- 55 that computer - readable data - storage devices include optical 
mented , ultimately , using physical computer hardware , data- and electromagnetic disks , electronic memories , and other 
storage devices , and communications systems . Instead , the physical data - storage devices . Those familiar with modern 
term “ abstraction ” refers , in the current discussion , to a science and technology appreciate that electromagnetic 
logical level of functionality encapsulated within one or radiation and propagating signals do not store data for 
more concrete , tangible , physically - implemented computer 60 subsequent retrieval , and can transiently “ store ” only a byte 
systems with defined interfaces through which electroni- or less of information per mile , far less information than 
cally - encoded data is exchanged , process execution needed to encode even the simplest of routines . 
launched , and electronic services are provided . Interfaces Of course , there are many different types of computer 
may include graphical and textual data displayed on physical system architectures that differ from one another in the 
display devices as well as computer programs and routines 65 number of different memories , including different types of 
that control physical computer processors to carry out vari- hierarchical cache memories , the number of processors and 
ous tasks and operations and that are invoked through the connectivity of the processors with other system com 

35 
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ponents , the number of internal communications busses and public cloud to remote customers of the organization , such 
serial links , and in many other ways . However , computer as a user viewing the organization's e - commerce web pages 
systems generally execute stored programs by fetching on a remote user system 316 . 
instructions from memory and executing the instructions in Cloud - computing facilities are intended to provide com 
one or more processors . Computer systems include general- 5 putational bandwidth and data - storage services much as 
purpose computer systems , such as personal computers utility companies provide electrical power and water to 
( “ PCs ” ) , various types of servers and workstations , and consumers . Cloud computing provides enormous advan 
higher - end mainframe computers , but may also include a tages to small organizations without the resources to pur 
plethora of various types of special - purpose computing chase , manage , and maintain in - house data centers . Such 
devices , including data - storage systems , communications 10 organizations can dynamically add and delete virtual com 
routers , network nodes , tablet computers , and mobile tele- puter systems from their virtual data centers within public 
phones . clouds in order to track computational - bandwidth and data 
FIG . 2 illustrates an Internet connected distributed com- storage needs , rather than purchasing sufficient computer 

puter system . As communications and networking technolo- systems within a physical data center to handle peak com 
gies have evolved in capability and accessibility , and as the 15 putational - bandwidth and data storage demands . Moreover , 
computational bandwidths , data - storage capacities , and small organizations can completely avoid the overhead of 
other capabilities and capacities of various types of com- maintaining and managing physical computer systems , 
puter systems have steadily and rapidly increased , much of including hiring and periodically retraining information 
modern computing now generally involves large distributed technology specialists and continuously paying for operat 
systems and computers interconnected by local networks , 20 ing - system and database - management - system upgrades . 
wide - area networks , wireless communications , and the Furthermore , cloud - computing interfaces allow for easy and 
Internet . FIG . 2 shows a typical distributed system in which straightforward configuration of virtual computing facilities , 
a large number of PCs 202-205 , a high - end distributed flexibility in the types of applications and operating systems 
mainframe system 210 with a large data - storage system 212 , that can be configured , and other functionalities that are 
and a large computer center 214 with large numbers of 25 useful even for owners and administrators of private cloud 
rack - mounted servers or blade servers all interconnected computing facilities used by a single organization . 
through various communications and networking systems FIG . 4 illustrates generalized hardware and software 
that together comprise the Internet 216. Such distributed components of a general - purpose computer system , such as 
computing systems provide diverse arrays of functionalities . a general - purpose computer system having an architecture 
For example , a PC user sitting in a home office may access 30 similar to that shown in FIG . 1. The computer system 400 is 
hundreds of millions of different web sites provided by often considered to include three fundamental layers : ( 1 ) a 
hundreds of thousands of different web servers throughout hardware layer or level 402 ; ( 2 ) an operating - system layer or 
the world and may access high - computational - bandwidth level and ( 3 ) an application - program layer or level 406 . 
computing services from remote computer facilities for The hardware layer 402 includes one or more processors 
running complex computational tasks . 35 408 , system memory 410 , various different types of input 

Until recently , computational services were generally output ( “ I / O ” ) devices 410 and 412 , and mass - storage 
provided by computer systems and data centers purchased , devices 414. Of course , the hardware level also includes 
configured , managed , and maintained by service - provider many other components , including power supplies , internal 
organizations . For example , an e - commerce retailer gener- communications links and busses , specialized integrated 
ally purchased , configured , managed , and maintained a data 40 circuits , many different types of processor - controlled or 
center including numerous web servers , back - end computer microprocessor - controlled peripheral devices and control 
systems , and data - storage systems for serving web pages to lers , and many other components . The operating system 404 
remote customers , receiving orders through the web - page interfaces to the hardware level 402 through a low - level 
interface , processing the orders , tracking completed orders , operating system and hardware interface 416 generally 
and other myriad different tasks associated with an e - com- 45 comprising a set of non - privileged computer instructions 
merce enterprise . 418 , a set of privileged computer instructions 420 , a set of 
FIG . 3 illustrates cloud computing . In the recently devel- non - privileged registers and memory addresses 422 , and a 

oped cloud computing paradigm , computing cycles and set of privileged registers and memory addresses 424. In 
data - storage facilities are provided to organizations and general , the operating system exposes non - privileged 
individuals by cloud - computing providers . In addition , 50 instructions , non - privileged registers , and non - privileged 
larger organizations may elect to establish private cloud- memory addresses 426 and a system - call interface 428 as an 
computing facilities in addition to , or instead of , subscribing operating - system interface 430 to application programs 432 
to computing services provided by public cloud - computing 436 that execute within an execution environment provided 
service providers . In FIG . 3 , a system administrator for an to the application programs by the operating system . The 
organization , using a PC 302 , accesses the organization's 55 operating system , alone , accesses the privileged instructions , 
private cloud 304 through a local network 306 and private- privileged registers , and privileged memory addresses . By 
cloud interface 308 and also accesses , through the Internet reserving access to privileged instructions , privileged reg 
310 , a public cloud 312 through a public - cloud services isters , and privileged memory addresses , the operating sys 
interface 314. The administrator can , in either the case of the tem can ensure that application programs and other higher 
private cloud 304 or public cloud 312 , configure virtual 60 level computational entities cannot interfere with one 
computer systems and even entire virtual data centers and another's execution and cannot change the overall state of 
launch execution of application programs on the virtual the computer system in ways that could deleteriously impact 
computer systems and virtual data centers in order to carry system operation . The operating system includes many 
out any of many different types of computational tasks . As internal components and modules , including a scheduler 
one example , a small organization may configure and run a 65 442 , memory management 444 , a file system 446 , device 
virtual data center within a public cloud that executes web drivers 448 , and many other components and modules . To a 
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous 
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levels of abstraction above the hardware level , including issues discussed above . FIGS . 5A - B illustrate two types of 
virtual memory , which provides to each application program virtual machine and virtual machine execution environ 
and other computational entities a separate , large , linear ments . FIGS . 5A - B use the same illustration conventions as 
memory - address space that is mapped by the operating used in FIG . 4. FIG . 5A shows a first type of virtualization . 
system to various electronic memories and mass - storage 5 The computer system 500 in FIG . 5A includes the same 
devices . The scheduler orchestrates interleaved execution of hardware layer 502 as the hardware layer 402 shown in FIG . 
various different application programs and higher - level 4. However , rather than providing an operating system layer 
computational entities , providing to each application pro- directly above the hardware layer , as in FIG . 4 , the virtual 
gram a virtual , stand - alone system devoted entirely to the ized computing environment illustrated in FIG . 5A features 
application program . From the application program’s stand- 10 a virtualization layer 504 that interfaces through a virtual 
point , the application program executes continuously with- ization - layer / hardware - layer interface 506 , equivalent to 
out concern for the need to share processor resources and interface 416 in FIG . 4 , to the hardware . The virtualization 
other system resources with other application programs and layer provides a hardware - like interface 508 to a number of 
higher - level computational entities . The device drivers virtual machines , such as virtual machine 510 , executing 
abstract details of hardware - component operation , allowing 15 above the virtualization layer in a virtual - machine layer 512 . 
application programs to employ the system - call interface for Each virtual machine includes one or more application 
transmitting and receiving data to and from communications programs or other higher - level computational entities pack 
networks , mass - storage devices , and other I / O devices and aged together with an operating system , referred to as a 
subsystems . The file system 436 facilitates abstraction of “ guest operating system , ” such as application 514 and guest 
mass - storage - device and memory resources as a high - level , 20 operating system 516 packaged together within virtual 
easy - to - access , file - system interface . Thus , the development machine 510. Each virtual machine is thus equivalent to the 
and evolution of the operating system has resulted in the operating system layer 404 and application - program layer 
generation of a type of multi - faceted virtual execution 406 in the general - purpose computer system shown in FIG . 
environment for application programs and other higher - level 4. Each guest operating system within a virtual machine 
computational entities . 25 interfaces to the virtualization - layer interface 508 rather than 

While the execution environments provided by operating to the actual hardware interface 506. The virtualization layer 
systems have proved to be an enormously successful level of partitions hardware resources into abstract virtual - hardware 
abstraction within computer systems , the operating - system- layers to which each guest operating system within a virtual 
provided level of abstraction is nonetheless associated with machine interfaces . The guest operating systems within the 
difficulties and challenges for developers and users of appli- 30 virtual machines , in general , are unaware of the virtualiza 
cation programs and other higher - level computational enti- tion layer and operate as if they were directly accessing a 
ties . One difficulty arises from the fact that there are many true hardware interface . The virtualization layer ensures that 
different operating systems that run within various different each of the virtual machines currently executing within the 
types of computer hardware . In many cases , popular appli- virtual environment receive a fair allocation of underlying 
cation programs and computational systems are developed 35 hardware resources and that all virtual machines receive 
to run on only a subset of the available operating systems , sufficient resources to progress in execution . The virtualiza 
and can therefore be executed within only a subset of the tion - layer interface 508 may differ for different guest oper 
various different types of computer systems on which the ating systems . For example , the virtualization layer is gen 
operating systems are designed to run . Often , even when an erally able to provide virtual hardware interfaces for a 
application program or other computational system is ported 40 variety of different types of computer hardware . This allows , 
to additional operating systems , the application program or as one example , a virtual machine that includes a guest 
other computational system can nonetheless run more effi- operating system designed for a particular computer archi 
ciently on the operating systems for which the application tecture to run on hardware of a different architecture . The 
program or other computational system was originally tar- number of virtual machines need not be equal to the number 
geted . Another difficulty arises from the increasingly dis- 45 of physical processors or even a multiple of the number of 
tributed nature of computer systems . Although distributed processors . 
operating systems are the subject of considerable research The virtualization layer includes a virtual machine - moni 
and development efforts , many of the popular operating tor module 518 ( “ VMM ” ) that virtualizes physical proces 
systems are designed primarily for execution on a single sors in the hardware layer to create virtual processors on 
computer system . In many cases , it is difficult to move 50 which each of the virtual machines executes . For execution 
application programs , in real time , between the different efficiency , the virtualization layer attempts to allow virtual 
computer systems of a distributed computer system for machines to directly execute non - privileged instructions and 
high - availability , fault - tolerance , and load balancing pur- to directly access non - privileged registers and memory . 
poses . The problems are even greater in heterogeneous However , when the guest operating system within a virtual 
distributed computer systems which include different types 55 machine accesses virtual privileged instructions , virtual 
of hardware and devices running different types of operating privileged registers , and virtual privileged memory through 
systems . Operating systems continue to evolve , as a result of the virtualization - layer interface 508 , the accesses result in 
which certain older application programs and other compu- execution of virtualization - layer code to simulate or emulate 
tational entities may be incompatible with more recent the privileged resources . The virtualization layer addition 
versions of operating systems for which they are targeted , 60 ally includes a kernel module 520 that manages memory , 
creating compatibility issues that are particularly difficult to communications , and data - storage machine resources on 
manage in large distributed systems . behalf of executing virtual machines ( “ VM kernel ” ) . The 

