
US010997009B2

(12) United States Patent
Poghosyan et al .

(10) Patent No .: US 10,997,009 B2
(45) Date of Patent : May 4 , 2021

(54) (56) References Cited METHODS AND SYSTEMS THAT DETECT
AND CLASSIFY INCIDENTS AND
ANOMALOUS BEHAVIOR USING
METRIC - DATA OBSERVATIONS

U.S. PATENT DOCUMENTS

7,484,132 B2 * 1/2009 Garbow

(71) Applicant : VMware , Inc , Palo Alto , CA (US) 7,930,593 B2 * 4/2011 Ozonat

G06F 11/008
714/26

G06F 11/0751
714/33

HO3M 7/3082
370/225

(72) 8,811,156 B1 * 8/2014 Jiang Inventors : Arnak Poghosyan , Yerevan (AM) ;
Ashot Nshan Harutyunyan , Yerevan
(AM) ; Naira Movses Grigoryan ,
Yerevan (AM) ; Nicholas Kushmerick ,
Seattle , WA (US)

(Continued)

OTHER PUBLICATIONS

(73) Assignee : VMware , Inc. , Palo Alto , CA (US) Muniyandi et al . , Network Anomaly Detection by Cascading K - Means
Clustering and C4.5 Decision Tree algorithm , 2011 (Year : 2011) . *

(*) Notice : Primary Examiner Elmira Mehrmanesh Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 45 days .

(21) Appl . No .: 16 / 214,272

(22) Filed : Dec. 10 , 2018

(65) Prior Publication Data
US 2020/0183769 A1 Jun . 11 , 2020

(51)

(57) ABSTRACT

The current document is directed to methods and systems for
detecting the occurrences of abnormal events and opera
tional behaviors within the distributed computer system . The
currently described methods and systems continuously col
lect metric data from various metric - data sources , generate
a sequence of metric - data observations , each metric - data
observation comprising a set of temporally aligned metric
data , and employ principle - component analysis to transform
the metric - data observations to facilitate reduction of the
dimensionality of the metric - data observations . The cur
rently described methods and systems then employ cluster
ing methods to identify outlying transformed - metric - data
observations , accordingly label the transformed metric - data
observations to generate a training dataset , and then apply
one or more of various types of machine learning techniques
to the training dataset in order to generate an abnormal
observation detector that can be used to detect , in real time ,
abnormal metric - data observations as they are generated
within the distributed computing system .

Int . Cl .
G06F 11/00 (2006.01)
G06F 11/07 (2006.01)
GO6N 20/00 (2019.01)
U.S. CI .
CPC GO6F 11/079 (2013.01) ; G06F 11/0709

(2013.01) ; G06F 11/0751 (2013.01) ; GOWN
20/00 (2019.01)

Field of Classification Search
CPC GO6F 11/079 ; GO6F 11/34 ; GO6F 11/3447 ;

G06F 11/3452
See application file for complete search history .

(52)

(58)

23 Claims , 51 Drawing Sheets
102 103

CPU CPU

MEMORY 110

CPU CPU
104

108
105

112
SPECIALIZED
PROCESSOR BRIDGE

118 114
116

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLEN DENTAOLLLR CONTROLLER CONTROLLER

122 127
123 124 125

126 MASS
STORAGE
DEVICE

- 128

US 10,997,009 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,886,574 B2 * 11/2014 Yuan

9,355,007 B1 *
9,911,083 B2

10,108,296 B2 *
10,558,543 B2 *

2012/0041575 A1 *

5/2016 Eicher
3/2018 Chamness
10/2018 Katsuki
2/2020 Harutyunyan
2/2012 Maeda

2015/0379167 A1 * 12/2015 Griffith

2016/0203036 A1 * 7/2016 Mezic

G05B 23/0229
706/12

G06F 11/3428
GOON 20/00
G06K 9/6269
G06F 11/301
GO5B 23/024

700/80
G06F 11/3442

703/22
GOON 20/00

714/819
G06F 16/285
GO6F 11/079

714/37
G06F 3/033
HO3M 7/405
GOON 20/00
G06F 11/364
E06B 7/32

H04L 43/16

2017/0097980 A1 *
2018/0024875 A1 *

4/2017 Ishii
1/2018 Della Corte

* 2018/0060150 A1 3/2018 Cunico
2018/0137224 A1 * 5/2018 Hemmer
2018/0150547 A1 * 5/2018 Pallath
2019/0294524 A1 * 9/2019 Gupta
2019/0294933 A1 * 9/2019 Gupta
2019/0334802 A1 * 10/2019 Dutta

* cited by examiner

U.S. Patent May 4 , 2021 Sheet 1 of 51 US 10,997,009 B2

102 103

CPU CPU

MEMORY
110

CPU CPU
104

108
105

112
SPECIALIZED
PROCESSOR BRIDGE

118 114
116

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

122 127
- 123 124 125

126 MASS
STORAGE
DEVICE

FIG . 1 128

U.S. Patent May 4 , 2021 Sheet 2 of 51 US 10,997.009 B2

212

210

214

216
FIG . 2

| | | 1 1

205 204 203 202

316

U.S. Patent May 4 , 2021

Cloud Services Interface

312

314

Internet

- 310

IN Cloud Services Interface MTT

Sheet 3 of 51

306

302

304

Local Network

308

US 10,997,009 B2

FIG . 3

432

433

434

435

436

U.S. Patent

Application Programs

406

428

Operating System

426

non - privileged instructions and memory addresses and registers
OS intervals

May 4 , 2021

430

System - call interface

446

444

OS intervals

448

404

Scheduler Task Mgmt

Memory Management

File System

Device Drivers

442

non - privileged instructions

Hardware

privileged instructions
420

non - privileged privileged
registers / addresses registers / addresses

422

424

416

418

Sheet 4 of 51

Memory

Processors

1/0

1/0

Mass Storage

402

410

408

410

412

414

US 10,997,009 B2

400

FIG . 4

510

U.S. Patent

application
application

application

application

application

514

OS

OS

OS

OS

OS

May 4 , 2021

516

Non - privileged instructions

privileged instructions

non - privileged privileged
register / addresses register / addresses

508

520

VM Kernel

VM Kernel

518 504

Virtual Machine Monitor

Sheet 5 of 51

Non - privileged instructions

device drivers
privileged instructions

device drivers

non - privileged privileged
register / addresses register / addresses

506 502

US 10,997,009 B2

500

FIG . 5A

556

557

558

application

application

application

U.S. Patent

Virtual Machines

546

548 548

OS

OS

OS

552

May 4 , 2021

550

Application Programs

Virtualization

Virtualization

Layer

non - privileged instructions and memory addresses and registers

system - call interface

544

Sheet 6 of 51

Operating System 542

Hardware

US 10,997,009 B2

FIG . 5B

540

622

Open Virtualization Format

620

U.S. Patent

Digest of package Digest of disk image file Digest of disk image file Digest of resource file

602

Digest of resource file

< Envelope < References < References >

626

< / References > < Disk Section > :

628

< / Disk Section >
< Network Section >

630

< / Network Section >
< Virtual System Collection > < Virtual Hardware Section > i < / Virtual Hardware Section > : < / Virtual System Collection > :

< / Envelope >

May 4 , 2021

604

OVF Descriptor

636

OVE Manifest

634

606

{

632

OVF Certificate

608

disk image file

610

Sheet 7 of 51

disk image file

611

623

XML file

certificate that includes digest of manifest

resource file

612

640

resource file

613

FIG . 6

resource file

US 10,997,009 B2

614

OVF Package

732

731

Virtual Data Center

730

U.S. Patent

736

735

Data Center Interface

Resource Pool

May 4 , 2021

734

708
706

Sheet 8 of 51

726

724
710

702

722

714

715

716

717

720

718

- 719

Physical Data Center

US 10,997,009 B2

712

FIG . 7

704

810

812

Host configuration VM configuration VM provisioning Alarms & events
Statistics collection or logging

Task scheduler Resource management

Management Interface

Distributed Resource Scheduler
High Availability Live VM migration Backup

U.S. Patent

814

Distributed Services

816

Core Services

May 4 , 2021

Host management

818

824

825

826

VDC agent

VDC agent

829

810

VDC agent

830

Virtual Data Center Management Server

Sheet 9 of 51

Host Agent

Host Agent

Host Agent

/ 828

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

808

Virtualization Layer

Virtualization Layer
Virtualization Layer
Virtualization Layer

806

Virtual Data Center database

Hardware

Hardware

Hardware

Hardware

US 10,997,009 B2

804

802

820

821

822

FIG . 8

932

U.S. Patent

Management Interface

934

922

- 912

Cloud Director Services

Virtual Data Center Provisioning Organization Configuration and Organization Virtual Data Center Configuration
Template and Media Catalogs

Network Provisioning from network pool

930

ORG 1

ORG 2

926

VDC MS interface

908

936

cloud director

virtual data centers

May 4 , 2021

920

910

921

916
917

918

904

911

919

17 /
ORG'1 , ' ORG 2 , ORG 3 , ORG 4

' 4

ORG 1 , ORG 2 ORG 3

907

cloud director

cloud director

Sheet 10 of 51

924

925

virtual data centers

|

virtual data centers

alumi

/

- 903

906

902

US 10,997,009 B2

FIG . 9

1005

VCC node

U.S. Patent

1020

3rd party

1004

cloud services

1006

VCC Node

VOC MS

CD

VCC node

May 4 , 2021

VDC MS
3

virtual data center

1007

1003

1019

1021

VCC node

VCC node

virtual data center

VDC MS

CD

MS

1002

Sheet 11 of 51

1018

1022

1008

1016

CD

VOC ! MS

1023

VDC ! MS

VCC server

VCC node

1012

VCC node
1010
1014

US 10,997,009 B2

FIG . 10

1026

1

1102

1103

1104

1105

1106

e
e

e
0

U.S. Patent

ELE

1110

1116

May 4 , 2021

1108

1122

1114

impending disk failure
server HX1 disk 02

BBR failure sector 61998

Sheet 12 of 51

1112

IIII

1120

more

tho

US 10,997,009 B2

1118

1

.

num

FIG . 11

man

I

1
1
1

U.S. Patent May 4 , 2021 Sheet 13 of 51 US 10,997,009 B2

1208 1210
1202

2013-12-02T10 : 44 : 24.0952 li-ge-esx5.vmware.com Rhttpproxy :
(28959B90 verbose ' Proxy Req 46691 '] Connected to
localhost : 8307 1212 1206
2013-12-02T10 : 44 : 24.0942 li - qe - esx5 , vmware.com Rhttpproxy :
(FFFC2B90 verbose ' Proxy Req 46691 '] new proxy client
TCP (local - 127.0.0.1 : 80 , peer = 127.0.0.1 : 50155)

2013-12-02T10 : 44 : 24.0932 li-qe-esx5.vmware.com Rhttpproxy :
[2889B90 verbose ' Proxy Req 46685 '] The client closed the
stream , not unexpectedly .
Dec 2 18:48:29 strata - VC 2013-12-02T18 : 48 : 30.2732
[7FA39448B700 info commonvpxlro ' OPID = 1947d6f9) [VpxLRO) -
FINISH task - internal - 2163522 vim.SessionManager.logout
2013-12-02T18 : 48 : 51.396Z strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' VpxaHalCnxHostagent ' opID = WFU - ed393333]
[WaitForUpdates Done] Completed callback
2013-12-02T18 : 48 : 51.395Z strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' VpxaHalCnxHostagent ' opID = WFU - ed393333]
(Wait ForUpdates Done] Starting next Wait ForUpdates () call to
hostd 1204
2013-12-02T18 : 48 : 51.3952 strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' vpxavpxa InvtVm ' opID = WFU - ed393333]
[Vpxa InvtVmChangeListener] Guest DiskInfo Changed
2013-12-02T18 : 48 : 51.395Z strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' halservices ' OpID = WFU - ed393333)
(VpxaHalServices] VMGuestDiskChange Event for ym (6) 59
2013-12-02T18 : 48 : 51.395Z strata-esxl.eng.vmware.com Vpxa :
(65B5AB90 verbose ' hostdvm ' opID = WFU - ed393333)
[Vpxa?alVmHostagent) 59 : GuestInfo changed ' guest.disk '
2013-12-02T18 : 48 : 51.3952 strata-esxl.eng.vmware.com Vpxa :
(65B5AB90 verbose ' VpxaHalCnxHostagent ' opID = WFU - ed393333)
(VpxaHalCnxHostagent :: ProcessUpdate] Applying updates from
123718 to 123719 lat 123718)

2013-12-02T18 : 48 : 51.395Z strata-esxl.eng.vmware.com Vpxa :
[65B5AB90 verbose ' VpxalalCnxHostagent ' opID = WFU - ed393333]
[WaitForUpdatesDone] Received callback
2013-12-02T18 : 48 : 51.360Z li-dev-esx6.eng.vmware.com Hostd :
[617C1B90 error ' SoapAdapter.HTTPService '] HTTP Transaction

FIG . 12

1302

1322

U.S. Patent

1306

May 4 , 2021

1312

1308

1318

2014-5-13 20:31:32 [virtual layer - kernel / queueM / spin2601) vtex / vf100 / queue_management / m / spin_locks / dev / v6 / sync (error 61132 : threshold exceeded] orphan

a12634 2014-5-13 20:31:32

1310

1314

1304

1316

Sheet 14 of 51

1320

US 10,997,009 B2

FIG . 13

1403

1402

Voit

1420

U.S. Patent

S1

S2

S3

S4

S5

S6

S7

6S

S8

1414

S10

SP

?

1404

ti

1418

1416

>

1405

?

-

May 4 , 2021

1406

t

1407 1408

Sheet 15 of 51

1409 1410 1411 1412

US 10,997,009 B2

FIG . 14A

U.S. Patent

1436

1446

1432

9 + 12 + 13.35 + 14.25 + 16.55 = 13.03 5

f

V

1452

1440

1442
1434

16.55 16 14.75 14.25 13.35 12

May 4 , 2021

1441

1439

1448

9

1438

1444

5

Sheet 16 of 51

3 2 1

1430

t3

t4

t

1428

1450

1426

FIG . 14B

US 10,997,009 B2

U.S. Patent May 4 , 2021 Sheet 17 of 51 US 10,997,009 B2

SP

S10 0
S9

S8

S7

? ? ? ? ?] ?] ? [?]
...

??? ? ? ? ? ?
? ? ? ? ? ? ? ?
??] ?] ?] ? [

? ? ?] ?] ?] ? [
? ? ? ? ? ? ? ? ? ? ? ?
??????] ? ? ? ? ? ?

3 ?] ? [?]] ? ? ? ? ?
??? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ?? ?

S6 l

FIG . 14C
S5

S3

1

S1 L ? M Vita

to 1 12 3 14 t5 16 IN - 1

1504

U.S. Patent

1506

1508

O (S1 , S2 , S3)

7 S2

May 4 , 2021

1503

11

S3

S2

Sheet 18 of 51

S1

S1

1502

US 10,997,009 B2

FIG . 15

S1

S2

S3

S4

$ 5

S7

S8

S9

S10

SP

?

U.S. Patent

8) —-

- >>

1

I A >

1604

I f >

my fa -- >

1602

V1

V2

V3

V4

V5

V6

V7

V ,

Vio

Ve

1

|

l

May 4 , 2021

1606

O (S1 , S2 , S3 , ...

, Sp)

1608

1610

X1,1 X1,2 X1,3

X1.p

X1,1 X2,1

XN , 1

Sheet 19 of 51

observations =

X2,2 X2,3 ,
X2,1 ,

X2.P

X XT =

X1,2 X2,2

XN , 2

X1,3 X2,3

XN , 3

XN1 XN , 2 XN , 3

XN.P

X1,2 X2.p

XN , P

US 10,997,009 B2

FIG . 16

1704

1702

1 = 2

1712

U.S. Patent

X1,11 11.2171.3

X1.P

X1,1 X1,2 X1,3

X1,2

1

X =

X2,11 X2,2 1 X2,3

X2,8

Xij = Xij- Hj
0 ;

X2,1 X2,2 X2,3

X2,0

-X

XN , 11 XN.21 XN , 3

O

XN , D

XN , 1 XN , 2 XN , 3

XN , P

May 4 , 2021

1706

1714

N

Kinj

Hj = mean of column

i = 1

N

Sheet 20 of 51

1708

? (? . , - ?)

