
US011050624B2

(12) United States Patent
Hovhannisyan et al .

(10) Patent No .: US 11,050,624 B2
(45) Date of Patent : Jun . 29 , 2021

(56) References Cited (54) METHOD AND SUBSYSTEM THAT
COLLECTS , STORES , AND MONITORS
POPULATION METRIC DATA WITHIN A
COMPUTER SYSTEM

U.S. PATENT DOCUMENTS

5,535,335 A * 7/1996 Cox
(71) Applicant : VMware , Inc. , Palo Alto , CA (US) 2011/0078411 A1 * 3/2011 Maclinovsky

2014/0310243 A1 * 10/2014 McGee (72) Inventors : Avetik Hovhannisyan , Yerevan (AM) ;
Ashot Nshan Harutyunyan , Yerevan
(AM) ; Naira Movses Grigoryan ,
Yerevan (AM) ; Arnak Poghosyan ,
Yerevan (AM)

G06F 11/3006
709/221

G06Q 10/06
712/30

G06F 17/30575
707/639

HO4L 67/16
709/223

H04L 43/106
709/224

2015/0142940 A1 * 5/2015 McMurry
2016/0112287 A1 * 4/2016 Farmer

(73) Assignee : VMware , Inc. , Palo Alto , CA (US) * cited by examiner
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 1034 days . Primary Examiner Jason D Recek

(21) Appl . No .: 15 / 195,728
(57) ABSTRACT

(22) Filed : Jun . 28 , 2016

(65) Prior Publication Data
US 2017/0373937 A1 Dec. 28 , 2017

(51) Int . Cl .
H04L 12/24 (2006.01)
H04L 29/08 (2006.01)

(52) U.S. CI .
CPC H04L 41/0853 (2013.01) ; H04L 41/0233

(2013.01) ; H04L 41/0893 (2013.01) ; H04L
67/10 (2013.01)

(58) Field of Classification Search
CPC HO4L 41/0853 ; HO4L 41/0233 ; HO4L

41/0893 ; H04L 43/08 ; H04L 43/08085 ;
HO4L 43/10 ; HO4L 43/106

See application file for complete search history .

The current document is directed to methods and subsystems
within computing systems , including distributed computing
systems , that collect , store , process , and analyze population
metrics for types and classes of system components , includ
ing components of distributed applications executing within
containers , virtual machines , and other execution environ
ments . In a described implementation , a graph - like repre
sentation of the configuration and state of a computer system
included aggregation nodes that collect metric data for a set
of multiple object nodes and that collect metric data that
represents the members of the set over a monitoring time
interval . Population metrics are monitored , in certain imple
mentations , to detect outlier members of an aggregation .

20 Claims , 36 Drawing Sheets

system

P1 P2 P3 P4

C1 C2 C1 CZ C3 C4 C1 C2 C3 C4 C1 C2 C4 C3
1712 1719

1721
h2 2 h3 b1 b2 b3 b7 b8 12 h5 64 65 b6 b9 b10 h1 54 11

74711 1705 1706 1707 1708 / 1726 1718 1709 1710 1733 1704 1720 1713
1732

1714 1722 1727

aggregate 1730
aggregate

aggregate

1702 1724
1716

aggregate

U.S. Patent Jun . 29 , 2021 Sheet 1 of 36 US 11,050,624 B2 9

102 103

CPU CPU

MEMORY
110

CPU CPU
104

108
105

112
SPECIALIZED
PROCESSOR BRIDGE

114 118 116

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

122 127
123 124 125

126
MASS

STORAGE
DEVICE

FIG . 1 128

U.S. Patent Jun , 29 , 2021 Sheet 2 of 36 . US 11,050,624 B2

212

210

214

216
FIG . 2

? ?

205 204 203 202

316

U.S. Patent

1 >
?
Z

Jun . 29 , 2021

Cloud Services Interface

312

314

Internet

310

I IV Cloud Services Interface

TTT !

Sheet 3 of 36

306

302

304

Local Network

308

US 11,050,624 B2

FIG . 3

432

433

434

- 435

436

U.S. Patent

Application Programs

406

Operating System

Jun . 29 , 2021

430

w

426

428

non - privileged instructions and

System - call interface

memory addresses and registers
OS intervals

444

446

OS intervals

Scheduler

Device

Memory Management File System

Task Mgmt

Drivers

privileged

non - privileged instructions

non - privileged privileged instructions registers / addresses registers / addresses

