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This application claims the benefit of Provisional Appli DESCRIPTION OF THE DRAWINGS 
cation No. 62 / 722,640 filed Aug. 24 , 2018 . 

FIG . 1 shows an architectural diagram for various types of 
TECHNICAL FIELD computers . 

FIG . 2 shows an Internet connected distributed computer 
This disclosure is directed to processes and systems that system . 

forecast time series metric data and detect anomalous behav- 15 FIG . 3 shows cloud computing . ing resources of a distributed computing system . FIG . 4 shows generalized hardware and software compo 
nents of a general - purpose computer system . BACKGROUND 
FIGS . 5A - 5B show two types of virtual machine ( “ VM ” ) 

Electronic computing has evolved from primitive , 20 and VM execution environments . 
vacuum - tube - based computer systems , initially developed FIG . 6 shows an example of an open virtualization format 
during the 1940s , to modern electronic computing systems package . 
in which large numbers of multi - processor computer sys FIG . 7 shows virtual data centers provided as an abstrac 
tems , such as server computers , work stations , and other tion of underlying physical - data - center hardware compo 
individual computing systems are networked together with 25 nents . 
large - capacity data - storage devices and other electronic FIG . 8 shows virtual machine components of a virtual 
devices to produce geographically distributed computing data - center management server and physical servers of a 
systems with numerous components that provide enormous physical data center . 
computational bandwidths and data storage capacities . FIG . 9 shows a cloud - director level of abstraction . 
These large , distributed computing systems are made pos FIG . 10 shows virtual - cloud - connector nodes . 
sible by advances in computer networking , distributed oper- FIG . 11 shows an example server computer used to host 
ating systems and applications , data - storage appliances , three containers . 
computer hardware , and software technologies . FIG . 12 shows an approach to implementing containers 

Because distributed computing systems have an enor on a VM . 
mous number of computational resources , various manage- FIG . 13A show an example of a virtualization layer 
ment systems have been developed to collect performance located above a physical data center . 
information about these resources . For example , a typical FIGS . 13B - 13C shows streams of metric time series data 
management system may collect hundreds of thousands of transmitted to a monitor tool . 
streams of metric data to monitor various computational FIG . 14 shows a plot of an example sequence of time 
resources of a data center infrastructure . Each data point of 40 series data associated with a resource of a distributed 
a stream of metric data may represent an amount of the computing system . 
resource in use at a point in time . However , the enormous FIG . 15 shows a high - level view of a process for fore 
number of metric data streams received by a management casting time series data and generating confidence bounds . 
system makes it impossible for information technology FIG . 16 shows a workflow of the off - line mode of FIG . 15 . 
( “ IT ” ) administrators to manually monitor the metrics , 45 FIGS . 17A - 17B show training of a recurrent neural net 
detect performance issues , and respond in real time . Failure work ( “ RNN ” ) and computation of forecast errors , respec 
to respond in real time to performance problems can inter- tively . 
rupt computer services and have enormous cost implications FIG . 18 shows a workflow of the on - line mode of FIG . 15 . 
for data center tenants , such as when a tenant's server FIG . 19 shows a process for computing forecast time 
applications stop running or fail to timely respond to client 50 series data with confidence bounds for time series data from 
requests . a tenant environment . 

FIGS . 20A - 20B illustrate computing forecast time series 
SUMMARY data in a forecast time window and applying confidence 

bounds to the forecast time series data . 
Computational processes and systems described herein 55 FIGS . 21A - 21J show plots of results obtained from train 

are directed to forecasting time series data and anomaly ing and using an RNN to forecast time series data and 
detection with forecast time series data generated in a generate confidence bounds for CPU and memory time 
distributed computing system using a recurrent neural net- series data . 
work ( “ RNN ” ) . Processes and systems comprise off - line and FIG . 22 shows a control - flow diagram of a method to 
on - line modes that accelerate the forecasting process and 60 compute forecast time series data and identify anomalous 
identification of anomalous behaving resources . The off - line behaving resources of a distributed computing system . 
mode continuously trains an RNN using time series data FIG . 23 shows a control - flow diagram of routine “ train 
recorded in a time series database for various resources of RNN based on historical time series database and compute 
the distributed computing system . The on - line mode uses the confidence bounds of time series database " called in FIG . 
latest RNN trained in the off - line mode to forecast time 65 22 . 
series data over a forecast time window for a resource of a FIG . 24 shows a control - flow diagram of the routine “ train 
tenant environment of the distributed computing system . RNN using time series database ” called in FIG . 23 . 
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FIG . 25 shows a control - flow diagram of the routine subsystem bus 110 or multiple busses , a first bridge 112 that 
" compute confidence bounds for the time series database ” interconnects the CPU / memory - subsystem bus 110 with 
called in FIG . 23 . additional busses 114 and 116 , or other types of high - speed 
FIG . 26 shows a control - flow diagram of the routine interconnection media , including multiple , high - speed serial 

“ compute forecast time series data in forecast time window ” 5 interconnects . These busses or serial interconnections , in 
called in FIG . 22 . turn , connect the CPUs and memory with specialized pro 
FIG . 27 shows a control - flow diagram of the routine cessors , such as a graphics processor 118 , and with one or 

“ identify abnormal behavior of resource based on confi more additional bridges 120 , which are interconnected with 
dence bounds ” called in FIG . 22 . high - speed serial links or with multiple controllers 122-127 , 
FIG . 28 shows a control - flow diagram of the routine 10 such as controller 127 , that provide access to various dif 

“ report abnormal behavior / execute remedial measures ” ferent types of mass - storage devices 128 , electronic dis 
called in FIG . 22 . plays , input devices , and other such components , subcom 

ponents , and computational devices . It should be noted that 
DETAILED DESCRIPTION computer - readable data - storage devices include optical and 

15 electromagnetic disks , electronic memories , and other 
This disclosure is directed to computational processes and physical data - storage devices . Those familiar with modern 

systems that forecast time series data and detect anomalous science and technology appreciate that electromagnetic 
behaving resources of a distributed computing system . In a radiation and propagating signals do not store data for 
first subsection , computer hardware , complex computational subsequent retrieval , and can transiently “ store ” only a byte 
systems , and virtualization are described . Processes and 20 or less of information per mile , far less information than 
systems for forecasting time series data and detection of needed to encode even the simplest of routines . 
anomalous behaving resources of a distributed computing Of course , there are many different types of computer 
system are described below in a second subsection . system architectures that differ from one another in the 

number of different memories , including different types of 
Computer Hardware , Complex Computational 25 hierarchical cache memories , the number of processors and 

Systems , and Virtualization the connectivity of the processors with other system com 
ponents , the number of internal communications busses and 

The term “ abstraction ” is not , in any way , intended to serial links , and in many other ways . However , computer 
mean or suggest an abstract idea or concept . Computational systems generally execute stored programs by fetching 
abstractions are tangible , physical interfaces that are imple- 30 instructions from memory and executing the instructions in 
mented using physical computer hardware , data - storage one or more processors . Computer systems include general 
devices , and communications systems . Instead , the term purpose computer systems , such as personal computers 
" abstraction ” refers , in the current dis on , to a logical ( “ PCs ” ) , various types of server computers and worksta 
level of functionality encapsulated within one or more tions , and higher - end mainframe computers , but may also 
concrete , tangible , physically - implemented computer sys- 35 include a plethora of various types of special - purpose com 
tems with defined interfaces through which electronically- puting devices , including data - storage systems , communi 
encoded data is exchanged , process execution launched , and cations routers , network nodes , tablet computers , and mobile 
electronic services are provided . Interfaces may include telephones . 
graphical and textual data displayed on physical display FIG . 2 shows an Internet - connected distributed computer 
devices as well as computer programs and routines that 40 system . As communications and networking technologies 
control physical computer processors to carry out various have evolved in capability and accessibility , and as the 
tasks and operations and that are invoked through electroni- computational bandwidths , data - storage capacities , and 
cally implemented application programming interfaces other capabilities and capacities of various types of com 
( " APIs " ) and other electronically implemented interfaces . puter systems have steadily and rapidly increased , much of 
Software is essentially a sequence of encoded symbols , such 45 modern computing now generally involves large distributed 
as a printout of a computer program or digitally encoded systems and computers interconnected by local networks , 
computer instructions sequentially stored in a file on an wide - area networks , wireless communications , and the 
optical disk or within an electromechanical mass - storage Internet . FIG . 2 shows a typical distributed system in which 
device . Software alone can do nothing . It is only when many PCs 202-205 , a high - end distributed mainframe sys 
encoded computer instructions are loaded into an electronic 50 tem 210 with a large data - storage system 212 , and a large 
memory within a computer system and executed on a computer center 214 with large numbers of rack - mounted 
physical processor that “ software implemented ” functional- server computers or blade servers all interconnected through 
ity is provided . The digitally encoded computer instructions various communications and networking systems that 
are a physical control component of processor - controlled together comprise the Internet 216. Such distributed com 
machines and devices . Multi - cloud aggregations , cloud- 55 puting systems provide diverse arrays of functionalities . For 
computing services , virtual - machine containers and virtual example , a PC user may access hundreds of millions of 
machines , containers , communications interfaces , and many different web sites provided by hundreds of thousands of 
of the other topics discussed below are tangible , physical different web servers throughout the world and may access 
components of physical , electro - optical - mechanical com- high - computational - bandwidth computing services from 
puter systems . 60 remote computer facilities for running complex computa 
FIG . 1 shows a general architectural diagram for various tional tasks . 

types of computers . Computers that receive , process , and Until recently , computational services were generally 
store event messages may be described by the general provided by computer systems and data centers purchased , 
architectural diagram shown in FIG . 1 , for example . The configured , managed , and maintained by service - provider 
computer system contains one or multiple central processing 65 organizations . For example , an e - commerce retailer gener 
units ( “ CPUs ” ) 102-105 , one or more electronic memories ally purchased , configured , managed , and maintained a data 
108 interconnected with the CPUs by a CPU / memory- center including numerous web server computers , back - end 



