US011050624B2

a2 United States Patent

ao) Patent No.: US 11,050,624 B2

Hovhannisyan et al. 45) Date of Patent: Jun. 29, 2021
(54) METHOD AND SUBSYSTEM THAT (56) References Cited
COLLECTS, STORES, AND MONITORS
POPULATION METRIC DATA WITHIN A U.S. PATENT DOCUMENTS
COMPUTER SYSTEM
5,535,335 A * 7/1996 COX .oceovvereirnnennnn GOGF 11/3006
(71) Applicant: VMware, Inc., Palo Alto, CA (US) 20110078411 Al* 3/2011 Maclinovsky G06Z)0%2/§é
(72) Inventors: Avetik Hovhannisyan, Yerevan (AM); 2014/0310243 Al* 102014 McGee GO6F 17/731025@(5)
Ashot Nshan Harutyunyan, Yerevan 707/639
(AM); Naira Movses Grigoryan, 2015/0142940 Al* 52015 McMUrty ... HO4L 67/16
Yerevan (AM); Arnak Poghosyan, 709/223
Yerevan (AM) 2016/0112287 Al* 4/2016 Farmer HOA4L 43/106
709/224
(73) Assignee: VMware, Inc., Palo Alto, CA (US) . .
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1034 days. Primary Examiner — Jason D Recek
(21) Appl. No.: 15/195,728
57 ABSTRACT
(22) Filed: Jun. 28, 2016
The current document is directed to methods and subsystems
(65) Prior Publication Data within computing systems, including distributed computing
US 2017/0373937 Al Dec. 28, 2017 systgms, that collect, store, process, and analyze pop}llation
metrics for types and classes of system components, includ-
(51) Int.CL ing components of distributed applications executing within
HO4L 1224 (2006.01) containers, virtual machines, and other execution environ-
HO4L 29/08 (2006.01) ments. In a described implementation, a graph-like repre-
(52) US. CL sentation of the configuration and state of a computer system
CPC HO4L 41/0853 (2013.01); HO4L 41/0233 included aggregation nodes that collect metric data for a set
(2013.01); HO4L 41/0893 (2013.01); HO4L of multiple object nodes and that collect metric data that
67/10 (2013.01) represents the members of the set over a monitoring time
(58) Field of Classification Search interval. Population metrics are monitored, in certain imple-

CPCcccue. HO04L 41/0853; HO4L 41/0233; HO4L
41/0893; HO4L 43/08; HO4L 43/08085;
HO04L 43/10; HO4L 43/106

See application file for complete search history.

mentations, to detect outlier members of an aggregation.

20 Claims, 36 Drawing Sheets

system

aggregate
b

aggregate
h

1716/

Y1702

aggregate
d

1724
/

aggregate
N gy r9

U.S. Patent Jun. 29, 2021 Sheet 1 of 36 US 11,050,624 B2

102 103
/)

CPU |— CPU
— MEMORY
110
- CPU 4 CPU
\ \—108
105
112
—| SPECIALIZED ///__
— PROCESSOR J/ BRIDGE
4 114 e
120
a
BRIDGE

i i l

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

122—/| | l\ ! \ I\ | 127
123 124 125

MASS
126 STORAGE

DEVICE

FIG. 1

128

U.S. Patent Jun. 29, 2021 Sheet 2 of 36 US 11,050,624 B2

“—

FIG. 2

US 11,050,624 B2

Sheet 3 of 36

Jun. 29, 2021

U.S. Patent

o) \

0bE ——_

A% l/

\e

_ 30B}ajU| SBTIAIAS PNOJD _

ﬁm!/

X&&zmj

|]

4

| |
v

-

11711

pil

AT AT AT

A

€ Ol

YomjaN

US 11,050,624 B2

Sheet 4 of 36

Jun. 29, 2021

U.S. Patent

p-

Ol

00y
w:uf/ N_‘vf/ \‘o_‘v \‘wow
\ \ [/ /
/ | / 5 \
N \ / / L
\ \ / [/
abelolg
ssep oll oA $10858201d Aowsiy
T T 4
vy oy — 0oy — Bl —
alempien mmmmﬂwwwm_”wwwaﬁ wmﬂw%m_w_ﬁ_v_““w_.mﬁ_hm& mwmmw_q__..,b_hm%_ suofjansul pabajaud-uou
| sienug Jwibpy ysel
Sy — % a0m8Q Eﬁgm\ 3|14 Ememmw:ms_ Aowsy 1ONPOLOS
senai S0 g e — 1| sienseu s0
SOBLIBI E-Wa1Sh $18]51004 UL SISSAIPPE ALOIBLE
W el 1’8AS pue suoienisul pafsjald-uou
184S >
Buiesad 8¢y tTA7
swielboiy
uonesiddy

US 11,050,624 B2

Sheet 5 of 36

Jun. 29, 2021

U.S. Patent

025 <

VARRIE 006

S &
_— 108
A A
SS5EBIppe/IoIsiDal | SassalppeIajeipal SIOTTIyE } 14 908
pabajiaud _ pabapaud-uou pabajiaud suojonisu pafiajad-uon
SIBAUD BMABD SIBALD a0|ABP
J0)luow L ¥0S
\\.\\\uwﬁmw_\g\.\ J [BLLESY WA auyoep mmzt_>\\\| 919
SBSEAIPE/aIs|ial | Sossaippefalshal SioHomysul i P 804
pafapd pabajiaud-uou pefigjiaud suopaniisul pabajiad-uoN \
18
S0 S0 S0 SO SO
\\\\| 145
uoleojdde uoledydde uoneol|dde ucnenidde uoneagdde

orm|\

US 11,050,624 B2

Sheet 6 of 36

Jun. 29, 2021

U.S. Patent

0¥ L

g9 ol

& e
alempleH <
s /
- T riy
-
woshs Buperadp <
\ |
vy aoBLal [0-ijshs SISISIEE] Pt $oS5aIppE AiGHs
. : pue sunonisul pafsjaud-uocy
.
Jake usyezienia
uoezienyi
06 / \,,\
2SS
g0 80 S0
8Ys / s /
SSUOR
{ENHIA
uoleoidde uoijeaydde uoneandde
~ \ \ \
856 / 1567 96 /

swel6olg
v:c._wmu__%,q

US 11,050,624 B2

Sheet 7 of 36

Jun. 29, 2021

U.S. Patent

QG Ol

4 4
B abelojg
200 — ssey o ofl $J0SS8001d Aowspy
T T T
S855alppe/jsiaisinal | So8SaippE/SIolSiDal | SUOHORISU]

passjiAl pabejiaud-ou | pebejiud suoponisul pabajind-uou

WOLSAS B
ooy —T w.%»mm 9|i4 Juswabeuey Aowspy M_U_M_mwwmmm
aoepalul 80O | S0BUBlUl SO

- 5
ocy — b sogpul [lea-wajshs | seiserpi S e BOLBNBR]
8Cv L UOLIBZIfBNLIIA [8A9]-S0 ™~ gcy
095 — IENE m “ o
B IENIEIER) 18UIBJU0D ~L_ 700
-
bog
L
\\ dde dde dde
£94
T o
dde dde dde dde
o
~
899 L95 996

US 11,050,624 B2

Sheet 8 of 36

Jun. 29, 2021

U.S. Patent

as old

¢Ls]

170 Rl

™ 205

59SS9Ippe/SIalsiDas | sassaippeysiejsibal | suoonlsul
pa m%__é pabajinid-uou pabapaud suoponisul pebejjaud-uou
SIBALID B0IABD SIBAUP 90(ADD JouuoW
auluoel
[PUIBY WA [BUIBY INA [ENLIA
sassaippe;sia)sibol | sassalppeysigjsibor | suononisui) A
pabajial pafiajinid-uou pabapaud suofonujsu; pabajid-uou
g SO
- UONEZIBNIA [9A31-SO
1zUlgluo JeUejuoo Jau|ejloo
dde
dde dde
dde dde dde dde
: l/
7 7
8.5 L1S 945

US 11,050,624 B2

oBexoed 4A0

Sheet 9 of 36

Jun. 29, 2021

U.S. Patent

— VL9
8| sunosal
19
8|4 901n0sal
0v9 S H/ ajy aoinosal | 9
\\ _\\ ////
4 T T T T T e e — N
....._ .q_.. |||||||||||||||||||| .///// // :
sojlueu Jo jsabip \ _.S 3 TNX £¢9 ///// N -
SapRfoLl ey} 2)ealjiueD - // / //// N ot oBEw YSIp P 119
NN
<adojenudfs | N YA N
: AN //// M| ol efeuwrysp | 09
<uoljaslioD wajshg [enyiAL AN
: NN eeomien an0 |7 509
<UoNDag aremple [enuip> SN \ 909
; N sepue e
\ ¢49 <U0Ij28S BIempleH [BNJIA> ves /,/, 1SHEN 470
9g9 / <UoHD3}j0N) WaSAS [BNiA> soiduoseq 4p0 | L~ 709
/ A <U0N09G YIOMBN/>
. /
3 #2.nosal Jo 1sabig 0€9 <UOOS ¥ 10 MON> \
> - <UOIOSS HSICY/> /!
™~ > 8¢9 : N ,/ 709
2]y $91n0sal Jo 15961 I <UOHOSS 31> \
ajlj afiew ysip Jo 1safbia H__ 979 %Awwomoﬁ&mm\v \\
ajy sbewy ysip Jo jsebiq u <S90UBI88Y> \
abesoed josebiq | < mao_m>cm_v/ .
029 /’ 779

1euLI0 uonezieniip usdo

US 11,050,624 B2

Sheet 10 of 36

Jun. 29, 2021

U.S. Patent

v0L

L Ol

18ua) Bleq [eoisiyd

omm 61/ 8L B i lmﬁ\i !vmll,i -
“ / \wﬁ \W .