418

420

422

424

448

404 442

Hardware

416

Sheet 4 of 36

Memory

Processors

10

1/0

Mass Storage

402

410

408

410

412

414

US 11,050,624 B2

400

FIG . 4

510

U.S. Patent

application
application

application

application

application

514

OS

OS

OS

OS

OS

Jun . 29 , 2021

516

Non - privileged instructions

privileged instructions

non - privileged privileged
register / addresses register / addresses

508

520

VM Kernel

VM Kernel

518 504

Virtual Machine Monitor

Sheet 5 of 36

Non - privileged instructions

device drivers
privileged instructions

device drivers
non - privileged privileged

register / addresses register / addresses

506 502

US 11,050,624 B2

500

FIG . 5A

556

557

558

application

application

application

U.S. Patent

Virtual Machines

546

548

OS

OS

OS

552

Jun . 29 , 2021

550

Application Programs

Virtualization Layer

Virtualization

non - privileged instructions and memory addresses and registers

system - call interface

544

Sheet 6 of 36

Operating System 542

00

Hardware

US 11,050,624 B2

FIG . 5B

540

566

567

568

U.S. Patent

app

app

app

app

570

563

app

app

app

Jun . 29 , 2021

564

562

container

container

container

560

426

OS - level Virtualization

428
430

non - privileged instructions
and memory addresses and registers

OS interface

system - call interface

Sheet 7 of 36

OS interface

404

Scheduler

Memory Management

Task Mgmt
non - privileged instructions privileged

instructions
File

Device Drivers

System non - privileged

privileged
registers / addresses registers / addresses

Memory

Processors
1/0

402

VO

Mass Storage

US 11,050,624 B2

FIG . 5C

577

578

576

U.S. Patent

app

app

app

app

app

app

app

Jun . 29 , 2021

container

container

container

574

OS - level Virtualization

572

OS

508

Sheet 8 of 36

non - privileged instructions

privileged instructions
non - privileged

privileged
registers / addresses registers addresses

504

VM Kernel

VM Kernel

Virtual Machine Monitor

device drivers privileged instructions

non - privileged instructions

device drivers

non - privileged

privileged
registers / addresses registers addresses

502

FIG . 5D

US 11,050,624 B2

622

Open Virtualization Format

620

U.S. Patent

Digest of package Digest of disk image file Digest of disk image file Digest of resource file

1
1

< Envelope
< References >

626

< / References > < Disk Section > :

628

< / Disk Section >
< Network Section >

630

602

1

1

I

Digest of resource file

Network Section }

Jun . 29 , 2021

604

OVF Descriptor

636

OVF Manifest

634

682
T

606

** Www

< Virtual System Collection > < Virtual Hardware Section > : < Virtual Hardware Section >
: < Virtual System Collection > :

< / Envelope >

OVF Certificate

608

1

disk image file

610

* Se mere om en hoe sien her

Sheet 9 of 36

disk image file

611

1

623

XML file

certificate that includes digest of manifest

th

resource file

ht

612

640

resource file

613

FIG . 6

resource file

US 11,050,624 B2

614

OVE Package

732

731

Virtual Data Center

730

U.S. Patent

736

735

Data Center Interface

Resource Pool

Jun . 29 , 2021

734

708
706

A A1

Sheet 10 of 36

726

724
710

702

722

WY

714

715

716

717

720

718

– 719

Physical Data Center

US 11,050,624 B2

712

FIG . 7

704

810

812

Host configuration VM configuration VM provisioning Alarms & events
Statistics collection or logging

Task scheduler Resource management

Management Interface

Distributed Resource Scheduler
High Availability Live VM migration Backup

U.S. Patent

814

Distributed Services

816

Core Services Host management

Jun . 29 , 2021

818

824

825

826 L

VDC agent

VDC agent

VDC agent

810

829

830

Virtual Data Center Management Server

Host Agent

Host Agent

Host Agent

Sheet 11 of 36

828

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

-808

Virtualization Layer

Virtualization Layer
Virtualization Layer
Virtualization Layer

- 806

Virtual Data Center database

Hardware

Hardware

Hardware

Hardware

US 11,050,624 B2

804

802

820

821

822

FIG . 8

932

U.S. Patent

Management Interface

934

922

912

Cloud Director Services

Virtual Data Center Provisioning Organization Configuration and Organization Virtual Data Center Configuration
Template and Media Catalogs

Network Provisioning from network pool

930

ORG

ORG 2

926

VDC MS interface

908

936

cloud director

1 virtual data centers

Jun . 29 , 2021

920

910

921

916
917

918

904

911

919

17 /
ORG1 , ORG 2 ÓRG 3 , ORG 4

ORG I , ORG 2 , ORG 3

907

cloud director

cloud director

Sheet 12 of 36

924

7

925

virtual data genters

I

1

1

virtual data centers
|

|

1

I |

|

huli

Hull

903

906

902

US 11,050,624 B2

FIG . 9

- 1005

VCC node

U.S. Patent

1020

1004

cloud services

1006

VCC Node

3 3 ?

VOC MS

VCC node

Jun . 29 , 2021

1]

VDC MS

virtual data center

1007

1003

1019

1021

VCC node

VCC node

virtual data center

VOCI MS

CD

new wat >

G

VOCH MS

1 1 1 }

1002

1 1

Sheet 13 of 36

1022

1018

1

1008

1016

1

1 1

CD

MS

1023

I

1

1 1

VOCI MS

1

| 1

| |

1

|

VCC server

VCC node

1012

VCC node
1010
1014

US 11,050,624 B2

|

FIG . 10

1026

| 1

U.S. Patent Jun . 29 , 2021 Sheet 14 of 36 US 11,050,624 B2 9

1105

1117 1118 1106 1120
1102 1104

1 2 1 2
1119

1 2
b

3 4
a

3 4
C

3 4
1110

1111 d e HT 8 h
1107

1116 S

1108
1109 7 j k 1

1115
1130

1112 1113 system 1114
1132

1134 { $ 2
a.lt
a . 12

1136 2.15
a . 15
* a . 21
a.22
a.23

HA +++ 113

FIG . 11

U.S. Patent

1210

1204

1208

XER

metric

1214

1202

Jun . 29 , 2021

system

11

12

13 14

S1

to fits to t1o 11

t

1216

1212

1224

1222

1220

70x

1206

x { 13) 13 (14)

Sheet 15 of 36

: 1 : Hotel X (en) 12

FIG . 12

US 11,050,624 B2

U.S. Patent

property

metric

property

property

metric

object

property

property

1302

property

1304

object

property

relationship

metric

Jun . 29 , 2021

metric

1310

relationship

property

object

property
1306

property

Sheet 16 of 36

relationship
1305

metric

1303

property

metric

1308

property

object

metric

property

metric metric

FIG . 13

US 11,050,624 B2

metric metric

1402

1408

system

U.S. Patent

1404

1405

1406
C

a.1

a.2

a.3

a.4

6.1

6.2 6.3 ||| 6.4

c1

c.2

c.3

0,4

Jun . 29 , 2021

k

Sheet 17 of 36

d

e

f

8

h S

1414

1410

1412

US 11,050,624 B2

FIG . 14A

1430

1420

U.S. Patent

1431

Server server 261 start time end time
-D

properties

1432

1434

metrics

1433 1436

component of
start time end time

:

1428

Jun . 29 , 2021

1424

multi - core processor pBoard 1 start - time end time

1422

IM
1426

properties
metrics

Sheet 18 of 36

:

JON

US 11,050,624 B2

FIG . 14B

1502

1503

1507

U.S. Patent

1506

C1

C2

C1

C2

1508

Jun . 29 , 2021

C3

C4

C3

C4

P1

1509

P2

Wwwww

C1

C2

C1

C2

Sheet 19 of 36

C3

C4

C3

C4

P3

PA

1504

1505

US 11,050,624 B2

FIG . 15A

U.S. Patent

1510

system

1514

Jun . 29 , 2021

1511

1512

1513

P1

P2

P3

P4

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

Sheet 20 of 36

1518
1519

1516

1517

FIG . 15B

US 11,050,624 B2

U.S. Patent

1522

1523

1524

1527

1520

|

backend server b1

backend server 62

request handling server h1

Jun . 29 , 2021

DB server d1

backend server b3

backend server b4

request handling server h2

Sheet 21 of 36

Application
1525

1526

1518

FIG . 15C

US 11,050,624 B2

U.S. Patent

b1

63

b2

64

Jun . 29 , 2021

1505

Sheet 22 of 36

d1

h1

h2

1532

1520

1518

1530

FIG . 15D

US 11,050,624 B2

U.S. Patent

system

P1

P2

P3

P4

Jun . 29 , 2021 9

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

1534

61

b2

b3

64

di

h1 || h2

II

Sheet 23 of 36

1536

??

UU

US 11,050,624 B2

FIG . 15E

1542

1546

1544

b1

b1

U.S. Patent

7

61

b1

61

b1

b1

61

P1

7

b2

62

C1 C2 C3 C4 C1 C2

62

b2

b2

b2

52

62

pressomumente +

63

63

b3

b3

b3

Jun . 29 , 2021

P2

7

b3

b3

b3

b4

64

64

b4

04

b4

b4

b4

memper

wwwwwwww

planner

P3

C4 C1 C2 C3 C4 C1 C2

d1

d1

d1

d1

Sheet 24 of 36

d1

porno

d1

d1

d1

P4

h1

h1

h1

h1

h1

h1

h1

h1

?

C4

h2

h2

h2

h2

h2

h2

h2

h2

1540

11

t2

US 11,050,624 B2

13

14

t5

to

tu

In - 1

FIG . 15F

U.S. Patent Jun . 29 , 2021 Sheet 25 of 36 US 11,050,624 B2 9

111001
1 1 10000
1001 1 11001
000000000

7 1609 1604 1608 t 1606

FIG . 16A 1602

b1

b2

64

b22

630

C1 C2 C3

U.S. Patent

b1

b2

b3

611

61

623

b1

b1

P1

7

b6

b4

b16

b4

62

b2

?

C4

b2

67

b15

62

b11,615

b3

b3

7

C1

68

b14

b21

d3

628

b3

C2

65

b9

h7

h7 , h6

d2

d3

P2

d3

7

63

h6

d3

h10

d2

Jun . 29 , 2021

b4

b4

d3

d2

h9 , h8

b31,632

1

d3

02

d1

913

02

d2

d1

h5,7

r1

P3

wwmommmen

h4

h4

h5

h6 , h3

r4

C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Hannah

Sheet 26 of 36

d1

d1

d1

h3

h8

7

www .

h3

b8

h9

h13

7

h3

h2

b9

r1 , 12

h8

h8

P4

|

h1

h1

b20

13

h9

h9

7

h2

h2

14

h8

1

H

t1

t2

t3 t4

t5

t6

In - 1

In

US 11,050,624 B2

FIG . 16B

system

U.S. Patent

P1

P2

P3

P4

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2 2]

C3

C4

Jun . 29 , 2021

1712

1719

717217 h2 h3

b1

62

b3

b7

b8

12

h5

b4

65

56

b9

b10

b11

d1

d2

h1

h4

M

11709

1705 1706 1707 1708 / 1726 1718

1711

1704

1710

1733

1720

1713

1732
1714

1722 1727

Sheet 27 of 36

aggregate b

1730

aggregate h

aggregate d

1702

1724

1716

aggregate

US 11,050,624 B2

FIG . 17

aggregation member

1804

type : d

U.S. Patent

ID : 16778

1806

1812
1814

1810

1816

1808

BE

Jun . 29 , 2021

metric table

1828

1822

event : added
D : 16778 time

aggregation type : aggregate
member type : d

1824 1826

1802

Sheet 28 of 36

1820

1820

I

1818

JOU

US 11,050,624 B2

FIG . 18

U.S. Patent Jun . 29 , 2021 Sheet 29 of 36 US 11,050,624 B2 9

CMDB

wait for next event 1902
1908

1906
add

aggregation add aggregation

1912
1910

add entity
? add entity

1915
1914

metric
update

?
metric update

1917
1916

monitor
timer expiration

?
monitor

1904

default handler

1918
Y more queued

events ?

FIG . 19A N

U.S. Patent Jun . 29 , 2021 Sheet 30 of 36 US 11,050,624 B2

add aggregation

1920 receive indication of
type of entity to
aggregate and

metrics to aggregate

1922
add aggregation

entity to CMDB and
special aggregatiton
metric to aggregation

entity 1926
1924

N metric table for
type exists ?

add metric table for
type to CMDB

??

1928 for each entity of type
to aggregate

1929
add entry to special
metric and , if metric
table added , add a
reference to metric

table in entity

1930
Y more

entities
?