US 11,023,353 B2 
5 6 

computer systems , and data - storage systems for serving web many other components . The operating system 404 inter 
pages to remote customers , receiving orders through the faces to the hardware level 402 through a low - level oper 
web - page interface , processing the orders , tracking com- ating system and hardware interface 416 generally compris 
pleted orders , and other myriad different tasks associated ing a set of non - privileged computer instructions 418 , a set 
with an e - commerce enterprise . 5 of privileged computer instructions 420 , a set of non 
FIG . 3 shows cloud computing . In the recently developed privileged registers and memory addresses 422 , and a set of 

cloud - computing paradigm , computing cycles and data- privileged registers and memory addresses 424. In general , 
storage facilities are provided to organizations and individu- the operating system exposes non - privileged instructions , 
als by cloud - computing providers . In addition , larger orga- non - privileged registers , and non - privileged memory 
nizations may elect to establish private cloud - computing 10 addresses 426 and a system - call interface 428 as an oper 
facilities in addition to , or instead of , subscribing to com- ating - system interface 430 to application programs 432-436 
puting services provided by public cloud - computing service that execute within an execution environment provided to 
providers . In FIG . 3 , a system administrator for an organi- the application programs by the operating system . The 
zation , using a PC 302 , accesses the organization's private operating system , alone , accesses the privileged instructions , 
cloud 304 through a local network 306 and private - cloud 15 privileged registers , and privileged memory addresses . By 
interface 308 and accesses , through the Internet 310 , a reserving access to privileged instructions , privileged reg 
public cloud 312 through a public - cloud services interface isters , and privileged memory addresses , the operating sys 
314. The administrator can , in either the case of the private tem can ensure that application programs and other higher 
cloud 304 or public cloud 312 , configure virtual computer level computational entities cannot interfere with one 
systems and even entire virtual data centers and launch 20 another's execution and cannot change the overall state of 
execution of application programs on the virtual computer the computer system in ways that could deleteriously impact 
systems and virtual data centers in order to carry out any of system operation . The operating system includes many 
many different types of computational tasks . As one internal components and modules , including a scheduler 
example , a small organization may configure and run a 442 , memory management 444 , a file system 446 , device 
virtual data center within a public cloud that executes web 25 drivers 448 , and many other components and modules . To a 
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous 
public cloud to remote customers of the organization , such levels of abstraction above the hardware level , including 
as a user viewing the organization's e - commerce web pages virtual memory , which provides to each application program 
on a remote user system 316 . and other computational entities a separate , large , linear 

Cloud - computing facilities are intended to provide com- 30 memory - address space that is mapped by the operating 
putational bandwidth and data - storage services much as system to various electronic memories and mass - storage 
utility companies provide electrical power and water to devices . The scheduler orchestrates interleaved execution of 
consumers . Cloud computing provides enormous advan- different application programs and higher - level computa 
tages to small organizations without the devices to purchase , tional entities , providing to each application program a 
manage , and maintain in - house data centers . Such organi- 35 virtual , stand - alone system devoted entirely to the applica 
zations can dynamically add and delete virtual computer tion program . From the application program’s standpoint , 
systems from their virtual data centers within public clouds the application program executes continuously without con 
in order to track computational - bandwidth and data - storage cern for the need to share processor devices and other system 
needs , rather than purchasing sufficient computer systems devices with other application programs and higher - level 
within a physical data center to handle peak computational- 40 computational entities . The device drivers abstract details of 
bandwidth and data - storage demands . Moreover , small orga- hardware - component operation , allowing application pro 
nizations can completely avoid the overhead of maintaining grams to employ the system - call interface for transmitting 
and managing physical computer systems , including hiring and receiving data to and from communications networks , 
and periodically retraining information - technology special- mass - storage devices , and other I / O devices and subsystems . 
ists and continuously paying for operating - system and data- 45 The file system 446 facilitates abstraction of mass - storage 
base - management - system upgrades . Furthermore , cloud- device and memory devices as a high - level , easy - to - access , 
computing interfaces allow for easy and straightforward file - system interface . Thus , the development and evolution 
configuration of virtual computing facilities , flexibility in of the operating system has resulted in the generation of a 
the types of applications and operating systems that can be type of multi - faceted virtual execution environment for 
configured , and other functionalities that are useful even for 50 application programs and other higher - level computational 
owners and administrators of private cloud - computing entities . 
facilities used by a single organization . While the execution environments provided by operating 
FIG . 4 shows generalized hardware and software compo- systems have proved to be an enormously successful level of 

nents of a general - purpose computer system , such as a abstraction within computer systems , the operating - system 
general - purpose computer system having an architecture 55 provided level of abstraction is nonetheless associated with 
similar to that shown in FIG . 1. The computer system 400 is difficulties and challenges for developers and users of appli 
often considered to include three fundamental layers : ( 1 ) a cation programs and other higher - level computational enti 
hardware layer or level 402 ; ( 2 ) an operating - system layer or ties . One difficulty arises from the fact that there are many 
level 404 ; and ( 3 ) an application - program layer or level 406 . different operating systems that run within different types of 
The hardware layer 402 includes one or more processors 60 computer hardware . In many cases , popular application 
408 , system memory 410 , different types of input - output programs and computational systems are developed to run 
( “ I / O ” ) devices 410 and 412 , and mass - storage devices 414 . on only a subset of the available operating systems and can 
Of course , the hardware level also includes many other therefore be executed within only a subset of the different 
components , including power supplies , internal communi- types of computer systems on which the operating systems 
cations links and busses , specialized integrated circuits , 65 are designed to run . Often , even when an application pro 
many different types of processor - controlled or micropro- gram or other computational system is ported to additional 
cessor - controlled peripheral devices and controllers , and operating systems , the application program or other com 
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putational system can nonetheless run more efficiently on need not be equal to the number of physical processors or 
the operating systems for which the application program or even a multiple of the number of processors . 
other computational system was originally targeted . Another The virtualization layer 504 includes a virtual - machine 
difficulty arises from the increasingly distributed nature of monitor module 518 ( “ VMM ” ) that virtualizes physical 
computer systems . Although distributed operating systems 5 processors in the hardware layer to create virtual processors 
are the subject of considerable research and development on which each of the VMs executes . For execution effi 
efforts , many of the popular operating systems are designed ciency , the virtualization layer attempts to allow VMs to 
primarily for execution on a single computer system . In directly execute non - privileged instructions and to directly 
many cases , it is difficult to move application programs , in access non - privileged registers and memory . However , 
real time , between the different computer systems of a 10 when the guest operating system within a VM accesses 
distributed computer system for high - availability , fault - tol- virtual privileged instructions , virtual privileged registers , 
erance , and load balancing purposes . The problems are even and virtual privileged memory through the virtualization 
greater in heterogeneous distributed computer systems layer 504 , the accesses result in execution of virtualization 
which include different types of hardware and devices layer code to simulate or emulate the privileged devices . The 
running different types of operating systems . Operating 15 virtualization layer additionally includes a kernel module 
systems continue to evolve , as a result of which certain older 520 that manages memory , communications , and data - stor 
application programs and other computational entities may age machine devices on behalf of executing VMs ( “ VM 
be incompatible with more recent versions of operating kernel ” ) . The VM kernel , for example , maintains shadow 
systems for which they are targeted , creating compatibility page tables on each VM so that hardware - level virtual 
issues that are particularly difficult to manage in large 20 memory facilities can be used to process memory accesses . 
distributed systems . The VM kernel additionally includes routines that imple 

For the above reasons , a higher level of abstraction , ment virtual communications and data - storage devices as 
referred to as the “ virtual machine , ” ( “ VM ” ) has been well as device drivers that directly control the operation of 
developed and evolved to further abstract computer hard- underlying hardware communications and data - storage 
ware in order to address many difficulties and challenges 25 devices . Similarly , the VM kernel virtualizes various other 
associated with traditional computing systems , including the types of I / O devices , including keyboards , optical - disk 
compatibility issues discussed above . FIGS . 5A - B show two drives , and other such devices . The virtualization layer 504 
types of VM and virtual machine execution environments . essentially schedules execution of VMs much like an oper 
FIGS . 5A - B use the same illustration conventions as used in ating system schedules execution of application programs , 
FIG . 4. FIG . 5A shows a first type of virtualization . The 30 so that the VMs each execute within a complete and fully 
computer system 500 in FIG . 5A includes the same hardware functional virtual hardware layer . 
layer 502 as the hardware layer 402 shown in FIG . 4 . FIG . 5B shows a second type of virtualization . In FIG . 5B , 
HO rather than providing an operating system layer the computer system 540 includes the same hardware layer 
directly above the hardware layer , as in FIG . 4 , the virtual- 542 and operating system layer 544 as the hardware layer 
ized computing environment shown in FIG . 5A features a 35 402 and the operating system layer 404 shown in FIG . 4 . 
virtualization layer 504 that interfaces through a virtualiza- Several application programs 546 and 548 are shown run 
tion - layer / hardware - layer interface 506 , equivalent to inter- ning in the execution environment provided by the operating 
face 416 in FIG . 4 , to the hardware . The virtualization layer system 544. In addition , a virtualization layer 550 is also 
504 provides a hardware - like interface to VMs , such as VM provided , in computer 540 , but , unlike the virtualization 
510 , in a virtual - machine layer 511 executing above the 40 layer 504 discussed with reference to FIG . 5A , virtualization 
virtualization layer 504. Each VM includes one or more layer 550 is layered above the operating system 544 , referred 
application programs or other higher - level computational to as the “ host OS , ” and uses the operating system interface 
entities packaged together with an operating system , to access operating - system - provided functionality as well as 
referred to as a “ guest operating system , ” such as application the hardware . The virtualization layer 550 comprises pri 
514 and guest operating system 516 packaged together 45 marily a VMM and a hardware - like interface 552 , similar to 
within VM 510. Each VM is thus equivalent to the operat- hardware - like interface 508 in FIG . 5A . The hardware - layer 
ing - system layer 404 and application - program layer 406 in interface 552 , equivalent to interface 416 in FIG . 4 , provides 
the general - purpose computer system shown in FIG . 4. Each an execution environment VMs 556-558 , each including one 
guest operating system within a VM interfaces to the virtu- or more application programs or other higher - level compu 
alization layer interface 504 rather than to the actual hard- 50 tational entities packaged together with a guest operating 
ware interface 506. The virtualization layer 504 partitions system . 
hardware devices into abstract virtual - hardware layers to In FIGS . 5A - 5B , the layers are somewhat simplified for 
which each guest operating system within a VM interfaces . clarity of illustration . For example , portions of the virtual 
The guest operating systems within the VMs , in general , are ization layer 550 may reside within the host - operating 
unaware of the virtualization layer and operate as if they 55 system kernel , such as a specialized driver incorporated into 
were directly accessing a true hardware interface . The the host operating system to facilitate hardware access by 
virtualization layer 504 ensures that each of the VMs cur- the virtualization layer . 
rently executing within the virtual environment receive a fair It should be noted that virtual hardware layers , virtual 
allocation of underlying hardware devices and that all VMs ization layers , and guest operating systems are all physical 
receive sufficient devices to progress in execution . The 60 entities that are implemented by computer instructions 
virtualization layer 504 may differ for different guest oper- stored in physical data - storage devices , including electronic 
ating systems . For example , the virtualization layer is gen- memories , mass - storage devices , optical disks , magnetic 
erally able to provide virtual hardware interfaces for a disks , and other such devices . The term “ virtual ” does not , 
variety of different types of computer hardware . This allows , in any way , imply that virtual hardware layers , virtualization 
as one example , a VM that includes a guest operating system 65 layers , and guest operating systems are abstract or intan 
designed for a particular computer architecture to run on gible . Virtual hardware layers , virtualization layers , and 
hardware of a different architecture . The number of VMs guest operating systems execute on physical processors of 
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physical computer systems and control operation of the 706 and any of different computers , such as PC 708 , on 
physical computer systems , including operations that alter which a virtual - data - center management interface may be 
the physical states of physical devices , including electronic displayed to system administrators and other users . The 
memories and mass - storage devices . They are as physical physical data center additionally includes generally large 
and tangible as any other component of a computer since , 5 numbers of server computers , such as server computer 710 , 
such as power supplies , controllers , processors , busses , and that are coupled together by local area networks , such as 
data - storage devices . local area network 712 that directly interconnects server 
A VM or virtual application , described below , is encap- computer 710 and 714-720 and a mass - storage array 722 . 