For all of these reasons , a higher level of abstraction , VM kernel , for example , maintains shadow page tables on 
referred to as the “ virtual machine , ” has been developed and each virtual machine so that hardware - level virtual - memory 
evolved to further abstract computer hardware in order to 65 facilities can be used to process memory accesses . The VM 
address many difficulties and challenges associated with kernel additionally includes routines that implement virtual 
traditional computing systems , including the compatibility communications and data - storage devices as well as device 
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drivers that directly control the operation of underlying element is the envelope element , demarcated by tags 622 
hardware communications and data - storage devices . Simi- and 623. The next - level element includes a reference ele 
larly , the VM kernel virtualizes various other types of I / O ment 626 that includes references to all files that are part of 
devices , including keyboards , optical - disk drives , and other the OVF package , a disk section 628 that contains meta 
such devices . The virtualization layer essentially schedules 5 information about all of the virtual disks included in the 
execution of virtual machines much like an operating system OVF package , a networks section 630 that includes meta 
schedules execution of application programs , so that the information about all of the logical networks included in the 
virtual machines each execute within a complete and fully OVF package , and a collection of virtual - machine configu 
functional virtual hardware layer . rations 632 which further includes hardware descriptions of 
FIG . 5B illustrates a second type of virtualization . In FIG . 10 each virtual machine 634. There are many additional hier 

5B , the computer system 540 includes the same hardware archical levels and elements within a typical OVF descrip 
layer 542 and software layer 544 as the hardware layer 402 tor . The OVF descriptor is thus a self - describing , XML file 
shown in FIG . 4. Several application programs 546 and 548 that describes the contents of an OVF package . The OVF 
are shown running in the execution environment provided manifest 606 is a list of cryptographic - hash - function - gener 
by the operating system . In addition , a virtualization layer 15 ated digests 636 of the entire OVF package and of the 
550 is also provided , in computer 540 , but , unlike the various components of the OVF package . The OVF certifi 
virtualization layer 504 discussed with reference to FIG . 5A , cate 608 is an authentication certificate 640 that includes a 
virtualization layer 550 is layered above the operating digest of the manifest and that is cryptographically signed . 
system 544 , referred to as the " host OS , ” and uses the Disk image files , such as disk image file 610 , are digital 
operating system interface to access operating - system - pro- 20 encodings of the contents of virtual disks and resource files 
vided functionality as well as the hardware . The virtualiza- 612 are digitally encoded content , such as operating - system 
tion layer 550 comprises primarily a VMM and a hardware- images . A virtual machine or a collection of virtual machines 
like interface 552 , similar to hardware - like interface 508 in encapsulated together within a virtual application can thus 
FIG . 5A . The virtualization - layer / hardware - layer interface be digitally encoded as one or more files within an OVF 
552 , equivalent to interface 416 in FIG . 4 , provides an 25 package that can be transmitted , distributed , and loaded 
execution environment for a number of virtual machines using well - known tools for transmitting , distributing , and 
556-558 , each including one or more application programs loading files . A virtual appliance is a software service that is 
or other higher - level computational entities packaged delivered as a complete software stack installed within one 
together with a guest operating system . or more virtual machines that is encoded within an OVF 

In FIGS . 5A - B , the layers are somewhat simplified for 30 package . 
clarity of illustration . For example , portions of the virtual- The advent of virtual machines and virtual environments 
ization layer 550 may reside within the host - operating- has alleviated many of the difficulties and challenges asso 
system kernel , such as a specialized driver incorporated into ciated with traditional general - purpose computing . Machine 
the host operating system to facilitate hardware access by and operating - system dependencies can be significantly 
the virtualization layer . 35 reduced or entirely eliminated by packaging applications 

It should be noted that virtual hardware layers , virtual- and operating systems together as virtual machines and 
ization layers , and guest operating systems are all physical virtual appliances that execute within virtual environments 
entities that are implemented by computer instructions provided by virtualization layers running on many different 
stored in physical data - storage devices , including electronic types of computer hardware . A next level of abstraction , 
memories , mass - storage devices , optical disks , magnetic 40 referred to as virtual data centers or virtual infrastructure , 
disks , and other such devices . The term “ virtual ” does not , provide a data - center interface to virtual data centers com 
in any way , imply that virtual hardware layers , virtualization putationally constructed within physical data centers . FIG . 7 
layers , and guest operating systems are abstract or intan- illustrates virtual data centers provided as an abstraction of 
gible . Virtual hardware layers , virtualization layers , and underlying physical - data - center hardware components . In 
guest operating systems execute on physical processors of 45 FIG . 7 , a physical data center 702 is shown below a 
physical computer systems and control operation of the virtual - interface plane 704. The physical data center consists 
physical computer systems , including operations that alter of a virtual - data - center management server 706 and any of 
the physical states of physical devices , including electronic various different computers , such as PCs 708 , on which a 
memories and mass - storage devices . They are as physical virtual - data - center management interface may be displayed 
and tangible as any other component of a computer since , 50 to system administrators and other users . The physical data 
such as power supplies , controllers , processors , busses , and center additionally includes generally large numbers of 
data - storage devices . server computers , such as server computer 710 , that are 
A virtual machine or virtual application , described below , coupled together by local area networks , such as local area 

is encapsulated within a data package for transmission , network 712 that directly interconnects server computer 710 
distribution , and loading into a virtual - execution environ- 55 and 714-720 and a mass - storage array 722. The physical 
ment . One public standard for virtual machine encapsulation data center shown in FIG . 7 includes three local area 
is referred to as the “ open virtualization format " ( " OVF ” ) . networks 712 , 724 , and 726 that each directly interconnects 
The OVF standard specifies a format for digitally encoding a bank of eight servers and a mass - storage array . The 
a virtual machine within one or more data files . FIG . 6 individual server computers , such as server computer 710 , 
illustrates an OVF package . An OVF package 602 includes 60 each includes a virtualization layer and runs multiple virtual 
an OVF descriptor 604 , an OVF manifest 606 , an OVF machines . Different physical data centers may include many 
certificate 608 , one or more disk - image files 610-611 , and different types of computers , networks , data - storage systems 
one or more resource files 612-614 . The OVF package can and devices connected according to many different types of 
be encoded and stored as a single file or as a set of files . The connection topologies . The virtual - data - center abstraction 
OVF descriptor 604 is an XML document 620 that includes 65 layer 704 , a logical abstraction layer shown by a plane in 
a hierarchical set of elements , each demarcated by a begin- FIG . 7 , abstracts the physical data center to a virtual data 
ning tag and an ending tag . The outermost , or highest level , center comprising one or more resource pools , such as 



US 10,997,009 B2 
11 12 

resource pools 730-732 , one or more virtual data stores , such vices further include a high - availability service that repli 
as virtual data stores 734-736 , and one or more virtual cates and migrates virtual machines in order to ensure that 
networks . In certain implementations , the resource pools virtual machines continue to execute despite problems and 
abstract banks of physical servers directly interconnected by failures experienced by physical hardware components . The 
a local area network . 5 distributed services also include a live - virtual - machine 

The virtual - data - center management interface allows pro- migration service that temporarily halts execution of a 
visioning and launching of virtual machines with respect to virtual machine , encapsulates the virtual machine in an OVF 
resource pools , virtual data stores , and virtual networks , so package , transmits the OVF package to a different physical 
that virtual - data - center administrators need not be con- server , and restarts the virtual machine on the different 
cerned with the identities of physical - data - center compo- 10 physical server from a virtual - machine state recorded when 
nents used to execute particular virtual machines . Further- execution of the virtual machine was halted . The distributed 
more , the virtual - data - center management server includes services also include a distributed backup service that pro 
functionality to migrate running virtual machines from one vides centralized virtual - machine backup and restore . 
physical server to another in order to optimally or near The core services provided by the VDC management 
optimally manage resource allocation , provide fault toler- 15 server include host configuration , virtual machine configu 
ance , and high availability by migrating virtual machines to ration , virtual - machine provisioning , generation of virtual 
most effectively utilize underlying physical hardware data - center alarms and events , ongoing event logging and 
resources , to replace virtual machines disabled by physical statistics collection , a task scheduler , and a resource - man 
hardware problems and failures , and to ensure that multiple agement module . Each physical server 820-822 also 
virtual machines supporting a high - availability virtual appli- 20 includes a host - agent virtual machine 828-830 through 
ance are executing on multiple physical computer systems which the virtualization layer can be accessed via a virtual 
so that the services provided by the virtual appliance are infrastructure application programming interface ( “ API ” ) . 
continuously accessible , even when one of the multiple This interface allows a remote administrator or user to 
virtual appliances becomes compute bound , data - access manage an individual server through the infrastructure API . 
bound , suspends execution , or fails . Thus , the virtual data 25 The virtual - data - center agents 824-826 access virtualiza 
center layer of abstraction provides a virtual - data - center tion - layer server information through the host agents . The 
abstraction of physical data centers to simplify provisioning , virtual - data - center agents are primarily responsible for off 
launching , and maintenance of virtual machines and virtual loading certain of the virtual - data - center management 
appliances as well as to provide high - level , distributed server functions specific to a particular physical server to 
functionalities that involve pooling the resources of indi- 30 that physical server . The virtual - data - center agents relay and 
vidual physical servers and migrating virtual machines enforce resource allocations made by the VDC management 
among physical servers to achieve load balancing , fault server , relay virtual - machine provisioning and configura 
tolerance , and high availability . FIG . 8 illustrates virtual- tion - change commands to host agents , monitor and collect 
machine components of a virtual - data - center management performance statistics , alarms , and events communicated to 
server and physical servers of a physical data center above 35 the virtual - data - center agents by the local host agents 
which a virtual - data - center interface is provided by the through the interface API , and to carry out other , similar 
virtual - data - center management server . The virtual - data- virtual - data - management tasks . 
center management server 802 and a virtual - data - center The virtual - data - center abstraction provides a convenient 
database 804 comprise the physical components of the and efficient level of abstraction for exposing the computa 
management component of the virtual data center . The 40 tional resources of a cloud - computing facility to cloud 
virtual - data - center management server 802 includes a hard- computing - infrastructure users . A cloud - director manage 
ware layer 806 and virtualization layer 808 , and runs a ment server exposes virtual resources of a cloud - computing 
virtual - data - center management - server virtual machine 810 facility to cloud - computing - infrastructure users . In addition , 
above the virtualization layer . Although shown as a single the cloud director introduces a multi - tenancy layer of 
server in FIG . 8 , the virtual - data - center management server 45 abstraction , which partitions VDCs into tenant - associated 
( “ VDC management server ” ) may include two or more VDCs that can each be allocated to a particular individual 
physical server computers that support multiple VDC - man- tenant or tenant organization , both referred to as a “ tenant . " 
agement - server virtual appliances . The virtual machine 810 A given tenant can be provided one or more tenant - associ 
includes a management - interface component 812 , distrib- ated VDCs by a cloud director managing the multi - tenancy 
uted services 814 , core services 816 , and a host - management 50 layer of abstraction within a cloud - computing facility . The 
interface 818. The management interface is accessed from cloud services interface ( 308 in FIG . 3 ) exposes a virtual 
any of various computers , such as the PC 708 shown in FIG . data - center management interface that abstracts the physical 
7. The management interface allows the virtual - data - center data center . 
administrator to configure a virtual data center , provision FIG . 9 illustrates a cloud - director level of abstraction . In 
virtual machines , collect statistics and view log files for the 55 FIG . 9 , three different physical data centers 902-904 are 
virtual data center , and to carry out other , similar manage- shown below planes representing the cloud - director layer of 
ment tasks . The host - management interface 818 interfaces to abstraction 906-908 . Above the planes representing the 
virtual - data - center agents 824 , 825 , and 826 that execute as cloud - director level of abstraction , multi - tenant virtual data 
virtual machines within each of the physical servers of the centers 910-912 are shown . The resources of these multi 
physical data center that is abstracted to a virtual data center 60 tenant virtual data centers are securely partitioned in order to 
by the VDC management server . provide secure virtual data centers to multiple tenants , or 