0,2 = measure of column
j

N

10,2 = = 0 ; = standard division of column]

1710

US 10,997,009 B2

FIG . 17

a11

a12

a13

1802

U.S. Patent

A =

a21

a22

a23

a31

a32

a33

1804

U1

U =

uz

May 4 , 2021

U3

1808

1806

a11

a12

a13

U1

a11U1 + a12U2 + a13U3

AU 1

Au = du

a21

ICE
a22

a23

U2

az1u1 + a2242 + a23u3

E
Au2

Sheet 21 of 51

a31

a32

a33

U3

a31U1 + a32U2 + a33U3

Au3

1810

Au = Au = 0

1812

(A - AI) = 0

1814

u = (A - AI) 10

1816

A - NID = 0

US 10,997,009 B2

FIG . 18

1902

U.S. Patent

a11-1
a12

a13

a22-1
a23

a23

a21

a21

a22-1

a21

a22 - ? ?23

= a11-4

a12

+ a13

a32

a33-1

233-1 231

a31

a32

a31

a32

a33-1

1904

May 4 , 2021

0 = a + b + c + d

1906

AU = AU , where U =

and 1 = www.1--12 :
1908

Sheet 22 of 51

A = UAU '

1910

1912
A = XTX = > 1 2 0 ; U ; • U ; = 0 when 1 ; # 1 ;; U = UT

1913

A = UAU

1911

FIG . 19

US 10,997,009 B2

2018
F = XQ , FTF = QTXTXQ

811 0 ..

0

QTQ = 1

U.S. Patent

2020

0

f22

0

2022

. 0

0

Epp

2024

X'X = QAQ

May 4 , 2021

2026

F'F = 1

S3

X
coordinate transform

2008

2002

2016

PC3 :

2007

S2

2012

PC2

Sheet 23 of 51

2011

2004

2006

PC1

PC2

PC3 It
$ 1 2010

PC1

US 10,997,009 B2

FIG . 20A

2038

2030

2034

-

Q16

X11

|

F11

X 12 X 13 X 14 X15 X16

U.S. Patent

Q11 , Q12 Q21 i 222 Q31 Q22

Q26

X21

X22 X23 X24 X25 X26

Q36

Qaz

Q46

Q52

Q56

XN1 XN2 X3 X4 X5 XN6

Qori Qoz

Q66

May 4 , 2021

2036

2032

2040

Q11X11 + Q21X12 + Q37X13 + Q41X14 + Q51X15 + Q67X16

? F11

2044

2042

Sheet 24 of 51

F11 F12 F13

Fip

F11 F12 F13

F14

F21 F22 F23 F24

dimensional reduction

F31 F32 F33 F34

F41

F42 F43F44

FN1 FN2 FN3

FNP

F5 F52 F53

F54
i

L

US 10,997,009 B2

FN1 FN2 FN3 FN4

FIG . 20B

U.S. Patent

25

2102

20

May 4 , 2021

15

2104
10

Sheet 25 of 51

2103

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21A

K - 2 L - 10
Error - 74.03

U.S. Patent

2114

25 20

X

2113

2111

May 4 , 2021

2107

2106

15

2112

2108

10

2109

Sheet 26 of 51

X

5

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21B

K = 3 L = 10

U.S. Patent

25 20

May 4 , 2021

15 10

Sheet 27 of 51

X

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21C

K = 3 L = 20

U.S. Patent

25 20

May 4 , 2021

15 10

Sheet 28 of 51

?

5

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21D

K = 2 L - 10
Error = 61.07

U.S. Patent

25 20

May 4 , 2021

X .

15 10

x

Sheet 29 of 51

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21E

K = 2 L = 10
Error - 62.20

U.S. Patent

25

2120

20

May 4 , 2021

?

?

15 10

Sheet 30 of 51

9

2121 2122

2123

2124

1

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21F

K = 4 L - 10
Error = 50.93

U.S. Patent

25

?

20

May 4 , 2021

5 10

3

X

Sheet 31 of 51

5

3

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21G

K = 4 L = 10
Error = 45.10

U.S. Patent

25 20

May 4 , 2021

15 10

Sheet 32 of 51

5

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 21H

K
K = 4 L = 10

Error = 40.80

U.S. Patent

25 20

May 4 , 2021

15 10

X

Sheet 33 of 51

5

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 211

U.S. Patent

25 20

May 4 , 2021

15 10

Sheet 34 of 51

5

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 22A

10 runs K = 2 L = 10

Error = [40.62 , 41.45]

U.S. Patent

25

2210

2206

2202

20

2204

May 4 , 2021

15

2208

10

Sheet 35 of 51

5

5

10

15

20

25

30

35

40

US 10,997,009 B2

FIG . 22B

U.S. Patent May 4 , 2021 Sheet 36 of 51 US 10,997,009 B2

const int MaxDim = 4 ;
const int MaxClusters = 20 ; 2302 const int MaxOutliers = 50 ;
const int MaxData = 200 ;
const double Threshold = 0.5 ;
const int BigNumber = OxFFFFFFF ;

2303

typedef struct
{

double coordinates [MaxDim] ;
} Point ;

2304

typedef struct
{

double distance ;
int index :

} Distindex ;

2305

2306
typedef double (* Dist) (Point x , Point y , int dim) ;

FIG . 23A

U.S. Patent May 4 , 2021 Sheet 37 of 51 US 10,997,009 B2

class clusteredData
{

private :
2307 Point * dataPoints ;

int numDataPoints ; 2308
Dist dist ; 2309
int k : 2310
int i ; 2311
int numD ; - 2312
Point * clusters ; 2313
Point * newClusters ; 2314
int split ; 2315

2316
Point clusters 1 [MaxClusters] ; 2317 Point clusters2 [MaxClusters] ;
double minOutlier Distance ; 2318
bool already [MaxData) ; 2319
DistIndex distances [MaxData) ; 2320
double indexed Distances [MaxData) ; 2321
int clusterAssignments [MaxData) ; 2322

void init () ; 2323
void randomlnitialClusters () ; 2324
void clusterDataPoints () ; 2325
void recluster () ; 2326
bool convergence () ; 2327

2328 public :
void cluster (Point * data , int num , int numDimensions , Dist d , int K , int L) ;

} ;

FIG . 23B

U.S. Patent May 4 , 2021 Sheet 38 of 51 US 10,997,009 B2

int compare (const void * a , const void * b)
{

DistIndex * A ;
DistIndex * B ;
A = (DistIndex *) a ;
B = (DistIndex *) b ;

2330

if (A- > distance < B- > distance) return 1 ;
if (A- > distance == B- > distance) return 0 ;
return -1 ; 2336

} 2332 2333 2334 . / 2335 2337
void clusteredData :: cluster (Point * data , int num , int numDimensions , Dist d , int K , int L)
{

dataPoints = data ;
numDataPoints = num ;
dist = d ; 2338
k = K :
1 = L ;
numD = num Dimensions ;
clusters = clusters 1 ; 2339 newClusters = clusters 2 : ;

2340
init () ; 2341 randomlnitialClusters () ;
clusterDataPoints () ; 2342 while (true)
{ 2344

recluster () ; 2345 if (convergence ()) break ;

} 23

2343 2346

if (clusters == clusters 1
{

clusters = clusters2 ;
newClusters = clusters 1 ;

}
else
{

clusters = clusters1 ;
newClusters = clusters 2 :

}
clusterDataPoints () ; 2347

}
}

FIG . 230

U.S. Patent May 4 , 2021 Sheet 39 of 51 US 10,997,009 B2

void clusteredData :: init ()
{

int i ;
2350

for (i = 0 ; i < numDataPoints ; i ++) already [i] = false ;
}

void clusteredData :: randomlnitialClusters ()
{

int i = 0 ;
intj , nxt ;
int multiplier ;

multiplier = (numDataPoints / RAND_MAX) + 1 ;
while (i < k)
{ 2352 nxt = (rand () % numDataPoints) * multiplier ;

while (nxt > numDataPoints) nxt - = rand () % (numDataPoints / 2) ;
if (already [nxt]) continue ;
else 2353
{

already [nxt] = true ;
for (i = 0 ; j < numD ; j ++)
{

clusters [i] .coordinates [] = dataPoints [nxt] .coordinates [j] ;
}
i ++ ;

}

2351

2354

}

FIG . 23D

U.S. Patent May 4 , 2021 Sheet 41 of 51 US 10,997,009 B2

void clusteredData recluster ()
{

bool valid ;
int i , j ;
double sum [MaxClusters] [MaxDim) ;
int kCount [MaxClusters] ;

2363

for (i = 0 ; i < k ; i ++)
{

for (j = 0 ; j < numD ; j ++) sum [i] [j] = 0 ;
kCount [i] = 0 ;

}

w

2364

for (i = 0 ; i < numDataPoints ; i ++)
{

valid = false ;
if (indexedDistances [i] minOutlier Distance)
{

for (j = 0 ; j < split ; j ++)
2365 {

if (distances [i] .index - i) valid = true ;
}

}
else if (indexedDistances [i] < minOutlier Distance) valid = true ;
if (valid)
{

for (j = 0 ; j < numD ; j ++) sum [clusterAssignments [i]] [i] + = 2366 dataPoints [i] .coordinates [i] ;
kCount [clusterAssignments [i]] ++ ;

}
}
for (i = 0 ; i < k ; i ++)

for (j = 0 ; j < numD ; j ++) 2367
newClusters [i] .coordinates [i] = sum [i] [j] = k Count [i] ;

}

FIG . 23F

U.S. Patent May 4 , 2021 Sheet 43 of 51 US 10,997,009 B2

2406 2402
2408

2404 A B C

1
2
3

12
14
20
16 4

5 15
6
7
(8
9

10
11
12
13
14
15

36
20
30
22
40
31
26
10
35
29
39
37
32
25
33

17
10
18
15
16
13
15
16
17
18
16
18
17
16
15

13
10
12
11
19
15
11
19
12
11

102
95
82
99
100
85
106
105
93
97
81
101
80
102
96

Label
N
A
A
N
N
N
N
A
N
N
N
N
A
N

FIG . 24A

2417

AS 20 BS 16

A (2)
N (O)

A (2)
N (11)

A (2)
N (7)

A (2)
N (4)

2415 2416 2411
2410

C219 D 582

2413 A (2)
N (1)

A (2)
N (10)

A (2)
N (1)

A (2)
N (10)

2412

FIG . 24B

U.S. Patent May 4 , 2021 Sheet 44 of 51 US 10,997,009 B2

2420
AS20

2421

1 , 3-7 , 2,8 9-15

2422 2423
2427 7

B2 17 C 219 DS 82

A (O)
N (7)

A (2)
N (4)

A (0)
N (12)

A (2)
N (1)

A (2)
N (10)

A (2)
N (1)

2424 2425 2426

FIG . 24C

AS20

N

2,8 1 , 3-7 ,
9-15

C > 19

2431

1,4-7 ,
9 , 11-12 ,
14-15

3 , 10 , 13

2430

FIG . 24D

U.S. Patent May 4 , 2021 Sheet 45 of 51 US 10,997,009 B2

3 , 10 , 13

2431

B < 18 D < 97

A (1)
N (O)

A (2)
N (4)

A (2)
N (0)

A (0)
N (1)

2433 2434

FIG . 24 €

2442

all data

2443
2444

2440
As 20 2446

T

2447
abnormal 2445 C 219

2450 T F

2446 2448 2451
normal D < 97

T 2454 F

2449 2452

abnormal normal

2453 2455

FIG . 24F

U.S. Patent May 4 , 2021 Sheet 46 of 51 US 10,997,009 B2

char Trule [5] = { ' t ' , ' r ' , ' u ' , ' e ' , ' lo ' } ;
char * T Trule ;
char Frule [6] = { ' f ' , ' a ' , ' l ' , ' s ' , ' e ' , ' 10 ' } ;
char * F Frule ;
const int MAX_RULE 1000 ; 2504

} 2502
2506 typedef enum label { NORMAL , ABNORMAL , UNKNOWN } Label ;

class node ;
node * null 0 ; 2507

class rule
{

public :
void setRule (char * r) ;
void applyRule (data * in , data * T , data * F) ;
bool applyRule (datum * d) ;
rule & operator (rule & r) ; 2510
rule (char * r) ; 2511

2508
2509

} ;

class attributes
{

public :
int num () ; 2513
int getDataIndex (int a_index) ;
void remove (int a_index) ;
attributes & operator (attributes & a) ;
attributes () ;

} ;

2512

class datum
{

2514
public :

double getElement (int index) ;
} ;

FIG . 25A

U.S. Patent May 4 , 2021 Sheet 47 of 51 US 10,997,009 B2

class data
{

2516
public :

int getNum () ;
datum getDatum (int index) ;
Label getLabel (int index) ;
double getEntropy () ;
data () ;

2517
2518

} ;
2519

2522
2523

2521 D a set of observations
N { DE D1 label (d) normal }
A (de D1 label (d) abnormal }

INI INI -H (d) entropy of D
IDI

T { D1 , D2 } where D Di + D2

2524 = logz (| A |
101

log2 (16) Ali
DI 2520

W 2525

2526 gain (DD1 , D2) H (D) – 1D ! H (D) 1D1

2527

2530

class node
{

private : 2531 node * Tptr ;
node * Fptr ; 2532
Label Tlabel ; 2533
Label Flabels 2534 rule r ; 2535

public :
node * getTptr () ;
void setTptr (node * p) ;
node * getFptr () ;
void setFptr (node * p) ;
Label getTlabel () ; 2536
void settlabel (Label 1) ;
Label getFlabel () ;
void setFlabel (Label 1) ;
void setRule (rule r) ;
void applyRule (data * in , data * T , data * F) (r.applyRule (in , T , F) ; } ;
bool applyRule (datum * d) { r.applyRule (d) ; } ;
node (ruler) ;

} ; 2539 2538

2537

FIG . 25B

U.S. Patent May 4 , 2021 Sheet 48 of 51 US 10,997,009 B2

void copyRule (char * r1 , char * r2)
{
} 2540

double determine rule (data & d , int a_index , char * r)
{
}

2541

int i ; 2544

node * grow_decision_tree (data & d , attributes & a)
{

2543
rule r (t) ;
node * n = new node (r) ;
char r1 [MAX_RULE) ; 2545
char maxR [MAX_RULE) ;
double gain ;
double maxGain
int maxAtt ;
data dT , DF ;
attributes al ;

-1 ;

w

2542

if (a.num () > 0) 2546
{

for (i 0 ; i < a.num () ; i ++)
{

gain = determine_rule (d , a.getDataIndex (i) , r1) ;
if (gain > maxGain)
{ 2547 maxGain gain ;

maxatt i ;
copyRule (maxR , r1) ;

}
}

}
if (a.num) 0 || maxGain < = 0) 2548
{

n- > setTptr (null) ;
n- > setTlabel (UNKNOWN) ; 2549
return n ;

}
r.setRule (maxR) ; 2550 n- > setRule (r) ;
n- > applyRule (& d , & dt , & dF) ; 2552

a ;
a1.remove (i) ; 2553

=

a1

n- > setTptr (grow_decision_tree (dt , a1)) ;
n- > setFptr (grow_decision_tree (df , a1)) ; } 2554

}

FIG . 25C

U.S. Patent May 4 , 2021 Sheet 49 of 51 US 10,997,009 B2

2563 2561 2562

node * build_decision_tree (data & d , attributes & a)
{

rule r (t) ;
2564 if (d.getNum () < 1) return null ;

node * n = new node (r) ;
if (d.getEntropy () == 0) 2565
{

n- > setTptr (null) ;
n- > setFptr (null) ;

if (d.getLabel (0) NORMAL)
{ 2560

n- > setTlabel (NORMAL) ; 2566 n- > setFlabel (ABNORMAL) ;
}
else
{

n- > setTlabel (ABNORMAL) ;
n- > setFlabel (NORMAL) ;

}
return n ;

}
2567 n- > setTptr (grow_decision_tree (d , a)) ;

return n ;
}

2571 2573 2572
label evaluate (datum * d , node * decision_tree)
{

label res ;
bool applyRes ;
node * nxt ;

2574
applyRes = decision_tree- > applyRule (d) ;

2575 if (applyRes)
{

nxt = decision_tree- > getTptr () ;
if (nxt == null) return decision_tree- > getTlabel () ;

} 2476 else 2577
{

2578 nxt = decision_tree- > getFptr () ;
if (nxt == null) return decision_tree- > getFlabel () ;

}
return evaluate (d , nxt) ;

} 2580

2570

FIG . 25D

U.S. Patent May 4 , 2021 Sheet 50 of 51 US 10,997,009 B2

process data set

2602
receive data set

return

2604 PCA to produce
transformed data set

2617 apply machine learning to
generate abnormal
observation detector

2606
dimensional reduction

2616 label observations as
normal or abnormal

2608
error = large value N

2615
Y more k and 1

values to try ?
2610 for a range of k and I

values

2614
2611

error computed error ;
save outliers , replacing
previously saved outliers modified k - means

cluster

2612 N compute error for
clustered data

computed
error <
error ?