\ X\\ ,, / \ \

0L —

/ L/ /] . Vi

\

\

9c A

AT |004 ©9IN0SaY

GEL

1ejUs) ejeq [enyiA

US 11,050,624 B2

Sheet 11 of 36

Jun. 29, 2021

¢e8
/

lc8
/

8 Ol

]

08
/

¢08
/

U.S. Patent

aseqeiep
siempiey aIBMPIBH aiempleH T BleMpIe) 1een
908 — eleq BNMIA
1aheT 19AET Iake f FEY
uonezZEN)IA uofezgenyIA uonezienyIA 908 — 1 Luonezenn
M| | mE| | s
Ve
@) | () || e, | e
P Juewebeuepy
)| |)| | [y /
[oobwison || | [sbvson || | [[woBwson L \ | peweomea T
[t |99 [mtegon] 08 Cmesan] | Lo /P —ois
A /
/ I\ /
078 28 ¥Z8 A\ /
P BN
N N\ gLg /
/ / wswabeuell 1S0H \ \\
$20IAI8G 910D
918 Vs ~ Juswabeueul s0Inosay
llllll b — 1/ 1BINpaYYS ¥se)
dnyoeg rt/\ S90IA19S PONQLISIQ /\ﬁ - BuibBo 1o uoios||00 sansiels
6 ¥i8 N~ / ~ SJUBAS % SULIEJY
UCHEIDIW [NA BAIT _ aorpIIU| Juawabeuey y, ~ Bujuoisinoid A
Aiqeieny ybiH - N ~ Loneind
PNPAYOS 80IN0SOY peIgUISly — Hoeanbtioo WA
ALt - - uoeInByu0d 150K
= 4%

US 11,050,624 B2

Sheet 12 of 36

Jun. 29, 2021

U.S. Patent

@ b %
emﬁmc eep _mgts

_ _ m
-
Si9jua0 Emu [enuiA
| _
i _ i
| } [

\ G2o P
J0)331Ip pROPD \\ 4

e

£ oug, m 940, omo

4 Id
Id /
Ve /s

7’ 4 Vs
v O8O0, € OHD T omo\ 7 | DHO

:ml\

.| - 7
/
/ _ 4

/s
|
SI8JUB9 E% [ENHIA \ 10490 % onop

/! |26

a_‘m\\

/" /i
616 ma\ 916

0c6 e

aoepall SN DAA

€90 i wwxo

NEI\

28I
T T
[ood yiomau woyp Burugisiacld spomeN

sBojejen eipapy pue ajejdula]
/ fn, :o:m.smccoo isjus) ey fenyip uoleziuebln
¢cb

pue vonenBiuos uoezivebio

S80IAIAS 10)20lI(] PNG|Y)

™ . Buwoisinoid sauag ejeq enppy -

aoepa) JuataBeueyy

1Z43)
0J084Ip PhOJa \1

US 11,050,624 B2

Sheet 13 of 36

Jun. 29, 2021

U.S. Patent

. _
|
0l 9Ol | ploL 040 Z101
" apou D3A
|
8p0U J0A 1 1838 DDA A !
_ ™
_ [i a " : |
| _ _ A b _Mmz, : |
_ [_ A SN
_ ! I ¢ ol 1 EcOl RN i
] | ' H Tnz 3] 910l I
| 1 f ey <
|\ _ ! t el N
woo _\ Vs P \\ Id _r |||||||||||||||||||||||| /lw —_
—T [} 20 SOy 2001
" _ mms_m 1€ e
| I SRR ¢ > A BIEp JENLIA
! e apou oA 3pou DOA
s \\ v
001 — L0t 6101
10392 _
EIED BNLIA s . P f
1ep feny BN\ opou oo, o o S
= z
SPON DA ik S
f// //... m :

9001 I\

7

SE0IAIBS PROJD {7

fued v -\ 020}

\

I\ \ apouoon
001

U.S. Patent

Jun. 29, 2021

Sheet 14 of 36

US 11,050,624 B2

1105
1117\1118\ 120 / /1106
1041 N — 7 —7 o
RN
¢ b c
T > 1 "L/
%dze:fxg,:h-;#fﬂﬂ
107 T =—— = L ‘
m 1116
1108 4+ —L! I T Sk
i j ?] ™~ 1109
/’ 1 //‘i T - 1 \\1115
1112/ 1113/ system \1114 /1130
/1132
L
1134 =
a.%i
1136{§:§
a:li
a2,
a2,

US 11,050,624 B2

Sheet 15 of 36

Jun. 29, 2021

U.S. Patent

»‘.m Aw_._-v..p,
m\ ﬁm:»..

A

\ ™ zzzl
yzzl

rAYA) ; \w_‘m_‘
/ 1y 08y 67 8743 9y § ¥1 €7 L4 I

L _X
vicl

\@om_‘

wolshs

Horx
80¢i \

ouuw |

v0cl /

— ¢0c¢}

US 11,050,624 B2

Sheet 16 of 36

Jun. 29, 2021

U.S. Patent

_ G k.
¢l 9Ol4 m SER
w S
_ RN T_ \
-3 Auedoid |
- OLjBW 10alg0 —
80€L < _ ST - ml!-ﬁ.._&..E..
L ST T“ rl!.l.
Gogl diysuonejel
([Adedoid | _
90€} 4 E/ aldo
[Auedoid k—— diysuoness
B S oig)
_ SHED
diysuoneses | SEN J
|_Apsdoid
v v0€l A 108[qo [Aisdoid |
(Ao J— c0El ICEEw
e polgp SIEN | ‘, | Apsdod |
3 SEN | |

__Adedoid |

/N

US 11,050,624 B2

Sheet 17 of 36

Jun. 29, 2021

U.S. Patent

vl Ol

434"
\

1434
\

214
5] T
!
i 3 i 2 p R
T ! ¥ ! N
T —F
2] [£2 _lmmu 12z el [£9 ﬁﬁ_ﬁ:.ﬁ mw_.,c__m.c__m.c_:%_
nli U _L|J|: — T
2 q b
90v] =S Sop) g
WwajsAs
3071

_
/ ¢yl

US 11,050,624 B2

Sheet 18 of 36

Jun. 29, 2021

U.S. Patent

gevl

ayl 9l

e

_
m
o [P - 3[F
_HT EE0Y soluadod
O
9cvl aly pua

o BUH]-LIE]S
Jossanouid 9300-3nw

e vyl

ol pua
EER

e

10 Jusuodwod

e

@mww/ [RER - L

cepl /; FRITEN] mw_noo_cao_\ | pevl

28yl —L Sl s
- T Tl A ——
0zp) oevs/

U.S. Patent Jun. 29, 2021 Sheet 19 of 36 US 11,050,624 B2

o
>
S 3 3 3 ~
(o]
[
LS
< =T
T & a
5 1 D) &
<C
LO
-
o D
e —
& L LL
= v
\‘--._ /
3] 3 S 3
S
0 a &
\
5 & S 3
-t
/ / 2
0

US 11,050,624 B2

Sheet 20 of 36

Jun. 29, 2021

U.S. Patent

O || €0 || €O

%)

\ /

dgl Ol

0

€0 || ¢0

%0,

/ \

_
sﬁ\

129}

€0 || 20

%0

s

/ /

L1GL 91SL
515} /ﬁﬁ / / /
78] €D ¢ Ag)
e —1 ¢

/Jﬂ\\

wajsAs

US 11,050,624 B2

Sheet 21 of 36

Jun. 29, 2021

U.S. Patent

ommv\

816l

291 Old

9¢G1

uoneoijddy

Gesl

Y
JONIOS

Bulipuey jsenbal

LW
FETNES

Buypuey Jsanbal

|

/

18AJ8S pusyoeq

eq
19AI9S pusyoeq

a4
J19AI8S pudyOeq

|

\q
19AI9S puayoeq

|

P
18M19S g

Lesl \

veal \

mmmr\

¢esl

U.S. Patent Jun. 29, 2021 Sheet 22 of 36 US 11,050,624 B2

/ 1505
"~~~ 1532

\1518

b3
b4
h2

\1530

h
/

1520/

FIG. 15D

b1
b2
d1

U.S. Patent Jun. 29, 2021 Sheet 23 of 36 US 11,050,624 B2

S o
o7 ~
/O =
&
IsE
S
Pa) 5
o
|7 &2
[ag]
&
\\8
S
E L L4 i
L
[2e] e e
iy
[7,]
_ 3
o
1 O
&
\\C\l
€3
LLI
Lo
O ~
L1l d LL
3 s
& \7
L O
- 2
S = ©
/\j
© <t
[a]
()
b

U.S. Patent Jun. 29, 2021 Sheet 24 of 36 US 11,050,624 B2

154
t/50
n

-
=
wo
b ot
o [ap] -I
B < s 5) =<
— o o =t = ~ | ey "
o o S & = == .2
Li
(K]
-
o~ o | < ow
= Q 2|5 S =le < T
o~ o | =r o~
)) PR) e =
I~ o o
> o LI = T S
N o o~ e
VY S = S =] <
o~ R o~ | e
= o P 2 = i &
©
=
o
b aand
o~
T = o 2 = o =TI =
~— N O <t v N O <t v ON OO <t v— N <t
DO O O OO OO OOO0O0O 00O
o~
¥ A AR RN AN A
[K]
—

P1<
P2+
P3-<
P4

U.S. Patent Jun. 29, 2021 Sheet 25 of 36 US 11,050,624 B2

1609//

1606
\

FIG. 16A

U.S. Patent Jun. 29, 2021 Sheet 26 of 36 US 11,050,624 B2

— |y | ot w0 | =
L Q8 = £ L= e
&
o o0 o —
mt—N(’ONC’fJC\IQ O | Dy | O 1
B[l |€ Q|8 |oi TEIE|=E] =
-
A EN Al e A A. A A A A A A A e A oA A
o
N = o |[flw ©
< |2 |¢m | © v
Y| g s |8 s |gls |5 T = .
= = O
o) o T
M~ | BN
~ NI Tl |l w |m - Lo
oL - -
o 2 Y| |B e T IE S|SB o] T S
= £ —
| S| 8|2 |F e |a|l=lv|e|loalaiq ~
= I B e S S e A A R A A A =R RS -~
N |||l |lo oo | = ™ | ey o
@ Q| D |s |2l S s |E|vlie|S <
e~ | o W | | = o | @ | e | ey o~
Sia|a L 8|S SIS Llo|=| =~
Aoy o (50 = - bl | —
= o = © == -
T N < v— NN)<t v N <t ~— N <t
G ROGHOGEOGHOGHEOGEOGHGEGHOGNGIGHOGIGE GG
. RN AN AR v

P1<
P2+
P3<
P4 <

US 11,050,624 B2

Sheet 27 of 36

Jun. 29, 2021

U.S. Patent

— L} "9l

glebaifife

p
aefiaifife Y

a)ebaibbe

vmt\ \@E_‘ Not/

q
ajefalbbe

f

or: 8141\ 9} [80LL)L0L1\ 9021\ gy vot
Wiy moi N Y : \

bu | gy ey W || cP WP pWat ol L eq 99| | S9 | vq Sy 18| a])€Eq) |29

|
N/ Nen/ [\ N NS TN N N NN7SONNKNT S

61/1 [4743
YO |1 €0 || €O |} 1D v3 {1 €D | 20 || 1O vO || €3 || €D || }D 1, 130}

\ / \ / \ / \/

vd €d id bed

\ ﬁ\|\|\|\ /

US 11,050,624 B2

Sheet 28 of 36

Jun. 29, 2021

U.S. Patent

8l Ol

e

e

3 AT
\ t ¢ 7]
818l / | > 0z8l
/-
~
028} L ——\ _ ol
ge8l L} T) T
Em auy]
VE8L X T wone| /
28 S X
I
2081 _
—
pogL -~

D adAy Jaguiaw

ajebaibbe : adA)

uonefeibbe

9|qe} olBLL

918l

\o_‘wr

8//91 - dl

D : 8dA)

Wmoww

laqusw uolebesibbe

T pigl

/Nww_\

U.S. Patent Jun. 29, 2021 Sheet 29 of 36 US 11,050,624 B2

Com

wait for next event | _— 1902

1908
/

add aggregation

1912
/

add entity 5

1915
/

metric update

1917
/

monitor

default handler

918
mare queue

evenis?