The distributed services 814 include a distributed - re- cloud - services - accessing organizations . For example , a 
source scheduler that assigns virtual machines to execute cloud - services - provider virtual data center 910 is partitioned 
within particular physical servers and that migrates virtual into four different tenant - associated virtual - data centers 
machines in order to most effectively make use of compu- 65 within a multi - tenant virtual data center for four different 
tational bandwidths , data - storage capacities , and network tenants 916-919 . Each multi - tenant virtual data center is 
capacities of the physical data center . The distributed ser- managed by a cloud director comprising one or more 
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cloud - director servers 920-922 and associated cloud - direc- PC , or other computer system 1026 to allow a cloud 
tor databases 924-926 . Each cloud - director server or servers aggregation administrator or other user to access VCC 
runs a cloud - director virtual appliance 930 that includes a server - provided aggregate - cloud distributed services . In 
cloud - director management interface 932 , a set of cloud- general , the cloud computing facilities that together form a 
director services 934 , and a virtual - data - center management- 5 multiple - cloud - computing aggregation through distributed 
server interface 936. The cloud - director services include an services provided by the VCC server and VCC nodes are 
interface and tools for provisioning multi - tenant virtual data geographically and operationally distinct . 
center virtual data centers on behalf of tenants , tools and FIG . 11 illustrates a simple example of the generation and 
interfaces for configuring and managing tenant organiza- collection of status , informational , and error data the dis 
tions , tools and services for organization of virtual data 10 tributed computing system . In FIG . 11 , a number of com 
centers and tenant - associated virtual data centers within the puter systems 1102-1106 within a distributed computing 
multi - tenant virtual data center , services associated with system are linked together by an electronic communications 
template and media catalogs , and provisioning of virtual- medium 1108 and additionally linked through a communi 
ization networks from a network pool . Templates are virtual cations bridge / router 1110 to an administration computer 
machines that each contains an OS and / or one or more 15 system 1112 that includes an administrative console 1114 . 
virtual machines containing applications . A template may As indicated by curved arrows , such as curved arrow 1116 , 
include much of the detailed contents of virtual machines multiple components within each of the discrete computer 
and virtual appliances that are encoded within OVF pack- systems 1102 and 1106 as well as the communications 
ages , so that the task of configuring a virtual machine or bridge / router 1110 generate various types of status , infor 
virtual appliance is significantly simplified , requiring only 20 mational , and error data that is encoded within event mes 
deployment of one OVF package . These templates are stored sages which are ultimately transmitted to the administration 
in catalogs within a tenant's virtual - data center . These computer 1112. Event messages are but one type of vehicle 
catalogs are used for developing and staging new virtual for conveying status , informational , and error data , gener 
appliances and published catalogs are used for sharing ated by data sources within the distributed computer system , 
templates in virtual appliances across organizations . Cata- 25 to a data sink , such as the administration computer system 
logs may include OS images and other information relevant 1112. Data may be alternatively communicated through 
to construction , distribution , and provisioning of virtual various types of hardware signal paths , packaged within 
appliances . formatted files transferred through local - area communica 

Considering FIGS . 7 and 9 , the VDC - server and cloud- tions to the data sink , obtained by intermittent polling of data 
director layers of abstraction can be seen , as discussed 30 sources , or by many other means . The current example , the 
above , to facilitate employment of the virtual - data - center status , informational , and error data , however generated and 
concept within private and public clouds . However , this collected within system subcomponents , is packaged in 
level of abstraction does not fully facilitate aggregation of event messages that are transferred to the administration 
single - tenant and multi - tenant virtual data centers into het- computer system 1112. Event messages may be relatively 
erogeneous or homogeneous aggregations of cloud - comput- 35 directly transmitted from a component within a discrete 
ing facilities . computer system to the administration computer or may be 

FIG . 10 illustrates virtual - cloud - connector nodes ( “ VCC collected at various hierarchical levels within a discrete 
nodes ” ) and a VCC server , components of a distributed computer and then forwarded from an event - message - col 
system that provides multi - cloud aggregation and that lecting entity within the discrete computer to the adminis 
includes a cloud - connector server and cloud - connector 40 tration computer . The administration computer 1112 may 
nodes that cooperate to provide services that are distributed filter and analyze the received event messages , as they are 
across multiple clouds . VMware vCloudTM VCC servers and received , in order to detect various operational anomalies 
nodes are one example of VCC server and nodes . In FIG . 10 , and impending failure conditions . In addition , the adminis 
seven different cloud - computing facilities are illustrated tration computer collects and stores the received event 
1002-1008 . Cloud - computing facility 1002 is a private 45 messages in a data - storage device or appliance 1118 as large 
multi - tenant cloud with a cloud director 1010 that interfaces event - message log files 1120. Either through real - time 
to a VDC management server 1012 to provide a multi - tenant analysis or through analysis of log files , the administration 
private cloud comprising multiple tenant - associated virtual computer may detect operational anomalies and conditions 
data centers . The remaining cloud computing facilities for which the administration computer displays warnings 
1003-1008 may be either public or private cloud - computing 50 and informational displays , such as the warning 1122 shown 
facilities and may be single - tenant virtual data centers , such in FIG . 11 displayed on the administration - computer display 
as virtual data centers 1003 and 1006 , multi - tenant virtual device 1114 . 
data centers , such as multi - tenant virtual data centers 1004 FIG . 12 shows a small , 11 - entry portion of a log file from 
and 1007-1008 , or any of various different kinds of third- a distributed computer system . In FIG . 12 , each rectangular 
party cloud - services facilities , such as third - party cloud- 55 cell , such as rectangular cell 1202 , of the portion of the log 
services facility 1005. An additional component , the VCC file 1204 represents a single stored event message . In 
server 1014 , acting as a controller is included in the private general , event messages are relatively cryptic , including 
cloud - computing facility 1002 and interfaces to a VCC node generally only one or two natural - language sentences or 
1016 that runs as a virtual appliance within the cloud phrases as well as various types of file names , path names , 
director 1010. A VCC server may also run as a virtual 60 and , perhaps most importantly , various alphanumeric 
appliance within a VDC management server that manages a parameters . For example , log entry 1202 includes a short 
single - tenant private cloud . The VCC server 1014 addition- natural - language phrase 1206 , date 1208 and time 1210 
ally interfaces , through the Internet , to VCC node virtual parameters , as well as a numeric parameter 1212 which 
appliances executing within remote VDC management serv- appears to identify a particular host computer . 
ers , remote cloud directors , or within the third - party cloud 65 There are a number of reasons why event messages , 
services 1018-1023 . The VCC server provides a VCC server particularly when accumulated and stored by the millions in 
interface that can be displayed on a local or remote terminal , event - log files or when continuously received at very high 
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rates during daily operations of a computer system , are ties of data obtained by the above - discussed event - message 
difficult to automatically interpret and use . The volume of generation , collection , and logging is enormous . Identifying 
data present within log files generated within large , distrib- relevant data and data patterns within these large datasets is 
uted computing systems . As mentioned above , a large , difficult , particularly in view of the continuous generation of 
distributed computing system may generate and store tera- new . Second , while certain values of value ranges observed 
bytes of logged event messages during each day of opera- for individual types of data , refereed to as “ metrics , ” may be 
tion . This represents an enormous amount of data to process . useful for detecting anomalous system states and behaviors , 
Event messages are generated from many different compo- it is most often the case that particular data values or 
nents and subsystems at many different hierarchical levels data - value ranges for sets of different metrics provide the 
within a distributed computer system , from operating system 10 most useful and specific indications of anomalous system 
and application - program code to control programs within states and behaviours . Identifying the sets of metrics , and the 
disk drives , communications controllers , and other such data values or data - value ranges for the metrics , that spe 
distributed - computer - system components . Even within a cifically indicate system events and states which an auto 
given subsystem , such as an operating system , many differ- mated system - monitoring subsystem would desirably detect 
ent types and styles of event messages may be generated , 15 and for which the automated system - monitoring subsystem 
due to the many thousands of different programmers who would desirable initiate ameliorative actions and / or provide 
contribute code to the operating system over very long time alerts and warning , initiate ameliorative actions . The cur 
frames . In many cases , event messages relevant to a par- rently disclosed methods and systems automatically identify 
ticular operational condition , subsystem failure , or other sets of metrics and corresponding metric values and / or value 
problem represent only a tiny fraction of the total number of 20 ranges that represent incidents , anomalous system states , 
event messages that are received and logged . Searching for and other operational behaviours and events from collected 
these relevant event messages within an enormous volume metric data . The automatically identified sets of metrics and 
of eve messages continuously streaming into an event- corresponding metric values and / or value ranges can be 
message - processing - and - logging subsystem of a distributed subsequently detected in the continuously generated and 
computer system may be a significant computational chal- 25 collected metric data to detect and identify particular types 
lenge . Storing and archiving event logs may itself represent incidents , anomalous system states , and other operational 
a significant computational challenge . Given that many behaviours and events , in real time , and provide indications 
terabytes of event messages may be collected during the of the types of detected incidents , anomalous system states , 
course of a single day of operation of a large , distributed or other operational behaviours or events . The identified 
computer system , collecting and storing the large volume of 30 types may be associated with various automatically gener 
information represented by event messages may represent a ated or manually recorded notes and indications for reme 
significant processing - bandwidth , communications - subsys- diation that facilitate a monitoring subsystem's response to 
tems bandwidth , and data - storage - capacity challenge , par detection of detected incidents , anomalous system states , or 
ticularly when it may be necessary to reliably store event other operational behaviours or events . 
logs in ways that allow the event logs to be subsequently 35 In a given distributed computing system , many types of 
accessed for searching and analysis . status , informational , and error data may be collected , pro 
FIG . 13 illustrates one initial event - message - processing cessed for storage , and stored in a variety of different ways . 

approach . In FIG . 13 , a traditional event log 1302 is shown To facilitate the following discussion , and to provide a 
as a column of event messages , including the event message useful level of generality , the details of the generation , 
1304 shown within inset 1306. Automated subsystems may 40 transmission , collecting , and initial processing of status , 
process event messages , as they are received , in order to informational , and error data within a distributed computing 
transform the received event messages into event records , system are abstracted as the generation of time sequences of 
such as event record 1308 shown within inset 1310. The metric data from a generally large set of metric - data sources , 
event record 1308 includes a numeric event - type identifier as next discussed with reference to FIGS . 14A - C . As shown 
1312 as well as the values of parameters included in the 45 in FIG . 14A , the status , informational , and error data is 
original event message . In the example shown in FIG . 13 , a generated by P different data sources , including data source 
date parameter 1314 and a time parameter 1315 are included S1 1402 , with each data source referred to by a data - source 
in the event record 1308. The remaining portions of the name SX , where X is an integer . Ellipses 1402 indicate that 
event message , referred to as the “ non - parameter portion of there may be additional data sources between data source 
the event message , ” is separately stored in an entry in a table 50 S10 and data source SP . The phrase " data source ” refers to 
of non - parameter portions that includes an entry for each any component or subcomponent of the distributed comput 
type of event message . For example , entry 1318 in table ing system that generates at least one type of status , infor 
1320 may contain an encoding of the non - parameter portion mational , or error data . Processor - controlled components 
common to all event messages of type a 12634 ( 1312 in FIG . and subcomponents may directly generate digitally encoded 
13 ) . Thus , automated subsystems may transform traditional 55 data that is communicated to one or more data sinks . Other 
event logs , such as event log 1302 , into stored event records , types of components and subcomponents may produce vari 
such as event - record log 1322 , and a generally very small ous types of analog or digital electrical signals , optical 
table 1320 with encoded non - parameter portions , or tem- signals , and / or mechanical signals that are subsequently 
plates , for each different type of event message . translated into digitally - encoded data for transmission and 

60 storage . Each metric corresponds to a single type of numeri 
Currently Disclosed Methods and Systems cal value produced by a single component or subcomponent . 