2613

FIG . 26A

U.S. Patent May 4 , 2021 Sheet 51 of 51 US 10,997,009 B2

monitor

2627

2620 wait for
next event

generate alert
and / or take
ameliorative

action

2622 2624
2626

new

observation
?

apply abnormal
observation
detector

abnormal ?

N

2633 2632
Y new 2628

reset alarm detector
alarm ?

determine
whether

observation is to
be sampled

N

2629 2630 2634 process data
set 2636 Y sample ?

store in
accumulating

data set

2635 replace
abnormal
observation

detector with new
detector

2638
Y

queued
events to process

?

FIG . 26B

5

a

US 10,997,009 B2
1 2

METHODS AND SYSTEMS THAT DETECT operational anomalies and relevant to identifying specific
AND CLASSIFY INCIDENTS AND information that can be used for administering , managing ,
ANOMALOUS BEHAVIOR USING and maintaining distributed computer systems .
METRIC - DATA OBSERVATIONS

SUMMARY
TECHNICAL FIELD

The current document is directed to methods and systems
The current document is directed to distributed computer for detecting , within the enormous volumes of status , infor

systems and , in particular , to methods and subsystems that mational , and error data continuously generated , collected ,
detect and classify , from enormous volumes of status , infor- 10 and processed within a distributed computer system , the
mational , and error data continuously generated , collected , occurrences of abnormal events and operational behaviors
and processed within a distributed computer system , the within the distributed computer system and , more generally ,
occurrences of abnormal events and operational behaviors detects the occurrences of specific types events and opera within the distributed computer system and , more generally , tional behaviors . The currently described methods and sys detect the occurrences of specific types of events and 15 tems continuously collect metric data from various metric operational behaviors . data sources , generate sequence of metric - data

BACKGROUND observations , each metric - data observation comprising a set
of temporally aligned metric data , and employ principle

During the past seven decades , electronic computing has 20 component analysis to transform the metric - data observa
evolved from primitive , vacuum - tube - based computer sys tions to facilitate reduction of the dimensionality of the
tems , initially developed during the 1940s , to modern elec- metric - data observations . The currently described methods
tronic computing systems in which large numbers of multi- and systems then employ clustering methods to identify
processor servers , work stations , and other individual outlying transformed - metric - data observations , accordingly
computing systems are networked together with large - ca- 25 label the transformed metric - data observations to generate a
pacity data - storage devices and other electronic devices to training dataset , and then apply one or more of various types
produce geographically distributed computing systems with of machine learning techniques to the training dataset in
hundreds of thousands , millions , or more components that order to generate an abnormal - observation detector that can
provide enormous computational bandwidths and data - stor- be used to detect , in real time , abnormal metric - data obser
age capacities . These large , distributed computing systems 30 vations as they are generated within the distributed comput
are made possible by advances in computer networking , ing system .
distributed operating systems and applications , data - storage
appliances , computer hardware , and software technologies . BRIEF DESCRIPTION OF THE DRAWINGS
However , despite all of these advances , the rapid increase in
the size and complexity of computing systems has been 35 FIG . 1 provides a general architectural diagram for vari
accompanied by numerous scaling issues and technical ous types of computers .
challenges , including technical challenges associated with FIG . 2 illustrates an Internet - connected distributed com
communications overheads encountered in parallelizing puter system .
computational tasks among multiple processors , component FIG . 3 illustrates cloud computing . In the recently devel
failures , and distributed - system management . As new dis- 40 oped cloud computing paradigm , computing cycles and
tributed - computing technologies are developed , and as gen- data - storage facilities are provided to organizations and
eral hardware and software technologies continue to individuals by cloud - computing providers .
advance , the current trend towards ever - larger and more FIG . 4 illustrates generalized hardware and software
complex distributed computing systems appears likely to components of a general - purpose computer system , such as
continue well into the future . 45 a general - purpose computer system having an architecture

In modern computing systems , individual computers , similar to that shown in FIG . 1 .
subsystems , and components generally output large volumes FIGS . 5A - B illustrate two types of virtual machine and
of status , informational , and error data . In large , distributed virtual - machine execution environments .
computing systems , terabytes of status , informational , and FIG . 6 illustrates an OVF package .
error data may be generated each day . The status , informa- 50 FIG . 7 illustrates virtual data centers provided as an
tional , and error data generally contain information that can abstraction of underlying physical - data - center hardware
be used to detect the potential for serious failures and components .
operational deficiencies in the computer systems prior to the FIG . 8 illustrates virtual - machine components of a vir
accumulation of a sufficient number of failures and system- tual - data - center management server and physical servers of
degrading events to lead to subsequent data loss , component 55 a physical data center above which a virtual - data - center
and subsystem failures , and down time . The information interface is provided by the virtual - data - center management
contained in the data may also be used to detect and
ameliorate various types of security breaches and security FIG . 9 illustrates a cloud - director level of abstraction . In
issues , to intelligently manage and maintain distributed FIG . 9 , three different physical data centers 902-904 are
computing systems , and to diagnose many different classes 60 shown below planes representing the cloud - director layer of
of operational problems , hardware - design deficiencies , and abstraction 906-908 .
software - design deficiencies . It has proved to be a challeng- FIG . 10 illustrates virtual - cloud - connector nodes (“ VCC
ing task for system administrators , system designers and nodes ”) and a VCC server , components of a distributed
developers , and system users to identify , within the enor- system that provides multi - cloud aggregation and that
mous quantities of status , informational , and error data 65 includes a cloud - connector server and cloud - connector
generated in distributed computing systems , specific infor- nodes that cooperate to provide services that are distributed
mation relevant to predicting , detecting , and diagnosing across multiple clouds .

server .

sources .

US 10,997,009 B2
3 4

FIG . 11 illustrates a simple example of event - message electronically implemented application programming inter
logging and analysis . faces (“ APIs ”) and other electronically implemented inter
FIG . 12 shows a small , 11 - entry portion of a log file from faces . There is a tendency among those unfamiliar with

a distributed computer system . modern technology and science to misinterpret the terms
FIG . 13 illustrates the event - message - processing 5 " abstract ” and “ abstraction , ” when used to describe certain

approach represented by the currently disclosed methods aspects of modern computing . For example , one frequently
and systems . encounters assertions that , because a computational system
FIGS . 14A - C illustrate the generation of time sequences is described in terms of abstractions , functional layers , and

of metric data from a generally large set of metric - data interfaces , the computational system is somehow different
10 from a physical machine or device . Such allegations are

FIG . 15 illustrates the equivalence between an observa unfounded . One only needs to disconnect a computer system
tion made at a particular time point and a P - dimensional or group of computer systems from their respective power
vector in a P - dimensional space . supplies to appreciate the physical , machine nature of com

FIG . 16 illustrates representation of observations , each plex computer technologies . One also frequently encounters
consisting of a set of metric data values for each data source 15 statements that characterize a computational technology as
obtained at , or calculated for , a particular time point , as a being " only software , " and thus not a machine or device .
matrix . Software is essentially a sequence of encoded symbols , such

FIG . 17 illustrates scaling and normalization of the set of as a printout of a computer program or digitally encoded
observations represented by a matrix ? . computer instructions sequentially stored in a file on an
FIGS . 18 and 19 illustrate eigenvectors and eigenvalues . 20 optical disk or within an electromechanical mass - storage
FIGS . 20A - B illustrate the principal - component - analysis device . Software alone can do nothing . It is only when

(“ PCA ”) method . encoded computer instructions are loaded into an electronic
FIGS . 21A - I and FIGS . 22A - B illustrate data - set cluster- memory within a computer system and executed on a

ing using a modified K - means clustering process . physical processor that so - called “ software implemented ”
FIGS . 23A - G provide a simple C ++ implementation of 25 functionality is provided . The digitally encoded computer

one version of the modified K - means clustering process . instructions are an essential and physical control component
FIGS . 24A - F illustrates a machine - learning technique of processor - controlled machines and devices , no less essen

based on decision trees . tial and physical than a cam - shaft control system in an
FIGS . 25A - D provides a pseudocode example for con- internal - combustion engine . Multi - cloud aggregations ,

struction of a decision tree and traversal of a decision tree to 30 cloud - computing services , virtual machine containers and
determine the nature of an unlabeled observation . virtual machines , communications interfaces , and many of
FIGS . 26A - B provide control - flow diagrams that illustrate the other topics discussed below are tangible , physical

the currently disclosed method and system for discovering components of physical , electro - optical - mechanical com
root causes . puter systems .

FIG . 1 provides a general architectural diagram for vari
DETAILED DESCRIPTION ous types of computers . Computers that receive , process ,

and store event messages may be described by the general
The current document is directed to methods and systems architectural diagram shown in FIG . 1 , for example . The

that detect the occurrences of abnormal events and opera- computer system contains one or multiple central processing
tional behaviors that occur within distributed computer 40 units (“ CPUs ”) 102-105 , one or more electronic memories
systems . In a first subsection , below , a detailed description 108 interconnected with the CPUs by a CPU / memory
of computer hardware , complex computational systems , subsystem bus 110 or multiple busses , a first bridge 112 that
virtualization , and generation of status , informational , and interconnects the CPU / memory - subsystem bus 110 with
error data is provided with reference to FIGS . 1-13 . In a additional busses 114 and 116 , or other types of high - speed
second subsection , implementations of the currently dis- 45 interconnection media , including multiple , high - speed serial
closed methods and systems are introduced and described in interconnects . These busses or serial interconnections , in
detail with reference to FIGS . 14A - 26B . turn , connect the CPUs and memory with specialized pro

cessors , such as a graphics processor 118 , and with one or
Computer Hardware , Complex Computational more additional bridges 120 , which are interconnected with

Systems , Virtualization , and Generation of Status , 50 high - speed serial links or with multiple controllers 122-127 ,
Informational , and Error Data such as controller 127 , that provide access to various dif

ferent types of mass - storage devices 128 , electronic dis
The term " abstraction ” is not , in any way , intended to plays , input devices , and other such components , subcom

mean or suggest an abstract idea or concept . Computational ponents , and computational resources . It should be noted
abstractions are tangible , physical interfaces that are imple- 55 that computer - readable data - storage devices include optical
mented , ultimately , using physical computer hardware , data- and electromagnetic disks , electronic memories , and other
storage devices , and communications systems . Instead , the physical data - storage devices . Those familiar with modern
term “ abstraction ” refers , in the current discussion , to a science and technology appreciate that electromagnetic
logical level of functionality encapsulated within one or radiation and propagating signals do not store data for
more concrete , tangible , physically - implemented computer 60 subsequent retrieval , and can transiently “ store ” only a byte
systems with defined interfaces through which electroni- or less of information per mile , far less information than
cally - encoded data is exchanged , process execution needed to encode even the simplest of routines .
launched , and electronic services are provided . Interfaces Of course , there are many different types of computer
may include graphical and textual data displayed on physical system architectures that differ from one another in the
display devices as well as computer programs and routines 65 number of different memories , including different types of
that control physical computer processors to carry out vari- hierarchical cache memories , the number of processors and
ous tasks and operations and that are invoked through the connectivity of the processors with other system com

35

US 10,997,009 B2
5 6

ponents , the number of internal communications busses and public cloud to remote customers of the organization , such
serial links , and in many other ways . However , computer as a user viewing the organization's e - commerce web pages
systems generally execute stored programs by fetching on a remote user system 316 .
instructions from memory and executing the instructions in Cloud - computing facilities are intended to provide com
one or more processors . Computer systems include general- 5 putational bandwidth and data - storage services much as
purpose computer systems , such as personal computers utility companies provide electrical power and water to
(“ PCs ”) , various types of servers and workstations , and consumers . Cloud computing provides enormous advan
higher - end mainframe computers , but may also include a tages to small organizations without the resources to pur
plethora of various types of special - purpose computing chase , manage , and maintain in - house data centers . Such
devices , including data - storage systems , communications 10 organizations can dynamically add and delete virtual com
routers , network nodes , tablet computers , and mobile tele- puter systems from their virtual data centers within public
phones . clouds in order to track computational - bandwidth and data
FIG . 2 illustrates an Internet connected distributed com- storage needs , rather than purchasing sufficient computer

puter system . As communications and networking technolo- systems within a physical data center to handle peak com
gies have evolved in capability and accessibility , and as the 15 putational - bandwidth and data storage demands . Moreover ,
computational bandwidths , data - storage capacities , and small organizations can completely avoid the overhead of
other capabilities and capacities of various types of com- maintaining and managing physical computer systems ,
puter systems have steadily and rapidly increased , much of including hiring and periodically retraining information
modern computing now generally involves large distributed technology specialists and continuously paying for operat
systems and computers interconnected by local networks , 20 ing - system and database - management - system upgrades .
wide - area networks , wireless communications , and the Furthermore , cloud - computing interfaces allow for easy and
Internet . FIG . 2 shows a typical distributed system in which straightforward configuration of virtual computing facilities ,
a large number of PCs 202-205 , a high - end distributed flexibility in the types of applications and operating systems
mainframe system 210 with a large data - storage system 212 , that can be configured , and other functionalities that are
and a large computer center 214 with large numbers of 25 useful even for owners and administrators of private cloud
rack - mounted servers or blade servers all interconnected computing facilities used by a single organization .
through various communications and networking systems FIG . 4 illustrates generalized hardware and software
that together comprise the Internet 216. Such distributed components of a general - purpose computer system , such as
computing systems provide diverse arrays of functionalities . a general - purpose computer system having an architecture
For example , a PC user sitting in a home office may access 30 similar to that shown in FIG . 1. The computer system 400 is
hundreds of millions of different web sites provided by often considered to include three fundamental layers : (1) a
hundreds of thousands of different web servers throughout hardware layer or level 402 ; (2) an operating - system layer or
the world and may access high - computational - bandwidth level and (3) an application - program layer or level 406 .
computing services from remote computer facilities for The hardware layer 402 includes one or more processors
running complex computational tasks . 35 408 , system memory 410 , various different types of input

Until recently , computational services were generally output (“ I / O ”) devices 410 and 412 , and mass - storage
provided by computer systems and data centers purchased , devices 414. Of course , the hardware level also includes
configured , managed , and maintained by service - provider many other components , including power supplies , internal
organizations . For example , an e - commerce retailer gener- communications links and busses , specialized integrated
ally purchased , configured , managed , and maintained a data 40 circuits , many different types of processor - controlled or
center including numerous web servers , back - end computer microprocessor - controlled peripheral devices and control
systems , and data - storage systems for serving web pages to lers , and many other components . The operating system 404
remote customers , receiving orders through the web - page interfaces to the hardware level 402 through a low - level
interface , processing the orders , tracking completed orders , operating system and hardware interface 416 generally
and other myriad different tasks associated with an e - com- 45 comprising a set of non - privileged computer instructions
merce enterprise . 418 , a set of privileged computer instructions 420 , a set of
FIG . 3 illustrates cloud computing . In the recently devel- non - privileged registers and memory addresses 422 , and a

oped cloud computing paradigm , computing cycles and set of privileged registers and memory addresses 424. In
data - storage facilities are provided to organizations and general , the operating system exposes non - privileged
individuals by cloud - computing providers . In addition , 50 instructions , non - privileged registers , and non - privileged
larger organizations may elect to establish private cloud- memory addresses 426 and a system - call interface 428 as an
computing facilities in addition to , or instead of , subscribing operating - system interface 430 to application programs 432
to computing services provided by public cloud - computing 436 that execute within an execution environment provided
service providers . In FIG . 3 , a system administrator for an to the application programs by the operating system . The
organization , using a PC 302 , accesses the organization's 55 operating system , alone , accesses the privileged instructions ,
private cloud 304 through a local network 306 and private- privileged registers , and privileged memory addresses . By
cloud interface 308 and also accesses , through the Internet reserving access to privileged instructions , privileged reg
310 , a public cloud 312 through a public - cloud services isters , and privileged memory addresses , the operating sys
interface 314. The administrator can , in either the case of the tem can ensure that application programs and other higher
private cloud 304 or public cloud 312 , configure virtual 60 level computational entities cannot interfere with one
computer systems and even entire virtual data centers and another's execution and cannot change the overall state of
launch execution of application programs on the virtual the computer system in ways that could deleteriously impact
computer systems and virtual data centers in order to carry system operation . The operating system includes many
out any of many different types of computational tasks . As internal components and modules , including a scheduler
one example , a small organization may configure and run a 65 442 , memory management 444 , a file system 446 , device
virtual data center within a public cloud that executes web drivers 448 , and many other components and modules . To a
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous

US 10,997,009 B2
7 8

levels of abstraction above the hardware level , including issues discussed above . FIGS . 5A - B illustrate two types of
virtual memory , which provides to each application program virtual machine and virtual machine execution environ
and other computational entities a separate , large , linear ments . FIGS . 5A - B use the same illustration conventions as
memory - address space that is mapped by the operating used in FIG . 4. FIG . 5A shows a first type of virtualization .
system to various electronic memories and mass - storage 5 The computer system 500 in FIG . 5A includes the same
devices . The scheduler orchestrates interleaved execution of hardware layer 502 as the hardware layer 402 shown in FIG .
various different application programs and higher - level 4. However , rather than providing an operating system layer
computational entities , providing to each application pro- directly above the hardware layer , as in FIG . 4 , the virtual
gram a virtual , stand - alone system devoted entirely to the ized computing environment illustrated in FIG . 5A features
application program . From the application program’s stand- 10 a virtualization layer 504 that interfaces through a virtual
point , the application program executes continuously with- ization - layer / hardware - layer interface 506 , equivalent to
out concern for the need to share processor resources and interface 416 in FIG . 4 , to the hardware . The virtualization
other system resources with other application programs and layer provides a hardware - like interface 508 to a number of
higher - level computational entities . The device drivers virtual machines , such as virtual machine 510 , executing
abstract details of hardware - component operation , allowing 15 above the virtualization layer in a virtual - machine layer 512 .
application programs to employ the system - call interface for Each virtual machine includes one or more application
transmitting and receiving data to and from communications programs or other higher - level computational entities pack
networks , mass - storage devices , and other I / O devices and aged together with an operating system , referred to as a
subsystems . The file system 436 facilitates abstraction of “ guest operating system , ” such as application 514 and guest
mass - storage - device and memory resources as a high - level , 20 operating system 516 packaged together within virtual
easy - to - access , file - system interface . Thus , the development machine 510. Each virtual machine is thus equivalent to the
and evolution of the operating system has resulted in the operating system layer 404 and application - program layer
generation of a type of multi - faceted virtual execution 406 in the general - purpose computer system shown in FIG .
environment for application programs and other higher - level 4. Each guest operating system within a virtual machine
computational entities . 25 interfaces to the virtualization - layer interface 508 rather than

While the execution environments provided by operating to the actual hardware interface 506. The virtualization layer
systems have proved to be an enormously successful level of partitions hardware resources into abstract virtual - hardware
abstraction within computer systems , the operating - system- layers to which each guest operating system within a virtual
provided level of abstraction is nonetheless associated with machine interfaces . The guest operating systems within the
difficulties and challenges for developers and users of appli- 30 virtual machines , in general , are unaware of the virtualiza
cation programs and other higher - level computational enti- tion layer and operate as if they were directly accessing a
ties . One difficulty arises from the fact that there are many true hardware interface . The virtualization layer ensures that
different operating systems that run within various different each of the virtual machines currently executing within the
types of computer hardware . In many cases , popular appli- virtual environment receive a fair allocation of underlying
cation programs and computational systems are developed 35 hardware resources and that all virtual machines receive
to run on only a subset of the available operating systems , sufficient resources to progress in execution . The virtualiza
and can therefore be executed within only a subset of the tion - layer interface 508 may differ for different guest oper
various different types of computer systems on which the ating systems . For example , the virtualization layer is gen
operating systems are designed to run . Often , even when an erally able to provide virtual hardware interfaces for a
application program or other computational system is ported 40 variety of different types of computer hardware . This allows ,
to additional operating systems , the application program or as one example , a virtual machine that includes a guest
other computational system can nonetheless run more effi- operating system designed for a particular computer archi
ciently on the operating systems for which the application tecture to run on hardware of a different architecture . The
program or other computational system was originally tar- number of virtual machines need not be equal to the number
geted . Another difficulty arises from the increasingly dis- 45 of physical processors or even a multiple of the number of
tributed nature of computer systems . Although distributed processors .
operating systems are the subject of considerable research The virtualization layer includes a virtual machine - moni
and development efforts , many of the popular operating tor module 518 (“ VMM ”) that virtualizes physical proces
systems are designed primarily for execution on a single sors in the hardware layer to create virtual processors on
computer system . In many cases , it is difficult to move 50 which each of the virtual machines executes . For execution
application programs , in real time , between the different efficiency , the virtualization layer attempts to allow virtual
computer systems of a distributed computer system for machines to directly execute non - privileged instructions and
high - availability , fault - tolerance , and load balancing pur- to directly access non - privileged registers and memory .
poses . The problems are even greater in heterogeneous However , when the guest operating system within a virtual
distributed computer systems which include different types 55 machine accesses virtual privileged instructions , virtual
of hardware and devices running different types of operating privileged registers , and virtual privileged memory through
systems . Operating systems continue to evolve , as a result of the virtualization - layer interface 508 , the accesses result in
which certain older application programs and other compu- execution of virtualization - layer code to simulate or emulate
tational entities may be incompatible with more recent the privileged resources . The virtualization layer addition
versions of operating systems for which they are targeted , 60 ally includes a kernel module 520 that manages memory ,
creating compatibility issues that are particularly difficult to communications , and data - storage machine resources on
manage in large distributed systems . behalf of executing virtual machines (“ VM kernel ”) . The

For all of these reasons , a higher level of abstraction , VM kernel , for example , maintains shadow page tables on
referred to as the “ virtual machine , ” has been developed and each virtual machine so that hardware - level virtual - memory
evolved to further abstract computer hardware in order to 65 facilities can be used to process memory accesses . The VM
address many difficulties and challenges associated with kernel additionally includes routines that implement virtual
traditional computing systems , including the compatibility communications and data - storage devices as well as device

US 10,997,009 B2
9 10

drivers that directly control the operation of underlying element is the envelope element , demarcated by tags 622
hardware communications and data - storage devices . Simi- and 623. The next - level element includes a reference ele
larly , the VM kernel virtualizes various other types of I / O ment 626 that includes references to all files that are part of
devices , including keyboards , optical - disk drives , and other the OVF package , a disk section 628 that contains meta
such devices . The virtualization layer essentially schedules 5 information about all of the virtual disks included in the
execution of virtual machines much like an operating system OVF package , a networks section 630 that includes meta
schedules execution of application programs , so that the information about all of the logical networks included in the
virtual machines each execute within a complete and fully OVF package , and a collection of virtual - machine configu
functional virtual hardware layer . rations 632 which further includes hardware descriptions of
FIG . 5B illustrates a second type of virtualization . In FIG . 10 each virtual machine 634. There are many additional hier

5B , the computer system 540 includes the same hardware archical levels and elements within a typical OVF descrip
layer 542 and software layer 544 as the hardware layer 402 tor . The OVF descriptor is thus a self - describing , XML file
shown in FIG . 4. Several application programs 546 and 548 that describes the contents of an OVF package . The OVF
are shown running in the execution environment provided manifest 606 is a list of cryptographic - hash - function - gener
by the operating system . In addition , a virtualization layer 15 ated digests 636 of the entire OVF package and of the
550 is also provided , in computer 540 , but , unlike the various components of the OVF package . The OVF certifi
virtualization layer 504 discussed with reference to FIG . 5A , cate 608 is an authentication certificate 640 that includes a
virtualization layer 550 is layered above the operating digest of the manifest and that is cryptographically signed .
system 544 , referred to as the " host OS , ” and uses the Disk image files , such as disk image file 610 , are digital
operating system interface to access operating - system - pro- 20 encodings of the contents of virtual disks and resource files
vided functionality as well as the hardware . The virtualiza- 612 are digitally encoded content , such as operating - system
tion layer 550 comprises primarily a VMM and a hardware- images . A virtual machine or a collection of virtual machines
like interface 552 , similar to hardware - like interface 508 in encapsulated together within a virtual application can thus
FIG . 5A . The virtualization - layer / hardware - layer interface be digitally encoded as one or more files within an OVF
552 , equivalent to interface 416 in FIG . 4 , provides an 25 package that can be transmitted , distributed , and loaded
execution environment for a number of virtual machines using well - known tools for transmitting , distributing , and
556-558 , each including one or more application programs loading files . A virtual appliance is a software service that is
or other higher - level computational entities packaged delivered as a complete software stack installed within one
together with a guest operating system . or more virtual machines that is encoded within an OVF

In FIGS . 5A - B , the layers are somewhat simplified for 30 package .
clarity of illustration . For example , portions of the virtual- The advent of virtual machines and virtual environments
ization layer 550 may reside within the host - operating- has alleviated many of the difficulties and challenges asso
system kernel , such as a specialized driver incorporated into ciated with traditional general - purpose computing . Machine
the host operating system to facilitate hardware access by and operating - system dependencies can be significantly
the virtualization layer . 35 reduced or entirely eliminated by packaging applications

It should be noted that virtual hardware layers , virtual- and operating systems together as virtual machines and
ization layers , and guest operating systems are all physical virtual appliances that execute within virtual environments
entities that are implemented by computer instructions provided by virtualization layers running on many different
stored in physical data - storage devices , including electronic types of computer hardware . A next level of abstraction ,
memories , mass - storage devices , optical disks , magnetic 40 referred to as virtual data centers or virtual infrastructure ,
disks , and other such devices . The term “ virtual ” does not , provide a data - center interface to virtual data centers com
in any way , imply that virtual hardware layers , virtualization putationally constructed within physical data centers . FIG . 7
layers , and guest operating systems are abstract or intan- illustrates virtual data centers provided as an abstraction of
gible . Virtual hardware layers , virtualization layers , and underlying physical - data - center hardware components . In
guest operating systems execute on physical processors of 45 FIG . 7 , a physical data center 702 is shown below a
physical computer systems and control operation of the virtual - interface plane 704. The physical data center consists
physical computer systems , including operations that alter of a virtual - data - center management server 706 and any of
the physical states of physical devices , including electronic various different computers , such as PCs 708 , on which a
memories and mass - storage devices . They are as physical virtual - data - center management interface may be displayed
and tangible as any other component of a computer since , 50 to system administrators and other users . The physical data
such as power supplies , controllers , processors , busses , and center additionally includes generally large numbers of
data - storage devices . server computers , such as server computer 710 , that are
A virtual machine or virtual application , described below , coupled together by local area networks , such as local area

is encapsulated within a data package for transmission , network 712 that directly interconnects server computer 710
distribution , and loading into a virtual - execution environ- 55 and 714-720 and a mass - storage array 722. The physical
ment . One public standard for virtual machine encapsulation data center shown in FIG . 7 includes three local area
is referred to as the “ open virtualization format " (" OVF ”) . networks 712 , 724 , and 726 that each directly interconnects
The OVF standard specifies a format for digitally encoding a bank of eight servers and a mass - storage array . The
a virtual machine within one or more data files . FIG . 6 individual server computers , such as server computer 710 ,
illustrates an OVF package . An OVF package 602 includes 60 each includes a virtualization layer and runs multiple virtual
an OVF descriptor 604 , an OVF manifest 606 , an OVF machines . Different physical data centers may include many
certificate 608 , one or more disk - image files 610-611 , and different types of computers , networks , data - storage systems
one or more resource files 612-614 . The OVF package can and devices connected according to many different types of
be encoded and stored as a single file or as a set of files . The connection topologies . The virtual - data - center abstraction
OVF descriptor 604 is an XML document 620 that includes 65 layer 704 , a logical abstraction layer shown by a plane in
a hierarchical set of elements , each demarcated by a begin- FIG . 7 , abstracts the physical data center to a virtual data
ning tag and an ending tag . The outermost , or highest level , center comprising one or more resource pools , such as

US 10,997,009 B2
11 12

resource pools 730-732 , one or more virtual data stores , such vices further include a high - availability service that repli
as virtual data stores 734-736 , and one or more virtual cates and migrates virtual machines in order to ensure that
networks . In certain implementations , the resource pools virtual machines continue to execute despite problems and
abstract banks of physical servers directly interconnected by failures experienced by physical hardware components . The
a local area network . 5 distributed services also include a live - virtual - machine

The virtual - data - center management interface allows pro- migration service that temporarily halts execution of a
visioning and launching of virtual machines with respect to virtual machine , encapsulates the virtual machine in an OVF
resource pools , virtual data stores , and virtual networks , so package , transmits the OVF package to a different physical
that virtual - data - center administrators need not be con- server , and restarts the virtual machine on the different
cerned with the identities of physical - data - center compo- 10 physical server from a virtual - machine state recorded when
nents used to execute particular virtual machines . Further- execution of the virtual machine was halted . The distributed
more , the virtual - data - center management server includes services also include a distributed backup service that pro
functionality to migrate running virtual machines from one vides centralized virtual - machine backup and restore .
physical server to another in order to optimally or near The core services provided by the VDC management
optimally manage resource allocation , provide fault toler- 15 server include host configuration , virtual machine configu
ance , and high availability by migrating virtual machines to ration , virtual - machine provisioning , generation of virtual
most effectively utilize underlying physical hardware data - center alarms and events , ongoing event logging and
resources , to replace virtual machines disabled by physical statistics collection , a task scheduler , and a resource - man
hardware problems and failures , and to ensure that multiple agement module . Each physical server 820-822 also
virtual machines supporting a high - availability virtual appli- 20 includes a host - agent virtual machine 828-830 through
ance are executing on multiple physical computer systems which the virtualization layer can be accessed via a virtual
so that the services provided by the virtual appliance are infrastructure application programming interface (“ API ”) .
continuously accessible , even when one of the multiple This interface allows a remote administrator or user to
virtual appliances becomes compute bound , data - access manage an individual server through the infrastructure API .
bound , suspends execution , or fails . Thus , the virtual data 25 The virtual - data - center agents 824-826 access virtualiza
center layer of abstraction provides a virtual - data - center tion - layer server information through the host agents . The
abstraction of physical data centers to simplify provisioning , virtual - data - center agents are primarily responsible for off
launching , and maintenance of virtual machines and virtual loading certain of the virtual - data - center management
appliances as well as to provide high - level , distributed server functions specific to a particular physical server to
functionalities that involve pooling the resources of indi- 30 that physical server . The virtual - data - center agents relay and
vidual physical servers and migrating virtual machines enforce resource allocations made by the VDC management
among physical servers to achieve load balancing , fault server , relay virtual - machine provisioning and configura
tolerance , and high availability . FIG . 8 illustrates virtual- tion - change commands to host agents , monitor and collect
machine components of a virtual - data - center management performance statistics , alarms , and events communicated to
server and physical servers of a physical data center above 35 the virtual - data - center agents by the local host agents
which a virtual - data - center interface is provided by the through the interface API , and to carry out other , similar
virtual - data - center management server . The virtual - data- virtual - data - management tasks .
center management server 802 and a virtual - data - center The virtual - data - center abstraction provides a convenient
database 804 comprise the physical components of the and efficient level of abstraction for exposing the computa
management component of the virtual data center . The 40 tional resources of a cloud - computing facility to cloud
virtual - data - center management server 802 includes a hard- computing - infrastructure users . A cloud - director manage
ware layer 806 and virtualization layer 808 , and runs a ment server exposes virtual resources of a cloud - computing
virtual - data - center management - server virtual machine 810 facility to cloud - computing - infrastructure users . In addition ,
above the virtualization layer . Although shown as a single the cloud director introduces a multi - tenancy layer of
server in FIG . 8 , the virtual - data - center management server 45 abstraction , which partitions VDCs into tenant - associated
(“ VDC management server ”) may include two or more VDCs that can each be allocated to a particular individual
physical server computers that support multiple VDC - man- tenant or tenant organization , both referred to as a “ tenant . "
agement - server virtual appliances . The virtual machine 810 A given tenant can be provided one or more tenant - associ
includes a management - interface component 812 , distrib- ated VDCs by a cloud director managing the multi - tenancy
uted services 814 , core services 816 , and a host - management 50 layer of abstraction within a cloud - computing facility . The
interface 818. The management interface is accessed from cloud services interface (308 in FIG . 3) exposes a virtual
any of various computers , such as the PC 708 shown in FIG . data - center management interface that abstracts the physical
7. The management interface allows the virtual - data - center data center .
administrator to configure a virtual data center , provision FIG . 9 illustrates a cloud - director level of abstraction . In
virtual machines , collect statistics and view log files for the 55 FIG . 9 , three different physical data centers 902-904 are
virtual data center , and to carry out other , similar manage- shown below planes representing the cloud - director layer of
ment tasks . The host - management interface 818 interfaces to abstraction 906-908 . Above the planes representing the
virtual - data - center agents 824 , 825 , and 826 that execute as cloud - director level of abstraction , multi - tenant virtual data
virtual machines within each of the physical servers of the centers 910-912 are shown . The resources of these multi
physical data center that is abstracted to a virtual data center 60 tenant virtual data centers are securely partitioned in order to
by the VDC management server . provide secure virtual data centers to multiple tenants , or