sulated within a data package for transmission , distribution , The physical data center shown in FIG . 7 includes three 
and loading into a virtual - execution environment . One pub- 10 local area networks 712 , 724 , and 726 that each directly 
lic standard for virtual - machine encapsulation is referred to interconnects a bank of eight server computers and a mass 
as the " open virtualization format " ( " OVF ” ) . The OVF storage array . The individual server computers , such as 
standard specifies a format for digitally encoding a VM server computer 710 , each includes a virtualization layer and 
within one or more data files . FIG . 6 shows an OVF package . runs multiple VMs . Different physical data centers may 
An OVF package 602 includes an OVF descriptor 604 , an 15 include many different types of computers , networks , data 
OVF manifest 606 , an OVF certificate 608 , one or more storage systems and devices connected according to many 
disk - image files 610-611 , and one or more device files different types of connection topologies . The virtual - inter 
612-614 . The OVF package can be encoded and stored as a face plane 704 , a logical abstraction layer shown by a plane 
single file or as a set of files . The OVF descriptor 604 is an in FIG . 7 , abstracts the physical data center to a virtual data 
XML document 620 that includes a hierarchical set of 20 center comprising one or more device pools , such as device 
elements , each demarcated by a beginning tag and an ending pools 730-732 , one or more virtual data stores , such as 
tag . The outermost , or highest - level , element is the envelope virtual data stores 734-736 , and one or more virtual net 
element , demarcated by tags 622 and 623. The next - level works . In certain implementations , the device pools abstract 
element includes a reference element 626 that includes banks of server computers directly interconnected by a local 
references to all files that are part of the OVF package , a disk 25 area network . 
section 628 that contains meta information about all of the The virtual - data - center management interface allows pro 
virtual disks included in the OVF package , a network section visioning and launching of VMs with respect to device 
630 that includes meta information about all of the logical pools , virtual data stores , and virtual networks , so that 
networks included in the OVF package , and a collection of virtual - data - center administrators need not be concerned 
virtual - machine configurations 632 which further includes 30 with the identities of physical - data - center components used 
hardware descriptions of each VM 634. There are many to execute particular VMs . Furthermore , the virtual - data 
additional hierarchical levels and elements within a typical center management server computer 706 includes function 
OVF descriptor . The OVF descriptor is thus a self - describ- ality to migrate running VMs from one server computer to 
ing , XML file that describes the contents of an OVF pack- another in order to optimally or near optimally manage 
age . The OVF manifest 606 is a list of cryptographic - hash- 35 device allocation , provides fault tolerance , and high avail 
function - generated digests 636 of the entire OVF package ability by migrating VMs to most effectively utilize under 
and of the various components of the OVF package . The lying physical hardware devices , to replace VMs disabled by 
OVF certificate 608 is an authentication certificate 640 that physical hardware problems and failures , and to ensure that 
includes a digest of the manifest and that is cryptographi- multiple VMs supporting a high - availability virtual appli 
cally signed . Disk image files , such as disk image file 610 , 40 ance are executing on multiple physical computer systems 
are digital encodings of the contents of virtual disks and so that the services provided by the virtual appliance are 
device files 612 are digitally encoded content , such as continuously accessible , even when one of the multiple 
operating - system images . A VM or a collection of VMs virtual appliances becomes compute bound , data - access 
encapsulated together within a virtual application can thus bound , suspends execution , or fails . Thus , the virtual data 
be digitally encoded as one or more files within an OVF 45 center layer of abstraction provides a virtual - data - center 
package that can be transmitted , distributed , and loaded abstraction of physical data centers to simplify provisioning , 
using well - known tools for transmitting , distributing , and launching , and maintenance of VMs and virtual appliances 
loading files . A virtual appliance is a software service that is as well as to provide high - level , distributed functionalities 
delivered as a complete software stack installed within one that involve pooling the devices of individual server com 
or more VMs that is encoded within an OVF package . 50 puters and migrating VMs among server computers to 

The advent of VMs and virtual environments has allevi- achieve load balancing , fault tolerance , and high availability . 
ated many of the difficulties and challenges associated with FIG . 8 shows virtual machine components of a virtual 
traditional general - purpose computing . Machine and oper- data - center management server computer and physical 
ating - system dependencies can be significantly reduced or server computers of a physical data center above which a 
eliminated by packaging applications and operating systems 55 virtual - data - center interface is provided by the virtual - data 
together as VMs and virtual appliances that execute within center management server computer . The virtual - data - center 
virtual environments provided by virtualization layers run- management server computer 802 and a virtual - data - center 
ning on many different types of computer hardware . A next database 804 comprise the physical components of the 
level of abstraction , referred to as virtual data centers or management component of the virtual data center . The 
virtual infrastructure , provide a data center interface to 60 virtual - data - center management server computer 802 
virtual data centers computationally constructed within includes a hardware layer 806 and virtualization layer 808 
physical data centers . and runs a virtual - data - center management - server VM 810 

FIG . 7 shows virtual data centers provided as an abstrac- above the virtualization layer . Although shown as a single 
tion of underlying physical - data - center hardware compo- server computer in FIG . 8 , the virtual - data - center manage 
nents . In FIG . 7 , a physical data center 702 is shown below 65 ment server computer ( “ VDC management server ” ) may 
a virtual - interface plane 704. The physical data center con- include two or more physical server computers that support 
sists of a virtual - data - center management server computer multiple VDC - management - server virtual appliances . The 
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virtual - data - center management - server VM 810 includes a by a cloud director managing the multi - tenancy layer of 
management - interface component 812 , distributed services abstraction within a cloud - computing facility . The cloud 
814 , core services 816 , and a host - management interface services interface ( 308 in FIG . 3 ) exposes a virtual - data 
818. The host - management interface 818 is accessed from center management interface that abstracts the physical data 
any of various computers , such as the PC 708 shown in FIG . 5 center . 
7. The host - management interface 818 allows the virtual- FIG.9 shows a cloud - director level of abstraction . In FIG . 
data - center administrator to configure a virtual data center , 9 , three different physical data centers 902-904 are shown 
provision VMs , collect statistics and view log files for the below planes representing the cloud - director layer of 
virtual data center , and to carry out other , similar manage- abstraction 906-908 . Above the planes representing the 
ment tasks . The host - management interface 818 interfaces to 10 cloud - director level of abstraction , multi - tenant virtual data 
virtual - data - center agents 824 , 825 , and 826 that execute as centers 910-912 are shown . The devices of these multi 
VMs within each of the server computers of the physical tenant virtual data centers are securely partitioned in order to 
data center that is abstracted to a virtual data center by the provide secure virtual data centers to multiple tenants , or 
VDC management server computer . cloud - services - accessing organizations . For example , a 
The distributed services 814 include a distributed - device 15 cloud - services - provider virtual data center 910 is partitioned 

scheduler that assigns VMs to execute within particular into four different tenant - associated virtual - data centers 
physical server computers and that migrates VMs in order to within a multi - tenant virtual data center for four different 
most effectively make use of computational bandwidths , tenants 916-919 . Each multi - tenant virtual data center is 
data - storage capacities , and network capacities of the physi- managed by a cloud director comprising one or more 
cal data center . The distributed services 814 further include 20 cloud - director server computers 920-922 and associated 
a high - availability service that replicates and migrates VMs cloud - director databases 924-926 . Each cloud - director 
in order to ensure that VMs continue to execute despite server computer or server computers runs a cloud - director 
problems and failures experienced by physical hardware virtual appliance 930 that includes a cloud - director manage 
components . The distributed services 814 also include a ment interface 932 , a set of cloud - director services 934 , and 
live - virtual - machine migration service that temporarily halts 25 a virtual - data - center management - server interface 936. The 
execution of a VM , encapsulates the VM in an OVF pack- cloud - director services include an interface and tools for 
age , transmits the OVF package to a different physical server provisioning multi - tenant virtual data center virtual data 
computer , and restarts the VM on the different physical centers on behalf of tenants , tools and interfaces for con 
server computer from a virtual - machine state recorded when figuring and managing tenant organizations , tools and ser 
execution of the VM was halted . The distributed services 30 vices for organization of virtual data centers and tenant 
814 also include a distributed backup service that provides associated virtual data centers within the multi - tenant virtual 
centralized virtual - machine backup and restore . data center , services associated with template and media 