In the case that a physical component or subcomponent 
Despite the great amount of detailed information , includ- produces two or more different types of numerical values , 

ing many types of status , informational , and error data each of the two or more different types of numerical values 
collected from event messages and other types of data 65 is considered to be a separate metric and the physical 
sources , identifying anomalous operational states and component or subcomponent is represented by two or more 
behaviors remains a challenging problem . First , the quanti- data sources , each associated with one of the two or more 
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metrics . Thus , in a system that included three data - generat- running - time - average calculation used to fit all of the met 
ing components that each generates three different types of rics to the common temporal alignment . Many other 
numeric values , FIG . 14C would show nine data sources Si , approaches can be used to temporally aligned metric data 
S2 , .... S9 that each produces a different metric value at values , including various curve - fitting techniques , linear 
various time points . 5 extrapolation , and non - linear extrapolation . 

In FIG . 14A , each data source is shown to produce a FIG . 14C illustrates the preprocessed metric data follow 
sequence of data values corresponding to a metric . For ing temporal alignment . The metric data values form a 
example , data source S1 1402 has produced data values regular two - dimensional grid . At each time point , there is a 
1404-1411 , and likely many additional data values beyond metric data value for each of the P data sources . The metric 
arrow 1412. As shown by the time axis 1414 on the 10 data values at a particular time point can be considered to be 
right - hand side of FIG . 14A , the vertical position of each a P - dimensional observation . 
data value , such as the data value Vp 1416 , corresponds to FIG . 15 illustrates the equivalence between an observa 
points in time , such as the time point t ; 1418 at which the tion made at a particular time point and a P - dimensional 
data value Vp 1416 was emitted by data source SP 1420. In vector in a P - dimensional space . In the example shown in 
many distributed computer systems , the various data sources 15 FIG . 15 , there are only three metrics S1 , S2 , and S3 , and thus 
may emit data values periodically , and the data - value- P = 3 . Each metric is considered to be a dimension , and so the 
emission period may be similar or identical for the various three Cartesian axes 1502 , 1503 , and 1504 are each assigned 
different data sources . In other distributed computer sys- to one of the metrics . Each observation is a tuple of 3 metric 
tems , data sources may emit data values nonperiodically and data values 1506 which , when used as components of a 
the times at which a given data source emits data values may 20 vector , describes a vector 1508 in the P - dimensional metric 
be synchronized with respect to the times at which another space . 
data source emits data values . In certain cases , a data- FIG . 16 illustrates representation of observations , each 
collection computational entity may poll data sources for consisting of a set of metric data values for each data source 
data values at regular intervals while , in other cases , the data obtained at , or calculated for , a particular time point , as a 
sources may actively transmit data values at periodic inter- 25 matrix . As discussed above , each row of metric data values , 
vals or , alternatively , whenever data values become avail- such as row 1602 , for a particular time point , such as time 
able . However , for the types of processing carried out by the point ti 1604 , may be considered to be a P - dimensional 
currently disclosed methods and systems , it is convenient to vector 1606 , referred to as an “ observation . ” A sequence of 
ensure that the data values for all metrics are logically N observations can be organized as an NxP matrix " 1608 
emitted in a strictly periodic fashion and that the transmis- 30 in which each row represents an observation and in which 
sion of data values is synchronized among all of the metrics . each column represents a time sequence of data values for a 
FIG . 14B illustrates one method for temporally aligning particular metric . Again , the time point corresponding to an 

and synchronizing metric data emitted by various different observation is inferred from the row index of the observation 
data sources within a distributed computing system . First , since the observations represent a time sequence with a 
the desired metric - data - emission interval and the corre- 35 uniform time interval between successive observations . 
sponding time points are selected . This is shown in FIG . 14B Alternatively , the transpose of matrix Ý , Ý , 1610 , can be 
by the horizontal time axis 1426 that is divided into uniform considered to include column vectors representing observa 
time intervals bracketed by a sequence of evenly spaced tions . 
time points , beginning with time point to 1428 at the origin FIG . 17 illustrates scaling and normalization of the set of 
1430 of the plot 1432 shown in FIG . 14B . The sequence of 40 observations represented by the matrix X. Several statistical 
data values emitted by a data source are shown in FIG . 14B parameters are computed for each time sequence of metric 
as a time ordered sequence of data points , such as data point data values for particular metrics , such as the metric data 
1434 , plotted in a two - dimensional plot 1432 in which the values for the second metric contained in the second column 
vertical axis 1436 represents the value or magnitude of the 1702 of the matrix X 1704 , including the average uz 1706 , 
metric data points . As can be seen by comparing the loca- 45 the variance 0,2 1708 , and the standard deviation 0 , 1710 . 
tions of the initial plotted metric data values 1438-1442 with Then , for each column j , each metric data value in the 
respect to the dashed vertical lines , such as dashed vertical column can be scaled and normalized by subtracting the 
line 1444 , coincident with time points to - t4 , the metric data average metric data value from the metric data value and 
values are not strictly periodic in time they do not exactly dividing by the standard deviation 1712. When this is done 
fall at the selected time points . However , using a running- 50 for every element in the matrix , a scaled and normalized 
time - average type of calculation , a metric data value for matrix X 1714 is produced . 
each selected time point can be estimated . The equation FIGS . 18 and 19 illustrate eigenvectors and eigenvalues . 
1446 in FIG . 14B illustrates computation of the estimated A 3x3 matrix A 1802 and a column vector u 1804 are shown 
metric data value 1448 corresponding to time point t? 1450 , at the top of FIG . 18. When u is an eigenvector of the matrix 
which turns out to be 13.03 . The running - time - average 55 A , then equation 1806 expresses the relationship of the 
calculation computes the average metric data value within a eigenvector u and its corresponding eigenvalue , which is 
time window symmetric about the time point in question . In a constant or scaler . This equation is expanded in matrix 
the case of time point t2 1450 , the time window is repre- form as matrix equation 1808. Using a set of simple matrix 
sented by the double - headed arrow 1452. The running - time- algebra manipulations 1810 and 1812 of equation 1806 , it 
average calculation is a type of low - pass filter that tends to 60 can be shown that either the eigenvector u can be generated 
smooth the curve produced by linking adjacent data points . by multiplying the inverse of the matrix A - XI , where I is the 
In certain cases , there may be a natural time periodicity in identity matrix , by the column vector 0 1814 or that the 
the majority of metric data values , and the running - time- inverse of the matrix A - al does not exist , as expressed by 
average calculation can be used to fit those metrics that do the fact that the determinant of this matrix is 0 1816. Only 
not follow the natural time periodicity to a common tem- 65 the latter proposition is reasonable , which indicates that , by 
poral alignment . In other cases , a common temporal align- solving the polynomial equation 1904 shown in FIG . 19 , 
ment may be more or less arbitrarily selected and the obtained from the expression 1816 via expansion 1902 of 
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expression 1816 , the eigenvalues for the matrix A can be original metrics as a linear combination of the original 
found . Because the polynomial equation 1904 is of order 3 , metrics . The data values corresponding to the new set of 
the dimension of u , there are generally 3 eigenvalues , metrics , contained in a factor score matrix F , which is 
although one or more of the roots of equation 1904 may be defined to be generated from the original metric data values 
degenerate . The matrix equation 1906 expresses the rela- 5 stored in the matrix X by multiplying the matrix X from the 
tionship between the matrix A , a matrix U in which each right by the matrix Q , which contains the principal compo 
column is one of the eigenvectors of the matrix A , and the nents as column vectors 2018 , under the constraints that the 
matrix A , which is a diagonal matrix in which the elements matrix F ? F = Q7X + XQ is a diagonal matrix 2020 and that the 
along the diagonal are the eigenvalues of the matrix A in the matrix Q is orthogonal 2022. By using the technique of 
order of the corresponding eigenvectors in the matrix U. 10 Lagrangian multipliers , it can be shown that XTX = QAQ " 
Multiplying each side of equation 1906 from the right by the 2024 , where A is a diagonal matrix of Lagrangian multipli 
inverse of matrix U , U - 1 , produces equation 1908. When the ers , which leads to expression 2026. Thus , determining the 
matrix A is the product of a matrix X and its transpose X ” , principal components , which is equivalent to determining 
as shown in expression 1910 , the eigenvalues of matrix are the matrix Q , reduces to a problem of determining the 
positive real numbers 1911 , the eigenvectors of matrix are 15 eigenvectors and eigenvalues of the matrix X + x . With the 
orthogonal 1912 when their corresponding eigenvalues are matrix Q in hand , the coordinate transformation that takes 
not equal , and the inverse of matrix U , U- ?, is equal to the the original scaled and normalized metric data values in the 
transpose of matrix U , UT 1913. Thus , when matrix A is the matrix X to the data values for a new set of metrics referred 
product of a matrix X and its transpose XT , matrix A is equal to as principal components , stored in the matrix F , is carried 
to the matrix A multiplied from the left by the matrix U and 20 out by multiplying the matrix X from the right by the matrix 
multiplied from the right by the transpose of matrix U , U ?. Q , as expressed in expression 2018 . 
While a 3x3 matrix example is used in FIGS . 18-19 , the FIG . 20B illustrates computation of principal - component 
above - described characteristics of eigenvectors and eigen- metric data values and dimensional reduction . In the top 
values apply to matrices of arbitrary dimension . portion of FIG . 20B , the computation of a first principal 