N

1932 for each metric to
aggregate

Y

1934

N 1933
return

more
metrics

?

add entries in metric
table and metric

container to
aggregation entity FIG . 19B

U.S. Patent Jun . 29 , 2021 Sheet 31 of 36 US 11,050,624 B2 9

add entity

1940 receive type and
other information for

entity

create entity and
add to CMDB

1942

1944 create metric
containers for entity
and link to entity

1946

N entity
aggregated

?

Y

1948 for each
aggregation to

which entity belongs

add entry to special
metric in

aggregation entity
1949

FIG . 19C
1950 add reference to

metric table

1951
more Y N aggregations return

U.S. Patent Jun . 29 , 2021 Sheet 32 of 36 US 11,050,624 B2

metric update

1960
receive value ,

timestamp , entity ,
metric , and any
other information

1962 find entity
1966

1964

Y metric an
aggregation

metric
2

update metric in
aggregation entity

N

1968 update metric in
entity

return

FIG . 19D

1802

aggregation

U.S. Patent

1818

2014

Upper Threshold Lower Threshold Average Variance

Jun . 29 , 2021

2002

2016

value

2020 2022 2024

2006

2018

2010

Sheet 33 of 36

Upper Threshold Lower Threshold Average Variance

2008

2004

2012

www ++

2

US 11,050,624 B2

FIG . 20A

U.S. Patent Jun . 29 , 2021 Sheet 34 of 36 US 11,050,624 B2 9

monitor

2030

determine the
population metric
and associated
aggregation for

which timer expired

2032 compute current u
and o for most

recent time interval

2034 compare u + ao to
upper threshold and
u- bo to lower

threshold

2038 2036

Y threshold
violated

?
outlier analysis

N

2040 adjust upper and
lower threshold and

average o

2042
reset timer

return

FIG . 20B

U.S. Patent Jun . 29 , 2021 Sheet 35 of 36 US 11,050,624 B2 9

outlier analysis

2050
candidates = 0

2052 for each aggregated
entity

2053 compute average
metric value over

time interval
2055

2054
Y computed

value exceeds
threshold

2

candidates + =
aggregated entity

NK
2056

Y more
candidates

?

N

2060 evaluate
candidates

return

FIG . 200

U.S. Patent Jun . 29 , 2021 Sheet 36 of 36 US 11,050,624 B2

2076 2078

2074

FIG . 20D

2072
2070

ww

114 1712 1113 1113

US 11,050,624 B2
1 2

METHOD AND SUBSYSTEM THAT puting systems , that collect , store , process , and analyze
COLLECTS , STORES , AND MONITORS population metrics for types and classes of system compo
POPULATION METRIC DATA WITHIN A nents , including components of distributed applications

COMPUTER SYSTEM executing within containers , virtual machines , and other
5 execution environments . In a described implementation , a TECHNICAL FIELD graph - like representation of the configuration and state of a

The current document is directed to automated adminis computer system included aggregation nodes that collect
tration and maintenance subsystems within computer sys metric data for a set of multiple object nodes and that collect
tems , including large distributed computing systems , and , in metric data that represents the members of the set over a
particular , to methods and subsystems for collecting and monitoring time interval . Population metrics are monitored ,
storing population metrics for types and classes of compo- in certain implementations , to detect outlier members of an
nents . aggregation .

10

BACKGROUND BRIEF DESCRIPTION OF THE DRAWINGS
15

Computer systems have evolved enormously in the past FIG . 1 provides a general architectural diagram for vari 60 years . Initial computer systems were room - sized ,
vacuum - tube - based behemoths with far less computational ous types of computers .
bandwidth and smaller data - storage capacities than a mod FIG . 2 illustrates an Internet connected distributed com
ern smart phone or even a microprocessor controller embed- 20 puter system .
ded in any of various consumer appliances and devices . FIG . 3 illustrates cloud computing .
Initial computer systems ran primitive programs one at a FIG . 4 illustrates generalized hardware and software
time , without the benefit of operating systems , high - level components of a general - purpose computer system , such as
languages , and networking . Over time , parallel development a general - purpose computer system having an architecture
of hardware , compilers , operating systems , virtualization 25 similar to that shown in FIG . 1 .
technologies , and distributed - computing technologies has
led to modern distributed computing systems , including FIGS . 5A - D illustrate several types of virtual machine