The distributed services 814 include a distributed - re- cloud - services - accessing organizations . For example , a
source scheduler that assigns virtual machines to execute cloud - services - provider virtual data center 910 is partitioned
within particular physical servers and that migrates virtual into four different tenant - associated virtual - data centers
machines in order to most effectively make use of compu- 65 within a multi - tenant virtual data center for four different
tational bandwidths , data - storage capacities , and network tenants 916-919 . Each multi - tenant virtual data center is
capacities of the physical data center . The distributed ser- managed by a cloud director comprising one or more

US 10,997,009 B2
13 14

cloud - director servers 920-922 and associated cloud - direc- PC , or other computer system 1026 to allow a cloud
tor databases 924-926 . Each cloud - director server or servers aggregation administrator or other user to access VCC
runs a cloud - director virtual appliance 930 that includes a server - provided aggregate - cloud distributed services . In
cloud - director management interface 932 , a set of cloud- general , the cloud computing facilities that together form a
director services 934 , and a virtual - data - center management- 5 multiple - cloud - computing aggregation through distributed
server interface 936. The cloud - director services include an services provided by the VCC server and VCC nodes are
interface and tools for provisioning multi - tenant virtual data geographically and operationally distinct .
center virtual data centers on behalf of tenants , tools and FIG . 11 illustrates a simple example of the generation and
interfaces for configuring and managing tenant organiza- collection of status , informational , and error data the dis
tions , tools and services for organization of virtual data 10 tributed computing system . In FIG . 11 , a number of com
centers and tenant - associated virtual data centers within the puter systems 1102-1106 within a distributed computing
multi - tenant virtual data center , services associated with system are linked together by an electronic communications
template and media catalogs , and provisioning of virtual- medium 1108 and additionally linked through a communi
ization networks from a network pool . Templates are virtual cations bridge / router 1110 to an administration computer
machines that each contains an OS and / or one or more 15 system 1112 that includes an administrative console 1114 .
virtual machines containing applications . A template may As indicated by curved arrows , such as curved arrow 1116 ,
include much of the detailed contents of virtual machines multiple components within each of the discrete computer
and virtual appliances that are encoded within OVF pack- systems 1102 and 1106 as well as the communications
ages , so that the task of configuring a virtual machine or bridge / router 1110 generate various types of status , infor
virtual appliance is significantly simplified , requiring only 20 mational , and error data that is encoded within event mes
deployment of one OVF package . These templates are stored sages which are ultimately transmitted to the administration
in catalogs within a tenant's virtual - data center . These computer 1112. Event messages are but one type of vehicle
catalogs are used for developing and staging new virtual for conveying status , informational , and error data , gener
appliances and published catalogs are used for sharing ated by data sources within the distributed computer system ,
templates in virtual appliances across organizations . Cata- 25 to a data sink , such as the administration computer system
logs may include OS images and other information relevant 1112. Data may be alternatively communicated through
to construction , distribution , and provisioning of virtual various types of hardware signal paths , packaged within
appliances . formatted files transferred through local - area communica

Considering FIGS . 7 and 9 , the VDC - server and cloud- tions to the data sink , obtained by intermittent polling of data
director layers of abstraction can be seen , as discussed 30 sources , or by many other means . The current example , the
above , to facilitate employment of the virtual - data - center status , informational , and error data , however generated and
concept within private and public clouds . However , this collected within system subcomponents , is packaged in
level of abstraction does not fully facilitate aggregation of event messages that are transferred to the administration
single - tenant and multi - tenant virtual data centers into het- computer system 1112. Event messages may be relatively
erogeneous or homogeneous aggregations of cloud - comput- 35 directly transmitted from a component within a discrete
ing facilities . computer system to the administration computer or may be

FIG . 10 illustrates virtual - cloud - connector nodes (“ VCC collected at various hierarchical levels within a discrete
nodes ”) and a VCC server , components of a distributed computer and then forwarded from an event - message - col
system that provides multi - cloud aggregation and that lecting entity within the discrete computer to the adminis
includes a cloud - connector server and cloud - connector 40 tration computer . The administration computer 1112 may
nodes that cooperate to provide services that are distributed filter and analyze the received event messages , as they are
across multiple clouds . VMware vCloudTM VCC servers and received , in order to detect various operational anomalies
nodes are one example of VCC server and nodes . In FIG . 10 , and impending failure conditions . In addition , the adminis
seven different cloud - computing facilities are illustrated tration computer collects and stores the received event
1002-1008 . Cloud - computing facility 1002 is a private 45 messages in a data - storage device or appliance 1118 as large
multi - tenant cloud with a cloud director 1010 that interfaces event - message log files 1120. Either through real - time
to a VDC management server 1012 to provide a multi - tenant analysis or through analysis of log files , the administration
private cloud comprising multiple tenant - associated virtual computer may detect operational anomalies and conditions
data centers . The remaining cloud computing facilities for which the administration computer displays warnings
1003-1008 may be either public or private cloud - computing 50 and informational displays , such as the warning 1122 shown
facilities and may be single - tenant virtual data centers , such in FIG . 11 displayed on the administration - computer display
as virtual data centers 1003 and 1006 , multi - tenant virtual device 1114 .
data centers , such as multi - tenant virtual data centers 1004 FIG . 12 shows a small , 11 - entry portion of a log file from
and 1007-1008 , or any of various different kinds of third- a distributed computer system . In FIG . 12 , each rectangular
party cloud - services facilities , such as third - party cloud- 55 cell , such as rectangular cell 1202 , of the portion of the log
services facility 1005. An additional component , the VCC file 1204 represents a single stored event message . In
server 1014 , acting as a controller is included in the private general , event messages are relatively cryptic , including
cloud - computing facility 1002 and interfaces to a VCC node generally only one or two natural - language sentences or
1016 that runs as a virtual appliance within the cloud phrases as well as various types of file names , path names ,
director 1010. A VCC server may also run as a virtual 60 and , perhaps most importantly , various alphanumeric
appliance within a VDC management server that manages a parameters . For example , log entry 1202 includes a short
single - tenant private cloud . The VCC server 1014 addition- natural - language phrase 1206 , date 1208 and time 1210
ally interfaces , through the Internet , to VCC node virtual parameters , as well as a numeric parameter 1212 which
appliances executing within remote VDC management serv- appears to identify a particular host computer .
ers , remote cloud directors , or within the third - party cloud 65 There are a number of reasons why event messages ,
services 1018-1023 . The VCC server provides a VCC server particularly when accumulated and stored by the millions in
interface that can be displayed on a local or remote terminal , event - log files or when continuously received at very high

5

US 10,997,009 B2
15 16

rates during daily operations of a computer system , are ties of data obtained by the above - discussed event - message
difficult to automatically interpret and use . The volume of generation , collection , and logging is enormous . Identifying
data present within log files generated within large , distrib- relevant data and data patterns within these large datasets is
uted computing systems . As mentioned above , a large , difficult , particularly in view of the continuous generation of
distributed computing system may generate and store tera- new . Second , while certain values of value ranges observed
bytes of logged event messages during each day of opera- for individual types of data , refereed to as “ metrics , ” may be
tion . This represents an enormous amount of data to process . useful for detecting anomalous system states and behaviors ,
Event messages are generated from many different compo- it is most often the case that particular data values or
nents and subsystems at many different hierarchical levels data - value ranges for sets of different metrics provide the
within a distributed computer system , from operating system 10 most useful and specific indications of anomalous system
and application - program code to control programs within states and behaviours . Identifying the sets of metrics , and the
disk drives , communications controllers , and other such data values or data - value ranges for the metrics , that spe
distributed - computer - system components . Even within a cifically indicate system events and states which an auto
given subsystem , such as an operating system , many differ- mated system - monitoring subsystem would desirably detect
ent types and styles of event messages may be generated , 15 and for which the automated system - monitoring subsystem
due to the many thousands of different programmers who would desirable initiate ameliorative actions and / or provide
contribute code to the operating system over very long time alerts and warning , initiate ameliorative actions . The cur
frames . In many cases , event messages relevant to a par- rently disclosed methods and systems automatically identify
ticular operational condition , subsystem failure , or other sets of metrics and corresponding metric values and / or value
problem represent only a tiny fraction of the total number of 20 ranges that represent incidents , anomalous system states ,
event messages that are received and logged . Searching for and other operational behaviours and events from collected
these relevant event messages within an enormous volume metric data . The automatically identified sets of metrics and
of eve messages continuously streaming into an event- corresponding metric values and / or value ranges can be
message - processing - and - logging subsystem of a distributed subsequently detected in the continuously generated and
computer system may be a significant computational chal- 25 collected metric data to detect and identify particular types
lenge . Storing and archiving event logs may itself represent incidents , anomalous system states , and other operational
a significant computational challenge . Given that many behaviours and events , in real time , and provide indications
terabytes of event messages may be collected during the of the types of detected incidents , anomalous system states ,
course of a single day of operation of a large , distributed or other operational behaviours or events . The identified
computer system , collecting and storing the large volume of 30 types may be associated with various automatically gener
information represented by event messages may represent a ated or manually recorded notes and indications for reme
significant processing - bandwidth , communications - subsys- diation that facilitate a monitoring subsystem's response to
tems bandwidth , and data - storage - capacity challenge , par detection of detected incidents , anomalous system states , or
ticularly when it may be necessary to reliably store event other operational behaviours or events .
logs in ways that allow the event logs to be subsequently 35 In a given distributed computing system , many types of
accessed for searching and analysis . status , informational , and error data may be collected , pro
FIG . 13 illustrates one initial event - message - processing cessed for storage , and stored in a variety of different ways .

approach . In FIG . 13 , a traditional event log 1302 is shown To facilitate the following discussion , and to provide a
as a column of event messages , including the event message useful level of generality , the details of the generation ,
1304 shown within inset 1306. Automated subsystems may 40 transmission , collecting , and initial processing of status ,
process event messages , as they are received , in order to informational , and error data within a distributed computing
transform the received event messages into event records , system are abstracted as the generation of time sequences of
such as event record 1308 shown within inset 1310. The metric data from a generally large set of metric - data sources ,
event record 1308 includes a numeric event - type identifier as next discussed with reference to FIGS . 14A - C . As shown
1312 as well as the values of parameters included in the 45 in FIG . 14A , the status , informational , and error data is
original event message . In the example shown in FIG . 13 , a generated by P different data sources , including data source
date parameter 1314 and a time parameter 1315 are included S1 1402 , with each data source referred to by a data - source
in the event record 1308. The remaining portions of the name SX , where X is an integer . Ellipses 1402 indicate that
event message , referred to as the “ non - parameter portion of there may be additional data sources between data source
the event message , ” is separately stored in an entry in a table 50 S10 and data source SP . The phrase " data source ” refers to
of non - parameter portions that includes an entry for each any component or subcomponent of the distributed comput
type of event message . For example , entry 1318 in table ing system that generates at least one type of status , infor
1320 may contain an encoding of the non - parameter portion mational , or error data . Processor - controlled components
common to all event messages of type a 12634 (1312 in FIG . and subcomponents may directly generate digitally encoded
13) . Thus , automated subsystems may transform traditional 55 data that is communicated to one or more data sinks . Other
event logs , such as event log 1302 , into stored event records , types of components and subcomponents may produce vari
such as event - record log 1322 , and a generally very small ous types of analog or digital electrical signals , optical
table 1320 with encoded non - parameter portions , or tem- signals , and / or mechanical signals that are subsequently
plates , for each different type of event message . translated into digitally - encoded data for transmission and

60 storage . Each metric corresponds to a single type of numeri
Currently Disclosed Methods and Systems cal value produced by a single component or subcomponent .

In the case that a physical component or subcomponent
Despite the great amount of detailed information , includ- produces two or more different types of numerical values ,

ing many types of status , informational , and error data each of the two or more different types of numerical values
collected from event messages and other types of data 65 is considered to be a separate metric and the physical
sources , identifying anomalous operational states and component or subcomponent is represented by two or more
behaviors remains a challenging problem . First , the quanti- data sources , each associated with one of the two or more

US 10,997,009 B2
17 18

metrics . Thus , in a system that included three data - generat- running - time - average calculation used to fit all of the met
ing components that each generates three different types of rics to the common temporal alignment . Many other
numeric values , FIG . 14C would show nine data sources Si , approaches can be used to temporally aligned metric data
S2 , S9 that each produces a different metric value at values , including various curve - fitting techniques , linear
various time points . 5 extrapolation , and non - linear extrapolation .

In FIG . 14A , each data source is shown to produce a FIG . 14C illustrates the preprocessed metric data follow
sequence of data values corresponding to a metric . For ing temporal alignment . The metric data values form a
example , data source S1 1402 has produced data values regular two - dimensional grid . At each time point , there is a
1404-1411 , and likely many additional data values beyond metric data value for each of the P data sources . The metric
arrow 1412. As shown by the time axis 1414 on the 10 data values at a particular time point can be considered to be
right - hand side of FIG . 14A , the vertical position of each a P - dimensional observation .
data value , such as the data value Vp 1416 , corresponds to FIG . 15 illustrates the equivalence between an observa
points in time , such as the time point t ; 1418 at which the tion made at a particular time point and a P - dimensional
data value Vp 1416 was emitted by data source SP 1420. In vector in a P - dimensional space . In the example shown in
many distributed computer systems , the various data sources 15 FIG . 15 , there are only three metrics S1 , S2 , and S3 , and thus
may emit data values periodically , and the data - value- P = 3 . Each metric is considered to be a dimension , and so the
emission period may be similar or identical for the various three Cartesian axes 1502 , 1503 , and 1504 are each assigned
different data sources . In other distributed computer sys- to one of the metrics . Each observation is a tuple of 3 metric
tems , data sources may emit data values nonperiodically and data values 1506 which , when used as components of a
the times at which a given data source emits data values may 20 vector , describes a vector 1508 in the P - dimensional metric
be synchronized with respect to the times at which another space .
data source emits data values . In certain cases , a data- FIG . 16 illustrates representation of observations , each
collection computational entity may poll data sources for consisting of a set of metric data values for each data source
data values at regular intervals while , in other cases , the data obtained at , or calculated for , a particular time point , as a
sources may actively transmit data values at periodic inter- 25 matrix . As discussed above , each row of metric data values ,
vals or , alternatively , whenever data values become avail- such as row 1602 , for a particular time point , such as time
able . However , for the types of processing carried out by the point ti 1604 , may be considered to be a P - dimensional
currently disclosed methods and systems , it is convenient to vector 1606 , referred to as an “ observation . ” A sequence of
ensure that the data values for all metrics are logically N observations can be organized as an NxP matrix " 1608
emitted in a strictly periodic fashion and that the transmis- 30 in which each row represents an observation and in which
sion of data values is synchronized among all of the metrics . each column represents a time sequence of data values for a
FIG . 14B illustrates one method for temporally aligning particular metric . Again , the time point corresponding to an

and synchronizing metric data emitted by various different observation is inferred from the row index of the observation
data sources within a distributed computing system . First , since the observations represent a time sequence with a
the desired metric - data - emission interval and the corre- 35 uniform time interval between successive observations .
sponding time points are selected . This is shown in FIG . 14B Alternatively , the transpose of matrix Ý , Ý , 1610 , can be
by the horizontal time axis 1426 that is divided into uniform considered to include column vectors representing observa
time intervals bracketed by a sequence of evenly spaced tions .
time points , beginning with time point to 1428 at the origin FIG . 17 illustrates scaling and normalization of the set of
1430 of the plot 1432 shown in FIG . 14B . The sequence of 40 observations represented by the matrix X. Several statistical
data values emitted by a data source are shown in FIG . 14B parameters are computed for each time sequence of metric
as a time ordered sequence of data points , such as data point data values for particular metrics , such as the metric data
1434 , plotted in a two - dimensional plot 1432 in which the values for the second metric contained in the second column
vertical axis 1436 represents the value or magnitude of the 1702 of the matrix X 1704 , including the average uz 1706 ,
metric data points . As can be seen by comparing the loca- 45 the variance 0,2 1708 , and the standard deviation 0 , 1710 .
tions of the initial plotted metric data values 1438-1442 with Then , for each column j , each metric data value in the
respect to the dashed vertical lines , such as dashed vertical column can be scaled and normalized by subtracting the
line 1444 , coincident with time points to - t4 , the metric data average metric data value from the metric data value and
values are not strictly periodic in time they do not exactly dividing by the standard deviation 1712. When this is done
fall at the selected time points . However , using a running- 50 for every element in the matrix , a scaled and normalized
time - average type of calculation , a metric data value for matrix X 1714 is produced .
each selected time point can be estimated . The equation FIGS . 18 and 19 illustrate eigenvectors and eigenvalues .
1446 in FIG . 14B illustrates computation of the estimated A 3x3 matrix A 1802 and a column vector u 1804 are shown
metric data value 1448 corresponding to time point t? 1450 , at the top of FIG . 18. When u is an eigenvector of the matrix
which turns out to be 13.03 . The running - time - average 55 A , then equation 1806 expresses the relationship of the
calculation computes the average metric data value within a eigenvector u and its corresponding eigenvalue , which is
time window symmetric about the time point in question . In a constant or scaler . This equation is expanded in matrix
the case of time point t2 1450 , the time window is repre- form as matrix equation 1808. Using a set of simple matrix
sented by the double - headed arrow 1452. The running - time- algebra manipulations 1810 and 1812 of equation 1806 , it
average calculation is a type of low - pass filter that tends to 60 can be shown that either the eigenvector u can be generated
smooth the curve produced by linking adjacent data points . by multiplying the inverse of the matrix A - XI , where I is the
In certain cases , there may be a natural time periodicity in identity matrix , by the column vector 0 1814 or that the
the majority of metric data values , and the running - time- inverse of the matrix A - al does not exist , as expressed by
average calculation can be used to fit those metrics that do the fact that the determinant of this matrix is 0 1816. Only
not follow the natural time periodicity to a common tem- 65 the latter proposition is reasonable , which indicates that , by
poral alignment . In other cases , a common temporal align- solving the polynomial equation 1904 shown in FIG . 19 ,
ment may be more or less arbitrarily selected and the obtained from the expression 1816 via expansion 1902 of