The core services 816 provided by the VDC management catalogs , and provisioning of virtualization networks from a 
server VM 810 include host configuration , virtual - machine network pool . Templates are VMs that each contains an OS 
configuration , virtual - machine provisioning , generation of 35 and / or one or more VMs containing applications . A template 
virtual - data - center alerts and events , ongoing event logging may include much of the detailed contents of VMs and 
and statistics collection , a task scheduler , and a device- virtual appliances that are encoded within OVF packages , so 
management module . Each physical server computers 820- that the task of configuring a VM or virtual appliance is 
822 also includes a host - agent VM 828-830 through which significantly simplified , requiring only deployment of one 
the virtualization layer can be accessed via a virtual - infra- 40 OVF package . These templates are stored in catalogs within 
structure application programming interface ( " API " ) . This a tenant's virtual - data center . These catalogs are used for 
interface allows a remote administrator or user to manage an developing and staging new virtual appliances and published 
individual server computer through the infrastructure API . catalogs are used for sharing templates in virtual appliances 
The virtual - data - center agents 824-826 access virtualiza- across organizations . Catalogs may include OS images and 
tion - layer server information through the host agents . The 45 other information relevant to construction , distribution , and 
virtual - data - center agents are primarily responsible for off- provisioning of virtual appliances . 
loading certain of the virtual - data - center management- Considering FIGS . 7 and 9 , the VDC - server and cloud 
server functions specific to a particular physical server to director layers of abstraction can be seen , as discussed 
that physical server computer . The virtual - data - center agents above , to facilitate employment of the virtual - data - center 
relay and enforce device allocations made by the VDC 50 concept within private and public clouds . However , this 
management server VM 810 , relay virtual - machine provi- level of abstraction does not fully facilitate aggregation of 
sioning and configuration - change commands to host agents , single - tenant and multi - tenant virtual data centers into het 
monitor and collect performance statistics , alerts , and events erogeneous or homogeneous aggregations of cloud - comput 
communicated to the virtual - data - center agents by the local ing facilities . 
host agents through the interface API , and to carry out other , 55 FIG . 10 shows virtual - cloud - connector nodes ( " VCC 
similar virtual - data - management tasks . nodes ” ) and a VCC server , components of a distributed 
The virtual - data - center abstraction provides a convenient system that provides multi - cloud aggregation and that 

and efficient level of abstraction for exposing the computa- includes a cloud - connector server and cloud - connector 
tional devices of a cloud - computing facility to cloud - com- nodes that cooperate to provide services that are distributed 
puting - infrastructure users . A cloud - director management 60 across multiple clouds . VMware vCloudTM VCC servers and 
server exposes virtual devices of a cloud - computing facility nodes are one example of VCC server and nodes . In FIG . 10 , 
to cloud - computing - infrastructure users . In addition , the seven different cloud - computing facilities are shown 1002 
cloud director introduces a multi - tenancy layer of abstrac- 1008. Cloud - computing facility 1002 is a private multi 
tion , which partitions VDCs into tenant - associated VDCs tenant cloud with a cloud director 1010 that interfaces to a 
that can each be allocated to a particular individual tenant or 65 VDC management server 1012 to provide a multi - tenant 
tenant organization , both referred to as a “ tenant . ” A given private cloud comprising multiple tenant - associated virtual 
tenant can be provided one or more tenant - associated VDCs data centers . The remaining cloud computing facilities 
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1003-1008 may be either public or private cloud computing different types of operating systems for different groups of 
facilities and may be single - tenant virtual data centers , such containers within the same host and OSL - virtualization does 
as virtual data centers 1003 and 1006 , multi - tenant virtual not provide for live migration of containers between hosts , 
data centers , such as multi - tenant virtual data centers 1004 high - availability functionality , distributed resource schedul 
and 1007-1008 , or any of various different kinds of third- 5 ing , and other computational functionality provided by 
party cloud - services facilities , such as third - party cloud- traditional virtualization technologies . 
services facility 1005. An additional component , the VCC FIG . 11 shows an example server computer used to host 
server 1014 , acting as a controller is included in the private three containers . As discussed above with reference to FIG . 
cloud - computing facility 1002 and interfaces to a VCC node 4 , an operating system layer 404 runs above the hardware 
1016 that runs as a virtual appliance within the cloud 10 402 of the host computer . The operating system provides an 
director 1010. A VCC server may also run as a virtual interface , for higher - level computational entities , that 
appliance within a VDC management server that manages a includes a system - call interface 428 and the non - privileged 
single - tenant private cloud . The VCC server 1014 addition- instructions , memory addresses , and registers 426 provided 
ally interfaces , through the Internet , to VCC node virtual by the hardware layer 402. However , unlike in FIG . 4 , in 
appliances executing within remote VDC management serv- 15 which applications run directly above the operating system 
ers , remote cloud directors , or within the third - party cloud layer 404 , OSL virtualization involves an OSL virtualization 
services 1018-1023 . The VCC server provides a VCC server layer 1102 that provides operating - system interfaces 1104 
interface that can be displayed on a local or remote terminal , 1106 to each of the containers 1108-1110 . The containers , in 
PC , or other computer system 1026 to allow a cloud- turn , provide an execution environment for an application 
aggregation administrator or other user to access VCC- 20 that runs within the execution environment provided by 
server - provided aggregate - cloud distributed services . In container 1108. The container can be thought of as a 
general , the cloud computing facilities that together form a partition of the resources generally available to higher - level 
multiple - cloud - computing aggregation through distributed computational entities through the operating system inter 
services provided by the VCC server and VCC nodes are face 430 . 
geographically and operationally distinct . FIG . 12 shows an approach to implementing the contain 
As mentioned above , while the virtual - machine - based ers on a VM . FIG . 12 shows a host computer similar to the 

virtualization layers , described in the previous subsection , host computer shown in FIG . 5A , discussed above . The host 
have received widespread adoption and use in a variety of computer includes a hardware layer 502 and a virtualization 
different environments , from personal computers to enor- layer 504 that provides a virtual hardware interface 508 to a 
mous distributed computing systems , traditional virtualiza- 30 guest operating system 1102. Unlike in FIG . 5A , the guest 
tion technologies are associated with computational over- operating system interfaces to an OSL - virtualization layer 
heads . While these computational overheads have steadily 1104 that provides container execution environments 1206 
dec ased , over the years , and often represent ten percent or 1208 multiple application programs . 
less of the total computational bandwidth consumed by an Although only a single guest operating system and OSL 
application running above a guest operating system in a 35 virtualization layer are shown in FIG . 12 , a single virtualized 
virtualized environment , traditional virtualization technolo- host system can run multiple different guest operating sys 
gies nonetheless involve computational costs in return for tems within multiple VMs , each of which supports one or 
the power and flexibility that they provide . more OSL - virtualization containers . A virtualized , distrib 

While a traditional virtualization layer can simulate the uted computing system that uses guest operating systems 
hardware interface expected by any of many different oper- 40 running within VMs to support OSL - virtualization layers to 
ating systems , OSL virtualization essentially provides a provide containers for running applications is referred to , in 
secure partition of the execution environment provided by a the following discussion , as a “ hybrid virtualized distributed 
particular operating system . As one example , OSL virtual- computing system 
ization provides a file system to each container , but the file Running containers above a guest operating system within 
system provided to the container is essentially a view of a 45 a VM provides advantages of traditional virtualization in 
partition of the general file system provided by the under- addition to the advantages of OSL virtualization . Containers 
lying operating system of the host . In essence , OSL virtu- can be quickly booted in order to provide additional execu 
alization uses operating - system features , such as namespace tion environments and associated resources for additional 
isolation , to isolate each container from the other containers application instances . The resources available to the guest 
running on the same host . In other words , namespace 50 operating system are efficiently partitioned among the con 
isolation ensures that each application is executed within the tainers provided by the OSL - virtualization layer 1204 in 
execution environment provided by a container to be iso- FIG . 12 , because there is almost no additional computational 
lated from applications executing within the execution envi- overhead associated with container - based partitioning of 
ronments provided by the other containers . A container computational resources . However , many of the powerful 
cannot access files not included the container's namespace 55 and flexible features of the traditional virtualization tech 
and cannot interact with applications running in other con- nology can be applied to VMs in which containers run above 
tainers . As a result , a container can be booted up much faster guest operating systems , including live migration from one 
than a VM , because the container uses operating - system- host to another , various types of high - availability and dis 
kernel features that are already available and functioning tributed resource scheduling , and other such features . Con 
within the host . Furthermore , the containers share compu- 60 tainers provide share - based allocation of computational 
tational bandwidth , memory , network bandwidth , and other resources to groups of applications with guaranteed isolation 
computational resources provided by the operating system , of applications in one container from applications in the 
without the overhead associated with computational remaining containers executing above a guest operating 
resources allocated to VMs and virtualization layers . Again , system . Moreover , resource allocation can be modified at 
however , OSL virtualization does not provide many desir- 65 run time between containers . The traditional virtualization 
able features of traditional virtualization . As mentioned layer provides for flexible and scaling over large numbers of 
above , OSL virtualization does not provide a way to run hosts within large distributed computing systems and a 
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simple approach to operating - system upgrades and patches . as , but are not limited to , a processor , a core , memory , a 
Thus , the use of OSL virtualization above traditional virtu- network connection , network interface , data - storage device , 
alization in a hybrid virtualized distributed computing sys- a mass - storage device , a switch , a router , and other any other 
tem , as shown in FIG . 12 , provides many of the advantages component of the physical data center 1304. Resources of a 
of both a traditional virtualization layer and the advantages 5 server computer and clusters of server computers may form 
of OSL virtualization . a resource pool for creating virtual resources of a virtual 

infrastructure used to run virtual objects . The term 
Process and System for Forecasting Time Series “ resource ” may also refer to a virtual resource , which may 
Data and Anomaly Detection in a Distributed have been formed from physical resources assigned to a 

Computing System 10 virtual object . For example , a resource may be a virtual 
processor used by a virtual object formed from one or more 

Processes and systems for forecasting time series data and cores of a multicore processor , virtual memory formed from 
detection of anomalous behaving resources of a distributed a portion of physical memory , virtual storage formed from 
computing system are described below . The processes and a sector or image of a hard disk drive , a virtual switch , and 
systems provide three advantages over typical forecasting 15 a virtual router . Each virtual object uses only the physical 
and anomaly detection methods by : ( 1 ) minimizing resource resources assigned to the virtual object . 
utilization from the tenant side ; ( 2 ) providing optimal speed In FIGS . 13B - 13C , a monitor tool 1342 monitors physical 
of forecast execution and anomaly detection over other and virtual resources by collecting numerous streams of 
techniques for forecasting and anomaly detection ; and ( 3 ) time - dependent metric data , called “ time series data , ” from 
providing accurate forecasts of resource usage and adjust 20 physical and virtual resources . The monitoring tool 1342 
resource usage to accommodate the forecasted changes in processes the time series data , as described below , to fore 
resource usage . The time series data may be generated by cast resource usage , generate alerts , and may generate 
many physical and virtual resources of the distributed com- recommendations , or execute remedial measures , to recon 
puting system . figure the virtual network or migrate VMs or containers from 