and virtual - machine execution environments . cloud - computing facilities , that feature hundreds , thousands , FIG . 6 illustrates an OVF package . tens of thousands , or more high - end servers , each including FIG . 7 illustrates virtual data centers provided as an multiple multi - core processors , that can access remote com puter systems and that can be accessed by remote client 30 abstraction of underlying physical - data - center hardware
computers throughout the world through sophisticated elec components .
tronic communications . As the complexity of computer FIG . 8 illustrates virtual - machine components of a VI
systems has grown , the administration and management of management - server and physical servers of a physical data
computer systems has exponentially grown in complexity , center above which a virtual - data - center interface is pro
the volume of data generated and stored for administration 35 vided by the VI - management - server .
and management purposes , and in the computational - band- FIG . 9 illustrates a cloud - director level of abstraction .
width used for collecting and processing data that reflects FIG . 10 illustrates virtual - cloud - connector nodes (“ VCC
the internal operational state of the computer systems and nodes ”) and a VCC server , components of a distributed
their subsystems and components . While the operational system that provides multi - cloud aggregation and that
state of an early computer system may well have been 40 includes a cloud - connector server and cloud - connector
encapsulated in a handful of status registers and a modest nodes that cooperate to provide services that are distributed
amount of information printed from teletype consoles , giga- across multiple clouds .
bytes or terabytes of metric data may be generated and FIG . 11 illustrate metric data that is collected , processed ,
stored by internal automated monitoring , administration , and used by the administrative and management subsystems
and management subsystems within a modern distributed 45 within a computer system .
computing system on a daily or weekly basis . Collection , FIG . 12 illustrates metric data .
storage , and processing of these large volumes of data FIG . 13 illustrates a configuration - management database
generated by automated monitoring , administration , and (" CMDB ”) .
maintenance subsystems within distributed computing sys- FIGS . 14A - B illustrate a CMBD representation of the
tems is rapidly becoming a computational bottleneck with 50 hypothetical system 1102 discussed above with reference to
respect to further evolution , expansion , and improvement of FIG . 11 .
distributed computing systems . For this reason , designers , FIGS . 15A - F illustrate a typical CMDB - like representa
developers , vendors , and , ultimately , users of computer tion of the state of a system that includes a distributed
systems continue to seek methods and subsystems to more application running within a multi - processor system .
efficiently store , process , and interpret the voluminous 55 FIGS . 16A - B illustrate aspects of modern , distributed
amount of metric data internally generated within distributed applications that differ from the traditional distributed appli
computing systems to facilitate automated administration cation discussed above with reference to FIG . 15C .
and management of distributed computing systems , includ FIGS . 17-18 illustrate an object - entity - aggregation
ing diagnosing performance and operational problems , method , using illustration conventions employed in previous
anticipating such problems , and automatically reconfiguring 60 figures , that addresses the above - discussed problems asso
and repairing distributed - system - components to address ciated with collecting metric data for application compo
identified and anticipated problems . nents of modern , highly dynamic and mobile distributed

applications .
SUMMARY FIGS . 19A - D provide control - flow diagrams that repre

65 sent supplemental logic for a CMDB representation of the
The current document is directed to methods and subsys- configuration and state of a system that includes aggregation

tems within computing systems , including distributed com- nodes .

US 11,050,624 B2
3 4

FIG . 20A provides additional details of aggregation enti- gies have evolved in capability and accessibility , and as the
ties and population metrics . computational bandwidths , data - storage capacities , and

FIGS . 20B - C provide control - flow diagrams for the moni- other capabilities and capacities of various types of com
tor handler called in step 1917 in FIG . 19A . puter systems have steadily and rapidly increased , much of
FIG . 20D illustrates one approach for outlier evaluation . 5 modern computing now generally involves large distributed

systems and computers interconnected by local networks ,
DETAILED DESCRIPTION OF EMBODIMENTS wide - area networks , wireless communications , and the

Internet . FIG . 2 shows a typical distributed system in which
The current document is directed to methods and subsys- a large number of PCs 202-205 , a high - end distributed

tems within computing systems , including distributed com- 10 mainframe system 210 with a large data - storage system 212 ,
puting systems , that collect , store , process , and analyze and a large computer center 214 with large numbers of
population metrics for types and classes of system compo rack - mounted servers or blade servers all interconnected
nents , including components of distributed applications through various communications and networking systems
executing within containers , virtual machines , and other that together comprise the Internet 216. Such distributed
execution environments . In a first subsection , below , an 15 computing systems provide diverse arrays of functionalities .
overview of distributed computing systems is provided , with For example , a PC user sitting in a home office may access
reference to FIGS . 1-10 . In a second subsection , the methods hundreds of millions of different web sites provided by
and subsystems to which the current document is directed hundreds of thousands of different web servers throughout
are discussed , with reference to FIGS . 11-19D . the world and may access high - computational - bandwidth

20 computing services from remote computer facilities for
Overview of Distributed Computing Systems running complex computational tasks .

Until recently , computational services were generally
FIG . 1 provides a general architectural diagram for vari- provided by computer systems and data centers purchased ,

ous types of computers . The computer system contains one configured , managed , and maintained by service - provider
or multiple central processing units (“ CPUs ”) 102-105 , one 25 organizations . For example , an e - commerce retailer gener
or more electronic memories 108 interconnected with the ally purchased , configured , managed , and maintained a data
CPUs by a CPU / memory - subsystem bus 110 or multiple center including numerous web servers , back - end computer
busses , a first bridge 112 that interconnects the CPU / systems , and data - storage systems for serving web pages to
memory - subsystem bus 110 with additional busses 114 and remote customers , receiving orders through the web - page
116 , or other types of high - speed interconnection media , 30 interface , processing the orders , tracking completed orders ,
including multiple , high - speed serial interconnects . These and other myriad different tasks associated with an e - com
busses or serial interconnections , in turn , connect the CPUs merce enterprise .
and memory with specialized processors , such as a graphics FIG . 3 illustrates cloud computing . In the recently devel
processor 118 , and with one or more additional bridges 120 , oped cloud - computing paradigm , computing cycles and
which are interconnected with high - speed serial links or 35 data - storage facilities are provided to organizations and
with multiple controllers 122-127 , such as controller 127 , individuals by cloud - computing providers . In addition ,
that provide access to various different types of mass - storage larger organizations may elect to establish private cloud
devices 128 , electronic displays , input devices , and other computing facilities in addition to , or instead of , subscribing
such components , subcomponents , and computational to computing services provided by public cloud - computing
resources . It should be noted that computer - readable data- 40 service providers . In FIG . 3 , a system administrator for an
storage devices include optical and electromagnetic disks , organization , using a PC 302 , accesses the organization's
electronic memories , and other physical data - storage private cloud 304 through a local network 306 and private
devices . Those familiar with modern science and technology cloud interface 308 and also accesses , through the Internet
appreciate that electromagnetic radiation and propagating 310 , a public cloud 312 through a public - cloud services
signals do not store data for subsequent retrieval , and can 45 interface 314. The administrator can , in either the case of the
transiently “ store ” only a byte or less of information per private cloud 304 or public cloud 312 , configure virtual
mile , far less information than needed to encode even the computer systems and even entire virtual data centers and
simplest of routines . launch execution of application programs on the virtual
Of course , there are many different types of computer- computer systems and virtual data centers in order to carry