FIG. 19A

U.S. Patent

Jun. 29, 2021 Sheet 30 of 36

US 11,050,624 B2

< add aggregation)

receive indication of 1920
type of entityto | _—~"
aggregate and

metrics to aggregate

L

add aggregation
entity fo CMDB and 1922
special aggregatiton —
mefric to aggregation
entity

/ 1926
1924

N add metric table for
type exisis? type to CMDB
Y
for each entity of type 1928
to aggregate -~
N|
1

add entry to special
metric and, if metric 1929
table added, adda |~
reference to metric
table in entity

1930

more

entities
?

foreachmetricto | " 1932
aggregate
Y

3
&

add entries in metric 1933
table and metric /
container to
aggregation entity

metrics
?

FIG. 19B

U.S. Patent

Jun. 29, 2021

C add entity)

receive type and
other information for
entity

create entity and
add to CMDB

create metric
containers for entity
and link to entity

entity
aggregated
?

for each
aggregation fo
which entity belongs

add entry to special
metric in
aggregation entity

add reference to
metric table

more
aggregations
?

Sheet 31 of 36

US 11,050,624 B2

FIG. 19C

U.S. Patent

Jun. 29, 2021

Sheet 32 of 36

< metric update)

receive value,
timestamp, entity,

metric, and any
other information

1960

find entity

metric an
aggregation
metric
?

update metric in
aggregation entity

update metric in
entity

FIG.

19D

US 11,050,624 B2

/ 1966

US 11,050,624 B2

Sheet 33 of 36

Jun. 29, 2021

U.S. Patent

V0¢ Ol

[

-—

[

[}
—
R

I
¥00¢ \ 8007 |
gaueilep abeiany
Ploysaly] Jomoy
ploysasyy, Jaddp
o . i] :
0102 \1/ / v
Iy T \ T Y202
810¢ — al / \ 900¢ a0ueliep, abesony \ ¢c0¢
9107 — L2 2002 prousenL ot | 0202
\/ —_ ploysayy saddn
P10z L mj/
/ IR
8181 L .
- -
\ uoyefsifife
2081

U.S. Patent Jun. 29, 2021 Sheet 34 of 36 US 11,050,624 B2

(monitor >

determine the
population metric
and associated | —— 2030

aggregation for
which timer expired

L

compute current
and oformost | — 2932

recent time inferval

compare u + ac 0 2034
upper threshold and | —"
[- bo 1o lower
threshold

2038
P 2036 /

outlier analysis

threshold

violated
?

adjust upper and 2040
lower threshold and -~
average o

2042
reset timer ~

FIG. 20B

U.S. Patent Jun. 29, 2021 Sheet 35 of 36 US 11,050,624 B2

Coutlier anaiysis>

candidates=@ |— 2050

for each aggregated] 2052
entity

compute average 2053
metric value over | —
time interval

2055
/

candidates +=
aggregated entity

more
candidates
?

evaluate _— 2060
candidates

FIG. 20C

U.S. Patent Jun. 29, 2021 Sheet 36 of 36 US 11,050,624 B2

FIG. 20D

\ 2072

4431
1 (4%)
1,
Lif 3]
(%)
iy

US 11,050,624 B2

1

METHOD AND SUBSYSTEM THAT
COLLECTS, STORES, AND MONITORS
POPULATION METRIC DATA WITHIN A
COMPUTER SYSTEM

TECHNICAL FIELD

The current document is directed to automated adminis-
tration and maintenance subsystems within computer sys-
tems, including large distributed computing systems, and, in
particular, to methods and subsystems for collecting and
storing population metrics for types and classes of compo-
nents.

BACKGROUND

Computer systems have evolved enormously in the past
60 years. Initial computer systems were room-sized,
vacuum-tube-based behemoths with far less computational
bandwidth and smaller data-storage capacities than a mod-
ern smart phone or even a microprocessor controller embed-
ded in any of various consumer appliances and devices.
Initial computer systems ran primitive programs one at a
time, without the benefit of operating systems, high-level
languages, and networking. Over time, parallel development
of hardware, compilers, operating systems, virtualization
technologies, and distributed-computing technologies has
led to modern distributed computing systems, including
cloud-computing facilities, that feature hundreds, thousands,
tens of thousands, or more high-end servers, each including
multiple multi-core processors, that can access remote com-
puter systems and that can be accessed by remote client
computers throughout the world through sophisticated elec-
tronic communications. As the complexity of computer
systems has grown, the administration and management of
computer systems has exponentially grown in complexity, in
the volume of data generated and stored for administration
and management purposes, and in the computational-band-
width used for collecting and processing data that reflects
the internal operational state of the computer systems and
their subsystems and components. While the operational
state of an early computer system may well have been
encapsulated in a handful of status registers and a modest
amount of information printed from teletype consoles, giga-
bytes or terabytes of metric data may be generated and
stored by internal automated monitoring, administration,
and management subsystems within a modern distributed
computing system on a daily or weekly basis. Collection,
storage, and processing of these large volumes of data
generated by automated monitoring, administration, and
maintenance subsystems within distributed computing sys-
tems is rapidly becoming a computational bottleneck with
respect to further evolution, expansion, and improvement of
distributed computing systems. For this reason, designers,
developers, vendors, and, ultimately, users of computer
systems continue to seek methods and subsystems to more
efficiently store, process, and interpret the voluminous
amount of metric data internally generated within distributed
computing systems to facilitate automated administration
and management of distributed computing systems, includ-
ing diagnosing performance and operational problems,
anticipating such problems, and automatically reconfiguring
and repairing distributed-system-components to address
identified and anticipated problems.

SUMMARY

The current document is directed to methods and subsys-
tems within computing systems, including distributed com-

15

40

45

65

2

puting systems, that collect, store, process, and analyze
population metrics for types and classes of system compo-
nents, including components of distributed applications
executing within containers, virtual machines, and other
execution environments. In a described implementation, a
graph-like representation of the configuration and state of a
computer system included aggregation nodes that collect
metric data for a set of multiple object nodes and that collect
metric data that represents the members of the set over a
monitoring time interval. Population metrics are monitored,
in certain implementations, to detect outlier members of an
aggregation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for vari-
ous types of computers.

FIG. 2 illustrates an Internet-connected distributed com-
puter system.

FIG. 3 illustrates cloud computing.

FIG. 4 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1.

FIGS. 5A-D illustrate several types of virtual machine
and virtual-machine execution environments.

FIG. 6 illustrates an OVF package.

FIG. 7 illustrates virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

FIG. 8 illustrates virtual-machine components of a VI-
management-server and physical servers of a physical data
center above which a virtual-data-center interface is pro-
vided by the VI-management-server.

FIG. 9 illustrates a cloud-director level of abstraction.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds.

FIG. 11 illustrate metric data that is collected, processed,
and used by the administrative and management subsystems
within a computer system.

FIG. 12 illustrates metric data.

FIG. 13 illustrates a configuration-management database
(“CMDB”).

FIGS. 14A-B illustrate a CMBD representation of the
hypothetical system 1102 discussed above with reference to
FIG. 11.

FIGS. 15A-F illustrate a typical CMDB-like representa-
tion of the state of a system that includes a distributed
application running within a multi-processor system.

FIGS. 16A-B illustrate aspects of modern, distributed
applications that differ from the traditional distributed appli-
cation discussed above with reference to FIG. 15C.

FIGS. 17-18 illustrate an object-entity-aggregation
method, using illustration conventions employed in previous
figures, that addresses the above-discussed problems asso-
ciated with collecting metric data for application compo-
nents of modern, highly dynamic and mobile distributed
applications.

FIGS. 19A-D provide control-flow diagrams that repre-
sent supplemental logic for a CMDB representation of the
configuration and state of a system that includes aggregation
nodes.

US 11,050,624 B2

3

FIG. 20A provides additional details of aggregation enti-
ties and population metrics.

FIGS. 20B-C provide control-flow diagrams for the moni-
tor handler called in step 1917 in FIG. 19A.

FIG. 20D illustrates one approach for outlier evaluation.

DETAILED DESCRIPTION OF EMBODIMENTS

The current document is directed to methods and subsys-
tems within computing systems, including distributed com-
puting systems, that collect, store, process, and analyze
population metrics for types and classes of system compo-
nents, including components of distributed applications
executing within containers, virtual machines, and other
execution environments. In a first subsection, below, an
overview of distributed computing systems is provided, with
reference to FIGS. 1-10. In a second subsection, the methods
and subsystems to which the current document is directed
are discussed, with reference to FIGS. 11-19D.

Overview of Distributed Computing Systems

FIG. 1 provides a general architectural diagram for vari-
ous types of computers. The computer system contains one
or multiple central processing units (“CPUs”) 102-105, one
or more electronic memories 108 interconnected with the
CPUs by a CPU/memory-subsystem bus 110 or multiple
busses, a first bridge 112 that interconnects the CPU/
memory-subsystem bus 110 with additional busses 114 and
116, or other types of high-speed interconnection media,
including multiple, high-speed serial interconnects. These
busses or serial interconnections, in turn, connect the CPUs
and memory with specialized processors, such as a graphics
processor 118, and with one or more additional bridges 120,
which are interconnected with high-speed serial links or
with multiple controllers 122-127, such as controller 127,
that provide access to various different types of mass-storage
devices 128, electronic displays, input devices, and other
such components, subcomponents, and computational
resources. It should be noted that computer-readable data-
storage devices include optical and electromagnetic disks,
electronic memories, and other physical data-storage
devices. Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval, and can
transiently “store” only a byte or less of information per
mile, far less information than needed to encode even the
simplest of routines.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

FIG. 2 illustrates an Internet-connected distributed com-
puter system. As communications and networking technolo-

10

15

20

25

30

35

40

45

50

55

60

65

4

gies have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user sitting in a home office may access
hundreds of millions of different web sites provided by
hundreds of thousands of different web servers throughout
the world and may access high-computational-bandwidth
computing services from remote computer facilities for
running complex computational tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web servers, back-end computer
systems, and data-storage systems for serving web pages to
remote customers, receiving orders through the web-page
interface, processing the orders, tracking completed orders,
and other myriad different tasks associated with an e-com-
merce enterprise.