FIG . 13A show an example of a virtualization layer 1302 25 one server computer to another in order to most effectively 
located above a physical data center 1304. For the sake of utilize underlying physical resources . For example , remedial 
illustration , the virtualization layer 1302 is separated from measures include , but are not limited to , replacing VMs 
the physical data center 1304 by a virtual - interface plane disabled by physical hardware problems and failures , clon 
1306. The physical data center 1304 is an example of a ing VMs to ensure that the services provided by the VMs are 
distributed computing system that comprises a management 30 continuously accessible , even when one of the VMs 
server computer 1308 and any of various computers , such as becomes compute bound or data - access bound . As shown in 
PC 1310 , on which a virtual - data - center ( “ VDC ” ) manage- FIGS . 13B - 13C , directional arrows represent time series 
ment interface may be displayed to system administrators data sent from physical and virtual resources to the moni 
and other users . The physical data center 1304 additionally toring tool 1342. In FIG . 13B , PC 1310 , server computers 
includes many server computers , such as server computers 35 1308 and 1312-1315 , and mass - storage array 1322 send time 
1312-1319 , coupled together by local area networks , such as series data to the monitoring tool 1342. Clusters of server 
local area network 1320 which interconnects server com- computers may also send time series data to the monitoring 
puters 1312-1319 and a mass - storage array 1322. The physi- tool 1342. For example , a cluster of server computers 
cal data center 1304 includes three local area networks that 1312-1315 sends cluster time series data to the monitoring 
each directly interconnects a bank of eight server computers 40 tool 1342. In FIG . 13C , the VMs , containers , and virtual 
and a mass - storage array . Different physical data centers storage send time series data to the monitoring tool 1342 . 
may include many different types of computers , networks , A sequence of time series data associated with a resource 
data - storage systems and devices connected according to comprises metric data values indexed in time order and 
many different types of connection topologies . The virtual- recorded in spaced points in time called “ time steps . ” A 
ization layer 1302 includes virtual objects , such as VMs and 45 metric data value in a sequence of time series data is denoted 
containers , hosted by the server computers in the physical by 
data center 1304. The virtualization layer 1302 may also yi = y ( t :) ( 1 ) include a virtual network ( not illustrated ) of virtual switches , 
routers , and network interface cards formed from the physi- where 
cal switches , routers , and network interface cards of the 50 subscript i is a time step index ; and 
physical data center 1304. Certain server computers host t ; is a time step indicating when the metric data point is 
VMs as described above with reference to FIGS . 5A - 5B . For recorded in a data - storage device . 
example , server computer 1314 hosts two VMs 1324 , server FIG . 14 shows a plot of an example sequence of time 
computer 1326 hosts four VMs 1328 , and server computer series data associated with a resource of a distributed 
1330 hosts a VM 1332. Other server computers may host 55 computing system . Horizontal axis 1402 represents time . 
containers as described above with reference to FIGS . 11 Vertical axis 1404 represents a range of metric value ampli 
and 12. For example , server computer 1318 hosts four tudes . Curve 1406 represents a sequence of time series data 
containers 1334. The virtual - interface plane 1306 abstracts for a metric associated with a physical or virtual resource . In 
the resources of the physical data center 1304 to one or more practice , a sequence of time series data comprises discrete 
VDCs comprising the virtual objects and one or more virtual 60 metric data values in which each metric value is recorded in 
data stores , such as virtual data stores 1338 and 1340. For a data - storage device . FIG . 14A includes a magnified view 
example , one VDC may comprise VMs 1328 and virtual 1408 of three consecutive metric data values represented by 
data store 1338 and another VDC may comprise VMs 1324 points . Each point represents an amplitude of the metric at 
and virtual data store 1340 that are connected over separate a corresponding time step . For example , points 1410-1412 
virtual networks . 65 represents consecutive metric data values ( i.e. , amplitudes ) 

In the following discussion , the term “ resource ” refers to Yi - i : Yi , and Yi + 1 recorded in a data - storage device at corre 
a physical resource of a distributed computing system , such sponding time steps ti - 1 , ti , and ti + 1 . The example sequence 
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of time series data may represent usage of a physical or series data with confidence bounds over the forecast time 
virtual resource . For example , the time series data may window . The tenant time series data 1514 may be time series 
represent CPU usage of a core in a multicore processor of a data of a physical or virtual CPU , memory , data packet 
server computer over time . The time series data may rep- delivery metrics , and application response time associated 
resent the amount of virtual memory a VM uses over time . 5 with running the tenant's application . 
The time series data may represent network throughput for The process illustrated in FIG . 15 provides technological a cluster of server computers . Network throughput is the advantages over other techniques for forecasting time series number of bits of data transmitted to and from a physical or metric data : First , the trained RNN may be applied to time virtual object and is recorded in megabits , kilobits , or bits series data regardless of sampling rate . Second , the trained per second . The time series data may represent network 10 be applied to any time series data associated with traffic for a cluster of server computers . Network traffic at a any resource of the distributed computing system . Third , the physical or virtual object is a count of the number of data trained RNN may be used to forecast time series data over packets received and sent per unit of time . a time horizon . FIG . 15 shows a high - level view of a process for fore FIG . 16 shows a workflow of the off - line mode 1502 of casting time series data and generating confidence bounds . 15 
The process comprises an off - line mode 1502 and an on - line FIG . 15. In block 1602 , the RNN is trained for the time 
mode 1504. Minimization of resource utilization from the series data of the time series database 1506 as described 
tenant side is accomplished by separating the training and below with reference to FIG . 17A . In block 1604 , the RNN 
forecasting procedures into off - line and on - line modes , may be stored in a data - storage device using JavaScript 
respectively . Sequences of times series data generated for 20 object notation ( “ json ” ) and h5 files 1606. A json file 
numerous physical and virtual resources of the distributed provides a record of the RNN architecture , including the 
computing system are recorded in a time series database number of layers , the number of nodes in each layer , the type 
1506. For example , the time series database 1506 includes of activation functions utilized for each layer , and type of 
physical and virtual CPU , memory , data packet delivery optimizers . An h5 file records weights of the RNN . In block 
metrics , network throughput , network traffic , and applica- 25 1608 , the confidence bounds 1610 are computed for the time 
tion response times for numerous resources running in the series database 1506 as described below with reference to 
distributed computing system . Sequences of time series data Equations ( 3 ) - ( 9 ) and FIG . 17B . generated for physical and virtual resources of a tenant FIG . 17A shows training of the RNN in block 1602 of environment of the distributed computing system are also FIG . 6. The time series database comprises sequence of the 
recorded in a separate time series database 1508. A tenant 30 time series data denoted by TSD ,, TSD2 , ... , where 
environment comprises server computers , virtual machines , Q is the number of selected sequences of time series data in containers , and network devices used to run the tenant's the time series database 1506 used to train the RNN . Each applications . For example , a tenant environment may be 
comprised of the physical and virtual resources of the sequence of time series data is separately scaled by applying 
tenant's VDC . In off - line mode 1502 , historical time series 35 the following scaling to each metric value in the time series 

data : data of the time series database 1506 are used to train a 
recurrent neural network ( “ RNN ” ) 1510 and compute con 
fidence bounds of the time series database 1512. RNNs are 
a class of neural networks with connections between nodes ( y ; – Ymin ) ( 2 ) 

Y ; 
in the form a directed graph along a sequence . RNNs are 40 ( ymax - Ymin ) 

designed to exhibits temporal dynamic behavior for time 
based sequences . Unlike traditional feedforward neural net- where 
works , RNNs use internal state memory to process y ; is a scaled time series data value that lies in the interval 
sequences of inputs . In addition , for a traditional neural [ 0,1 ] ; network , it is assumed that all inputs and outputs are 45 Ymin is the minimum metric value in the time series data ; independent of each other . By contrast , RNNs are recurrent and because RNNs perform the same computational task for Ymax is the maximum metric value in the time series data . every element of a sequence , with the output dependent on As shown in FIG . 17A , scaling is applied to each sequence the previous computations . In certain implementations , a of time series data to obtain corresponding sequences of portion of the time series database 1506 used to train the 50 
RNN include the same data types that are found in the scaled time series data followed by using the scaled time may 
tenant environment . In other implementations , the entire series data to separately train the RNN . For example , scaling 
time series database 1506 may be used to train the RNN . The is applied to the time series data TSD1 , in block 1702 , to 
RNN may be a long short - term memory neural network obtain corresponding scaled time series data , which is then 
( “ LSTM network ” ) . LSTM networks are flexible at learning 55 used to train the RNN in block 1704. The RNN is trained 
the behaviors of different types of time series data . Because again by applying scaling to the time series data TSD2 , in 
LSTM networks may be executed in a streaming manner , block 1706 , to obtain corresponding scaled time series data , 
LSTM networks use fewer data points for forecasting than which is then used to train the RNN in block 1708. Scaling 
typical neural networks and forecasting techniques . In the followed by training the same RNN with the scaled 
on - line mode 1504 , for a sequence of time series data 1514 60 sequences of time series data is carried for each of the Q 
associated with a resource of the tenant environment , con- selected sequences of time series data . Because time series 
fidence bounds of the time series data may be computed data is continuously being added to sequences of the time 
1516 and the RNN trained in the off - line mode 1504 may be series database 1506 , after training the RNN for each 
used to compute forecast time series data with confidence sequence of time series data , the training process is repeated 
bounds over a forecast time window for the time series data 65 as represented by directional arrow 1710 current or updated 
1514. Alternatively , the confidence bounds of the time series sequences of time series data until a saturation or overfitting 
database and the RNN are used to compute forecast time is obtained . The latest RNN is stored in json and h5 files and 



to { e M Im = 1 

an errors 

Hizcurrent ( m ) 

( Yk , 13 

9 

US 11,023,353 B2 
19 20 

may be retrieved by the on - line mode 1504 at any time while In one implementation , the forecast error { Yk 1 + i - ?k.I + i } may 
continuing to train the RNN model with the same or updated be the smallest error common 
time series database 1506 . 

The confidence bounds computed in block 1608 of FIG . 
16 may be computed for the full time series database 1506 5 
or for selected sequences of time series data of the time 
series database 1506 that correspond to the time series data 
of the customer environment 1508 of FIG . 15. Consider K In alternative implement , the forecast 
sequences of time series data of the time series database { Yk.1 + z - ?k.1 + i } may be the first components of excm ) , because 
1506. The k - th sequence of time series data in the time series 10 the first component of a sequence of current forecast time 
database 1506 is given by : series D k , current ( m ) data is typically the closest to the corre 

sponding metric value of the current time series data 
Dk = ( Vk , 1 , „ YkN ) ( 3 ) DIE 

where N is the number of metric values in the sequence of FIG . 17B shows computation of forecast errors for a 
time series data recorded at N time steps in the time interval 15 1506. For the sake of convenience , the subscript k is sequence 1712 of time series data of the time series database 

[ t? , ty ] . Assume the RNN trained in block 1602 of FIG . 16 
receives I consecutive metric values of the k - th sequence as omitted . The sequence of time series data 1712 comprises N 

metric values . Overlapping subsequences 1714-1716 of the input and outputs o consecutive forecast metric values as sequence 1712 are sequences of historical time series data represented by that are separately input to the RNN , which outputs corre 
» Yk , 1 ) > RNN > k : 1 + 1 , ... , k1 + 0 ) 20 sponding overlapping sequences of current forecast time 

series data 1718-1720 . Forecast metric values that are com 
where mon to overlapping sequences of current forecast time series 
( Yk , 19 ... , Yk , ] ) is a sequence of historical time series data data are different , because each sequence of historical time 

of the time series database 1506 ; series data is different . For example , forecast metric values 
( Ÿk , 1 + 12 , ØK.1 + 0 ) is a sequence of forecast time series 25 1722-1724 are generated for the first three sequences of 

data ; and current forecast time series data 1718-1720 . The forecast 
N > I + 0 . metric values 1722-1724 are independently generated 