system architectures that differ from one another in the 50 out any of many different types of computational tasks . As
number of different memories , including different types of one example , a small organization may configure and run a
hierarchical cache memories , the number of processors and virtual data center within a public cloud that executes web
the connectivity of the processors with other system com- servers to provide an e - commerce interface through the
ponents , the number of internal communications busses and public cloud to remote customers of the organization , such
serial links , and in many other ways . However , computer 55 as a user viewing the organization's e - commerce web pages
systems generally execute stored programs by fetching on a remote user system 316 .
instructions from memory and executing the instructions in Cloud - computing facilities are intended to provide com
one or more processors . Computer systems include general- putational bandwidth and data - storage services much as
purpose computer systems , such as personal computers utility companies provide electrical power and water to
(“ PCs ”) , various types of servers and workstations , and 60 consumers . Cloud computing provides enormous advan
higher - end mainframe computers , but may also include a tages to small organizations without the resources to pur
plethora of various types of special - purpose computing chase , manage , and maintain in - house data centers . Such
devices , including data - storage systems , communications organizations can dynamically add and delete virtual com
routers , network nodes , tablet computers , and mobile tele- puter systems from their virtual data centers within public
phones . 65 clouds in order to track computational - bandwidth and data
FIG . 2 illustrates an Internet - connected distributed com- storage needs , rather than purchasing sufficient computer

puter system . As communications and networking technolo- systems within a physical data center to handle peak com

US 11,050,624 B2
5 6

putational - bandwidth and data - storage demands . Moreover , abstract details of hardware - component operation , allowing
small organizations can completely avoid the overhead of application programs to employ the system - call interface for
maintaining and managing physical computer systems , transmitting and receiving data to and from communications
including hiring and periodically retraining information- networks , mass - storage devices , and other I / O devices and
technology specialists and continuously paying for operat- 5 subsystems . The file system 446 facilitates abstraction of
ing - system and database - management - system upgrades . mass - storage - device and memory resources as a high - level ,
Furthermore , cloud - computing interfaces allow for easy and easy - to - access , file - system interface . Thus , the development
straightforward configuration of virtual computing facilities , and evolution of the operating system has resulted in the
flexibility in the types of applications and operating systems generation of a type of multi - faceted virtual execution
that can be configured , and other functionalities that are 10 environment for application programs and other higher - level
useful even for owners and administrators of private cloud- computational entities .
computing facilities used by a single organization . While the execution environments provided by operating
FIG . 4 illustrates generalized hardware and software systems have proved to be an enormously successful level of

components of a general - purpose computer system , such as abstraction within computer systems , the operating - system
a general - purpose computer system having an architecture 15 provided level of abstraction is nonetheless associated with
similar to that shown in FIG . 1. The computer system 400 is difficulties and challenges for developers and users of appli
often considered to include three fundamental layers : (1) a cation programs and other higher - level computational enti
hardware layer or level 402 ; (2) an operating - system layer or ties . One difficulty arises from the fact that there are many
level 404 ; and (3) an application - program layer or level 406 . different operating systems that run within various different
The hardware layer 402 includes one or more processors 20 types of computer hardware . In many cases , popular appli
408 , system memory 410 , various different types of input- cation programs and computational systems are developed
output (“ I / O ”) devices 410 and 412 , and mass - storage to run on only a subset of the available operating systems ,
devices 414. Of course , the hardware level also includes and can therefore be executed within only a subset of the
many other components , including power supplies , internal various different types of computer systems on which the
communications links and busses , specialized integrated 25 operating systems are designed to run . Often , even when an
circuits , many different types of processor - controlled or application program or other computational system is ported
microprocessor - controlled peripheral devices and control- to additional operating systems , the application program or
lers , and many other components . The operating system 404 other computational system can nonetheless run more effi
interfaces to the hardware level 402 through a low - level ciently on the operating systems for which the application
operating system and hardware interface 416 generally 30 program or other computational system was originally tar
comprising a set of non - privileged computer instructions geted . Another difficulty arises from the increasingly dis
418 , a set of privileged computer instructions 420 , a set of tributed nature of computer systems . Although distributed
non - privileged registers and memory addresses 422 , and a operating systems are the subject of considerable research
set of privileged registers and memory addresses 424. In and development efforts , many of the popular operating
general , the operating system exposes non - privileged 35 systems are designed primarily for execution on a single
instructions , non - privileged registers , and non - privileged computer system . In many cases , it is difficult to move
memory addresses 426 and a system - call interface 428 as an application programs , in real time , between the different
operating - system interface 430 to application programs 432- computer systems of a distributed computer system for
436 that execute within an execution environment provided high - availability , fault - tolerance , and load balancing pur
to the application programs by the operating system . The 40 poses . The problems are even greater in heterogeneous
operating system , alone , accesses the privileged instructions , distributed computer systems which include different types
privileged registers , and privileged memory addresses . By of hardware and devices running different types of operating
reserving access to privileged instructions , privileged reg- systems . Operating systems continue to evolve , as a result of
isters , and privileged memory addresses , the operating sys- which certain older application programs and other compu
tem can ensure that application programs and other higher- 45 tational entities may be incompatible with more recent
level computational entities cannot interfere with one versions of operating systems for which they are targeted ,
another's execution and cannot change the overall state of creating compatibility issues that are particularly difficult to
the computer system in ways that could deleteriously impact manage in large distributed systems .
system operation . The operating system includes many For all of these reasons , a higher level of abstraction ,
internal components and modules , including a scheduler 50 referred to as the “ virtual machine , ” has been developed and
442 , memory management 444 , a file system 446 , device evolved to further abstract computer hardware in order to
drivers 448 , and many other components and modules . To a address many difficulties and challenges associated with
certain degree , modern operating systems provide numerous traditional computing systems , including the compatibility
levels of abstraction above the hardware level , including issues discussed above . FIGS . 5A - D illustrate several types
virtual memory , which provides to each application program 55 of virtual machine and virtual - machine execution environ
and other computational entities a separate , large , linear ments . FIGS . 5A - B use the same illustration conventions as
memory - address space that is mapped by the operating used in FIG . 4. FIG . 5A shows a first type of virtualization .
system to various electronic memories and mass - storage The computer system 500 in FIG . 5A includes the same
devices . The scheduler orchestrates interleaved execution of hardware layer 502 as the hardware layer 402 shown in FIG .
various different application programs and higher - level 60 4. However , rather than providing an operating system layer
computational entities , providing to each application pro- directly above the hardware layer , as in FIG . 4 , the virtual
gram a virtual , stand - alone system devoted entirely to the ized computing environment illustrated in FIG . 5A features
application program . From the application program's stand- a virtualization layer 504 that interfaces through a virtual
point , the application program executes continuously with- ization - layer / hardware - layer interface 506 , equivalent to
out concern for the need to share processor resources and 65 interface 416 in FIG . 4 , to the hardware . The virtualization
other system resources with other application programs and layer provides a hardware - like interface 508 to a number of
higher - level computational entities . The device drivers virtual machines , such as virtual machine 510 , executing