FIG. 3 illustrates cloud computing. In the recently devel-
oped cloud-computing paradigm, computing cycles and
data-storage facilities are provided to organizations and
individuals by cloud-computing providers. In addition,
larger organizations may elect to establish private cloud-
computing facilities in addition to, or instead of, subscribing
to computing services provided by public cloud-computing
service providers. In FIG. 3, a system administrator for an
organization, using a PC 302, accesses the organization’s
private cloud 304 through a local network 306 and private-
cloud interface 308 and also accesses, through the Internet
310, a public cloud 312 through a public-cloud services
interface 314. The administrator can, in either the case of the
private cloud 304 or public cloud 312, configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers in order to carry
out any of many different types of computational tasks. As
one example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the resources to pur-
chase, manage, and maintain in-house data centers. Such
organizations can dynamically add and delete virtual com-
puter systems from their virtual data centers within public
clouds in order to track computational-bandwidth and data-
storage needs, rather than purchasing sufficient computer
systems within a physical data center to handle peak com-

US 11,050,624 B2

5

putational-bandwidth and data-storage demands. Moreover,
small organizations can completely avoid the overhead of
maintaining and managing physical computer systems,
including hiring and periodically retraining information-
technology specialists and continuously paying for operat-
ing-system and database-management-system upgrades.
Furthermore, cloud-computing interfaces allow for easy and
straightforward configuration of virtual computing facilities,
flexibility in the types of applications and operating systems
that can be configured, and other functionalities that are
useful even for owners and administrators of private cloud-
computing facilities used by a single organization.

FIG. 4 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor resources and
other system resources with other application programs and
higher-level computational entities. The device drivers

30

40

45

55

6

abstract details of hardware-component operation, allowing
application programs to employ the system-call interface for
transmitting and receiving data to and from communications
networks, mass-storage devices, and other /O devices and
subsystems. The file system 446 facilitates abstraction of
mass-storage-device and memory resources as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system is ported
to additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” has been developed and
evolved to further abstract computer hardware in order to
address many difficulties and challenges associated with
traditional computing systems, including the compatibility
issues discussed above. FIGS. 5A-D illustrate several types
of virtual machine and virtual-machine execution environ-
ments. FIGS. 5A-B use the same illustration conventions as
used in FIG. 4. FIG. 5A shows a first type of virtualization.
The computer system 500 in FIG. 5A includes the same
hardware layer 502 as the hardware layer 402 shown in FIG.
4. However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment illustrated in FIG. 5A features
a virtualization layer 504 that interfaces through a virtual-
ization-layer/hardware-layer interface 506, equivalent to
interface 416 in FIG. 4, to the hardware. The virtualization
layer provides a hardware-like interface 508 to a number of
virtual machines, such as virtual machine 510, executing

US 11,050,624 B2

7

above the virtualization layer in a virtual-machine layer 512.
Each virtual machine includes one or more application
programs or other higher-level computational entities pack-
aged together with an operating system, referred to as a
“guest operating system,” such as application 514 and guest
operating system 516 packaged together within virtual
machine 510. Each virtual machine is thus equivalent to the
operating-system layer 404 and application-program layer
406 in the general-purpose computer system shown in FIG.
4. Each guest operating system within a virtual machine
interfaces to the virtualization-layer interface 508 rather than
to the actual hardware interface 506. The virtualization layer
partitions hardware resources into abstract virtual-hardware
layers to which each guest operating system within a virtual
machine interfaces. The guest operating systems within the
virtual machines, in general, are unaware of the virtualiza-
tion layer and operate as if they were directly accessing a
true hardware interface. The virtualization layer ensures that
each of the virtual machines currently executing within the
virtual environment receive a fair allocation of underlying
hardware resources and that all virtual machines receive
sufficient resources to progress in execution. The virtualiza-
tion-layer interface 508 may differ for different guest oper-
ating systems. For example, the virtualization layer is gen-
erally able to provide virtual hardware interfaces for a
variety of different types of computer hardware. This allows,
as one example, a virtual machine that includes a guest
operating system designed for a particular computer archi-
tecture to run on hardware of a different architecture. The
number of virtual machines need not be equal to the number
of physical processors or even a multiple of the number of
processors.

The virtualization layer includes a virtual-machine-moni-
tor module 518 (“VMM?”) that virtualizes physical proces-
sors in the hardware layer to create virtual processors on
which each of the virtual machines executes. For execution
efficiency, the virtualization layer attempts to allow virtual
machines to directly execute non-privileged instructions and
to directly access non-privileged registers and memory.
However, when the guest operating system within a virtual
machine accesses virtual privileged instructions, virtual
privileged registers, and virtual privileged memory through
the virtualization-layer interface 508, the accesses result in
execution of virtualization-layer code to simulate or emulate
the privileged resources. The virtualization layer addition-
ally includes a kernel module 520 that manages memory,
communications, and data-storage machine resources on
behalf of executing virtual machines (“VM kernel”). The
VM kernel, for example, maintains shadow page tables on
each virtual machine so that hardware-level virtual-memory
facilities can be used to process memory accesses. The VM
kernel additionally includes routines that implement virtual
communications and data-storage devices as well as device
drivers that directly control the operation of underlying
hardware communications and data-storage devices. Simi-
larly, the VM kernel virtualizes various other types of I/O
devices, including keyboards, optical-disk drives, and other
such devices. The virtualization layer essentially schedules
execution of virtual machines much like an operating system
schedules execution of application programs, so that the
virtual machines each execute within a complete and fully
functional virtual hardware layer.

FIG. 5B illustrates a second type of virtualization. In FIG.
5B, the computer system 540 includes the same hardware
layer 542 and software layer 544 as the hardware layer 402
shown in FIG. 4. Several application programs 546 and 548
are shown running in the execution environment provided

25

30

40

45

50

55

8

by the operating system. In addition, a virtualization layer
550 is also provided, in computer 540, but, unlike the
virtualization layer 504 discussed with reference to FI1G. 5A,
virtualization layer 550 is layered above the operating
system 544, referred to as the “host OS,” and uses the
operating system interface to access operating-system-pro-
vided functionality as well as the hardware. The virtualiza-
tion layer 550 comprises primarily a VMM and a hardware-
like interface 552, similar to hardware-like interface 508 in
FIG. 5A. The virtualization-layer/hardware-layer interface
552, equivalent to interface 416 in FIG. 4, provides an
execution environment for a number of virtual machines
556-558, each including one or more application programs
or other higher-level computational entities packaged
together with a guest operating system.

While the traditional virtual-machine-based virtualization
layers, described with reference to FIGS. 5A-B, have
enjoyed widespread adoption and use in a variety of different
environments, from personal computers to enormous dis-
tributed computing systems, traditional virtualization tech-
nologies are associated with computational overheads.
While these computational overheads have been steadily
decreased, over the years, and often represent ten percent or
less of the total computational bandwidth consumed by an
application running in a virtualized environment, traditional
virtualization technologies nonetheless involve computa-
tional costs in return for the power and flexibility that they
provide. Another approach to virtualization is referred to as
operating-system-level virtualization (“OSL virtualiza-
tion”). FIG. 5C illustrates the OSL-virtualization approach.
In FIG. 5C, as in previously discussed FIG. 4, an operating
system 404 runs above the hardware 402 of a host computer.
The operating system provides an interface for higher-level
computational entities, the interface including a system-call
interface 428 and exposure to the non-privileged instructions
and memory addresses and registers 426 of the hardware
layer 402. However, unlike in FIG. 5A, rather than appli-
cations running directly above the operating system, OSL
virtualization involves an OS-level virtualization layer 560
that provides an operating-system interface 562-564 to each
of one or more containers 566-568. The containers, in turn,
provide an execution environment for one or more applica-
tions, such as application 570 running within the execution
environment provided by container 566. The container can
be thought of as a partition of the resources generally
available to higher-level computational entities through the
operating system interface 430. While a traditional virtual-
ization layer can simulate the hardware interface expected
by any of many different operating systems, OSL virtual-
ization essentially provides a secure partition of the execu-
tion environment provided by a particular operating system.
As one example, OSL virtualization provides a file system to
each container, but the file system provided to the container
is essentially a view of a partition of the general file system
provided by the underlying operating system. In essence,
OSL virtualization uses operating-system features, such as
name space support, to isolate each container from the
remaining containers so that the applications executing
within the execution environment provided by a container
are isolated from applications executing within the execu-
tion environments provided by all other containers. As a
result, a container can be booted up much faster than a
virtual machine, since the container uses operating-system-
kernel features that are already available within the host
computer. Furthermore, the containers share computational
bandwidth, memory, network bandwidth, and other compu-
tational resources provided by the operating system, without

US 11,050,624 B2

9

resource overhead allocated to virtual machines and virtu-
alization layers. Again, however, OSL virtualization does
not provide many desirable features of traditional virtual-
ization. As mentioned above, OSL virtualization does not
provide a way to run different types of operating systems for
different groups of containers within the same host system,
nor does OSL-virtualization provide for live migration of
containers between host computers, as does traditional vir-
tualization technologies.

FIG. 5D illustrates an approach to combining the power
and flexibility of traditional virtualization with the advan-
tages of OSL virtualization. FIG. 5D shows a host computer
similar to that shown in FIG. 5A, discussed above. The host
computer includes a hardware layer 502 and a virtualization
layer 504 that provides a simulated hardware interface 508
to an operating system 572. Unlike in FIG. 5A, the operating
system interfaces to an OSL-virtualization layer 574 that
provides container execution environments 576-578 to mul-
tiple application programs. Running containers above a
guest operating system within a virtualized host computer
provides many of the advantages of traditional virtualization
and OSL virtualization. Containers can be quickly booted in
order to provide additional execution environments and
associated resources to new applications. The resources
available to the guest operating system are efficiently par-
titioned among the containers provided by the OSL-virtu-
alization layer 574. Many of the powerful and flexible
features of the traditional virtualization technology can be
applied to containers running above guest operating systems
including live migration from one host computer to another,
various types of high-availability and distributed resource
sharing, and other such features. Containers provide share-
based allocation of computational resources to groups of
applications with guaranteed isolation of applications in one
container from applications in the remaining containers
executing above a guest operating system. Moreover,
resource allocation can be modified at run time between
containers. The traditional virtualization layer provides flex-
ible and easy scaling and a simple approach to operating-
system upgrades and patches. Thus, the use of OSL virtu-
alization above traditional virtualization, as illustrated in
FIG. 5D, provides much of the advantages of both a tradi-
tional virtualization layer and the advantages of OSL virtu-
alization. Note that, although only a single guest operating
system and OSL virtualization layer as shown in FIG. 5D, a
single virtualized host system can run multiple different
guest operating systems within multiple virtual machines,
each of which supports one or more containers.