The principal - component - analysis ( “ PCA ” ) method , next 25 component - metric data value for the first principal compo 
discussed with reference to FIGS . 20A - B , represents a nent , F11 2030 in the factor - score matrix F 2032 , by com 
change of basis vectors for the scaled and normalized puting the dot product of the first row 2034 in the matrix X 
observations organized into the matrix X 1714 , discussed 2036 and the first column 2038 in the matrix Q 2040 , is 
above with reference to FIG . 17. As shown in the 3 - dimen- shown in expression 2042. Thus , each new principal - com 
sional plot 2002 in FIG . 20A , the distribution of observa- 30 ponent metric data value for an observation is a linear 
tions , or observation data points , corresponding to the rows combination of all of the original metric data values for the 
of the matrix X or columns of the matrix XT , in the case of observation . 
a 3 - dimensional metric space , such as that shown in FIG . 15 , The currently disclosed methods and systems use the 
may fall within an ellipsoidal volume 2004 within the principal - component - analysis technique , discussed above 
3 - dimensional metric space . As shown in plot 2002 of FIG . 35 with reference to FIGS . 20A - B , in order to reduce the 
20A , the ellipsoidal volume has major and minor axes that dimensionality of a set of observations , each including a 
are not coincident with the axes corresponding to metrics S1 metric data value for each of the metrics generated within a 
2006 , S2 2007 , and S3 2008. A basis - vector change , equiva- distributed computer system . In addition to the eigenvectors / 
lent to a set of coordinate changes , may be desired so that a eigenvalue decomposition method discussed above , there 
set of new coordinate axes , corresponding to what is referred 40 are other methods for obtaining the factor - score matrix F and 
to as “ principal components , ” ( “ PCs ” ) , can be found . The the matrix Q , including the singular - value - decomposition 
new coordinate axes are aligned with the major and minor method and the Graham - Schmidt orthogonalization method . 
axes of the ellipsoidal volume representing the distribution As discussed above with reference to FIG . 20A , the princi 
of observations in 3 - dimensional space . Moreover , principal pal components are ordered in descending order with respect 
component PC1 2010 is aligned with the major axis of the 45 to the variability of the principal - component metric data 
ellipsoidal volume , principal component PC2 is aligned with values in the P - dimensional principal - component metric 
the longer of the 2 minor axes 2011 of the ellipsoidal space . By retaining only an initial subset of the principal 
volume , and principal component PC3 2012 is aligned with components in a truncated factor - score matrix F 2044 , a 
the shorter of the 2 minor axes of the ellipsoidal volume . The large fraction of the variability in the dataset is retained in 
basis vectors corresponding to the principal components of 50 a projection of the P - dimensional principal - component met 
the new coordinate axes are contained as columns in a ric space to a P ' - dimensional principal - component metric 
matrix Q 2016. The principal components correspond to the space . In the example shown in FIG . 20B , P = 4 . Dimen 
directions of greatest variability within the ellipsoidal vol- sional reduction facilitates subsequent dataset processing . 
ume in decreasing order of variability and the basis vectors The computational complexity of the subsequent data - set 
corresponding to the principal components are orthogonal . 55 processing generally increases exponentially with respect to 
In general , the bulk of the variability within a distribution of the number of dimensions , so by decreasing the dimension 
observations can be largely explained in terms of , or ality using principal - component analysis , the computational 
expressed as a function of , an initial subset of the principal complexity of the subsequent data - processing steps is 
components . For example , in the distribution shown in FIG . greatly reduced without losing much of the information in 
20A , were the ellipsoidal volume projected onto a plane 60 the dataset related to the distribution of observations in the 
normal to the third principal component 2012 , the majority P - dimensional principal - component metric space . 
of the variability in the distribution of observations would be Once the dimensionality the dataset has been reduced , 
apparent in the resulting two - dimensional ellipsoid with using the principal - component - analysis technique , certain of 
major axis corresponding to the first principal component the currently disclosed methods and systems employ a 
2010 and minor axis corresponding to the second principal 65 modified K - means clustering technique or another clustering 
component 2011. In essence , the principal components can technique in order to identify outlier observations within the 
be viewed as a new set of metrics each derived from the dataset that likely correspond to abnormal states . This allows 
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for automatically labeling observations as either normal or that the set of outlier data points in FIG . 21B could just as 
abnormal . Once the observations are so labeled , various easily have been identified as a cluster . In fact , as shown in 
types of machine - learning techniques can be applied to the subsequently discussed figures , the clustering shown in FIG . 
labeled dataset to train a monitoring subsystem to automati- 21B represents a decidedly non - optimal clustering that rep 
cally recognize abnormal system states and operational 5 resents a local minimum within the hyper - dimensional sur 
incidents from continuously collected and processed metric face of all possible clusterings . 
data . FIG . 21C shows a clustering obtained for the dataset 

FIGS . 21A - I and FIGS . 22A - B illustrate data - set cluster- illustrated in FIG . 21A when K = 3 , L = 10 , and P = 2 is input 
ing using a modified K - means clustering process . The two to the modified K - means clustering process . The same points 
examples used in these two sets of figures are two - dimen- 10 identified as outliers in the clustering shown in FIG . 21B are 
sional , for ease of illustration . As discussed further , below , again identified as outliers in the clustering process illus 
both modified K - means clustering process the other pro- trated in FIG . 21C . This is , in part , because at least two of 
cesses , techniques , and computational steps used by the the starting cluster centers are the same as in the clustering 
currently disclosed systems and methods are straightfor- process that produced the results shown in FIG . 21B . FIG . 
wardly extended to higher - dimensional datasets . Indeed , a 15 21D shows a clustering obtained for the dataset illustrated in 
simple C ++ implementation of one example of a modified FIG . 21A when K = 3 , L = 2 among all 0 , and P = 2 is input to 
K - means clustering process , provided below , carries out the modified K - means clustering process . In this case , 
clustering in a metric - data space of arbitrary dimension . because the number of desired outliers doubled , the 3 
FIG . 21A illustrates a first example two - dimensional clusters contain fewer data points . 

dataset . Each data point , such as data point 2102 , represents 20 FIGS . 21E - F show clustering obtained for the dataset 
an observation that includes data values for 2 metrics . The illustrated in FIG . 21A when K = 2 , L = 10 , and P = 2 are input 
first metric is represented by the horizontal axis 2103 and the to the modified K - means clustering process , but when dif 
second metric is represented by the vertical axis 2104. Each ferent starting points for the process are used . In fact , 10 
data point is thus the head of a two - dimensional vector . different sets of starting points were used to produced 10 

The modified K - means clustering process receives , as 25 additional clusterings , and the clustering shown in FIGS . 
input : ( 1 ) K , an integer specifying the desired number of 21E - F were associated with the smallest errors . 5 of the 10 
clusters ; ( 2 ) L , an integer specifying the desired number of outliers identified in the two clusterings shown in FIGS . 2 
outlier data points ; ( 3 ) P , an integer specifying of the number E - F , labeled 2120-2124 in FIG . 21F , are identical , illustrat 
of dimensions , or metrics ; ( 4 ) a distance function that ing the fact that , by carrying out multiple clusterings with 
computes the distance between any two locations in a 30 different starting points and choosing clusterings with the 
P - dimensional metric space ; and ( 5 ) a dataset that includes lowest associated errors , it may be possible to converge on 
NP - dimensional observations . The modified K - means clus- a global minimum or at least a local minimum with a 
tering process than identifies locations of each of K clusters relatively low error , in which case outlier identification may 
of data points and identifies L outlier data points , with each become increasingly accurate . 
data point in the P - dimensional dataset either belonging to 35 FIGS . 21G - I show three clusterings obtained for the 
one of the K clusters or identified as one of the L outliers . dataset illustrated in FIG . 21A when K = 4 , L = 10 , and P = 2 is 
The modified K - means clustering process does not neces- input to the modified K - means clustering process and when 
sarily find an optimal clustering , where the optimal cluster- a different set of starting cluster centers are used for each 
ing would have a minimum sum of squared distances of the cluster . The three clusterings shown in FIGS . 21G - I are the 
data points belonging to the K clusters to their cluster 40 three clusterings out of ten clusterings with the lowest errors . 
centers . However , the modified K - means clustering process In this case , it does appear that selecting clusterings with the 
is guaranteed to converge on a locally optimal clustering . lowest errors from a series of repeated clusterings with 

Prior to discussing the modified K - means clustering pro- different initial cluster centers may represent an approach to 
cess , a number of examples of clustering and outlier iden- identifying either a globally optimal clustering or a locally 
tification produced by the modified K - means clustering 45 near - optimal clustering . 
process are first discussed . FIG . 21B shows a clustering In the example of FIGS . 21A - I , the distribution of data 
obtained for the dataset illustrated in FIG . 21A when K = 2 , points , or observations , do not exhibit much in the way of 
L = 10 , and P = 2 is input to the modified K - means clustering easily identifiable clustering . FIG . 22A shows a second 
process . In FIG . 21B , as in subsequently discussed figures , example two - dimensional dataset , using the same illustra 
the identified centers of the clusters are marked with x - like 50 tion conventions as used in FIG . 21A , which exhibits an 
symbols 2106 and 2107. The two clusters 2108 and 2109 are obviously nonuniform distribution of observations that 
each indicated by a dashed boundary 2111 and 2112 , as are includes two apparent initial clusters of data points . Ten 
the clusters in subsequently discussed figures . Those data different clusterings with K = 2 , L = 10 , and P = 2 , using dif 
points which do not lie within the boundary of the cluster , ferent initial cluster centers , all produced nearly identical 
such as data point 2113 , are outlier data points . For many of 55 clusterings with a very tight range of errors . This is illus 
the clusterings shown in the figures , an error is reported , trated in FIG . 22B . A first cluster 2202 was identically 
such as the error 2114 reported for the clustering shown in identified in all ten clusterings . A second cluster 2204 was 
FIG . 21B . This is the square root of the sum of the squares nearly identical in all ten clusterings . In one of the ten 
of the distances of each data point within a cluster to that clusterings , data point 2206 was included in cluster 2204 
cluster's center . Were the input value K equal to the number 60 while data point 2208 was identified as an outlier , while in 
of observations N and the input value L equal to 0 , the nine of the ten clusterings , data point 2208 was included in 
modified K - means clustering process would return K clus- cluster 2204 while data point 2206 was identified as an 
ters , each with a center equal to an observation and with an outlier . The remaining eight outliers were identically iden 
error of O. Were the input value K equal to 1 and the input tified in all clusterings . As shown in FIG . 22B , the error 
value L equal to 0 , the modified K - means clustering process 65 range 2210 over the ten clusterings was quite narrow . Thus , 
would return a single cluster with a center equal to the when the distribution of observations within a metric space 
centroid of the distribution of data points . It would appear is inherently clustered , the modified K - means clustering 
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process quickly and accurately converges on a very good compares the magnitudes of two distances within two Dis 
near - optimal clustering or optimal clustering . Because the tIndex data structures and returns 1 if the first distance is less 
currently disclosed methods and systems employ the modi- than the second distance , returns ( if the first distance is 
fied K - means clustering method to identify outlier observa- equal to the second distance , and returns -1 if the first 
tions , the K value input to the clustering process does not 5 distances greater than the second distance . These values 
necessarily need to reflect the number of inherent clusters allow quicksort to sort an array of DistIndex structures in 
within the observation distribution , but only needs to be descending order by distance . The member function “ clus 
sufficiently low to avoid artifacts and meaningless cluster- ter ” implements of the modified K - means clustering process 
ings with low error values . discussed above with reference to FIGS . 21A - 22B . The 
FIGS . 23A - G provide a simple C ++ implementation of 10 member function " cluster ” receives , as input arguments , a 

one version of the modified K - means clustering process . A pointer to the dataset 2332 , the number of data points in the 
first set of constants 2302 in FIG . 23A specify the maximum dataset 2333 , the number of dimensions of the dataset 2334 , 
expected values for arguments to the clustering methods , a pointer to a distance function 2335 , the desired number of 
including the maximum expected number of dimensions , clusters 2336 , and the desired number of outlier data points 
number of desired clusters , number of desired outliers , and 15 2337. In a first set of statements 2338 , the input arguments 
number of observations in the dataset . The constant “ Thresh- are stored in local data members . The local - data - member 
old ” 2303 is the minimum shift in a cluster center between pointer clusters is initialized to point to the array clusters1 
iterations of the clustering process that provokes a next and the local - data - member pointer newClusters is initialized 
iteration . It is this parameter that controls when a clustering to point to the array clusters2 in the next two statements 
is determined to have converged . The type definition “ Point ” 20 2339. The initialization routine is called in statement 2340 . 
2304 defines a data type that contains the coordinates for a Then , the member function random InitialClusters is called , 
data point . The type definition “ DistIndex ” 2305 defines a in statement 2341 , to select an initial set of data points , the 
data type that contains the distance between a data point and locations of which are assigned as the centers of an initial set 
its cluster center as well as an index or identifier of the data of K clusters . In statement 2342 , the member function 
point . The type definition “ Dist ” 2306 defines a pointer to a 25 clusterDataPoints is called to assign all of the data points to 
distance function that is applied by the clustering methods the initial set of clusters , the centers for which were selected 
for calculating distances between data points and other in the previous statement . Then , in the while - loop 2343 , new 
locations in the transformed - metric space . cluster centers are computed via a call to the member 
FIG . 23B includes the declaration of a class " clustered- function re - cluster , in statement 2344 , and the member 