US 11,050,624 B2
7 8

above the virtualization layer in a virtual machine layer 512 . by the operating system . In addition , a virtualization layer
Each virtual machine includes one or more application 550 is also provided , in computer 540 , but , unlike the
programs or other higher - level computational entities pack- virtualization layer 504 discussed with reference to FIG . 5A ,
aged together with an operating system , referred to as a virtualization layer 550 is layered above the operating
" guest operating system , ” such as application 514 and guest 5 system 544 , referred to as the “ host OS , ” and uses the
operating system 516 packaged together within virtual operating system interface to access operating - system - pro
machine 510. Each virtual machine thus equivalent to the vided functionality as well as the hardware . The virtualiza
operating - system layer 404 and application - program layer tion layer 550 comprises primarily a VMM and a hardware
406 in the general - purpose computer system shown in FIG . like interface 552 , similar to hardware - like interface 508 in
4. Each guest operating system within a virtual machine 10 FIG . 5A . The virtualization - layer / hardware - layer interface
interfaces to the virtualization - layer interface 508 rather than 552 , equivalent to interface 416 in FIG . 4 , provides an
to the actual hardware interface 506. The virtualization layer execution environment for a number of virtual machines
partitions hardware resources into abstract virtual - hardware 556-558 , each including one or more application programs
layers to which each guest operating system within a virtual or other higher - level computational entities packaged
machine interfaces . The guest operating systems within the 15 together with a guest operating system .
virtual machines , in general , are unaware of the virtualiza- While the traditional virtual - machine - based virtualization
tion layer and operate as if they were directly accessing a layers , described with reference to FIGS . 5A - B , have
true hardware interface . The virtualization layer ensures that enjoyed widespread adoption and use in a variety of different
each of the virtual machines currently executing within the environments , from personal computers to enormous dis
virtual environment receive a fair allocation of underlying 20 tributed computing systems , traditional virtualization tech
hardware resources and that all virtual machines receive nologies are associated with computational overheads .
sufficient resources to progress in execution . The virtualiza- While these computational overheads have been steadily
tion - layer interface 508 may differ for different guest oper- decreased , over the years , and often represent ten percent or
ating systems . For example , the virtualization layer is gen- less of the total computational bandwidth consumed by an
erally able to provide virtual hardware interfaces for a 25 application running in a virtualized environment , traditional
variety of different types of computer hardware . This allows , virtualization technologies nonetheless involve computa
as one example , a virtual machine that includes a guest tional costs in return for the power and flexibility that they
operating system designed for a particular computer archi- provide . Another approach to virtualization is referred to as
tecture to run on hardware of a different architecture . The operating - system - level virtualization (" OSL virtualiza
number of virtual machines need not be equal to the number 30 tion ”) . FIG . 5C illustrates the OSL - virtualization approach .
of physical processors or even a multiple of the number of In FIG . 5C , as in previously discussed FIG . 4 , an operating
processors . system 404 runs above the hardware 402 of a host computer .

The virtualization layer includes a virtual machine - moni- The operating system provides an interface for higher - level
tor module 518 (“ VMM ”) that virtualizes physical proces- computational entities , the interface including a system - call
sors in the hardware layer to create virtual processors on 35 interface 428 and exposure to the non - privileged instructions
which each of the virtual machines executes . For execution and memory addresses and registers 426 of the hardware
efficiency , the virtualization layer attempts to allow virtual layer 402. However , unlike in FIG . 5A , rather than appli
machines to directly execute non - privileged instructions and cations running directly above the operating system , OSL
to directly access non - privileged registers and memory . virtualization involves an OS - level virtualization layer 560
However , when the guest operating system within a virtual 40 that provides an operating - system interface 562-564 to each
machine accesses virtual privileged instructions , virtual of one or more containers 566-568 . The containers , in turn ,
privileged registers , and virtual privileged memory through provide an execution environment for one or more applica
the virtualization - layer interface 508 , the accesses result in tions , such as application 570 running within the execution
execution of virtualization - layer code to simulate or emulate environment provided by container 566. The container can
the privileged resources . The virtualization layer addition- 45 be thought of as a partition of the resources generally
ally includes a kernel module 520 that manages memory , available to higher - level computational entities through the
communications , and data - storage machine resources on operating system interface 430. While a traditional virtual
behalf of executing virtual machines (“ VM kernel ”) . The ization layer can simulate the hardware interface expected
VM kernel , for example , maintains shadow page tables on by any of many different operating systems , OSL virtual
each virtual machine so that hardware - level virtual - memory 50 ization essentially provides a secure partition of the execu
facilities can be used to process memory accesses . The VM tion environment provided by a particular operating system .
kernel additionally includes routines that implement virtual As one example , OSL virtualization provides a file system to
communications and data - storage devices as well as device each container , but the file system provided to the container
drivers that directly control the operation of underlying is essentially a view of a partition of the general file system
hardware communications and data - storage devices . Simi- 55 provided by the underlying operating system . In essence ,
larly , the VM kernel virtualizes various other types of I / O OSL virtualization uses operating - system features , such as
devices , including keyboards , optical - disk drives , and other name space support , to isolate each container from the
such devices . The virtualization layer essentially schedules remaining containers so that the applications executing
execution of virtual machines much like an operating system within the execution environment provided by a container
schedules execution of application programs , so that the 60 are isolated from applications executing within the execu
virtual machines each execute within a complete and fully tion environments provided by all other containers . As a
functional virtual hardware layer . result , a container can be booted up much faster than a
FIG . 5B illustrates a second type of virtualization . In FIG . virtual machine , since the container uses operating - system