US 10,997,009 B2
19 20

expression 1816 , the eigenvalues for the matrix A can be original metrics as a linear combination of the original
found . Because the polynomial equation 1904 is of order 3 , metrics . The data values corresponding to the new set of
the dimension of u , there are generally 3 eigenvalues , metrics , contained in a factor score matrix F , which is
although one or more of the roots of equation 1904 may be defined to be generated from the original metric data values
degenerate . The matrix equation 1906 expresses the rela- 5 stored in the matrix X by multiplying the matrix X from the
tionship between the matrix A , a matrix U in which each right by the matrix Q , which contains the principal compo
column is one of the eigenvectors of the matrix A , and the nents as column vectors 2018 , under the constraints that the
matrix A , which is a diagonal matrix in which the elements matrix F ? F = Q7X + XQ is a diagonal matrix 2020 and that the
along the diagonal are the eigenvalues of the matrix A in the matrix Q is orthogonal 2022. By using the technique of
order of the corresponding eigenvectors in the matrix U. 10 Lagrangian multipliers , it can be shown that XTX = QAQ "
Multiplying each side of equation 1906 from the right by the 2024 , where A is a diagonal matrix of Lagrangian multipli
inverse of matrix U , U - 1 , produces equation 1908. When the ers , which leads to expression 2026. Thus , determining the
matrix A is the product of a matrix X and its transpose X ” , principal components , which is equivalent to determining
as shown in expression 1910 , the eigenvalues of matrix are the matrix Q , reduces to a problem of determining the
positive real numbers 1911 , the eigenvectors of matrix are 15 eigenvectors and eigenvalues of the matrix X + x . With the
orthogonal 1912 when their corresponding eigenvalues are matrix Q in hand , the coordinate transformation that takes
not equal , and the inverse of matrix U , U- ?, is equal to the the original scaled and normalized metric data values in the
transpose of matrix U , UT 1913. Thus , when matrix A is the matrix X to the data values for a new set of metrics referred
product of a matrix X and its transpose XT , matrix A is equal to as principal components , stored in the matrix F , is carried
to the matrix A multiplied from the left by the matrix U and 20 out by multiplying the matrix X from the right by the matrix
multiplied from the right by the transpose of matrix U , U ?. Q , as expressed in expression 2018 .
While a 3x3 matrix example is used in FIGS . 18-19 , the FIG . 20B illustrates computation of principal - component
above - described characteristics of eigenvectors and eigen- metric data values and dimensional reduction . In the top
values apply to matrices of arbitrary dimension . portion of FIG . 20B , the computation of a first principal

The principal - component - analysis (“ PCA ”) method , next 25 component - metric data value for the first principal compo
discussed with reference to FIGS . 20A - B , represents a nent , F11 2030 in the factor - score matrix F 2032 , by com
change of basis vectors for the scaled and normalized puting the dot product of the first row 2034 in the matrix X
observations organized into the matrix X 1714 , discussed 2036 and the first column 2038 in the matrix Q 2040 , is
above with reference to FIG . 17. As shown in the 3 - dimen- shown in expression 2042. Thus , each new principal - com
sional plot 2002 in FIG . 20A , the distribution of observa- 30 ponent metric data value for an observation is a linear
tions , or observation data points , corresponding to the rows combination of all of the original metric data values for the
of the matrix X or columns of the matrix XT , in the case of observation .
a 3 - dimensional metric space , such as that shown in FIG . 15 , The currently disclosed methods and systems use the
may fall within an ellipsoidal volume 2004 within the principal - component - analysis technique , discussed above
3 - dimensional metric space . As shown in plot 2002 of FIG . 35 with reference to FIGS . 20A - B , in order to reduce the
20A , the ellipsoidal volume has major and minor axes that dimensionality of a set of observations , each including a
are not coincident with the axes corresponding to metrics S1 metric data value for each of the metrics generated within a
2006 , S2 2007 , and S3 2008. A basis - vector change , equiva- distributed computer system . In addition to the eigenvectors /
lent to a set of coordinate changes , may be desired so that a eigenvalue decomposition method discussed above , there
set of new coordinate axes , corresponding to what is referred 40 are other methods for obtaining the factor - score matrix F and
to as “ principal components , ” (“ PCs ”) , can be found . The the matrix Q , including the singular - value - decomposition
new coordinate axes are aligned with the major and minor method and the Graham - Schmidt orthogonalization method .
axes of the ellipsoidal volume representing the distribution As discussed above with reference to FIG . 20A , the princi
of observations in 3 - dimensional space . Moreover , principal pal components are ordered in descending order with respect
component PC1 2010 is aligned with the major axis of the 45 to the variability of the principal - component metric data
ellipsoidal volume , principal component PC2 is aligned with values in the P - dimensional principal - component metric
the longer of the 2 minor axes 2011 of the ellipsoidal space . By retaining only an initial subset of the principal
volume , and principal component PC3 2012 is aligned with components in a truncated factor - score matrix F 2044 , a
the shorter of the 2 minor axes of the ellipsoidal volume . The large fraction of the variability in the dataset is retained in
basis vectors corresponding to the principal components of 50 a projection of the P - dimensional principal - component met
the new coordinate axes are contained as columns in a ric space to a P ' - dimensional principal - component metric
matrix Q 2016. The principal components correspond to the space . In the example shown in FIG . 20B , P = 4 . Dimen
directions of greatest variability within the ellipsoidal vol- sional reduction facilitates subsequent dataset processing .
ume in decreasing order of variability and the basis vectors The computational complexity of the subsequent data - set
corresponding to the principal components are orthogonal . 55 processing generally increases exponentially with respect to
In general , the bulk of the variability within a distribution of the number of dimensions , so by decreasing the dimension
observations can be largely explained in terms of , or ality using principal - component analysis , the computational
expressed as a function of , an initial subset of the principal complexity of the subsequent data - processing steps is
components . For example , in the distribution shown in FIG . greatly reduced without losing much of the information in
20A , were the ellipsoidal volume projected onto a plane 60 the dataset related to the distribution of observations in the
normal to the third principal component 2012 , the majority P - dimensional principal - component metric space .
of the variability in the distribution of observations would be Once the dimensionality the dataset has been reduced ,
apparent in the resulting two - dimensional ellipsoid with using the principal - component - analysis technique , certain of
major axis corresponding to the first principal component the currently disclosed methods and systems employ a
2010 and minor axis corresponding to the second principal 65 modified K - means clustering technique or another clustering
component 2011. In essence , the principal components can technique in order to identify outlier observations within the
be viewed as a new set of metrics each derived from the dataset that likely correspond to abnormal states . This allows

US 10,997,009 B2
21 22

for automatically labeling observations as either normal or that the set of outlier data points in FIG . 21B could just as
abnormal . Once the observations are so labeled , various easily have been identified as a cluster . In fact , as shown in
types of machine - learning techniques can be applied to the subsequently discussed figures , the clustering shown in FIG .
labeled dataset to train a monitoring subsystem to automati- 21B represents a decidedly non - optimal clustering that rep
cally recognize abnormal system states and operational 5 resents a local minimum within the hyper - dimensional sur
incidents from continuously collected and processed metric face of all possible clusterings .
data . FIG . 21C shows a clustering obtained for the dataset

FIGS . 21A - I and FIGS . 22A - B illustrate data - set cluster- illustrated in FIG . 21A when K = 3 , L = 10 , and P = 2 is input
ing using a modified K - means clustering process . The two to the modified K - means clustering process . The same points
examples used in these two sets of figures are two - dimen- 10 identified as outliers in the clustering shown in FIG . 21B are
sional , for ease of illustration . As discussed further , below , again identified as outliers in the clustering process illus
both modified K - means clustering process the other pro- trated in FIG . 21C . This is , in part , because at least two of
cesses , techniques , and computational steps used by the the starting cluster centers are the same as in the clustering
currently disclosed systems and methods are straightfor- process that produced the results shown in FIG . 21B . FIG .
wardly extended to higher - dimensional datasets . Indeed , a 15 21D shows a clustering obtained for the dataset illustrated in
simple C ++ implementation of one example of a modified FIG . 21A when K = 3 , L = 2 among all 0 , and P = 2 is input to
K - means clustering process , provided below , carries out the modified K - means clustering process . In this case ,
clustering in a metric - data space of arbitrary dimension . because the number of desired outliers doubled , the 3
FIG . 21A illustrates a first example two - dimensional clusters contain fewer data points .

dataset . Each data point , such as data point 2102 , represents 20 FIGS . 21E - F show clustering obtained for the dataset
an observation that includes data values for 2 metrics . The illustrated in FIG . 21A when K = 2 , L = 10 , and P = 2 are input
first metric is represented by the horizontal axis 2103 and the to the modified K - means clustering process , but when dif
second metric is represented by the vertical axis 2104. Each ferent starting points for the process are used . In fact , 10
data point is thus the head of a two - dimensional vector . different sets of starting points were used to produced 10

The modified K - means clustering process receives , as 25 additional clusterings , and the clustering shown in FIGS .
input : (1) K , an integer specifying the desired number of 21E - F were associated with the smallest errors . 5 of the 10
clusters ; (2) L , an integer specifying the desired number of outliers identified in the two clusterings shown in FIGS . 2
outlier data points ; (3) P , an integer specifying of the number E - F , labeled 2120-2124 in FIG . 21F , are identical , illustrat
of dimensions , or metrics ; (4) a distance function that ing the fact that , by carrying out multiple clusterings with
computes the distance between any two locations in a 30 different starting points and choosing clusterings with the
P - dimensional metric space ; and (5) a dataset that includes lowest associated errors , it may be possible to converge on
NP - dimensional observations . The modified K - means clus- a global minimum or at least a local minimum with a
tering process than identifies locations of each of K clusters relatively low error , in which case outlier identification may
of data points and identifies L outlier data points , with each become increasingly accurate .
data point in the P - dimensional dataset either belonging to 35 FIGS . 21G - I show three clusterings obtained for the
one of the K clusters or identified as one of the L outliers . dataset illustrated in FIG . 21A when K = 4 , L = 10 , and P = 2 is
The modified K - means clustering process does not neces- input to the modified K - means clustering process and when
sarily find an optimal clustering , where the optimal cluster- a different set of starting cluster centers are used for each
ing would have a minimum sum of squared distances of the cluster . The three clusterings shown in FIGS . 21G - I are the
data points belonging to the K clusters to their cluster 40 three clusterings out of ten clusterings with the lowest errors .
centers . However , the modified K - means clustering process In this case , it does appear that selecting clusterings with the
is guaranteed to converge on a locally optimal clustering . lowest errors from a series of repeated clusterings with

Prior to discussing the modified K - means clustering pro- different initial cluster centers may represent an approach to
cess , a number of examples of clustering and outlier iden- identifying either a globally optimal clustering or a locally
tification produced by the modified K - means clustering 45 near - optimal clustering .
process are first discussed . FIG . 21B shows a clustering In the example of FIGS . 21A - I , the distribution of data
obtained for the dataset illustrated in FIG . 21A when K = 2 , points , or observations , do not exhibit much in the way of
L = 10 , and P = 2 is input to the modified K - means clustering easily identifiable clustering . FIG . 22A shows a second
process . In FIG . 21B , as in subsequently discussed figures , example two - dimensional dataset , using the same illustra
the identified centers of the clusters are marked with x - like 50 tion conventions as used in FIG . 21A , which exhibits an
symbols 2106 and 2107. The two clusters 2108 and 2109 are obviously nonuniform distribution of observations that
each indicated by a dashed boundary 2111 and 2112 , as are includes two apparent initial clusters of data points . Ten
the clusters in subsequently discussed figures . Those data different clusterings with K = 2 , L = 10 , and P = 2 , using dif
points which do not lie within the boundary of the cluster , ferent initial cluster centers , all produced nearly identical
such as data point 2113 , are outlier data points . For many of 55 clusterings with a very tight range of errors . This is illus
the clusterings shown in the figures , an error is reported , trated in FIG . 22B . A first cluster 2202 was identically
such as the error 2114 reported for the clustering shown in identified in all ten clusterings . A second cluster 2204 was
FIG . 21B . This is the square root of the sum of the squares nearly identical in all ten clusterings . In one of the ten
of the distances of each data point within a cluster to that clusterings , data point 2206 was included in cluster 2204
cluster's center . Were the input value K equal to the number 60 while data point 2208 was identified as an outlier , while in
of observations N and the input value L equal to 0 , the nine of the ten clusterings , data point 2208 was included in
modified K - means clustering process would return K clus- cluster 2204 while data point 2206 was identified as an
ters , each with a center equal to an observation and with an outlier . The remaining eight outliers were identically iden
error of O. Were the input value K equal to 1 and the input tified in all clusterings . As shown in FIG . 22B , the error
value L equal to 0 , the modified K - means clustering process 65 range 2210 over the ten clusterings was quite narrow . Thus ,
would return a single cluster with a center equal to the when the distribution of observations within a metric space
centroid of the distribution of data points . It would appear is inherently clustered , the modified K - means clustering

US 10,997,009 B2
23 24

process quickly and accurately converges on a very good compares the magnitudes of two distances within two Dis
near - optimal clustering or optimal clustering . Because the tIndex data structures and returns 1 if the first distance is less
currently disclosed methods and systems employ the modi- than the second distance , returns (if the first distance is
fied K - means clustering method to identify outlier observa- equal to the second distance , and returns -1 if the first
tions , the K value input to the clustering process does not 5 distances greater than the second distance . These values
necessarily need to reflect the number of inherent clusters allow quicksort to sort an array of DistIndex structures in
within the observation distribution , but only needs to be descending order by distance . The member function “ clus
sufficiently low to avoid artifacts and meaningless cluster- ter ” implements of the modified K - means clustering process
ings with low error values . discussed above with reference to FIGS . 21A - 22B . The
FIGS . 23A - G provide a simple C ++ implementation of 10 member function " cluster ” receives , as input arguments , a

one version of the modified K - means clustering process . A pointer to the dataset 2332 , the number of data points in the
first set of constants 2302 in FIG . 23A specify the maximum dataset 2333 , the number of dimensions of the dataset 2334 ,
expected values for arguments to the clustering methods , a pointer to a distance function 2335 , the desired number of
including the maximum expected number of dimensions , clusters 2336 , and the desired number of outlier data points
number of desired clusters , number of desired outliers , and 15 2337. In a first set of statements 2338 , the input arguments
number of observations in the dataset . The constant “ Thresh- are stored in local data members . The local - data - member
old ” 2303 is the minimum shift in a cluster center between pointer clusters is initialized to point to the array clusters1
iterations of the clustering process that provokes a next and the local - data - member pointer newClusters is initialized
iteration . It is this parameter that controls when a clustering to point to the array clusters2 in the next two statements
is determined to have converged . The type definition “ Point ” 20 2339. The initialization routine is called in statement 2340 .
2304 defines a data type that contains the coordinates for a Then , the member function random InitialClusters is called ,
data point . The type definition “ DistIndex ” 2305 defines a in statement 2341 , to select an initial set of data points , the
data type that contains the distance between a data point and locations of which are assigned as the centers of an initial set
its cluster center as well as an index or identifier of the data of K clusters . In statement 2342 , the member function
point . The type definition “ Dist ” 2306 defines a pointer to a 25 clusterDataPoints is called to assign all of the data points to
distance function that is applied by the clustering methods the initial set of clusters , the centers for which were selected
for calculating distances between data points and other in the previous statement . Then , in the while - loop 2343 , new
locations in the transformed - metric space . cluster centers are computed via a call to the member
FIG . 23B includes the declaration of a class " clustered- function re - cluster , in statement 2344 , and the member