Data . ” This class includes the data members : ( I ) dataPoints 30 function convergence is called , in statement 2345 , to deter 
2307 , a pointer to a dataset ; ( 2 ) numDataPoints 2308 , the mine whether or not clustering has converged around the 
number of data points in the dataset : ( 3 ) dist 2309 , a pointer current set of cluster centers . One clustering has converged , 
to the distance function used to compute distances between the member function cluster terminates . Otherw in the set 
data points ; ( 4 ) k 2310 , the number of desired clusters ; ( 5 ) of statements 2346 , the cluster - center arrays pointed to by 
12311 , the number of desired outliers ; ( 6 ) numD 2312 , the 35 the pointers clusters and newCluster are switched , and the 
number of dimensions of the dataset ; ( 7 ) clusters 2313 , a member function clusterDataPoints is called , in statement 
pointer to a current set of cluster centers ; ( 8 ) newClusters 2347 , to recluster the data points around the new cluster 
2314 , a pointer to a next set of cluster centers ; ( 9 ) split 2315 , centers computed by the member function recluster , in 
the number of data points in a sorted list of data points statement 2344. Thus , the modified K - means clustering 
having the same distance to their cluster center following a 40 process is relatively straightforward . An initial set of K 
data point identified as the first non - outlier data point ; ( 10 ) cluster centers is selected , the data points are clustered with 
clusters1 2316 , an array of cluster centers ; ( 11 ) clusters 2 respect to the initial set of K cluster centers , and then the 
2317 , an array of cluster centers ; ( 12 ) minOutlierDistance modified K - means clustering process iteratively computes 
2318 , the minimum distance of an outlier data point from a new cluster centers and reclusters the data points about the 
cluster center ; ( 13 ) already 2319 , an array of Boolean values 45 new cluster centers until the process converges on a set of 
indicating whether or not corresponding data points have cluster centers that represent a local minimum , in most 
been selected for initial cluster centers ; ( 14 ) distances 2320 , cases , but may fortuitously represent a global minimum . 
an array that includes the distances of data points from the FIG . 23D provides implementations of the initialization 
cluster centers along with an index for each data point ; ( 15 ) member function init and the member function randomIni 
indexedDistances 2321 , an array of distances of data points 50 tialClusters . The initialization routine 2356 sets all the 
from their cluster centers ; and ( 16 ) clusters Assignments elements of the array already to FALSE . The member 
2322 , an array that contains indications of the cluster to function randomInitialClusters randomly selects K data 
which each data point has been assigned . points , the locations of which become initial cluster centers , 

The class “ clusteredData " includes the following member in the while - loop 2351. An index of a next data point is 
functions : ( 1 ) init 2323 , an initialization routine ; ( 2 ) rando- 55 randomly selected , in statement 2352 , and , provided that the 
mInitailClusters 2324 , a method that randomly selects K data point is not already been used as a cluster center , as 
data points as the initial cluster centers ; ( 3 ) clusterData- determined in statement 2353 , places the coordinates of the 
Points 2325 , a method that assigns data points to a set of data point into the array " clusters ” as a next cluster center in 
cluster centers , and thus clusters the data points ; ( 4 ) recluster the for - loop 2354 . 
2326 , a method that determines new cluster centers as the 60 FIG . 23E shows an implementation of the member func 
centroids of a set of current clusters ; ( 5 ) convergence 2327 , tion clusterDataPoints . In for - loop 2356 , each data point is 
a routine that determines whether or not the clustering assigned to a cluster . In the for - loop , all of the cluster centers 
process has converged ; and ( 6 ) cluster 2328 , the method that are considered in order to find the cluster center closest to 
represents the modified K - means clustering process . the currently considered data point . The distance of a data 
FIG . 23C shows implementations of a function " com- 65 point to its cluster center is recorded and the cluster assign 

pare , ” used in a quicksort of data points distances and the ment is recorded in the set of statements 2358. In statement 
member function “ cluster . ” The function " compare ” 2330 2359 , the distances of the data points to their respective 
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cluster centers is sorted in descending order by a quicksort a normal observation and the label A indicates an abnormal 
routine . In statement 2360 , the minimum outlier distance is observation . These labels may be obtained from the above 
determined as the Lth distance in the sorted array of dis- discussed modified K - means clustering technique , with the 
tances of data points to their cluster centers . The first L abnormal observations corresponding to outliers . Of course , 
distances in the sorted array of distances correspond to the 5 in a real - world metric - data - processing system , a training 
identified L outlier data points , which are , by definition , the dataset may contain tens of thousands , hundreds of thou 
data points furthest away from a cluster center . Finally , in the sands , millions , or more observations . 
set of statements 2361 , the data member split is set to the One type of decision - tree - based machine learning tech 
number of distances in the array of sorted distances equal to nique builds a decision tree from a labeled training dataset 
the minimum outlier distance that follow the Lth distance in 10 by successively partitioning the dataset based with respect to 
the array . Thus , clustering of data points is a straightforward different , selected . This technique generates a decision tree 
process in which data points are assigned to the clusters with which can then be used to evaluate an unlabeled observation 
centers nearest to them and the L data points furthest away to determine whether or not the unlabeled observation is 
from cluster centers are identified as outliers . normal or abnormal . The process of constructing a decision 
FIG . 23F provides an implementation of the member 15 tree is illustrated in FIGS . 24B - F . In a first step , a decision 

function recluster . In the for - loop 2363 , the two - dimensional is made as to which attribute to first use to partition the 
array sum is initialized to 0 and the array kCount is initial- dataset . In FIG . 24B , four different trees 2410-2413 repre 
ized to 0. The two - dimensional array sum stores the sums of sent the dataset partitionings that can be carried out with 
the coordinate components of the data points in each cluster respect to each of the four different attributes A , B , C. and 
and the array kCount stores a count of the number of data 20 D. The root node of each tree includes a rule , based on one 
points in each cluster . In the for - loop 2364 , all of the data of the attributes , that can be applied to the observations in 
points are considered . In a first set of statements 2365 , the the dataset . For example , in tree 2410 , the root node contains 
local variable valid is set to TRUE if the currently consid- the rule “ As20 . ” When this rule is applied to the 15 
ered data point is not an outlier , and is otherwise set to observations shown in table 2402 , the 15 observations are 
FALSE . If the data point is not an outlier data point , each of 25 partitioned into two groups represented by tree nodes 2415 
its coordinate components is added to the sum of coordinate 2416. There are two abnormal observations , observations 2 
components for the data points in its cluster and the number and 8 , that include a value for attribute A less than or equal 
of data points in the cluster is incremented , in the set of to 20 and there are no normal observations that include a 
statements 2366. In a final doubly nested for - loop 2367 , all value for attribute A less than or equal to 20 , as indicated in 
of the sums of coordinate data points are divided by the 30 the interior labeling of node 2415. There are two abnormal 
number of data points in the cluster in order to compute the observations and 11 normal observations , as indicated by 
centroid of each cluster , and the centroid of each cluster is labeling in node 2416 , that include a value for attribute A 
stored as a new cluster center in the array of cluster centers greater than 20. Trees 2411-2413 illustrates the partitionings 
referenced by the pointer newClusters . Thus , the member that can be carried out with respect to attributes B , C , and D. 
function recluster computes new cluster centers for each 35 Of the four different dataset partitionings represented by 
cluster as the centroid of the data points currently assigned trees 2410-2413 , the partitioning represented by tree 2410 is 
to the cluster . best , and is therefore selected as the first partitioning , as 
FIG . 23G shows implementations of the member function indicated by the arrow 2417 that points to tree 2410. In 

convergence and a distance function . The member function general , the best partitioning most effectively separates the 
convergence 2370 determines whether the center of any 40 abnormal observations from the normal observations . 
cluster has moved more than a threshold distance during the The partitioning represented by tree 2410 generates a 
last clustering iteration and , if so , returns the Boolean value partition , represented by node 2415 , that contains only 
FALSE to indicate that clustering has not converged . Oth- abnormal observations . None of the other partitionings so 
erwise , the Boolean value TRUE is returned . The distance cleanly partition abnormal from normal observations . As 
function 2371 computes the Euclidean distance in the trans- 45 shown in FIG . 24C , tree 2410 is selected as the initial set of 
formed metric space between two data points or trans- connected nodes for the decision tree 2420. The root node 
formed - metric - space locations . The statement 2372 illus- 2421 contains the rule , the left - hand node 2422 represents 
trates declaration of an instance of the class “ clusteredData . ” those observations for which the value of attribute A is less 
Statement 2373 illustrates invocation of the modified than or equal to 20 , and right - hand node 2423 represents 
K - means clustering process by calling the public member 50 those observations for which the value of attribute A is 
function cluster of an instance of the class clusteredData . greater than 20. Because node 2422 contains only abnormal 