In FIGS. 5A-D, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term ““virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic

10

15

20

25

30

35

40

45

50

55

60

65

10

memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A virtual machine or virtual application, described below,
is encapsulated within a data package for transmission,
distribution, and loading into a virtual-execution environ-
ment. One public standard for virtual-machine encapsulation
is referred to as the “open virtualization format” (“OVEF”).
The OVF standard specifies a format for digitally encoding
a virtual machine within one or more data files. FIG. 6
illustrates an OVF package. An OVF package 602 includes
an OVF descriptor 604, an OVF manifest 606, an OVF
certificate 608, one or more disk-image files 610-611, and
one or more resource files 612-614. The OVF package can
be encoded and stored as a single file or as a set of files. The
OVF descriptor 604 is an XML document 620 that includes
a hierarchical set of elements, each demarcated by a begin-
ning tag and an ending tag. The outermost, or highest-level,
element is the envelope element, demarcated by tags 622
and 623. The next-level element includes a reference ele-
ment 626 that includes references to all files that are part of
the OVF package, a disk section 628 that contains meta
information about all of the virtual disks included in the
OVF package, a networks section 630 that includes meta
information about all of the logical networks included in the
OVF package, and a collection of virtual-machine configu-
rations 632 which further includes hardware descriptions of
each virtual machine 634. There are many additional hier-
archical levels and elements within a typical OVF descrip-
tor. The OVF descriptor is thus a self-describing XML file
that describes the contents of an OVF package. The OVF
manifest 606 is a list of cryptographic-hash-function-gener-
ated digests 636 of the entire OVF package and of the
various components of the OVF package. The OVF certifi-
cate 608 is an authentication certificate 640 that includes a
digest of the manifest and that is cryptographically signed.
Disk image files, such as disk image file 610, are digital
encodings of the contents of virtual disks and resource files
612 are digitally encoded content, such as operating-system
images. A virtual machine or a collection of virtual machines
encapsulated together within a virtual application can thus
be digitally encoded as one or more files within an OVF
package that can be transmitted, distributed, and loaded
using well-known tools for transmitting, distributing, and
loading files. A virtual appliance is a software service that is
delivered as a complete software stack installed within one
or more virtual machines that is encoded within an OVF
package.

The advent of virtual machines and virtual environments
has alleviated many of the difficulties and challenges asso-
ciated with traditional general-purpose computing. Machine
and operating-system dependencies can be significantly
reduced or entirely eliminated by packaging applications
and operating systems together as virtual machines and
virtual appliances that execute within virtual environments
provided by virtualization layers running on many different
types of computer hardware. A next level of abstraction,
referred to as virtual data centers which are one example of
a broader virtual-infrastructure category, provide a data-
center interface to virtual data centers computationally con-
structed within physical data centers. FIG. 7 illustrates
virtual data centers provided as an abstraction of underlying
physical-data-center hardware components. In FIG. 7, a
physical data center 702 is shown below a virtual-interface
plane 704. The physical data center consists of a virtual-
infrastructure management server (“VI-management-

US 11,050,624 B2

11

server”) 706 and any of various different computers, such as
PCs 708, on which a virtual-data-center management inter-
face may be displayed to system administrators and other
users. The physical data center additionally includes gener-
ally large numbers of server computers, such as server
computer 710, that are coupled together by local area
networks, such as local area network 712 that directly
interconnects server computer 710 and 714-720 and a mass-
storage array 722. The physical data center shown in FIG. 7
includes three local area networks 712, 724, and 726 that
each directly interconnects a bank of eight servers and a
mass-storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple virtual machines. Different physical data cen-
ters may include many different types of computers, net-
works, data-storage systems and devices connected accord-
ing to many different types of connection topologies. The
virtual-data-center abstraction layer 704, a logical abstrac-
tion layer shown by a plane in FIG. 7, abstracts the physical
data center to a virtual data center comprising one or more
resource pools, such as resource pools 730-732, one or more
virtual data stores, such as virtual data stores 734-736, and
one or more virtual networks. In certain implementations,
the resource pools abstract banks of physical servers directly
interconnected by a local area network.

The virtual-data-center management interface allows pro-
visioning and launching of virtual machines with respect to
resource pools, virtual data stores, and virtual networks, so
that virtual-data-center administrators need not be con-
cerned with the identities of physical-data-center compo-
nents used to execute particular virtual machines. Further-
more, the VI-management-server includes functionality to
migrate running virtual machines from one physical server
to another in order to optimally or near optimally manage
resource allocation, provide fault tolerance, and high avail-
ability by migrating virtual machines to most effectively
utilize underlying physical hardware resources, to replace
virtual machines disabled by physical hardware problems
and failures, and to ensure that multiple virtual machines
supporting a high-availability virtual appliance are execut-
ing on multiple physical computer systems so that the
services provided by the virtual appliance are continuously
accessible, even when one of the multiple virtual appliances
becomes compute bound, data-access bound, suspends
execution, or fails. Thus, the virtual data center layer of
abstraction provides a virtual-data-center abstraction of
physical data centers to simplify provisioning, launching,
and maintenance of virtual machines and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the resources of individual physical
servers and migrating virtual machines among physical
servers to achieve load balancing, fault tolerance, and high
availability.

FIG. 8 illustrates virtual-machine components of a VI-
management-server and physical servers of a physical data
center above which a virtual-data-center interface is pro-
vided by the VI-management-server. The VI-management-
server 802 and a virtual-data-center database 804 comprise
the physical components of the management component of
the virtual data center. The VI-management-server 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server virtual
machine 810 above the virtualization layer. Although shown
as a single server in FIG. 8, the VI-management-server (“VI
management server’) may include two or more physical
server computers that support multiple VI-management-
server virtual appliances. The virtual machine 810 includes

20

25

30

40

45

12

a management-interface component 812, distributed ser-
vices 814, core services 816, and a host-management inter-
face 818. The management interface is accessed from any of
various computers, such as the PC 708 shown in FIG. 7. The
management interface allows the virtual-data-center admin-
istrator to configure a virtual data center, provision virtual
machines, collect statistics and view log files for the virtual
data center, and to carry out other, similar management
tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
virtual machines within each of the physical servers of the
physical data center that is abstracted to a virtual data center
by the VI management server.

The distributed services 814 include a distributed-re-
source scheduler that assigns virtual machines to execute
within particular physical servers and that migrates virtual
machines in order to most effectively make use of compu-
tational bandwidths, data-storage capacities, and network
capacities of the physical data center. The distributed ser-
vices further include a high-availability service that repli-
cates and migrates virtual machines in order to ensure that
virtual machines continue to execute despite problems and
failures experienced by physical hardware components. The
distributed services also include a live-virtual-machine
migration service that temporarily halts execution of a
virtual machine, encapsulates the virtual machine in an OVF
package, transmits the OVF package to a different physical
server, and restarts the virtual machine on the different
physical server from a virtual-machine state recorded when
execution of the virtual machine was halted. The distributed
services also include a distributed backup service that pro-
vides centralized virtual-machine backup and restore.

The core services provided by the VI management server
include host configuration, virtual-machine configuration,
virtual-machine provisioning, generation of virtual-data-
center alarms and events, ongoing event logging and statis-
tics collection, a task scheduler, and a resource-management
module. Each physical server 820-822 also includes a host-
agent virtual machine 828-830 through which the virtual-
ization layer can be accessed via a virtual-infrastructure
application programming interface (“API”). This interface
allows a remote administrator or user to manage an indi-
vidual server through the infrastructure API. The virtual-
data-center agents 824-826 access virtualization-layer server
information through the host agents. The virtual-data-center
agents are primarily responsible for offloading certain of the
virtual-data-center management-server functions specific to
a particular physical server to that physical server. The
virtual-data-center agents relay and enforce resource allo-
cations made by the VI management server, relay virtual-
machine provisioning and configuration-change commands
to host agents, monitor and collect performance statistics,
alarms, and events communicated to the virtual-data-center
agents by the local host agents through the interface API,
and to carry out other, similar virtual-data-management
tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional resources of a cloud-computing facility to cloud-
computing-infrastructure users. A cloud-director manage-
ment server exposes virtual resources of a cloud-computing
facility to cloud-computing-infrastructure users. In addition,
the cloud director introduces a multi-tenancy layer of
abstraction, which partitions virtual data centers (“VDCs”)
into tenant-associated VDCs that can each be allocated to a
particular individual tenant or tenant organization, both
referred to as a “tenant.” A given tenant can be provided one

US 11,050,624 B2

13

or more tenant-associated VDCs by a cloud director man-
aging the multi-tenancy layer of abstraction within a cloud-
computing facility. The cloud services interface (308 in FIG.
3) exposes a virtual-data-center management interface that
abstracts the physical data center.

FIG. 9 illustrates a cloud-director level of abstraction. In
FIG. 9, three different physical data centers 902-904 are
shown below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The resources of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director servers 920-922 and associated cloud-direc-
tor databases 924-926. Each cloud-director server or servers
runs a cloud-director virtual appliance 930 that includes a
cloud-director management interface 932, a set of cloud-
director services 934, and a virtual-data-center management-
server interface 936. The cloud-director services include an
interface and tools for provisioning multi-tenant virtual data
center virtual data centers on behalf of tenants, tools and
interfaces for configuring and managing tenant organiza-
tions, tools and services for organization of virtual data
centers and tenant-associated virtual data centers within the
multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
ization networks from a network pool. Templates are virtual
machines that each contains an OS and/or one or more
virtual machines containing applications. A template may
include much of the detailed contents of virtual machines
and virtual appliances that are encoded within OVF pack-
ages, so that the task of configuring a virtual machine or
virtual appliance is significantly simplified, requiring only
deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates in virtual appliances across organizations. Cata-
logs may include OS images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

Considering FIGS. 7 and 9, the VI management server
and cloud-director layers of abstraction can be seen, as
discussed above, to facilitate employment of the virtual-
data-center concept within private and public clouds. How-
ever, this level of abstraction does not fully facilitate aggre-
gation of single-tenant and multi-tenant virtual data centers
into heterogeneous or homogeneous aggregations of cloud-
computing facilities.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are illustrated
1002-1008. Cloud-computing facility 1002 is a private
multi-tenant cloud with a cloud director 1010 that interfaces
to a VI management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual

10

15

20

25

30

35

40

45

50

55

60

65

14

data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VI management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VI management servers,
remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Method and Subsystems for Compressing Metric
Data

FIG. 11 illustrate metric data that is collected, processed,
and used by the administrative and management subsystems
within a computer system. At the top of FIG. 11, an abstract
system block diagram 1102 is shown. This system includes
11 main subcomponents a-m and s 1104-1116 and four
subcomponents in each of components a, b, and c, such as
subcomponents 1117-1120 in component a 1104. The system
is abstractly characterized and no further details with regard
to component functionalities, interfaces, and connections are
provided.