The time interval [ t? , tz ] of the sequence of time series data approximations of the actual metric value FIG . 17B 
e ( 3 ) ( y1 , ... , yj ) input to the RNN is called a “ historical time shows sets of errors ell ) , between the 

interval . ” The time interval [ tz + 1 , tz + 0 ] for the forecast time 30 sequences of current forecast time series data and the 
series data ( Q1 + 1 , ... , + 0 ) output from the RNN is called corresponding actual metric values of the sequences of 
a " current time interval . ” Let Dk , historical ( yk , 19 ... , Yx , 1 ) , current time series data 1712. FIG . 17B also shows a set of 

Dk.current = C?K1 + 19 ÛK1 + 0 ) , and Dk , current = ( Yk , 1 + 19 forecast errors e selected from the sets of errors ell ) , e ( 2 ) , 
( 3 ) , ... , eM ) . The forecast errors in the set of forecast errors Yk , 1 + 0 ) be the sequence of current time series data generated e may be the smallest of the errors common to the sets of in the current time interval , where D = Dk.historicaUD , k current 35 

Let M = N - 1 - O + 1 be the number of historical sequences of errors ell ) , e ( 2 ) , e ( 3 ) , ... , e ( M ) . For example , dashed line box 
1726 identifies errors between three different forecast metric the sequence of time series data that are separately input to values and the actual metric value Y1 + 3 . The smallest of the the RNN . For m = 1 , .. , M , forecast time series are three errors may be selected as the forecast error in the set computed as follows : of forecast errors e . In an alternative implementation , 

( V , . „ Yk , ] + m - 1 ) -RNN - ktm . „ VkI + O + m - 1 ) ( 5a ) because the first component of the sequence of current 
forecast time series data is typically the closest to the The historical time series data , current time series data , and 

current forecast time series data are correspondingly repre corresponding actual metric value of the current time series 
data , the error associated with the first component of each sented by sequence of current forecast time series data is selected as 

Dk historical VkJm - 1 ) ( 5b ) the forecast error in the set of forecast errors e . For example , 
dashed line 1728 corresponds to the error associated with the 

Dk historical YksI + O + m - 1 ) ( 50 ) first component 1724 of the sequence of current forecast 
time series data 1720 . 

m ) = ( klum ?k.1 + 0 + m - 1 ) ( 50 ) Assuming the forecast errors eki are normally distributed 
For m = 1 , ... , M , errors are computed between the current for k = 1 , ... , K , the set of mean values for the forecast errors 
time series data Dk.current ( m ) and the current forecast time across the K sequences of time series data in the time series 
series data Dk.currením ) database is given by as follows : 

u = ( H1 , H2 , ) ( 8a ) 
( m ) = Dk.curren : m ) _Dk.coppen ( n ) = 

Vyk.l + m - ?k.I + m k , I + O + m – 1 - VAI - OH ) - ) ( 6 ) 55 and standard deviations for the forecast errors across the K 
sequences of time series data in the time series database is Each error characterizes the accuracy of each component of 

the of current forecast time series data Ô given by ( m ) sequence 
o = ( 01,02 , ... , 00 ) ( 86 ) The errors of the current forecast time series data generated 

for the k - th sequence of time series data in the time series where the mean of the errors at the forecast time step t ; is 
database 1506 may be re - formulated to obtain a set of given by 
forecast errors : 

40 

( m ) 45 1 ) = ( ,, 

( m ) n = VkJ + m 

Discurrent ( m ) 50 

( ??? , 
ek 

k , current 

60 

( 80 ) ex = ( @ k , 1 , ... , k , 0 ) 
where each element of Equation ( 7 ) is a forecast error given 
by 

Mi = K 
k = 1 

( yk , lti – Ûkelti ) 
65 

ek , i = { Yk1 + z - üketi } 
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and the standard deviation of the errors at the forecast time lower confidence bounds over the forecast time window for 
step t , is given by the time series data y in Equation ( 11a ) as follows : 

UE + upperx ( ymax - Pain ) ( 12a ) 

k = 1 
i = 

20 

25 

30 

35 

( 8d ) 5 Š L = V - lower , x ( max - Pain ) ( 126 ) ( ( yk , 1 + i - ?k , 1 + i ) – Mi ? 
where i = 1 , ... , 0 . 

K - 1 The upper and lower confidence bounds are vectors with O 
number of components . In block 1916 , the confidence bands 

The upper confidence bounds for the time series database 10 are applied to the forecast time series data to obtain forecast 
time series data with confidence bounds 1918 . 1506 over the current time window are given by Outliers are metric values of the time series data collected 

upper = ( upper1 , ... „ uppero ) ( 9a ) in the forecast time window that are located outside the 
upper and lower confidence bounds given by Equations where 15 ( 12a ) and ( 12b ) . When a metric value y ; in the forecast time upper ; Fu ; + ZXO , window satisfies the condition and the lower confidence bounds for the time series database 

1506 over the current time window are given by v > U , ( 13a ) 

lower = ( lower 1 , where i = 1 , ... , 0 , the metric value y ; is identified as an lowero ) ( 9b ) 
outlier . When a metric value y ; in the forecast time window 

where satisfies the condition 
lower , - ZXO 

In Equations ( 9a ) and ( 9b ) , z is a user - selected number of y ; < L ; ( 132 ) 
standard deviations from the mean , such as 1 , 1.5 , 2 , 2.5 , or where i = 1 , ... , 0 , the metric value y ; is identified as an 
3 . outlier . In an alternative implementation , the scaled time 
FIG . 18 shows a workflow of the on - line mode 1504 of series data given by Equation ( 2 ) may be used to identify 

FIG . 15. The on - line mode 1504 reads the information stored outlier metric values . When a scaled metric value y ; in the 
in the json and h5 files and reconstructs the latest RNN forecast time window satisfies the condition 
generated by the off - line mode 1502. The on - line mode 1504 
may applies the confidence bounds computed in the off - line Y ; upper ; ( 14a ) 
mode 1502. The on - line mode 1504 applies the RNN to the where i = 1 , ... , 0 , the metric value y ; is identified as an time series data 1514 from a tenant environment to generate outlier . When a scaled metric value y ; in the forecast time forecasted time series data over the forecast time window . window satisfies the condition The on - line mode 1504 may compute forecast time series 
data with confidence bounds 1802 by applying the confi Y ; < lower ; ( 14a ) 
dence bounds of the time series database 1610 to the forecast where i = 1 , O , the metric value y ; is identified as an time series data . outlier . FIG . 19 shows a process for computing forecast time FIGS . 20A - 20B illustrate computing forecast time series series data with confidence bounds in the on - line mode 1504 data in a forecast time window and applying confidence for the time series data 1514 from a tenant environment . In 40 bounds to the forecast time series data . FIG . 20A shows a block 1902 , scaling of Equation ( 2 ) is applied to the time plot 2002 of time series data associated with a resource of a series data 1514 to obtain scaled time series data . In block tenant environment . Horizontal axis 2004 represents time . 1904 , parameters and weights of the RNN are read from the Vertical axis 2006 represents a range of metric values for the j son and h5 files 1606 and the RNN is applied to the scaled 
time series data to obtain scaled forecast time series data time series data . Curve 2008 represents time series data for 

45 the tenant environment . In block 2010 , forecast time series 1906. In block 1908 , inverse scaling is applied to the scaled data values are computed as described above with reference forecast time series data to obtain forecast time series data to blocks 1902 , 1904 , and 1908 of FIG . 19. FIG . 20A show 1910. Inverse scaling may by carried by computing a plot 2012 of time series data 2008 with forecast time series 
y = ( max - in ) + ymin ( 10 ) data represented by dashed curve 2014 computed over a 

50 forecast time window 2016. The forecast time series data in where ? ; is a forecast metric data value . the forecast time window may be used to adjust future In block 1912 , on - line mode 1504 may be used to compute resource usage . For example , the forecast time series data confidence bounds for the time series data 1914. Let may indicate that resource usage by a tenant's application is recorded time series data collected for the resource in the expected to increase over the forecast time interval . Pre 
forecast time window be denoted by 55 emptive measures may include increasing the amount of the 

resource available to the application using the resource . On y = ( V1 , ... , yo ) ( 11a ) the other hand , the forecast time series data may indicate that 
Let forecast time series data computed in the forecast time resource usage is expected to decrease over the forecast time 
window using the latest RNN be denoted by interval . In this case , the amount of the resource available to 

60 the tenant's application is decreased and made available to D = 1 , ... , jo ) ( 11b ) other applications in order to avoid wastage of the resource . 
The forecast time window is the first current time window FIG . 20B shows a plot 2018 of time series data accumulated 
described above with reference to Equation ( 4 ) . The forecast in the forecast time series data as represented curve 2020 . 
time series data in Equation ( 11b ) are computed according Points 2022 and 2024 are potential outlier metric values . In 
to blocks 1902 , 1904 , and 1908 of FIG . 19. The upper and 65 block 2026 , when time series data has accumulated in the 
lower confidence bounds for the time series database in forecast time window 2016 , confidence bounds 2028 may be 
Equations ( 9a ) and ( 9b ) may be used to compute upper and applied to the forecast time series data in the forecast time 
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window 2016. The confidence bounds 2026 may be the When either of the conditions in Equations ( 15a ) or ( 15b ) , 
confidence bounds for the time series database given by or Equations ( 16a ) and ( 16b ) , is satisfied , appropriate reme 
Equations ( 12a ) and ( 12b ) . FIG . 20B shows a plot 2030 with dial measures may be executed to correct problems created 
forecast time series data and confidence bounds added to the by the anomalous behaving resource . The remedial mea 
time series data in the forecast time window 2016. Curve 5 sures may be executed to ensure the anomalous behaving 
2032 represent upper confidence bounds over the forecast resources do not hinder performance of the distributed 
time window 2012. Curve 2034 represent lower confidence computing system . For example , remedial measures include , 
bounds over the forecast time window 2012. Metric data but are not limited to , ( 1 ) decreasing the amount of the 
values 2022 and 2024 are located outside the upper and reserved capacity of the resource , which increases the usable 
lower confidence bounds and are identified as outliers , 10 capacity of the resource , ( 2 ) assigning one or more addi 
which may trigger an alert indicating anomalous behavior at tional resources of the same type to the virtual object using 
the resource . the anomalous behaving resource , ( 3 ) migrating a virtual 