There are many different machine - learning techniques observations , the data represented by this node requires no 
that can be used for developing pattern - matching systems , further partitioning . However , node 2423 represents a set of 
data - classification systems , and other types of systems that observations that include both abnormal and normal obser 
learn to make complex decisions and characterizations by 55 vations , and this set of observations thus needs to be further 
being trained with labeled training data . FIGS . 24A - F illus- partitioned in order to separate abnormal from normal 
trates a machine learning technique based on decision trees . observations . Trees 2424-2426 represent three partitionings 
FIG . 24A shows a labeled training dataset based on a of the dataset represented by node 2423 based on the 
PCA - transformed and dimensionally reduced set of metric- remaining three attributes B , C , and D. As indicated by 
data - based observations . Table 2402 contains 15 rows , 60 arrow 2427 , the tree containing a rule based on attribute C 
including a first row 2404 , each of which represents an provides a more effective partitioning than that represented 
observation . Table 2402 includes four columns , including a by tree 2424 and is equally effective to the partitioning 
first column 2406 , that each represents a principal compo- represented by tree 2426. This tree is arbitrarily selected 
nent , or transformed metric . These principle components from among trees 2425 and 2426 for the next level of 
may be referred to as " attributes . ” There are four principal 65 partitioning to be included in the decision tree . 
components designated A , B , C , and D. A fifth column 2408 The resulting decision tree is shown in FIG . 24D . Node 
includes a label for each observation . The label N indicates 2430 includes only normal observations and therefore does 
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not require further partitioning . However , node 2431 rule also includes an assignment operator 2511. Next , a class 
includes a single normal observation and two abnormal attributes is declared 2512. An instance of the class attributes 
observations , as indicated by the labeling in FIG . 24C , and represents a map between a set or subset of attributes and the 
therefore needs to be further partitioned . In FIG . 24E , node attributes associated with each observation . The member 
2431 is again shown , along with the two possible partition- 5 function getDataIndex 2513 returns an index of an attribute , 
ings of the node represented by trees 2433 and 2434. In this indexed by an input index , with respect to the full set of case , the partitioning represented by tree 2434 is most attributes associated with each observation . Next , a class effective , and thus this final partitioning is included as a final datum is declared 2514. Each instance of the class datum 
subtree within the decision tree . represents an observation . FIG . 24F shows the final decision tree 2440. This decision 10 Continuing with FIG . 25B , a class data is next declared tree can be used to classify an unlabeled observation as 2516. Each instance of the class data represents a dataset , or normal or abnormal . The classification process is essentially 
a traversal of the decision tree beginning with the top node . set of observations . The member function getDatum 2517 
The top node , or root node 2442 , represents all data . Any returns an observation within the dataset corresponding to an 
observation satisfies the rule represented by this node . There 15 input index . The member function getLabel 2518 returns the 
is a single link , or path , 2443 emanating from this node that label associated with the observation corresponding to an 
path is followed to arrive at rule node 2444. The rule input index . The member function getEntropy 2519 returns 
associated with this node is applied to the observation . If the entropy for the dataset . The entropy and a related value , 
application of the rule to the observation returns a value referred to as “ gain . ” are used for determining which of 
TRUE , then link 2445 is followed to the leaf node 2446 20 multiple possible partitionings to next use in constructing a 
which indicates that the observation is abnormal . Otherwise , decision tree . These concepts are next explained with ref 
when the rule returns a value FALSE , then link 2446 is erence to expressions 2520. D represents a set of observa 
followed to rule node 2447. The rule on node 2447 is then tions 2521. N represents the subset of D containing those 
applied to the data observation . When application of the rule observations of D that are labeled normal 2522. A 2523 
represented by node 2447 returns a value TRUE , link 2448 25 represents the set of abnormal observations in D. The 
is followed to leaf node 2449 , which indicates that the entropy of the set of observations D , H ( D ) , is given by 
observation is normal . When the rule returns a value FALSE , expression 2524. When all of the observations are either 
then link 2450 is followed to rule node 2451. The rule normal or abnormal , the entropy is 0. When half the obser 
represented by node 2451 is then applied to the observation . vations are normal and the other half of the observations are 
When application of the rule represented by node 2451 30 abnormal , the entry is 1. The entropy has fractional values 
returns the value TRUE , then link 2452 is followed to leaf in the range [ 0 , 1 ] for other ratios of abnormal - to - normal 
node 2453 , which indicates that the observation is abnormal . observations and a plot of the entropy is nonlinear and 
Otherwise , path 2454 is followed to leaf node which symmetrical about a vertical line through the point 0.5 of a 
indicates that the observation is normal . In certain cases , horizontal axis representing the ratio of normal or abnormal 
there may not be sufficient attributes in a dimensionally- 35 observations to the total number of observations . The set T 
reduced dataset to determine whether any particular obser- 2525 includes two subsets of the set of observations D and 
vation is abnormal or normal . In such cases , traversal of the represents a partitioning of the set of observations Dinto two 
decision tree may arrive at a leaf node containing an subsets . The gain 2526 for a partitioning is given by expres 
indication that it cannot be ascertained whether the obser- sion 2527 and represents the decrease in entropy resulting 
vation is normal or abnormal . In the following pseudocode 40 from the partitioning . Thus , partitionings that result in a first 
example , the label “ unknown ” is used to indicate an inability subset of only normal observations and a second subset of 
to determine whether an observation is abnormal or normal . only abnormal observations would have the greatest possible 
FIGS . 25A - D provides a pseudocode example for con- gain for any particular set of observations D. The gain can 

struction of a decision tree and traversal of a decision tree to thus be used as a criterion for selecting a next partitioning 
determine the nature of an unlabeled observation . The 45 from among the possible partitionings at each step in the 
pseudocode is not a complete implementation , because a construction of the decision tree . 
wide variety of different types of rules , rule - determination , At the bottom of FIG . 25B , a class node is declared 2530 . 
and data - storage techniques can be used , and these various Each instance of the class node represents a node within a 
different types of implementations are beyond the scope of decision tree . The class node includes the following data 
the current discussion . As shown in FIG . 25A , the pseudo- 50 members : ( 1 ) Tptr 2531 , a pointer to a child node to which 
code includes a declaration of two fundamental rules TRUE a traversal is made when application of the rule associated 
and FALSE 2502. In the pseudocode , rules are represented with the node returns a Boolean value TRUE ; ( 2 ) Fptr 2532 , 
by character strings . The constant MAX_RULE represents a pointer to a child node to which a traversal is made when 
the maximum allowed size , in characters , of a rule 2504. The application of the rule associated with the node returns a 
enumeration label 2506 represents three types of leaf - node 55 Boolean value FALSE ; ( 3 ) Tlabel 2533 , the label repre 
labels : NORMAL . ABNORMAL , and UNKNOWN . A null sented a return value from a leaf node or partial leaf node 
node pointer is also declared 2507. A partial declaration for when application of the rule associated with the node returns 
a class rule , each instance of which represents a rule that a Boolean value TRUE ; ( 4 ) Flabel 2534 , the label repre 
may be included within a node of a decision tree , is next senting a return value from a leaf node or partial leaf node 
provided 2508. The first type of member function applyRule 60 when application of the rule associated with the node returns 
2509 applies the rule represented by an instance of the class a Boolean value FALSE ; and ( 5 ) r 2536 5 , the rule associated 
rule to an input dataset and partitions the input dataset into with the node . The member functions of the class node 
two data subsets T and F , which include the observations for include numerous member functions 2536 for setting and 
which the rule generates TRUE and FALSE values , respec- retrieving the values of data members , two versions of 
tively . A second type of member function applyRule 2510 65 applyRule 2537 and 2538 which mirror the member func 
applies the rule represented by an instance of the class rule tions with the same name in the class rule , and a constructor 
to an observation and returns the Boolean result . The class 2539 . 
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Turning to FIG . 25C , a function copyRule 2540 is FIGS . 26A - B provide control - flow diagrams that illustrate 
declared without an implementation , as is a function deter- the currently disclosed method and system for generating a 
mine_rule 2541. The function copyRule copies a rule decision tree , or abnormal - observation detector . The cur 
pointed to by a first argument to a character array pointed to rently disclosed methods and systems are employed within 
by a second argument . The function determine_rule gener- 5 a distributed computing system that continuously receives 
ates a rule , referenced by the argument r , for a particular event messages and other types of metric data and uses the 
attribute specified by the argument a index with respect to an received metric data to monitor the state of the distributed 
input dataset d , and returns the gain , discussed above with computer system . As discussed above , the metric data is 
reference to FIG . 25B , for partitioning the input dataset into scaled and aligned to produce a set of timestamped obser 
two data subsets by application of the generated role . An 10 vations , each including values for two or more metrics . The 
implementation is not provided for this function since the currently disclosed methods and systems are fully auto 
implementation is highly dependent on the types of rules and mated , in certain implementations . They are fully automated 
datasets employed . For the example shown in FIGS . 25 A - F , despite the fact that they may employ supervised - learning 
rule generation involves determining a numerical threshold based machine learning techniques and subsystems . In gen 
that provides a partitioning of the dataset that generates the 15 eral , supervised - learning - based techniques require some 
best possible gain . In this case , the rule may not be unique , level of human input and interaction during development of 
since many different thresholds might provide the same training datasets that are used to train the machine - learning 
maximum possible gain . In the lower portion of FIG . 25C , subsystems to recognize patterns , features , and characteris 
a function grow_decision_tree is shown 2542. This function tics in data and other inputs subsequently provided to the 
generates a new node for a decision tree and returns a 20 subsystems . For example , in the above - described decision 
reference to that node . Input arguments include a reference tree - based methods , it would be common for an initial set of 
to a dataset d 2543 and a reference to a set of remaining observations to be manually labeled by a human adminis 
attributes a 2544. The new node is created using the operator trator who recognizes or infers which of the observations are 
new 2545. When the number of remaining attributes is associated with abnormal system states . The currently dis 
greater than 0 2546 , the function determine_rule is called for 25 closed methods and systems , as further discussed below , 
each remaining attribute , in the for - loop 2547 , to determine employee various unsupervised - learning methodologies , 
the attribute which provides the greatest possible gain when including K - means clustering , to generate labels for obser 
used for a next partitioning of the dataset . When the number vations in a data set and , by doing so , automatically pro 
of remaining attributes is 0 or the maximum gain is less than ducing a training data set from which they decision - tree 
or equal to 0 2548 , the node is configured as a leaf node that 30 based abnormal - observation detector can be automatically 
returns the label “ unknown ” 2549. Otherwise , the rule for generated . Thus , one significant feature of the currently 
the best attribute is placed into the node 2550 and the rule disclosed methods and systems is the ability to employ 
is applied to create wo data subsets representing a parti- supervised - learning technologies in a fully automated sys 
tioning of the input dataset 2552. A new set of attributes is tem . It should also be noted that , although the examples 
created from which the attribute with respect to which the 35 provided in this document concern automated recognition of 
rule configured in the node was established removed 2553 abnormal observations and inference of potentially prob 
and the function grow_decision_tree is recursively called to lematic distributed - computing - system operational states , the 
produce the two branches for the node 2554 . currently disclosed methods and systems can be straightfor 

FIG . 25D shows an implementation of the function build wardly extended to many other problem domains and appli 
decision tree 2560. This function receives a reference to an 40 cations . As one example , more complex decision trees may 
input dataset d 2561 and reference to an input set of principal be able to distinguish a variety of different types of abnormal 
components , or attributes , a 2562 and returns a pointer to a states , such as abnormal states associated with different 
decision tree for the dataset 2563. When the number of levels of severity or priority . As another example , the 
observations in the dataset is 0 , the function returns a null currently disclosed methods and systems can be alterna 
pointer 2564. If the dataset has an entropy of 0 2565 the 45 tively used to recognize various types of distributed - com 
function returns a single terminal mode 2566 , since there is puting - system operational states with favorable characteris 
no basis for partitioning the dataset into subsets . Otherwise , tics , that would allow for automated exploitation or 
the function calls the function grow_decision_tree 2567 to advantageous reconfiguration . As yet another example , the 
create the decision tree for the dataset and attributes , as currently disclosed methods and systems may be used to 
discussed above with reference to FIGS . 24A - F . Finally , an 50 discover the need for additional hardware or software com 
implementation for the function evaluate is shown 2570 . ponents in a distributed computing system by recognizing 
This function receives an observation d 2571 and a pointer operational states associated with system - configuration defi 
to a decision tree 2572 and returns a label 2573 that ciencies . 
characterizes the received observation d . The function calls FIG . 26A shows a control - flow diagram for a routine 
the member function applyRule 2574 for the root node of the 55 “ process dataset . ” This routine processes a set of observa 
decision tree , where the input decision tree may be the tions in order to generate a decision tree or other machine 
subtree of a larger decision tree , which returns a Boolean learning - generated entity that allows for automated charac 
value applyRes 2575. When the returned Boolean value is terization of subsequently received observations as being 
TRUE , the function calls the member function of the root normal or abnormal . In step 2602 , the set of observations is 
node of the decision tree getTptr to obtain the left - hand , or 60 received . In step 2604 , the above - discussed principal - com 
TRUE , pointer for the root node of the decision tree . When ponent - analysis technique is used to transform the dataset 
the returned pointer is null 2576 , the function returns the into a form in which each observation includes values for a 
label associated with the Boolean value TRUE stored in the set of principal components generally different from the 
root node 2577. Similar logic 2578 is carried out when the original values for the original metrics . In step 2606 , a subset 
returned Boolean value is FALSE . Finally , the function 65 of the principal components is selected in order to reduce the 
evaluate recursively calls itself in the case that the relevant dimensionality of the observations , as discussed above . In 
child pointer is not null 2580 . step 2608 , a local variable error is set to a large value . Then , 
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in the for - loop of steps 2610-2615 , the above - discussed within the spirit of the invention will be apparent to those 
modified K - means clustering technique is iteratively called , skilled in the art . For example , any of a variety of different 
with different K and L parameter values , in order to generate implementations of the currently disclosed root - cause - iden 
a clustering of the dataset that produces a low error value . In tifying methods and systems can be obtained by varying any 
step 2616 , the outlier observations are labeled as abnormal 5 of many different design and implementation parameters , 
and the clustered observations are labeled as normal for the including modular organization , programming language , 
best cluster obtained in the for - loop of steps 2610-2615 . underlying operating system , control structures , data struc Finally , in step 2617 , a machine - learning technique is tures , and other such design and implementation parameters . applied to the labeled dataset to generate an abnormal 
observation detector . One machine learning technique that 10 be used for principal - component analysis . As also discussed As discussed above , it is a variety of different methods can 
may be used is the above - discussed decision - tree - based 
technique , which generates a decision tree based on the above , any of many different types of clustering methods 
labeled training set . The decision tree can be traversed for a may be employed to identify clusters and outliers in a 