In a complex system, various types of information are
collected with regard to the operational states and statuses of
many, if not all, components, subcomponents, systems, and
subsystems. The information can be encoded in many dif-
ferent ways, can be expressed in many different forms, and
can be provided by a number of different information
sources. For example, metrics may be provided by various
types of monitoring applications and monitoring hardware
within a computer system. As another example, metrics may
be obtained from log files that store various types of log
messages and error messages generated by computer-system
components. However, for the purposes of the current dis-
cussion, this information can be described as a set of
time-stamped or time-associated floating-point numbers.
Clearly, even for descriptive textural information, there is
generally a finite number of different values or forms of the
information, as a result of which any such information can
be mapped to numeric values. Thus, no generality is lost by
considering the information from various types of monitor-
ing and diagnostic agents and subsystems within the system
to be floating-point values, also referred to as “metric
values” and “metric data.” Information may be generated,
within the system, with regard to each of the systems,
subsystems, components, and subcomponents within a com-
putational system. Thus, the operational state and status of
each component, subcomponent, system, and subsystem is
described, at any given point in time, by the current values

US 11,050,624 B2

15

for all attributes reported for the component, subcomponent,
system, or subsystem. Table 1130, in the lower portion of
FIG. 11, illustrates a portion of the metric data collected for
the system shown in block diagram 1102. Each row in the
table, such as the first row 1132, represents a time series of
metric-data values. The first three rows 1134 of the table
represent the data of three different metrics, s, s,, and s, for
subcomponent s 1116. The next five rows 1136 of table 1130
represent the data stored for five metrics associated with
subcomponent 1 (1117 in FIG. 11) of subcomponent a 1104.
Additional rows of the table represent data for additional
metrics collected for the other components of the abstract
computer system represented by block diagram 1102. In an
actual computer system, there may be tens or hundreds of
different metrics associated with any particular main sub-
component of a distributed computing system, and there
may be thousands, tens of thousands, or more subcompo-
nents.

FIG. 12 illustrates metric data. In FIG. 12, a metric 1202
is shown to be associated with a component 1204 of a
system 1206. The metric generates a time-associated
sequence of numeric values, a portion of which is shown in
plot 1208. The vertical axis represents floating-point values
1210 and the horizontal axis represents time 1212. Each data
point is shown in the plot as a vertical bar, such as vertical
bar 1214 associated with time t; 1216, the length of the
vertical bar representing a floating-point value. In many
cases, a metric outputs data values associated with time-
stamps over an extended period of time. Often, the data
values associated with particular time intervals are com-
pressed and stored in long-term storage. For example, the
raw data values may be temporarily stored without com-
pression, and blocks, chunks, or other such portions of these
data values may be periodically compressed and stored in
long-term storage while newly generated data values con-
tinue to accumulate in raw form. The data values for a metric
may be alternatively represented by a table 1220 that
includes a first column 1222 that stores numeric values and
a second column 1224 that stores the associated times or
timestamps. As shown in expression 1226 in FIG. 12, the
metric may be represented as a series of numeric values x,,
each numeric value x, generated by a function x(t,), where
t, is the time associated with the k” numeric value x,. There
are n numeric values in the metric data x;,.

FIG. 13 illustrates a configuration-management database
(“CMDB”). A CMDB is logically organized as a graph in
which various components and subsystems of the computer
system are represented by object nodes. The object nodes
may be associated with metrics and properties and are linked
together via relationship nodes. FIG. 13 shows a small
portion of the logical organization of a CMDB representing
a current state of a computer system. This portion includes
three object nodes 1302-1305. Each object node is associ-
ated with multiple properties, such as properties 1306 asso-
ciated with object node 1305, and multiple metrics, such as
metrics 1308 associated with object 1305. Properties are
essentially attributes and have values. A property value may
be expressed as a string, numeric value, and by other types
of encodings. Metrics are generally associated with a
sequence of data points, each comprising a data value and an
associated timestamp, as discussed above with reference to
FIG. 12. Pairs of objects are connected through relation-
ships, such as relationship 1310 connecting object 1302 to
object 1303. Object 1302 may, for example, represent a
data-storage device, object 1303 may represent a data-
storage-device controller, and relationship 1310 may repre-
sent a “is a component of” relationship between objects

20

30

40

45

50

55

16

1302 and 1303. In certain implementations, relationships
may express, in addition to one-to-one relationships, one-
to-many and many-to-many relationships.

FIGS. 14A-B illustrate a CMBD representation of the
hypothetical system 1102 discussed above with reference to
FIG. 11. In FIG. 14A, the object nodes of a CMDB repre-
sentation of the hypothetical system are shown with con-
necting arrows, rather than relationship nodes, logically
connecting the object nodes, with the relationship nodes,
properties, and metrics omitted for the sake of clarity. The
system as a whole is represented by object node 1402.
Subsystems a 1104, b 1105, and ¢ 1106 shown in FIG. 11 are
represented by object nodes 1404-1406, respectively. Each
arrow connecting object node 1402 and object nodes 1404-
1406, such as arrow 1408, represent the “is a component of”
relationship. Object node 1410 represents an internal bus m
in the hypothetical system 1102. Arrow 412 represents an “is
a component of” relationship while the arrows emanating
from node 1410 to other object nodes, including arrow 1414,
represent an “is connected to0” or “provides communications
services t0” relationship. Were the relationship nodes, prop-
erties, and metrics for the small hypothetical system 1102
discussed above with reference to FIG. 11 included in the
graph shown in FIG. 14A, it would be far too complex to
illustrate in a single-page diagram.

FIG. 14B shows several example nodes of a CMDB at a
greater level of detail than shown in FIGS. 13 and 14A. A
first object node 1420 represents a server and a second object
node 1422 represents a multi-core processor within the
server. Relationship node 1424 represents a “is a component
of” relationship between the server 1420 and multi-core
processor 1422. Both object nodes 1420 and 1422 are linked
to multiple property nodes and metric nodes, including
property nodes 1426 and metric nodes 1428 linked to object
node 1420. The server node 1420 includes a variety of
different fields, including a type field 1430, a name field
1431, a start-time field 1432, an end-time field 1433, and an
ID field 1434. In addition, the server node includes refer-
ences or links 1436 to the various property and metric nodes
1426 and 1428 to which the server node is linked. Similarly,
the multi-core-processor node 1422 includes multiple fields.
Each node includes a start-time and end-time field that
indicates when the node was initially added to the CMDB
representation of the system and, in case a node is subse-
quently deleted, the delete time. CMDB nodes may contain
many additional fields and information. The details of the
property and metric nodes are not shown in FIG. 14B, but
each of these node types also include multiple fields.

The CMDB-like graph representation of the configuration
and state of a computer system is used, in the following
discussion, as an example of an organization and implemen-
tation of a metric-data-collection subsystem. The population
metrics discussed below can, however, be implemented in
many other types of metric-data-collection subsystems.

FIGS. 15A-F illustrate a typical CMDB-like representa-
tion of the state of a system that includes a distributed
application running within a multi-processor system. For
ease of discussion and illustration, a system with four
multi-core processors is described, but the same principles
and concepts would apply to very large distributed computer
systems that include tens of thousands or more servers. FIG.
15A illustrates the four multi-core processors, in block-
diagram form. The four multi-core processors 1502-1505
are designated “P1,” “P2,” “P3,” and “P4.” Each multi-core
processor, including multi-core processor 1502, includes
four cores 1506-1509, designated “C1,” “C2,” “C3,” and
“C4.”

US 11,050,624 B2

17

FIG. 15B shows an abbreviated CMDB-like graph-like
representation of a system that includes the four multi-core
processors discussed above with reference to FIG. 15A. The
CMDB-like graph-like representation includes a system
object node 1510, four multi-core-processor object nodes
1511-1514, and 16 core object nodes, including core-object
nodes 1516-1519 linked to processor object node 1511. Of
course, an actual CMDB representation of the configuration
and state of even a small system would be much larger and
more complex and would include many additional object,
relationship, metric, and property nodes.

FIG. 15C illustrates a traditional distributed application.
The traditional distributed application 1520 includes seven
distributed components 1522-1528, each of which runs
within a virtual machine and/or container that, in turn, runs
on one of the cores of a multi-processor core. The illustrated
application includes two request-handling servers 1527-
1528, referred to as components “h1” and “h2,” for backend
servers 1523-1526, referred to as “b1,” “b2,” “b3,” and “b4,”
and a database server 1522, referred to as “d1.” The appli-
cation may, for example, represent a distributed web-server
application that executes client requests by returning web
pages that include information extracted from a database by
the database server 1522.

FIG. 15D illustrates a mapping of the seven components
of the example application, discussed above with reference
to FIG. 15C, to cores within the four multi-core processors
discussed above with reference to FIG. 15A. As shown in
FIG. 15D, each application component is mapped to a
different core. For example, components h1 and h2 1520 and
1518 are mapped to cores C3 and C4 1530 and 1532 of
multi-core processor P4 1505. In traditional distributed
applications, as discussed further below, these mappings of
application components, running within virtual machines
and/or containers, to processor cores is relatively stable.

FIG. 15E illustrates a CMDB-like graph-like representa-
tion of the system and distributed application discussed
above with reference to FIGS. 15A-C. Again, the graph-like
representation of the system configuration and state shown
in FIG. 15E is only a very small portion of a full state-and-
configuration representation for a multi-processor system.
The graph-like state-and-configuration representation
shown in FIG. 15B is supplemented to include object nodes
that represent the application components, such as object
node 1534 that represents application component bl. Each
of'these application-component object nodes include links to
metric nodes, such as metric node 1536, which include
containers for accumulating metric data points over time. A
metric node may include various fields describing the type
of metric, start time and end time for the metric, and other
such information as well as a variable-length container for
storing a time-ordered sequence of data points, as discussed
above with reference to FIG. 12B.