Data . ” This class includes the data members : (I) dataPoints 30 function convergence is called , in statement 2345 , to deter
2307 , a pointer to a dataset ; (2) numDataPoints 2308 , the mine whether or not clustering has converged around the
number of data points in the dataset : (3) dist 2309 , a pointer current set of cluster centers . One clustering has converged ,
to the distance function used to compute distances between the member function cluster terminates . Otherw in the set
data points ; (4) k 2310 , the number of desired clusters ; (5) of statements 2346 , the cluster - center arrays pointed to by
12311 , the number of desired outliers ; (6) numD 2312 , the 35 the pointers clusters and newCluster are switched , and the
number of dimensions of the dataset ; (7) clusters 2313 , a member function clusterDataPoints is called , in statement
pointer to a current set of cluster centers ; (8) newClusters 2347 , to recluster the data points around the new cluster
2314 , a pointer to a next set of cluster centers ; (9) split 2315 , centers computed by the member function recluster , in
the number of data points in a sorted list of data points statement 2344. Thus , the modified K - means clustering
having the same distance to their cluster center following a 40 process is relatively straightforward . An initial set of K
data point identified as the first non - outlier data point ; (10) cluster centers is selected , the data points are clustered with
clusters1 2316 , an array of cluster centers ; (11) clusters 2 respect to the initial set of K cluster centers , and then the
2317 , an array of cluster centers ; (12) minOutlierDistance modified K - means clustering process iteratively computes
2318 , the minimum distance of an outlier data point from a new cluster centers and reclusters the data points about the
cluster center ; (13) already 2319 , an array of Boolean values 45 new cluster centers until the process converges on a set of
indicating whether or not corresponding data points have cluster centers that represent a local minimum , in most
been selected for initial cluster centers ; (14) distances 2320 , cases , but may fortuitously represent a global minimum .
an array that includes the distances of data points from the FIG . 23D provides implementations of the initialization
cluster centers along with an index for each data point ; (15) member function init and the member function randomIni
indexedDistances 2321 , an array of distances of data points 50 tialClusters . The initialization routine 2356 sets all the
from their cluster centers ; and (16) clusters Assignments elements of the array already to FALSE . The member
2322 , an array that contains indications of the cluster to function randomInitialClusters randomly selects K data
which each data point has been assigned . points , the locations of which become initial cluster centers ,

The class “ clusteredData " includes the following member in the while - loop 2351. An index of a next data point is
functions : (1) init 2323 , an initialization routine ; (2) rando- 55 randomly selected , in statement 2352 , and , provided that the
mInitailClusters 2324 , a method that randomly selects K data point is not already been used as a cluster center , as
data points as the initial cluster centers ; (3) clusterData- determined in statement 2353 , places the coordinates of the
Points 2325 , a method that assigns data points to a set of data point into the array " clusters ” as a next cluster center in
cluster centers , and thus clusters the data points ; (4) recluster the for - loop 2354 .
2326 , a method that determines new cluster centers as the 60 FIG . 23E shows an implementation of the member func
centroids of a set of current clusters ; (5) convergence 2327 , tion clusterDataPoints . In for - loop 2356 , each data point is
a routine that determines whether or not the clustering assigned to a cluster . In the for - loop , all of the cluster centers
process has converged ; and (6) cluster 2328 , the method that are considered in order to find the cluster center closest to
represents the modified K - means clustering process . the currently considered data point . The distance of a data
FIG . 23C shows implementations of a function " com- 65 point to its cluster center is recorded and the cluster assign

pare , ” used in a quicksort of data points distances and the ment is recorded in the set of statements 2358. In statement
member function “ cluster . ” The function " compare ” 2330 2359 , the distances of the data points to their respective

US 10,997,009 B2
25 26

cluster centers is sorted in descending order by a quicksort a normal observation and the label A indicates an abnormal
routine . In statement 2360 , the minimum outlier distance is observation . These labels may be obtained from the above
determined as the Lth distance in the sorted array of dis- discussed modified K - means clustering technique , with the
tances of data points to their cluster centers . The first L abnormal observations corresponding to outliers . Of course ,
distances in the sorted array of distances correspond to the 5 in a real - world metric - data - processing system , a training
identified L outlier data points , which are , by definition , the dataset may contain tens of thousands , hundreds of thou
data points furthest away from a cluster center . Finally , in the sands , millions , or more observations .
set of statements 2361 , the data member split is set to the One type of decision - tree - based machine learning tech
number of distances in the array of sorted distances equal to nique builds a decision tree from a labeled training dataset
the minimum outlier distance that follow the Lth distance in 10 by successively partitioning the dataset based with respect to
the array . Thus , clustering of data points is a straightforward different , selected . This technique generates a decision tree
process in which data points are assigned to the clusters with which can then be used to evaluate an unlabeled observation
centers nearest to them and the L data points furthest away to determine whether or not the unlabeled observation is
from cluster centers are identified as outliers . normal or abnormal . The process of constructing a decision
FIG . 23F provides an implementation of the member 15 tree is illustrated in FIGS . 24B - F . In a first step , a decision

function recluster . In the for - loop 2363 , the two - dimensional is made as to which attribute to first use to partition the
array sum is initialized to 0 and the array kCount is initial- dataset . In FIG . 24B , four different trees 2410-2413 repre
ized to 0. The two - dimensional array sum stores the sums of sent the dataset partitionings that can be carried out with
the coordinate components of the data points in each cluster respect to each of the four different attributes A , B , C. and
and the array kCount stores a count of the number of data 20 D. The root node of each tree includes a rule , based on one
points in each cluster . In the for - loop 2364 , all of the data of the attributes , that can be applied to the observations in
points are considered . In a first set of statements 2365 , the the dataset . For example , in tree 2410 , the root node contains
local variable valid is set to TRUE if the currently consid- the rule “ As20 . ” When this rule is applied to the 15
ered data point is not an outlier , and is otherwise set to observations shown in table 2402 , the 15 observations are
FALSE . If the data point is not an outlier data point , each of 25 partitioned into two groups represented by tree nodes 2415
its coordinate components is added to the sum of coordinate 2416. There are two abnormal observations , observations 2
components for the data points in its cluster and the number and 8 , that include a value for attribute A less than or equal
of data points in the cluster is incremented , in the set of to 20 and there are no normal observations that include a
statements 2366. In a final doubly nested for - loop 2367 , all value for attribute A less than or equal to 20 , as indicated in
of the sums of coordinate data points are divided by the 30 the interior labeling of node 2415. There are two abnormal
number of data points in the cluster in order to compute the observations and 11 normal observations , as indicated by
centroid of each cluster , and the centroid of each cluster is labeling in node 2416 , that include a value for attribute A
stored as a new cluster center in the array of cluster centers greater than 20. Trees 2411-2413 illustrates the partitionings
referenced by the pointer newClusters . Thus , the member that can be carried out with respect to attributes B , C , and D.
function recluster computes new cluster centers for each 35 Of the four different dataset partitionings represented by
cluster as the centroid of the data points currently assigned trees 2410-2413 , the partitioning represented by tree 2410 is
to the cluster . best , and is therefore selected as the first partitioning , as
FIG . 23G shows implementations of the member function indicated by the arrow 2417 that points to tree 2410. In

convergence and a distance function . The member function general , the best partitioning most effectively separates the
convergence 2370 determines whether the center of any 40 abnormal observations from the normal observations .
cluster has moved more than a threshold distance during the The partitioning represented by tree 2410 generates a
last clustering iteration and , if so , returns the Boolean value partition , represented by node 2415 , that contains only
FALSE to indicate that clustering has not converged . Oth- abnormal observations . None of the other partitionings so
erwise , the Boolean value TRUE is returned . The distance cleanly partition abnormal from normal observations . As
function 2371 computes the Euclidean distance in the trans- 45 shown in FIG . 24C , tree 2410 is selected as the initial set of
formed metric space between two data points or trans- connected nodes for the decision tree 2420. The root node
formed - metric - space locations . The statement 2372 illus- 2421 contains the rule , the left - hand node 2422 represents
trates declaration of an instance of the class “ clusteredData . ” those observations for which the value of attribute A is less
Statement 2373 illustrates invocation of the modified than or equal to 20 , and right - hand node 2423 represents
K - means clustering process by calling the public member 50 those observations for which the value of attribute A is
function cluster of an instance of the class clusteredData . greater than 20. Because node 2422 contains only abnormal

There are many different machine - learning techniques observations , the data represented by this node requires no
that can be used for developing pattern - matching systems , further partitioning . However , node 2423 represents a set of
data - classification systems , and other types of systems that observations that include both abnormal and normal obser
learn to make complex decisions and characterizations by 55 vations , and this set of observations thus needs to be further
being trained with labeled training data . FIGS . 24A - F illus- partitioned in order to separate abnormal from normal
trates a machine learning technique based on decision trees . observations . Trees 2424-2426 represent three partitionings
FIG . 24A shows a labeled training dataset based on a of the dataset represented by node 2423 based on the
PCA - transformed and dimensionally reduced set of metric- remaining three attributes B , C , and D. As indicated by
data - based observations . Table 2402 contains 15 rows , 60 arrow 2427 , the tree containing a rule based on attribute C
including a first row 2404 , each of which represents an provides a more effective partitioning than that represented
observation . Table 2402 includes four columns , including a by tree 2424 and is equally effective to the partitioning
first column 2406 , that each represents a principal compo- represented by tree 2426. This tree is arbitrarily selected
nent , or transformed metric . These principle components from among trees 2425 and 2426 for the next level of
may be referred to as " attributes . ” There are four principal 65 partitioning to be included in the decision tree .
components designated A , B , C , and D. A fifth column 2408 The resulting decision tree is shown in FIG . 24D . Node
includes a label for each observation . The label N indicates 2430 includes only normal observations and therefore does

US 10,997,009 B2
27 28

not require further partitioning . However , node 2431 rule also includes an assignment operator 2511. Next , a class
includes a single normal observation and two abnormal attributes is declared 2512. An instance of the class attributes
observations , as indicated by the labeling in FIG . 24C , and represents a map between a set or subset of attributes and the
therefore needs to be further partitioned . In FIG . 24E , node attributes associated with each observation . The member
2431 is again shown , along with the two possible partition- 5 function getDataIndex 2513 returns an index of an attribute ,
ings of the node represented by trees 2433 and 2434. In this indexed by an input index , with respect to the full set of case , the partitioning represented by tree 2434 is most attributes associated with each observation . Next , a class effective , and thus this final partitioning is included as a final datum is declared 2514. Each instance of the class datum
subtree within the decision tree . represents an observation . FIG . 24F shows the final decision tree 2440. This decision 10 Continuing with FIG . 25B , a class data is next declared tree can be used to classify an unlabeled observation as 2516. Each instance of the class data represents a dataset , or normal or abnormal . The classification process is essentially
a traversal of the decision tree beginning with the top node . set of observations . The member function getDatum 2517
The top node , or root node 2442 , represents all data . Any returns an observation within the dataset corresponding to an
observation satisfies the rule represented by this node . There 15 input index . The member function getLabel 2518 returns the
is a single link , or path , 2443 emanating from this node that label associated with the observation corresponding to an
path is followed to arrive at rule node 2444. The rule input index . The member function getEntropy 2519 returns
associated with this node is applied to the observation . If the entropy for the dataset . The entropy and a related value ,
application of the rule to the observation returns a value referred to as “ gain . ” are used for determining which of
TRUE , then link 2445 is followed to the leaf node 2446 20 multiple possible partitionings to next use in constructing a
which indicates that the observation is abnormal . Otherwise , decision tree . These concepts are next explained with ref
when the rule returns a value FALSE , then link 2446 is erence to expressions 2520. D represents a set of observa
followed to rule node 2447. The rule on node 2447 is then tions 2521. N represents the subset of D containing those
applied to the data observation . When application of the rule observations of D that are labeled normal 2522. A 2523
represented by node 2447 returns a value TRUE , link 2448 25 represents the set of abnormal observations in D. The
is followed to leaf node 2449 , which indicates that the entropy of the set of observations D , H (D) , is given by
observation is normal . When the rule returns a value FALSE , expression 2524. When all of the observations are either
then link 2450 is followed to rule node 2451. The rule normal or abnormal , the entropy is 0. When half the obser
represented by node 2451 is then applied to the observation . vations are normal and the other half of the observations are
When application of the rule represented by node 2451 30 abnormal , the entry is 1. The entropy has fractional values
returns the value TRUE , then link 2452 is followed to leaf in the range [0 , 1] for other ratios of abnormal - to - normal
node 2453 , which indicates that the observation is abnormal . observations and a plot of the entropy is nonlinear and
Otherwise , path 2454 is followed to leaf node which symmetrical about a vertical line through the point 0.5 of a
indicates that the observation is normal . In certain cases , horizontal axis representing the ratio of normal or abnormal
there may not be sufficient attributes in a dimensionally- 35 observations to the total number of observations . The set T
reduced dataset to determine whether any particular obser- 2525 includes two subsets of the set of observations D and
vation is abnormal or normal . In such cases , traversal of the represents a partitioning of the set of observations Dinto two
decision tree may arrive at a leaf node containing an subsets . The gain 2526 for a partitioning is given by expres
indication that it cannot be ascertained whether the obser- sion 2527 and represents the decrease in entropy resulting
vation is normal or abnormal . In the following pseudocode 40 from the partitioning . Thus , partitionings that result in a first
example , the label “ unknown ” is used to indicate an inability subset of only normal observations and a second subset of
to determine whether an observation is abnormal or normal . only abnormal observations would have the greatest possible
FIGS . 25A - D provides a pseudocode example for con- gain for any particular set of observations D. The gain can

struction of a decision tree and traversal of a decision tree to thus be used as a criterion for selecting a next partitioning
determine the nature of an unlabeled observation . The 45 from among the possible partitionings at each step in the
pseudocode is not a complete implementation , because a construction of the decision tree .
wide variety of different types of rules , rule - determination , At the bottom of FIG . 25B , a class node is declared 2530 .
and data - storage techniques can be used , and these various Each instance of the class node represents a node within a
different types of implementations are beyond the scope of decision tree . The class node includes the following data
the current discussion . As shown in FIG . 25A , the pseudo- 50 members : (1) Tptr 2531 , a pointer to a child node to which
code includes a declaration of two fundamental rules TRUE a traversal is made when application of the rule associated
and FALSE 2502. In the pseudocode , rules are represented with the node returns a Boolean value TRUE ; (2) Fptr 2532 ,
by character strings . The constant MAX_RULE represents a pointer to a child node to which a traversal is made when
the maximum allowed size , in characters , of a rule 2504. The application of the rule associated with the node returns a
enumeration label 2506 represents three types of leaf - node 55 Boolean value FALSE ; (3) Tlabel 2533 , the label repre
labels : NORMAL . ABNORMAL , and UNKNOWN . A null sented a return value from a leaf node or partial leaf node
node pointer is also declared 2507. A partial declaration for when application of the rule associated with the node returns
a class rule , each instance of which represents a rule that a Boolean value TRUE ; (4) Flabel 2534 , the label repre
may be included within a node of a decision tree , is next senting a return value from a leaf node or partial leaf node
provided 2508. The first type of member function applyRule 60 when application of the rule associated with the node returns
2509 applies the rule represented by an instance of the class a Boolean value FALSE ; and (5) r 2536 5 , the rule associated
rule to an input dataset and partitions the input dataset into with the node . The member functions of the class node
two data subsets T and F , which include the observations for include numerous member functions 2536 for setting and
which the rule generates TRUE and FALSE values , respec- retrieving the values of data members , two versions of
tively . A second type of member function applyRule 2510 65 applyRule 2537 and 2538 which mirror the member func
applies the rule represented by an instance of the class rule tions with the same name in the class rule , and a constructor
to an observation and returns the Boolean result . The class 2539 .