dataset . As discussed above , many different techniques can subsequent observation , as discussed above , in order to 
determine whether or not the subsequent observation is 15 be used to temporally align data points the dataset to produce 
abnormal or not . a time sequence of observations . Finally , a variety of dif 
FIG . 26B shows a control - flow diagram that illustrates the ferent machine learning techniques can be employed to 

structure of a distributed - computing - system - state monitor generate abnormal - observation detectors , including support 
that employs the currently disclosed methods and systems vector machines , various types of classification methods , 
for generating an abnormal - observation detector . The moni- 20 various types of tree - based learning , and other techniques . 
tor is implemented as an event loop . In step 2620 , the It is appreciated that the previous description of the 
monitor waits for a next event to occur . When the next event disclosed embodiments is provided to enable any person 
is the reception of a new observation , as determined in step skilled in the art to make or use the present disclosure . 
2622 , the abnormal - observation detector , generated in step Various modifications to these embodiments will be readily 
2617 of FIG . 26A is applied to the new observation in step 25 apparent to those skilled in the art , and the generic principles 
2624. When the observation is determined by the detector to defined herein may be applied to other embodiments without 
be abnormal , in step 2626 , the monitor may generate an alert departing from the spirit or scope of the disclosure . Thus , the 
and / or take other ameliorative actions in step 2627. In step present disclosure is not intended to be limited to the 
2628 , the monitor determines whether or not the received embodiments shown herein but is to be accorded the widest observation should be a sample point for a next training 30 scope consistent with the principles and novel features dataset . If so , as determined in step 2629 , the observation is disclosed herein . stored in an accumulating dataset in step 2630. When the 
next received event is expiration of a new - detector timer or The invention claimed is : reception of an alarm generated by accumulation of a 
sufficient number of sample observations to generate a new 35 1. An automated monitor subsystem within a distributed 
training dataset , as determined in step 2632 , the alarm or computer system comprising : 
timer is reset , in step 2633 , the above - described routine one or more processors ; 
" process dataset ” is called , in step 2634 , and the current one or more memories ; and 
abnormal - observation detector is replaced with a new detec- computer instructions , stored in one or more of the one or 
tor generated in the call to the routine “ process dataset , ” in 40 more memories that , when executed by one or more of 
step 2635. Ellipses 2636 indicate that the monitor may the one or more processors , control the monitor sub 
receive and handle many additional types of events . When system to 
there are additional queued events to process , as determined receive metric data from multiple metric - data sources , 
in step 2638 , control returns to step 2622. Otherwise , control temporally align the received metric data to generate 
returns to step 2620 . timestamped observations , and 

Note that the abnormal - observation detector can employ apply an abnormal - state detector to the timestamped 
the information encoded in one or more decision trees to observations to detect abnormal distributed com 
classify the detected abnormal observation . For example , puter - system operational states and initiate reporting 
each leaf node in the decision tree corresponding to an and / or ameliorative operations within the distributed 
abnormal observation represents a particular set of metrics 50 computer system , the abnormal - state detector auto 
and corresponding metric values or value ranges . Each leaf matically generated from previously generated time 
node may potentially represent a different type of anomalous stamped observations by 
system state , incident , or other event or behaviour . Thus , the transforming the previously generated timestamped 
leaf nodes may additionally contain or reference indications observations to a coordinate system aligned with 
of the type of anomalous system state , incident , or other 55 directions of greatest variability in the metric - data 
event or behaviour represented by the leaf node as well as space , 
indications of the actions that should be taken , in step 2627 , projecting the transformed timestamped observa 
to handle the occurrence of the anomalous system state , tions onto a lower - dimensional transformed - ob 
incident , or other event or behaviour . In many cases , the servation space , 
detected anomalous system states , incidents , or other events 60 identifying outlying timestamped observations to 
or behaviours may be early precursors of more serious produce a labeled training dataset , and 
results that might result in a failure to timely address them , using the labeled training dataset to automatically 
in which case the actions that should be taken may be generate the abnormal - state detector . 
prophylactic in nature . 2. The automated monitor subsystem of claim 1 wherein 

Although the present invention has been described in 65 the received metric data comprises timestamp / value pairs , 
terms of particular embodiments , it is not intended that the each timestamp / value pair received from a metric - data 
invention be limited to these embodiments . Modification 

45 
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3. The automated monitor subsystem of claim 2 wherein 12. The automated monitor subsystem of claim of claim 
the automated monitor subsystem temporally aligns the 3 wherein the automated monitor subsystem uses the labeled 
received metric data to generate timestamped observations training dataset to automatically generate the abnormal - state 
by detector by generating a decision tree from the labeled 

using one or more of averaging over finite time windows , 5 training dataset . 
curve - fitting , and linear extrapolation to generate an 13. An automated method that within a distributed com 
observed or estimated value for periodic timepoints ; puter system , the method comprising : 
and receiving metric data from multiple metric - data sources ; 

collecting the generated values for each metric - data temporally aligning the received metric data to generate 
source for each timepoint into a set of time - ordered timestamped observations ; 

transforming the timestamped observations to a coordi observations , each observation comprising a value for 
each metric - data source and a timestamp . nate system aligned with directions of greatest vari 

ability in the metric - data space ; 4. The automated monitor subsystem of claim 3 wherein projecting the transformed timestamped observations the abnormal - state detector comprises : onto a lower - dimensional transformed - observation stored data produced by a machine - learning system ; and space ; 
a classification logic that employs the stored data to identifying outlying timestamped observations to produce 

classify a timestamped observation as normal or abnor a labeled training dataset ; and 
mal . using the labeled training dataset to automatically gener 

5. The automated monitor subsystem of claim 4 ate an abnormal - state detector . 
wherein the stored data represents a decision tree ; and 14. The method of claim 13 
wherein the classification logic uses a timestamped obser- wherein the received metric data comprises timestamp / 

vation to traverse the decision tree from a decision - tree value pairs , each timestamp / value pair received from a 
root node to a decision - tree leaf node or partial leaf metric - data source ; and 
node that contains a label that is assigned to the 25 wherein aligning the received metric data to generate 
timestamped observation . timestamped observations further comprises 

6. The automated monitor subsystem of claim 3 wherein using one or more of averaging over finite time win 
the automated monitor subsystem transforms the previously dows , curve - fitting , and linear extrapolation to gen 
generated timestamped observations to a coordinate system erate an observed or estimated value for periodic 
aligned with directions of greatest variability in the metric- 30 timepoints , and 
data space by applying principle - component analysis to collecting the generated values for each metric - data 
determine principle - component basis vectors for the metric source for each timepoint into a set of time - ordered 
data space of timestamped observations and , for each obser observations , each observation comprising a value 
vation , to generate principle - component values that are for each metric - data source and a timestamp . 
linear combinations of the values of the observation that 35 15. The method of claim 14 wherein the abnormal - state 
replace the values of the observation to produce a trans- detector comprises : 
formed observation . stored data produced by a machine - learning system ; and 

7. The automated monitor subsystem of claim 6 wherein a classification logic that employs the stored data to 
the automated monitor subsystem projects the transformed classify a timestamped observation as normal or abnor 
timestamped observations onto a lower - dimensional trans- 40 mal . 
formed - observation space by removing a fixed number of 16. The method of claim 15 
principle - component values corresponding to the principle- wherein the stored data represents a decision tree ; and 
component basis vectors associated with the least variability wherein the classification logic uses a timestamped obser 
in the metric - data space . vation to traverse the decision tree from a decision - tree 

8. The automated monitor subsystem of claim 3 wherein 45 root node to a decision - tree leaf node or partial leaf 
the automated monitor subsystem identifies outlying time node that contains label that is assigned to the 
stamped observations to produce a labeled training dataset timestamped observation . 
by clustering the transformed timestamped observations 17. The method of claim 14 wherein transforming the 
within the lower - dimensional transformed - observation timestamped observations to a coordinate system aligned 
space and selecting , as outlying timestamped observations , 50 with directions of greatest variability in the metric - data 
those transformed timestamped observations furthest away space further comprises applying principle - component 
from cluster centers . analysis to determine principle - component basis vectors for 

9. The automated monitor subsystem of claim 8 wherein the metric - data space of timestamped observations and , for 
the automated monitor subsystem uses a modified K - means each observation , generating principle - component values 
clustering method to cluster the transformed timestamped 55 that are linear combinations of the values of the observation 
observations within the lower - dimensional transformed - ob- that replace the values of the observation to produce a 
servation space . transformed observation . 

10. The automated monitor subsystem of claim 9 wherein 18. The method claim 17 wherein projecting the trans 
the automated monitor subsystem iteratively clusters the formed timestamped observations onto a lower - dimensional 
transformed timestamped observations with different 60 transformed - observation space further comprises removing 
K - means - clustering parameter values and selects the clus- a fixed number of principle - component values correspond 
tering with a least associated clustering error . ing to the principle - component basis vectors associated with 

11. The automated monitor subsystem of claim of claim 8 the least variability in the metric - data space . 
wherein the automated monitor subsystem produces a 19. The method of claim 14 wherein identifying outlying 
labeled training dataset by labeling the outlying transformed 65 timestamped observations to produce a labeled training 
observations as abnormal and labeling the cluster - resident dataset further comprises clustering the transformed time 
transformed observations as normal . stamped observations within the lower - dimensional trans 
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formed - observation space and selecting , as outlying time- uted computer system that additionally includes one or more 
stamped observations , those transformed timestamped memories , control the distributed computer system to gen 
observations furthest away from cluster centers . erate an abnormal - state detector by : 

20. The method of claim 19 further comprising using a receiving metric data from multiple metric - data sources ; 
modified K - means clustering method to cluster the trans- temporally aligning the received metric data to generate 
formed timestamped observations within the lower - dimen timestamped observations ; 
sional transformed - observation space . transforming the timestamped observations to a coordi 

21. The method of claim 19 wherein a labeled training nate system aligned with directions of greatest vari 
dataset is produced by labeling the outlying transformed ability in the metric - data space ; 
observations as abnormal and labeling the cluster - resident projecting the transformed timestamped observations 

onto transformed observations as normal . a lower - dimensional transformed - observation 
space ; 22. The method of claim of claim 14 wherein using the 

labeled training dataset to automatically generate the abnor identifying outlying timestamped observations to produce 
mal - state detector further comprises generating a decision a labeled training dataset ; and 
tree from the labeled training dataset . using the labeled training dataset to automatically gener 

ate the abnormal - state detector . 23. A physical device encoded with computer instructions 
that , when executed on one or more processors of a distrib 
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