Anomalous behavior of a resource of a tenant environ- object that uses an anomalous behaving resource to a 
ment may be determined by the number of times the upper different server computer with the same type of resource , ( 4 ) 
confidence bound for resource is violated or the number of 15 reclaiming under used resources for use by other virtual 
times the lower confidence bound for the resource is violated objects , and ( 5 ) cloning one or more additional virtual 
per unit of time . Let T denote the duration of a time horizon . objects from a template of the virtual object using the 
The time interval may comprise the L more recent forecast anomalous behaving resource , the additional virtual objects 
time windows , where L is a positive integer . Let up - outlier- to share the workload of the virtual object . 
rater be a count of the number of upper confidence - bound 20 FIGS . 21A - 21J show plots of results obtained from train 
violations of the condition in Equation ( 14a ) within the time ing and using an RNN to forecast time series data and 
horizon T , where the subscript R denotes a resource . When generate confidence bounds for CPU and memory time 
the following condition is satisfied series data . FIG . 21A shows an example plot of 79 CPU 

metrics in a time series database linked together with a up - outlier - rater > Thup ( 15a ) 25 1 - minute sample rate in which 80 % were used to train 
where Thup is a threshold for the number of upper confi- LSTM RNN and 20 % were used for validation . Twenty data 
dence - bound violations per unit of time , an alert may be points where used with a 1 - hour minoring interval to predict 
displayed on the VDC management interface with the cor- the next 10 points with 1 - hour monitoring interval . FIG . 21B 
responding resource identified as behaving anomalously . Let show corresponding residuals with 10 different residual 
low - outlier - rater be a count of the number of lower con- 30 graphs corresponding to each forecasted data point . As 
fidence - bound violations of the condition in Equation ( 14b ) expected , the closest points have smaller errors : 
within the time interval T. When the following condition is averages of residuals 
satisfied [ 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.8 , 0.8 , 0.9 , 1.03 , 1.15 ] 

standard deviations of residuals low - outlier - rater > Th low ( 150 ) [ 2.7 , 3.4 , 3.7 , 3.99 , 4.2 , 4.4 , 4.6 , 4.8 , 4.97 , 5.1 ] . 
where Thíow is a threshold for the number of lower confi Average of residuals and standard deviations of residuals 
dence - bound violations per unit of time , an alert may also be have increasing components . FIGS . 21C and 21D show 
displayed on the VDC management interface with the cor- averaged values of residuals . More specifically , if the residu 
responding resource identified as behaving anomalously . als are given 

In an alternative implementation , the rates may be 
summed for the resources used by VMs , containers , server r = y = v = 1V1 - Ý1 , ... , Yo - yo ) 
computers , cluster of VMs , or clusters of server computers then the mean absolute error of the residuals is given by 
to identify anomalous behaving VMs , containers , server 
computers , cluster of VMs , or clusters of server computers . 
When the following condition is satisfied 

Inkl 

35 

40 

45 
' MAE = of in k = 1 

R 
up – outlier – rater > Threshup ( 16a ) 

where l • l denotes absolute value . With exception for the 
50 spikes , FIG . 21C shows that most residual values are within 

where Threshup is a threshold for the number of upper 0-10 % . FIGS . 21E - 21J show time series data ( “ Raw Data " ) , 
the forecasted time series data ( “ Forecast ” ) , and the corre confidence - bound violations per unit of time , an alert may be 

displayed on the VDC management interface with the cor sponding confidence bounds computed in forecast time 
responding resources , VM , container , or server computers window . For example , in FIG . 21E , dashed line 2102 rep 

55 resents time series data associated with memory , thick identified as behaving anomalously . When the following 
condition is satisfied dashed line 2104 represents forecast time series data , and 

shaded , horn - shape surfaces , such as shade , horn - shaped 
surface 2106 , represent confidence bounds computed for 
separate forecast time windows . FIGS . 21-21J also show low – outlier – rater > Threshow ( 16b ) 60 examples of time series data values that appear outside of 
upper and lower confidence bounds . For example , metric 
value 2108 , in FIG . 21E , is an outlier and a candidate for 

where Threshcow is a threshold for the number of lower anomaly inspection . When a time series metric data value is 
confidence - bound violations per unit of time , an alert may located outside the confidence bounds , and alert may be 
also be displayed on the VDC management interface with 65 generated , indicating that the tenant's resources or applica 
the corresponding resources , VM , container , or server com- tions are exhibiting anomalous behavior . For example , in 
puters identified as behaving anomalously . FIG . 21J , time series data values violate upper and lower 
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confidence bounds computed during forecasting . The viola- are computed between the sequence of current forecast time 
tions of the confidence bounds shown in FIG . 21J may series data and the corresponding sequence of current time 
trigger alerts indicating a problem with the memory used to series data , as described above with reference to Equation 
run the tenant's applications . ( 6 ) . In decision block 2505 , when errors have been com 

The methods described below with reference to FIGS . 5 puted for each sequence of historical time series data , 
22-28 are stored in one or more data - storage devices as control flows to block 2506. In block 2506 , the errors of the 
machine - readable instructions that when executed by one or sequences of current forecast time series data are re - formu 
more processors of the computer system shown in FIG . 1 to lated to obtain a set of forecast errors for the k - th sequence , 
compute forecast time series data and identify anomalous as described above with reference to Equation ( 7 ) and FIG . 
behaving resources of a distributed computing system . 10 17B . In decision block 2507 , when index k equals K , control 
FIG . 22 shows a control - flow diagram of a method to flows to block 2508. In block 2508 , mean errors are com 

compute forecast time series data and identify anomalous puted for the time series database 1506 as described above 
behaving resources of a distributed computing system . In with reference to Equation ( 8a ) . In block 2509 , standard 
block 2201 , the routine " train RNN based on historical time deviations are computed for the time series database 1506 as 
series database and compute confidence bounds of time 15 described above with reference to Equation ( 8b ) . In block 
series database ” is called . A loop beginning with block 2202 2510 , upper confidence bounds are computed for the time 
repeatedly executes the computational operations repre- series database as described above with reference to Equa 
sented by blocks 2203-2210 for each resource of a tenant's tion ( 9a ) . In block 2511 , lower confidence bounds are 
environment . In block 2203 , logical variables “ Upper_out- computed for the time series database as described above 
lier ” and “ Lower_outlier ” are set to FALSE . A loop begin- 20 with reference to Equation ( 9b ) . 
ning with block 2204 repeatedly execute the computational FIG . 26 shows a control - flow diagram of the routine 
operations represented by blocks 2205-2209 for each fore- " compute forecast time series data in forecast time window " 
cast time window . In block 2205 , the routine “ compute called in block 2205 of FIG . 26. In block 2601 , time series 
forecast time series data in forecast time window ” is called . data associated with a resource of tenant's environment is 
In block 2206 , the routine “ identify anomalous behavior of 25 read from a time series database from the tenant's environ 
resource based on confidence bounds ” is called . In decision ment . In block 2602 , scaling is applied to the time series data 
block 2207 , when abnormal behavior of a resource has been as described above with reference to Equation ( 2 ) to obtain 
identified in block 2206 , control flow to block 2208. In block scaled time series data associated with the resource . In block 
2208 , the routine “ report anomalous behavior / execute reme- 2603 , the RNN computed in block 2602 is applied to scaled 
dial measures ” is called . In decision block 2209 , when 30 time series data to compute scaled forecast time series data 
forecasting is to be carried out for another forecast time over a forecast time window . In block 2604 , inverse scaling 
window , control returns to block 2203. In decision block is applied to the scaled forecast time series data as described 
2210 , when another resource is to be checked for anomalous above with reference to Equation ( 10 ) . 
behavior , control returns to block 2205 FIG . 27 shows a control - flow diagram of the routine 
FIG . 23 shows a control - flow diagram of routine “ train 35 “ identify abnormal behavior of resource based on confi 

RNN based on historical time series database and compute dence bounds ” called in block 2206 of FIG . 22. A loop 
confidence bounds of time series database ” called in block beginning with block 2701 repeats the computational opera 
2201 of FIG . 22. In block 2301 , time series data of the time tions represented by blocks 2702-2710 for each metric value 
series database is read . In block 2302 , the routine " train associated with the resource in the forecast time window . In 
RNN using time series database ” is called . In block 2303 , 40 decision block 2701 , when the metric value satisfies the 
the routine " compute confidence bounds for the time series condition given by Equation ( 12a ) , control flows to block 
database ” is called . In block 2305 , parameters and weights 2703. In block 2703 , the number of upper confidence - bound 
for the RNN and the confidence bounds are stored . violations within the time horizon , up - outlier - rate , is 
FIG . 24 shows a control - flow diagram of the routine “ train updated . In decision block 2704 , when the condition given 

RNN using time series database ” called in block 2302 of 45 by Equation ( 13a ) is satisfied , control flows to block 2705 . 
FIG . 23. In decision block 2401 , while times series data In block 2705 , the resource is regarded as exhibiting anoma 
continues to be recorded in the time series database , the lous behavior and the logic variable Upper_outlier is 
computational operations represented by blocks 2402-2406 assigned the logical value TRUE . In decision block 2706 , 
are repeated . A loop beginning with block 2402 repeats the when the metric value satisfies the condition given by 
computational operations represented by blocks 2403-2406 . 50 Equation ( 12b ) , control flows to block 2707. In block 2707 , 
In block 2403 , the time series data is scaled as described the number of lower confidence - bound violations within the 
above with reference to Equation ( 2 ) . In block 2404 , the time horizon , low - outlier - rate , is updated . In decision block 
RNN is trained based on the scaled time series data . In block 2708 , when the condition given by Equation ( 13b ) is satis 
2405 , the RNN is stored as a json and h5 files . In decision fied , control flows to block 2709. In block 2709 , the resource 
block 2404 , blocks 2403-2406 are repeated for another 55 is regarded as exhibiting anomalous behavior and the logic 
sequence of time series data . variable Lower_outlier is assigned the logical value TRUE . 
FIG . 25 shows a control - flow diagram of the routine In decision block 2710 , control returns to decision block 

“ compute confidence bounds for the time series database ” 2703 for another metric value . 
called in block 2303 of FIG . 23. A loop beginning with block FIG . 28 shows a control - flow diagram of the routine 
2501 repeats the computational operations represented by 60 “ report abnormal behavior / execute remedial measures ” 
blocks 2502-2507 for K selected sequences of time series called in block 2208 of FIG . 22. In decision block 2801 , the 
data of the time series database 1506. A loop beginning with logical variable Upper_outlier is TRUE , control flows to 
block 2502 repeats the computational operations represented block 2802. In block 2802 , an alert is generated on the 
by blocks 2503-2505 for each sequence of historical time management consul indicating that upper confidence bounds 
series data . In block 2503 , a sequence of current forecast 65 for the resource have been violation and the resource is 
time series data is computed using the RNN , as described behaving in an anomalous manner . In block 2803 , remedial 
above with reference to Equation ( 4 ) . In block 2504 , errors measures are executed to correct the anomalous behavior 
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associated with the resource . In decision block 2804 , the 4. The process of claim 1 wherein computing the confi 
logical variable Lower_outlier is TRUE , control flows to dence bounds for the time series data generated in the 
block 2805. In block 2805 , an alert is generated on the forecast time interval comprises : 
management consul indicating that lower confidence bounds for each selected sequence of time series data of the time 
for the resource have been violated and the resource is 5 series database , 
behaving in an anomalous manner . In block 2806 , remedial using the RNN to compute overlapping sequences of 
measures are executed to correct the anomalous behavior current forecast time series data over current time 
associated with the resource . intervals based on overlapping sequences of histori 