FIG. 15F provides a two-dimensional table-like represen-
tation of the mappings of application components of the
application discussed above with reference to FIG. 15C onto
the system discussed above with reference to FIGS. 15A-B.
A horizontal axis 1540 represents a timeline, with each
column in the table-like representation representing the
mapping of components to cores at a particular point in time.
A vertical axis 1542 represents the 16 cores within the four
multi-core processors. Entries in the cells of the table
represent a mapping of an application component to a
particular core. As can be seen by viewing these mappings
in left-to-right fashion through the table-like representation,
the mappings of application components to cores is rela-

10

15

20

25

30

35

40

45

50

55

60

65

18

tively stable. The final mapping at timepoint t,, 1544 does not
differ appreciably from the initial mapping 1546 at timepoint
t,.
FIGS. 16A-B illustrate aspects of modern, distributed
applications that differ from the traditional distributed appli-
cation discussed above with reference to FIG. 15C. As
shown in FIG. 16A, an example modern distributed appli-
cation 1602 may start out, when initially configured, to have
the same seven components distributed among the same
three component types as in the traditional application
discussed above with reference to FIG. 15C. However, over
a period of time 1604, the application may expand 1606 to
include many more components, each running within a
virtual machine and/or container, and may even expand to
include additional component types 1608 and 1609. Fur-
thermore, as shown in FIG. 16B, using the same illustration
conventions previously used in FIG. 15F, the mappings of
application components to cores in the example multi-core-
processor system may be quite dynamic and unstable over
time, with components created and destroyed over relatively
small intervals of time with respect to the lifetime of the
distributed application. With modern distributed applica-
tions, the accumulation of metric data by conventional
storage of metric data and metric containers corresponding
to metric objects in the CMDB-like representation shown in
FIG. 15E becomes problematic. For one thing, the lifetime
of'an individual application component may be insufficiently
long to accumulate meaningful metric data. For another, the
metric data for a particular type of application component,
such as the backend-server components, may be distributed
among many different highly dynamic object nodes, which
makes processing and analysis of the data difficult.

FIGS. 17-18 illustrate an object-entity-aggregation
method, using illustration conventions employed in previous
figures, that addresses the above-discussed problems asso-
ciated with collecting metric data for application compo-
nents of modern, highly dynamic and mobile distributed
applications. As shown in FIG. 17, using the CMDB-like
graph-like representation of a portion of the configuration
and state information for the multi-processor-based system,
anew type of node, referred to as an “aggregation node,” has
been added to the logical representation. A first aggregation
node 1702 represents all of the backend-server application
components 1704-1714. A second aggregation node 1706
represents the request-processing application components
1718-1722. A third aggregation node 1724 represents all of
the application components of type r 1726-1727 and a final
aggregation node 1730 represents the database-server appli-
cation components 1732-1733. An aggregation node is a
meta-level node that represents multiple object nodes. In
FIG. 17, the aggregation nodes represent all of the object
nodes of a particular type but, in alternative implementa-
tions, an aggregation node may represent a subset of the
nodes of a particular type. Aggregation nodes allow certain
of the metrics associated with particular types of object
nodes to be accumulated within a single metric container
associated with the aggregation node, rather than individual
metric containers associated with the object nodes of the
type represented by the aggregation node. In other words,
the metric data collected by metric entities associated with
aggregation nodes is population data generated by multiple
object nodes, rather than data generated by a single indi-
vidual node. Aggregation nodes can therefore be used to
collect, process, and analyze population data for types and
classes of application components, even though individual
application components may have relatively short lifetimes
with respect to the overall lifetime of a distributed applica-

US 11,050,624 B2

19

tion and even though application-component nodes may be
highly distributed and mobile. The collection of population
data for classes of component types can greatly facilitate
analysis of distributed-application operational characteris-
tics and behavior, allowing conclusions to be drawn with
respect to the performance of classes or subsets of applica-
tion components over extended periods of time.

FIG. 18 illustrates greater details of aggregation nodes. In
FIG. 18, an aggregation node 1802 and an object node of a
type aggregated by the aggregation node 1804 are shown.
The object node 1804 includes various fields 1806, as
discussed above, and references various metric entities that
include metric containers 1808. In addition, the object node
1804 includes a reference 1810 to a metric table 1812. The
metric table contains entries for metrics associated with the
type or class of object nodes to which object node 1804
belongs. Each entry includes an indication of the type of
metric as well as a reference to the aggregation node for any
of the metrics that are currently being aggregated for the
type or class of object node. Thus, the metrics represented by
entries 1814 and 1816 are both population metrics accumu-
lated within metric entities associated with the aggregation
node 1802. There may be multiple aggregation nodes that
accumulate population metrics for any particular class or
type of application component. An aggregation node
includes a special metric 1818 with entries such as the entry
1820 expanded in inset 1822. Entries in the special metric,
such as entry 1820, record when members of the aggrega-
tion, object nodes of the type or class being aggregated, are
added to the aggregation and deleted from the aggregation,
with each addition and deletion event including an object-
node 1D 1824 and a timestamp 1826, an indication of the
event type 1828, and often additional information. The
special metric provides information to processing and analy-
sis logic that is useful in understanding the nature of the
population of application components represented by the
aggregation over time. Special-metric entries, or data points,
may include sufficient information to reconstitute the map-
pings of nodes to processor cores, for example, at different
points in time, as represented by the table-like representa-
tions shown in FIG. 15F and FIG. 16B.

FIGS. 19A-D provide control-flow diagrams that repre-
sent supplemental logic for a CMDB representation of the
configuration and state of a system that includes aggregation
nodes. The CMDB logic is represented by an event loop, as
shown in FIG. 19A. The CMDB logic waits for a next event,
in step 1902, and then handles the event. Events may include
an add-aggregation event, an add-entity event, and a metric-
update event, among many of the various different possible
events that may occur and that may be handled during the
lifetime of a CMDB-like representation of the configuration
and state of a complex system. Ellipses 1904 indicate that
many additional types of events are generally raised and
handled. For example, entities, including aggregation enti-
ties, may be deleted and population metrics may be added or
deleted. When an add-aggregation event occurs, as deter-
mined in step 1906, an add-aggregation handler is called in
step 1908 to handle the event. When an add-entity event
occurs, as determined in step 1910, an add-entity handler is
called in step 1912. When a metric-update event occurs, as
determined in step 1914, a metric-update handler is called in
step 1915. When a monitoring-timer expiration occurs, as
determined in step 1916, a monitor handler is called in step
1917. When, following handling of an event, there are more
events queued for handling, as determined in step 1918,

20

35

40

45

55

20

control returns to step 1906. Otherwise, control returns to
step 1902 where the event handler waits for a next event to
occur.

FIG. 19B provides a control-flow diagram for the add-
aggregation handler called in step 1908 of FIG. 19A. In step
1920, the handler receives an indication of the type of entity
to be aggregated by the aggregation node, a list of metrics
to aggregate, and other information needed to construct and
maintain a new aggregation node. In step 1922, an aggre-
gation entity is created and added to the CMDB-like con-
figuration-and-state representation along with a special
aggregation metric referenced from the aggregation entity.
When there is no metric table already created for the type of
entity to be aggregated, as determined in step 1924, a metric
table is added to the CMDB-like representation in step 1926.
In the for-loop of steps 1928-1930, each entity of the type of
entity to aggregate is considered. In certain cases, only a
subset of the entities of the type are aggregated, in which
case only entities of the subset are considered in this
for-loop. For each entity that is being aggregated, an entry
in the special metric for the aggregation node is added and,
when a new metric table is added in step 1926, a reference
to the metric table is added to each entity that is being
aggregated. In the for-loop of steps 1932-1934, an entry in
the metric table is added and a metric entity is added to the
aggregation entity for each metric that is being aggregated.

FIG. 19C provides a control-flow diagram for the add-
entity handler called in step 1912 of FIG. 19A. In step 1940,
the type of entity to add and other information for the entity
is received. In step 1942, an entity is created and added to
the CMDB-like representation. Metric containers are created
and added to the entity in step 1944. When the created entity
is an entity that has been aggregated, as determined in step
1946, then, in the for-loop of steps 1948-1951, an entry in
the special metric is added to each aggregation node that
aggregates a metric associated with the entity and a refer-
ence to the metric table for the aggregation is added for those
metrics aggregated by the aggregation node in step 1950.

FIG. 19D provides a control-flow diagram for the metric-
update handler called in step 1915 of FIG. 19A. In step 1960,
the value, timestamp, entity, metric identifier, and other such
information needed to update a metric is received. In step
1962, this information is used to find the entity associated
with the metric to update. When the metric is an aggregated
metric, as determined in step 1964, the metric data is added
to a metric container associated with the appropriate aggre-
gation entity, in step 1966. Otherwise, in step 1968, the
metric container associated with the entity is updated.

FIG. 20A provides additional details of aggregation enti-
ties and population metrics. In FIG. 20A, the aggregation
entity 1802 previously discussed with reference to FIG. 18
is shown again, along with the special metric 1818. FIG.
20A provides greater details with regard to the non-special
population metrics 2002 and 2004. The population metrics
each include a number of fields that describe statistical
values maintained for the population metrics 2006 and 2008,
respectively, in addition to accumulated population-metric
data, 2010 and 2012, respectively. As shown in inset 2014,
the metric data may include a metric-data value 2016 as well
as an ID or other identifier of the aggregated entity that
generated the data 2018, in order to facilitate analysis of the
population-metric data with respect to individual aggregated
entities. In the described implementation, the statistical
values maintained for the population metrics include an
upper threshold 2020, a lower threshold 2022, and an
average variance 2024. These values are computed, over
time, from accumulated population-metric data. The vari-

US 11,050,624 B2

21

ance o~ is computed as the sum of the squared differences
between metric values and the mean of the metric values,
divided by one less than the number of metric values and the
standard deviation o is computed as the square root of the
variance. The upper and lower thresholds are computed as
the mean metric value plus a first coefficient times the
standard deviation and the average mean value minus a
second coefficient times the standard deviation, respectively.
However, in alternative implementations, many different
computed statistical values may be employed for popula-
tion-metric-monitoring purposes. In alternative implemen-
tations, the stored values used for outlier identification may
be obtained by machine-learning approaches, and, in par-
ticular, on similarity analysis of multi-dimensional key
performance indicator data.