US 10,997,009 B2
29 30

Turning to FIG . 25C , a function copyRule 2540 is FIGS . 26A - B provide control - flow diagrams that illustrate
declared without an implementation , as is a function deter- the currently disclosed method and system for generating a
mine_rule 2541. The function copyRule copies a rule decision tree , or abnormal - observation detector . The cur
pointed to by a first argument to a character array pointed to rently disclosed methods and systems are employed within
by a second argument . The function determine_rule gener- 5 a distributed computing system that continuously receives
ates a rule , referenced by the argument r , for a particular event messages and other types of metric data and uses the
attribute specified by the argument a index with respect to an received metric data to monitor the state of the distributed
input dataset d , and returns the gain , discussed above with computer system . As discussed above , the metric data is
reference to FIG . 25B , for partitioning the input dataset into scaled and aligned to produce a set of timestamped obser
two data subsets by application of the generated role . An 10 vations , each including values for two or more metrics . The
implementation is not provided for this function since the currently disclosed methods and systems are fully auto
implementation is highly dependent on the types of rules and mated , in certain implementations . They are fully automated
datasets employed . For the example shown in FIGS . 25 A - F , despite the fact that they may employ supervised - learning
rule generation involves determining a numerical threshold based machine learning techniques and subsystems . In gen
that provides a partitioning of the dataset that generates the 15 eral , supervised - learning - based techniques require some
best possible gain . In this case , the rule may not be unique , level of human input and interaction during development of
since many different thresholds might provide the same training datasets that are used to train the machine - learning
maximum possible gain . In the lower portion of FIG . 25C , subsystems to recognize patterns , features , and characteris
a function grow_decision_tree is shown 2542. This function tics in data and other inputs subsequently provided to the
generates a new node for a decision tree and returns a 20 subsystems . For example , in the above - described decision
reference to that node . Input arguments include a reference tree - based methods , it would be common for an initial set of
to a dataset d 2543 and a reference to a set of remaining observations to be manually labeled by a human adminis
attributes a 2544. The new node is created using the operator trator who recognizes or infers which of the observations are
new 2545. When the number of remaining attributes is associated with abnormal system states . The currently dis
greater than 0 2546 , the function determine_rule is called for 25 closed methods and systems , as further discussed below ,
each remaining attribute , in the for - loop 2547 , to determine employee various unsupervised - learning methodologies ,
the attribute which provides the greatest possible gain when including K - means clustering , to generate labels for obser
used for a next partitioning of the dataset . When the number vations in a data set and , by doing so , automatically pro
of remaining attributes is 0 or the maximum gain is less than ducing a training data set from which they decision - tree
or equal to 0 2548 , the node is configured as a leaf node that 30 based abnormal - observation detector can be automatically
returns the label “ unknown ” 2549. Otherwise , the rule for generated . Thus , one significant feature of the currently
the best attribute is placed into the node 2550 and the rule disclosed methods and systems is the ability to employ
is applied to create wo data subsets representing a parti- supervised - learning technologies in a fully automated sys
tioning of the input dataset 2552. A new set of attributes is tem . It should also be noted that , although the examples
created from which the attribute with respect to which the 35 provided in this document concern automated recognition of
rule configured in the node was established removed 2553 abnormal observations and inference of potentially prob
and the function grow_decision_tree is recursively called to lematic distributed - computing - system operational states , the
produce the two branches for the node 2554 . currently disclosed methods and systems can be straightfor

FIG . 25D shows an implementation of the function build wardly extended to many other problem domains and appli
decision tree 2560. This function receives a reference to an 40 cations . As one example , more complex decision trees may
input dataset d 2561 and reference to an input set of principal be able to distinguish a variety of different types of abnormal
components , or attributes , a 2562 and returns a pointer to a states , such as abnormal states associated with different
decision tree for the dataset 2563. When the number of levels of severity or priority . As another example , the
observations in the dataset is 0 , the function returns a null currently disclosed methods and systems can be alterna
pointer 2564. If the dataset has an entropy of 0 2565 the 45 tively used to recognize various types of distributed - com
function returns a single terminal mode 2566 , since there is puting - system operational states with favorable characteris
no basis for partitioning the dataset into subsets . Otherwise , tics , that would allow for automated exploitation or
the function calls the function grow_decision_tree 2567 to advantageous reconfiguration . As yet another example , the
create the decision tree for the dataset and attributes , as currently disclosed methods and systems may be used to
discussed above with reference to FIGS . 24A - F . Finally , an 50 discover the need for additional hardware or software com
implementation for the function evaluate is shown 2570 . ponents in a distributed computing system by recognizing
This function receives an observation d 2571 and a pointer operational states associated with system - configuration defi
to a decision tree 2572 and returns a label 2573 that ciencies .
characterizes the received observation d . The function calls FIG . 26A shows a control - flow diagram for a routine
the member function applyRule 2574 for the root node of the 55 “ process dataset . ” This routine processes a set of observa
decision tree , where the input decision tree may be the tions in order to generate a decision tree or other machine
subtree of a larger decision tree , which returns a Boolean learning - generated entity that allows for automated charac
value applyRes 2575. When the returned Boolean value is terization of subsequently received observations as being
TRUE , the function calls the member function of the root normal or abnormal . In step 2602 , the set of observations is
node of the decision tree getTptr to obtain the left - hand , or 60 received . In step 2604 , the above - discussed principal - com
TRUE , pointer for the root node of the decision tree . When ponent - analysis technique is used to transform the dataset
the returned pointer is null 2576 , the function returns the into a form in which each observation includes values for a
label associated with the Boolean value TRUE stored in the set of principal components generally different from the
root node 2577. Similar logic 2578 is carried out when the original values for the original metrics . In step 2606 , a subset
returned Boolean value is FALSE . Finally , the function 65 of the principal components is selected in order to reduce the
evaluate recursively calls itself in the case that the relevant dimensionality of the observations , as discussed above . In
child pointer is not null 2580 . step 2608 , a local variable error is set to a large value . Then ,

US 10,997,009 B2
31 32

in the for - loop of steps 2610-2615 , the above - discussed within the spirit of the invention will be apparent to those
modified K - means clustering technique is iteratively called , skilled in the art . For example , any of a variety of different
with different K and L parameter values , in order to generate implementations of the currently disclosed root - cause - iden
a clustering of the dataset that produces a low error value . In tifying methods and systems can be obtained by varying any
step 2616 , the outlier observations are labeled as abnormal 5 of many different design and implementation parameters ,
and the clustered observations are labeled as normal for the including modular organization , programming language ,
best cluster obtained in the for - loop of steps 2610-2615 . underlying operating system , control structures , data struc Finally , in step 2617 , a machine - learning technique is tures , and other such design and implementation parameters . applied to the labeled dataset to generate an abnormal
observation detector . One machine learning technique that 10 be used for principal - component analysis . As also discussed As discussed above , it is a variety of different methods can
may be used is the above - discussed decision - tree - based
technique , which generates a decision tree based on the above , any of many different types of clustering methods
labeled training set . The decision tree can be traversed for a may be employed to identify clusters and outliers in a

dataset . As discussed above , many different techniques can subsequent observation , as discussed above , in order to
determine whether or not the subsequent observation is 15 be used to temporally align data points the dataset to produce
abnormal or not . a time sequence of observations . Finally , a variety of dif
FIG . 26B shows a control - flow diagram that illustrates the ferent machine learning techniques can be employed to

structure of a distributed - computing - system - state monitor generate abnormal - observation detectors , including support
that employs the currently disclosed methods and systems vector machines , various types of classification methods ,
for generating an abnormal - observation detector . The moni- 20 various types of tree - based learning , and other techniques .
tor is implemented as an event loop . In step 2620 , the It is appreciated that the previous description of the
monitor waits for a next event to occur . When the next event disclosed embodiments is provided to enable any person
is the reception of a new observation , as determined in step skilled in the art to make or use the present disclosure .
2622 , the abnormal - observation detector , generated in step Various modifications to these embodiments will be readily
2617 of FIG . 26A is applied to the new observation in step 25 apparent to those skilled in the art , and the generic principles
2624. When the observation is determined by the detector to defined herein may be applied to other embodiments without
be abnormal , in step 2626 , the monitor may generate an alert departing from the spirit or scope of the disclosure . Thus , the
and / or take other ameliorative actions in step 2627. In step present disclosure is not intended to be limited to the
2628 , the monitor determines whether or not the received embodiments shown herein but is to be accorded the widest observation should be a sample point for a next training 30 scope consistent with the principles and novel features dataset . If so , as determined in step 2629 , the observation is disclosed herein . stored in an accumulating dataset in step 2630. When the
next received event is expiration of a new - detector timer or The invention claimed is : reception of an alarm generated by accumulation of a
sufficient number of sample observations to generate a new 35 1. An automated monitor subsystem within a distributed
training dataset , as determined in step 2632 , the alarm or computer system comprising :
timer is reset , in step 2633 , the above - described routine one or more processors ;
" process dataset ” is called , in step 2634 , and the current one or more memories ; and
abnormal - observation detector is replaced with a new detec- computer instructions , stored in one or more of the one or
tor generated in the call to the routine “ process dataset , ” in 40 more memories that , when executed by one or more of
step 2635. Ellipses 2636 indicate that the monitor may the one or more processors , control the monitor sub
receive and handle many additional types of events . When system to
there are additional queued events to process , as determined receive metric data from multiple metric - data sources ,
in step 2638 , control returns to step 2622. Otherwise , control temporally align the received metric data to generate
returns to step 2620 . timestamped observations , and

Note that the abnormal - observation detector can employ apply an abnormal - state detector to the timestamped
the information encoded in one or more decision trees to observations to detect abnormal distributed com
classify the detected abnormal observation . For example , puter - system operational states and initiate reporting
each leaf node in the decision tree corresponding to an and / or ameliorative operations within the distributed
abnormal observation represents a particular set of metrics 50 computer system , the abnormal - state detector auto
and corresponding metric values or value ranges . Each leaf matically generated from previously generated time
node may potentially represent a different type of anomalous stamped observations by
system state , incident , or other event or behaviour . Thus , the transforming the previously generated timestamped
leaf nodes may additionally contain or reference indications observations to a coordinate system aligned with
of the type of anomalous system state , incident , or other 55 directions of greatest variability in the metric - data
event or behaviour represented by the leaf node as well as space ,
indications of the actions that should be taken , in step 2627 , projecting the transformed timestamped observa
to handle the occurrence of the anomalous system state , tions onto a lower - dimensional transformed - ob
incident , or other event or behaviour . In many cases , the servation space ,
detected anomalous system states , incidents , or other events 60 identifying outlying timestamped observations to
or behaviours may be early precursors of more serious produce a labeled training dataset , and
results that might result in a failure to timely address them , using the labeled training dataset to automatically
in which case the actions that should be taken may be generate the abnormal - state detector .
prophylactic in nature . 2. The automated monitor subsystem of claim 1 wherein

Although the present invention has been described in 65 the received metric data comprises timestamp / value pairs ,
terms of particular embodiments , it is not intended that the each timestamp / value pair received from a metric - data
invention be limited to these embodiments . Modification

45

source .

10

15

20

US 10,997,009 B2
33 34

3. The automated monitor subsystem of claim 2 wherein 12. The automated monitor subsystem of claim of claim
the automated monitor subsystem temporally aligns the 3 wherein the automated monitor subsystem uses the labeled
received metric data to generate timestamped observations training dataset to automatically generate the abnormal - state
by detector by generating a decision tree from the labeled

using one or more of averaging over finite time windows , 5 training dataset .
curve - fitting , and linear extrapolation to generate an 13. An automated method that within a distributed com
observed or estimated value for periodic timepoints ; puter system , the method comprising :
and receiving metric data from multiple metric - data sources ;

collecting the generated values for each metric - data temporally aligning the received metric data to generate
source for each timepoint into a set of time - ordered timestamped observations ;

transforming the timestamped observations to a coordi observations , each observation comprising a value for
each metric - data source and a timestamp . nate system aligned with directions of greatest vari

ability in the metric - data space ; 4. The automated monitor subsystem of claim 3 wherein projecting the transformed timestamped observations the abnormal - state detector comprises : onto a lower - dimensional transformed - observation stored data produced by a machine - learning system ; and space ;
a classification logic that employs the stored data to identifying outlying timestamped observations to produce

classify a timestamped observation as normal or abnor a labeled training dataset ; and
mal . using the labeled training dataset to automatically gener

5. The automated monitor subsystem of claim 4 ate an abnormal - state detector .
wherein the stored data represents a decision tree ; and 14. The method of claim 13
wherein the classification logic uses a timestamped obser- wherein the received metric data comprises timestamp /

vation to traverse the decision tree from a decision - tree value pairs , each timestamp / value pair received from a
root node to a decision - tree leaf node or partial leaf metric - data source ; and
node that contains a label that is assigned to the 25 wherein aligning the received metric data to generate
timestamped observation . timestamped observations further comprises

6. The automated monitor subsystem of claim 3 wherein using one or more of averaging over finite time win
the automated monitor subsystem transforms the previously dows , curve - fitting , and linear extrapolation to gen
generated timestamped observations to a coordinate system erate an observed or estimated value for periodic
aligned with directions of greatest variability in the metric- 30 timepoints , and
data space by applying principle - component analysis to collecting the generated values for each metric - data
determine principle - component basis vectors for the metric source for each timepoint into a set of time - ordered
data space of timestamped observations and , for each obser observations , each observation comprising a value
vation , to generate principle - component values that are for each metric - data source and a timestamp .
linear combinations of the values of the observation that 35 15. The method of claim 14 wherein the abnormal - state
replace the values of the observation to produce a trans- detector comprises :
formed observation . stored data produced by a machine - learning system ; and

7. The automated monitor subsystem of claim 6 wherein a classification logic that employs the stored data to
the automated monitor subsystem projects the transformed classify a timestamped observation as normal or abnor
timestamped observations onto a lower - dimensional trans- 40 mal .
formed - observation space by removing a fixed number of 16. The method of claim 15
principle - component values corresponding to the principle- wherein the stored data represents a decision tree ; and
component basis vectors associated with the least variability wherein the classification logic uses a timestamped obser
in the metric - data space . vation to traverse the decision tree from a decision - tree

8. The automated monitor subsystem of claim 3 wherein 45 root node to a decision - tree leaf node or partial leaf
the automated monitor subsystem identifies outlying time node that contains label that is assigned to the
stamped observations to produce a labeled training dataset timestamped observation .
by clustering the transformed timestamped observations 17. The method of claim 14 wherein transforming the
within the lower - dimensional transformed - observation timestamped observations to a coordinate system aligned
space and selecting , as outlying timestamped observations , 50 with directions of greatest variability in the metric - data
those transformed timestamped observations furthest away space further comprises applying principle - component
from cluster centers . analysis to determine principle - component basis vectors for

9. The automated monitor subsystem of claim 8 wherein the metric - data space of timestamped observations and , for
the automated monitor subsystem uses a modified K - means each observation , generating principle - component values
clustering method to cluster the transformed timestamped 55 that are linear combinations of the values of the observation
observations within the lower - dimensional transformed - ob- that replace the values of the observation to produce a
servation space . transformed observation .

10. The automated monitor subsystem of claim 9 wherein 18. The method claim 17 wherein projecting the trans
the automated monitor subsystem iteratively clusters the formed timestamped observations onto a lower - dimensional
transformed timestamped observations with different 60 transformed - observation space further comprises removing
K - means - clustering parameter values and selects the clus- a fixed number of principle - component values correspond
tering with a least associated clustering error . ing to the principle - component basis vectors associated with

11. The automated monitor subsystem of claim of claim 8 the least variability in the metric - data space .
wherein the automated monitor subsystem produces a 19. The method of claim 14 wherein identifying outlying
labeled training dataset by labeling the outlying transformed 65 timestamped observations to produce a labeled training
observations as abnormal and labeling the cluster - resident dataset further comprises clustering the transformed time
transformed observations as normal . stamped observations within the lower - dimensional trans

5

US 10,997,009 B2
35 36

formed - observation space and selecting , as outlying time- uted computer system that additionally includes one or more
stamped observations , those transformed timestamped memories , control the distributed computer system to gen
observations furthest away from cluster centers . erate an abnormal - state detector by :

20. The method of claim 19 further comprising using a receiving metric data from multiple metric - data sources ;
modified K - means clustering method to cluster the trans- temporally aligning the received metric data to generate
formed timestamped observations within the lower - dimen timestamped observations ;
sional transformed - observation space . transforming the timestamped observations to a coordi

21. The method of claim 19 wherein a labeled training nate system aligned with directions of greatest vari
dataset is produced by labeling the outlying transformed ability in the metric - data space ;
observations as abnormal and labeling the cluster - resident projecting the transformed timestamped observations

onto transformed observations as normal . a lower - dimensional transformed - observation
space ; 22. The method of claim of claim 14 wherein using the

labeled training dataset to automatically generate the abnor identifying outlying timestamped observations to produce
mal - state detector further comprises generating a decision a labeled training dataset ; and
tree from the labeled training dataset . using the labeled training dataset to automatically gener

ate the abnormal - state detector . 23. A physical device encoded with computer instructions
that , when executed on one or more processors of a distrib

10

15

*