It is appreciated that the previous description of the cal time series data of the selected sequence of time 
disclosed embodiments is provided to enable any person 10 series data , and 
skilled in the art to make or use the present disclosure . computing errors between the overlapping sequence of 
Various modifications to these embodiments will be appar current forecast time series data and corresponding 
ent to those skilled in the art , and the generic principles overlapping sequence of current time series data ; 
defined herein may be applied to other embodiments without forming a set of forecast errors from the errors computed 
departing from the spirit or scope of the disclosure . Thus , the 15 for each of the selected sequences of time series data ; 
present disclosure is not intended to be limited to the computing mean errors of the forecast errors across the 
embodiments shown herein but is to be accorded the widest sequences of time series data in the time series database 
scope consistent with the principles and novel features based on the set of forecast errors ; 
disclosed herein . computing standard deviations of the forecast errors 

The invention claimed is : across the sequences of time series data in the time 
1. In a process stored in one or more data - storage devices series database based on the set of forecast errors and 

and executed using one or more processors of a computer the mean errors : 
system to forecast time series data and detect an anomalous computing upper confidence bounds for the forecast time 
behaving resource of a distributed computing system , the series data based on the mean errors and the standard 
improvement comprising : deviations ; and 

continuously training a recurrent neural network ( “ RNN ” ) computing lower confidence bounds for the forecast time 
based on a time series database of continuously series data based on the mean errors and the standard 
recorded time series data for resources that run in the deviations . 
distributed computing system ; 5. The process of claim 1 wherein identifying the anoma 

for a resource used to run a tenant's applications in a 30 lous behavior of the resource comprises : 
tenant environment of the distributed computing sys- for each metric value of the time series data generated in 
tem , using a latest trained RNN to generate forecast the forecast time interval , 
time series data in a forecast time window from updating a count of upper confidence - bound violations 
recorded time series data associated with the resource ; within a time horizon , when the metric value is 

computing confidence bounds for time series data gener- 35 greater than an upper confidence bound at a time step 
ated in the forecast time interval using time series data of the metric value , and 
of the time series database ; and updating a count of lower confidence - bound violations 

identifying anomalous behavior of the resource based on within a time horizon , when the metric value is less 
at least one metric value of the time series data in the than a lower confidence bound at a time step of the 
forecast time interval violating one of the confidence 40 metric value ; 
bounds , thereby enabling execution of remedial mea- identifying anomalous behavior of the resource when the 
sures that overcome the anomalous behavior and count of the upper - confidence bound violations is 
improve execution of the tenant's applications in the greater than a threshold for upper confidence - bound 
tenant environment . violations per unit of time ; and 

2. The process of claim 1 wherein continuously training 45 identifying anomalous behavior of the resource when the 
the RNN based on the time series database comprises : count of the lower - confidence bound violations is less 

while time series data associated with the resources of the than a threshold for lower confidence - bound violations 
distributed computing systems are added to the time per unit of time . 
series database , 6. A computer system to forecast time series data and 
for each sequence of time series data of the time series 50 detect an anomalous behaving resource of a distributed 

database , computing system , the system comprising : 
scaling each sequence of time series data ; one or more processors ; 
training the RNN using each sequence of scaled time one or more data - storage devices ; and 

series data to obtain a latest trained RNN ; and machine - readable instructions stored in the one or more 
storing the latest RNN in a data - storage device . data - storage devices that when executed using the one 

3. The process of claim 1 wherein using the latest trained or more processors controls the system to execute 
RNN to generate the forecast time series data in the forecast operations comprising : 
time interval comprises : continuously training a recurrent neural network 

retrieving the recorded time series data associated with ( “ RNN ” ) based on a time series database of continu 
the resource from a time series database of the tenant 60 ously recorded time series data for resources that run 
environment ; in the distributed computing system ; 

applying scaling to the recorded time series data to for a resource used to run a tenant's applications in a 
generate scaled time series data ; tenant environment of the distributed computing 

applying the RNN to the scaled time series data to system , using a latest trained RNN to generate fore 
generate scaled forecast time series data ; and cast time series data in a forecast time window from 

applying inverse scaling to the scaled forecast time series recorded time series data associated with the 
data to generate the forecast time series data . resource ; 
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computing confidence bounds for time series data gen- updating a count of lower confidence - bound violations 
erated in the forecast time interval using time series within a time horizon , when the metric value is less 
data of the time series database ; and than a lower confidence bound at a time step of the 

identifying anomalous behavior of the resource based metric value ; 
on at least one metric value of the time series data in 5 identifying anomalous behavior of the resource when the 
the forecast time interval violating one of the con count of the upper - confidence bound violations is 
fidence bounds . greater than a threshold for upper confidence - bound 7. The computer system of claim 6 wherein continuously violations per unit of time ; and training the RNN based on the time series database com identifying anomalous behavior of the resource when the prises : count of the lower - confidence bound violations is less while time series data associated with the resources of the than a threshold for lower confidence - bound violations distributed computing systems are added to the time 

series database , unit of time . per 

for each sequence of time series data of the time series 11. A non - transitory computer - readable medium encoded 
database , with machine - readable instructions that implement a method 
scaling each sequence of time series data ; carried out by one or more processors of a computer system 
training the RNN using each sequence of scaled time to execute operations comprising : 

series data to obtain a latest trained RNN ; and continuously training a recurrent neural network ( “ RNN ” ) 
storing the latest RNN in a data - storage device . based on a time series database of continuously 

8. The computer system of claim 6 wherein using the 20 recorded time series data for resources that run in a 
latest trained RNN to generate the forecast time series data distributed computing system ; 
in the forecast time interval comprises : for a resource used to run a tenant's applications in a 

retrieving the recorded time series data associated with tenant environment of the distributed computing sys 
the resource from a time series database of the tenant tem , using a latest trained RNN to generate forecast 
environment ; time series data in a forecast time window from 

applying scaling to the recorded time series data to recorded time series data associated with the resource : 
generate scaled time series data ; computing confidence bounds for time series data gener applying the RNN to the scaled time series data to ated in the forecast time interval using time series data generate scaled forecast time series data ; and of the time series database ; and applying inverse scaling to the scaled forecast time series 30 identifying anomalous behavior of the resource based on data to generate the forecast time series data . at least one metric value of the time series data in the 9. The computer system of claim 6 wherein computing the forecast time interval violating one of the confidence confidence bounds for the time series data generated in the 

forecast time interval comprises : bounds , thereby enabling execution of remedial mea 
for each selected sequence of time series data of the time 35 sures that overcome the anomalous behavior and 

series database , improve execution of the tenant's applications in the 
using the RNN to compute overlapping sequences of tenant environment . 

current forecast time series data over current time 12. The medium of claim 1 wherein continuously training 
intervals based on overlapping sequences of histori the RNN based on the time series database comprises : 
cal time series data of the selected sequence of time 40 while time series data associated with the resources of the 
series data , and distributed computing systems are added to the time 

computing errors between the overlapping sequence of series database , 
current forecast time series data and corresponding for each sequence of time series data of the time series 
overlapping sequence of current time series data ; database , 

forming a set of forecast errors from the errors computed 45 scaling each sequence of time series data ; 
for each of the selected sequences of time series data ; training the RNN using each sequence of scaled time 

computing mean errors of the forecast errors across the series data to obtain a latest trained RNN ; and 
sequences of time series data in the time series database storing the latest RNN in a data - storage device . 
based on the set of forecast errors ; 13. The medium of claim 11 wherein using the latest 

computing standard deviations of the forecast errors 50 trained RNN to generate the forecast time series data in the 
across the sequences of time series data in the time forecast time interval comprises : 
series database based on the set of forecast errors and retrieving the recorded time series data associated with 
the mean errors : the resource from a time series database of the tenant 

computing upper confidence bounds for the forecast time environment ; 
series data based on the mean errors and the standard 55 applying scaling to the recorded time series data to 
deviations ; and generate scaled time series data ; 

computing lower confidence bounds for the forecast time applying the RNN to the scaled time series data to 
series data based on the mean errors and the standard generate scaled forecast time series data ; and 
deviations . applying inverse scaling to the scaled forecast time series 

10. The computer system of claim 6 wherein identifying 60 data to generate the forecast time series data . 
the anomalous behavior of the resource comprises : 14. The medium of claim 11 wherein computing the 

for each metric value of the time series data generated in confidence bounds for the time series data generated in the 
the forecast time interval , forecast time interval comprises : 
updating a count of upper confidence - bound violations for each selected sequence of time series data of the time 

within a time horizon , when the metric value is 65 series database , 
greater than an upper confidence bound at a time step using the RNN to compute overlapping sequences of 
of the metric value , and current forecast time series data over current time 
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intervals based on overlapping sequences of histori- 15. The medium of claim 11 wherein identifying the 
cal time series data of the selected sequence of time anomalous behavior of the resource comprises : 
series data , and for each metric value of the time series data generated in 

computing errors between the overlapping sequence of the forecast time interval , 
current forecast time series data and corresponding updating a count of upper confidence - bound violations 
overlapping sequence of current time series data ; within a time horizon , when the metric value is 

forming a set of forecast errors from the errors computed greater than an upper confidence bound at a time step 
for each of the selected sequences of time series data ; of the metric value , and 

computing mean errors of the forecast errors across the updating a count of lower confidence - bound violations 
within a time horizon , when the metric value is less sequences of time series data in the time series database 

based on the set of forecast errors ; than a lower confidence bound at a time step of the 
metric value ; computing standard deviations of the forecast errors 

across the sequences of time series data in the time identifying anomalous behavior of the resource when the 
series database based on the set of forecast errors and count of the upper - confidence bound violations is 
the mean errors ; greater than a threshold for upper confidence - bound 

computing upper confidence bounds for the forecast time violations per unit of time ; and 
series data based on the mean errors and the standard identifying anomalous behavior of the resource when the 
deviations ; and count of the lower - confidence bound violations is less 

than a threshold for lower confidence - bound violations computing lower confidence bounds for the forecast time 
series data based on the mean errors and the standard per unit of time . 
deviations . 
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