FIGS. 20B-C provide control-flow diagrams for the moni-
tor handler called in step 1917 in FIG. 19A. FIG. 20B
provides a control-flow diagram for the monitor handle. In
step 2030, the monitor handler determines the population
metric and associated aggregation entity with which the
expired timer is associated. In step 2032, the monitor handle
computes a current mean L and variation o for a most recent
time interval from the accumulated population-metric data.
In step 2034, the monitor handler compares the computed
values p+00 and p-bo to the upper and lower thresholds,
respectively. When one of the computed values exceeds the
respective threshold, in a positive direction for the upper
threshold and a negative direction for the lower threshold, as
determined in step 2036, the routine “outlier analysis” is
called, in step 2038, to determine whether one or more of the
aggregated entities represents an outlier with respect to the
population metrics and aggregation entity through which it
is aggregated. Otherwise, the upper and lower thresholds
and average o associated with the population metric are
adjusted, in step 2040, in view of the currently computed p
and o°. Finally, in step 2042, the timer is reset.

FIG. 20C shows a control-flow diagram for the routine
“outlier analysis™ called in step 2038 of FIG. 20B. In step
2050, a set candidates is set to the empty set. In the for-loop
of steps 2052-2056, each of the aggregated entities corre-
sponding to the population metric for which the timer
expired is considered. In step 2053, the average population-
metric value for the aggregated entity is computed, using
those population-metric entries with ID fields (2018 in FIG.
20A) corresponding to the currently considered aggregated
entity. When this value exceeds one of the thresholds, as
determined in step 2054, in a positive direction for the upper
threshold or a negative direction for the lower threshold, the
aggregated entity is added to the set of candidates in step
2055. Then, in step 2060, the routine “evaluate candidates”
is called to determined whether any of the candidate outliers
is an outlier with respect to the population metrics associated
with the aggregated entities. When a candidate outlier is
determined to be an outlier, the CMDB logic triggers and
alert or exception to invoke any of various outlier-handling
functionalities, including propagating the alert or exception
to automated problem diagnosis and amelioration subsys-
tems or to a human system administrator.

There are many approaches for outlier evaluation. FIG.
20D illustrates one approach. Vectors 2070 and 2072 are
constructed for each candidate. The elements of the vectors
are the computed average values for each of the different
population metrics associated with the candidate aggregated
entries. The points in a vector space represented by these
vectors 2074 and 2076, respectively, are then evaluated with
respect to a vector subspace 2078. When the point repre-
sented by a vector falls outside the boundaries of the vector

5

10

—

5

20

25

30

35

40

45

50

55

60

22

subspace 2078, the associated entity is considered to be an
outlier. The vector subspace 2078 is obtained by analysis of
the vectors computed for all or a subset of the aggregated
entities, over time, and represents an expected distribution of
non-outlying vectors. However, there are many other
approaches to outlier evaluation, such as determining
whether the average population-metric values for the aggre-
gated entity exceed more than a threshold percentage of the
associated thresholds maintained in the aggregation entity.
Other approaches may be used when other types of statis-
tical quantities are computed and maintained. Following
identification of the outliers, the outliers may be ranked
according to how much the metrics computed for them
different from population-based metrics. For example, using
the above vector-space approach, the outliers may be ranked
by the distance between the points in the vector space
computed for them and the nearest point on the boundary of
the vector subspace.

Although the present invention has been described in
terms of particular embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. For example, any of many different design
and implementation parameters may be varied in order to
generate alternative implementations of the aggregation
nodes and population metrics discussed above. These design
and implementation parameters may include hardware,
operating-system, and virtualization-layer types, program-
ming languages, control structures, data structures, modular
organization, and other such design and implementation
parameters. Although population metrics have been dis-
cussed with respect to a particular implementation in which
aggregation nodes are added to CMDB-like representations
of the state and configuration of distributed systems, similar
types of metric populations may be included in many other
types of configuration and state representations or other
systems in which metric data is collected for components of
distributed applications.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. A state-information-storage subsystem within a com-
puter system that includes one or more processors, one or
more memories, and one or more data-storage devices, the
state-information-storage subsystem comprising:

current state information, including object entities asso-

ciated with metrics and aggregation entities associated
with population metrics, that is maintained within a
combination of one or more memories and one or more
data-storage devices; and

a state-information-storage subsystem control component

that maintains the current state information and that
adds data points to population metrics associated with
aggregation entities.

2. The state-information-storage subsystem of claim 1
wherein each metric entity stores a time-ordered sequence of
data points, each data point comprising a time-associated
numeric data value.

US 11,050,624 B2

23

3. The state-information-storage subsystem of claim 2
wherein an aggregation entity aggregates two or more object
entities so that data-point-generating events with respect to
computer-system components represented by the two or
more object entities that produce data points for a population
metric associated with the aggregation entity result in stor-
age of the data points by a population metric associated with
the aggregation entity.

4. The state-information-storage subsystem of claim 3
wherein an aggregation entity is associated with a special
metric that includes entries that represent time-associated
addition and deletion events in which object entities are
added to and deleted from the aggregation.

5. The state-information-storage subsystem of claim 3
wherein each aggregated object entity includes a reference
to a metric table, entries of which indicate an aggregation
entity associated with a population metric for metrics that
have been aggregated.

6. The state-information-storage subsystem of claim 1
wherein an object entity represents a component of the
computer system.

7. The state-information-storage subsystem of claim 1
wherein the state-information-storage subsystem control
component generates object entities to represent compo-
nents of a distributed application that each run within one of
a virtual machine, container, and another execution envi-
ronment.

8. The state-information-storage subsystem of claim 7
wherein the state-information-storage subsystem control
component generates an aggregation entity associated with
a type of distributed-application component, the aggregation
entity associated with a population metric that stores data
points representing data generated, with respect to the met-
ric, by distributed-application components of the type that
are aggregated by the aggregation entity.

9. The state-information-storage subsystem of claim 8
wherein the aggregation entity is associated with a special
metric that includes entries that represent time-associated
addition and deletion events in which distributed-application
components of the type are added to and deleted from the
aggregation.

10. The state-information-storage subsystem of claim 8
wherein each object entity representing a distributed-appli-
cation component aggregated by the aggregation entity
includes one of a reference to a metric table and a metric
table, entries of the metric table each indicating an aggre-
gation entity associated with a population metric associated
with the object entity.

11. The state-information-storage subsystem of claim 1
wherein the state-information-storage subsystem control
component monitors the distribution of population-metric
values, for a population metric associated with an aggrega-
tion entity that aggregates aggregation entities as an aggre-
gation, to:

detect candidate aggregated-entity outliers, the distribu-

tion of population-metric values generated by a candi-
date aggregated-entity outlier falling outside a normal
population-metric-value distribution for the aggrega-
tion of aggregated entities;

evaluate the candidate aggregated-entity outliers with

respect to the population metrics through which they
are aggregated; and

trigger and alarm or exception when a candidate aggre-

gated-entity outlier is determined to be an outlier with
respect to the population metrics through which it is
aggregated by the aggregation entity.

20

25

30

40

45

55

60

24

12. A method that stores and maintains state information
with respect to a computer system, within the computer
system, the method carried out within the computer system
that includes one or more processors, one or more memaories,
and one or more data-storage devices, the method compris-
ing:

representing, as objects entities, components of the com-

puter system with respect to which metric-data-point-
generating events are associated;

representing an aggregation of two or more object entities

as an aggregation entity;

associating a population metric with the aggregation

entity;

storing the object entities and aggregation entity as state

information in one or more memories and/or data-
storage devices; and

when a metric-data-point-generating event occurs with

respect to an object of the aggregation,
when the metric for which the metric-data-point-gen-
erating event generated a data point is the population
metric associated with the aggregation entity,
adding the data-point generated by the data-point-
generating event to the population-metric.

13. The method of claim 12 wherein each metric is
associated with a stored time-ordered sequence of data
points, each data point comprising a time-associated
numeric data value.

14. The method of claim 12 wherein multiple object
entities within the stored state information represent mul-
tiple components of a distributed application, each execut-
ing, within one of a virtual machine, container, and another
execution environment, that executes within the computer
system.

15. The method of claim 14 wherein a distributed-appli-
cation-representing aggregation entity aggregates two or
more object entities that represent components of the dis-
tributed application through a population metric associated
with the aggregation object.

16. The method of claim 15 wherein the distributed-
application-representing aggregation entity is associated
with a special metric that includes entries that represent
time-associated addition and deletion events in which dis-
tributed-application components represented by the aggre-
gated object entities are added to and deleted from the
aggregation.

17. The method of claim 14 wherein each distributed-
application-component-representing object entity includes a
reference to a metric table, entries of which indicate that the
distributed-application-representing aggregation entity
receives data points generated with respect to the population
metric associated with distributed-application-representing
aggregation entity.

18. The method of claim 12 further comprising monitor-
ing a distribution of population-metric values, for a popu-
lation metric associated with an aggregation entity that
aggregates aggregation entities as an aggregation, to:

detect candidate aggregated-entity outliers, the distribu-

tion of population-metric values generated by a candi-
date aggregated-entity outlier falling outside a normal
population-metric-value distribution for the aggrega-
tion of aggregated entities;

evaluate the candidate aggregated-entity outliers with

respect to the population metrics through which they
are aggregated; and

trigger and alarm or exception when a candidate aggre-

gated-entity outlier is determined to be an outlier with

US 11,050,624 B2

25

respect to the population metrics through which it is
aggregated by the aggregation entity.

19. Computer instructions, stored within a physical data-
storage device, that, when executed by one or more proces-
sors of a computer system that includes the one or more
processors, one or more memories, and one or more data-
storage devices, control the computer system to store and
maintain state information that describes the state of the
computer system, by:

representing, as objects entities, components of the com-

puter system with respect to which metric-data-point-
generating events are associated;

representing an aggregation of two or more object entities

as an aggregation entity;

associating a population metric with the aggregation

entity;

storing the object entities and aggregation entity as state

information in one or more memories and/or data-
storage devices; and

when a metric-data-point-generating event occurs with

respect to an object of the aggregation,

when the metric for which the metric-data-point-gen-
erating event generated a data point is the population
metric associated with the aggregation entity,

10

15

20

26

adding the data-point generated by the data-point-
generating event to the population-metric.

20. The computer instructions of claim 19

wherein each metric is associated with a stored time-
ordered sequence of data points, each data point com-
prising a time-associated numeric data value;

wherein a distributed-application-representing aggrega-
tion entity aggregates two or more object entities that
represent components of the distributed application
through a population metric associated with the aggre-
gation object;

wherein the distributed-application-representing aggrega-
tion entity is associated with a special metric that
includes entries that represent time-associated addition
and deletion events in which distributed-application
components represented by the aggregated object enti-
ties are added to and deleted from the aggregation; and

wherein each distributed-application-component-repre-
senting object entity includes a reference to a metric
table, entries of which indicate that the distributed-
application-representing aggregation entity receives
data points generated with respect to the population
metric associated with distributed-application-repre-
senting aggregation entity.

#* #* #* #* #*