5B , the computer system 540 includes the same hardware kernel features that are already available within the host
layer 542 and software layer 544 as the hardware layer 402 65 computer . Furthermore , the containers share computational
shown in FIG . 4. Several application programs 546 and 548 bandwidth , memory , network bandwidth , and other compu
are shown running in the execution environment provided tational resources provided by the operating system , without

US 11,050,624 B2
9 10

resource overhead allocated to virtual machines and virtu- memories and mass - storage devices . They are as physical
alization layers . Again , however , OSL virtualization does and tangible as any other component of a computer since ,
not provide many desirable features of traditional virtual- such as power supplies , controllers , processors , busses , and
ization . As mentioned above , OSL virtualization does not data - storage devices .
provide a way to run different types of operating systems for 5 A virtual machine or virtual application , described below ,
different groups of containers within the same host system , is encapsulated within a data package for transmission ,
nor does OSL - virtualization provide for live migration of distribution , and loading into a virtual - execution environ
containers between host computers , as does traditional vir- ment . One public standard for virtual - machine encapsulation
tualization technologies . is referred to as the “ open virtualization format " (" OVF ”) .

FIG . 5D illustrates an approach to combining the power 10 The OVF standard specifies a format for digitally encoding
and flexibility of traditional virtualization with the advan- a virtual machine within one or more data files . FIG . 6
tages of OSL virtualization . FIG . 5D shows a host computer illustrates an OVF package . An OVF package 602 includes
similar to that shown in FIG . 5A , discussed above . The host an OVF descriptor 604 , an OVF manifest 606 , an OVF
computer includes a hardware layer 502 and a virtualization certificate 608 , one or more disk - image files 610-611 , and
layer 504 that provides a simulated hardware interface 508 15 one or more resource files 612-614 . The OVF package can
to an operating system 572. Unlike in FIG . 5A , the operating be encoded and stored as a single file or as a set of files . The
system interfaces to an OSL - virtualization layer 574 that OVF descriptor 604 is an XML document 620 that includes
provides container execution environments 576-578 to mul- a hierarchical set of elements , each demarcated by a begin
tiple application programs . Running containers above a ning tag and an ending tag . The outermost , or highest - level ,
guest operating system within a virtualized host computer 20 element is the envelope element , demarcated by tags 622
provides many of the advantages of traditional virtualization and 623. The next - level element includes a reference ele
and OSL virtualization . Containers can be quickly booted in ment 626 that includes references to all files that are part of
order to provide additional execution environments and the OVF package , a disk section 628 that contains meta
associated resources to new applications . The resources information about all of the virtual disks included in the
available to the guest operating system are efficiently par- 25 OVF package , a networks section 630 that includes meta
titioned among the containers provided by the OSL - virtu- information about all of the logical networks included in the
alization layer 574. Many of the powerful and flexible OVF package , and a collection of virtual - machine configu
features of the traditional virtualization technology can be rations 632 which further includes hardware descriptions of
applied to containers running above guest operating systems each virtual machine 634. There are many additional hier
including live migration from one host computer to another , 30 archical levels and elements within a typical OVF descrip
various types of high - availability and distributed resource tor . The OVF descriptor is thus a self - describing XML file
sharing , and other such features . Containers provide share- that describes the contents of an OVF package . The OVF
based allocation of computational resources to groups of manifest 606 is a list of cryptographic - hash - function - gener
applications with guaranteed isolation of applications in one ated digests 636 of the entire OVF package and of the
container from applications in the remaining containers 35 various components of the OVF package . The OVF certifi
executing above a guest operating system . Moreover , cate 608 is an authentication certificate 640 that includes a
resource allocation can be modified at run time between digest of the manifest and that is cryptographically signed .
containers . The traditional virtualization layer provides flex- Disk image files , such as disk image file 610 , are digital
ible and easy scaling and a simple approach to operating- encodings of the contents of virtual disks and resource files
system upgrades and patches . Thus , the use of OSL virtu- 40 612 are digitally encoded content , such as operating - system
alization above traditional virtualization , as illustrated in images . A virtual machine or a collection of virtual machines
FIG . 5D , provides much of the advantages of both a tradi- encapsulated together within a virtual application can thus
tional virtualization layer and the advantages of OSL virtu- be digitally encoded as one or more files within an OVF
alization . Note that , although only a single guest operating package that can be transmitted , distributed , and loaded
system and OSL virtualization layer as shown in FIG . 5D , a 45 using well - known tools for transmitting , distributing , and
single virtualized host system can run multiple different loading files . A virtual appliance is a software service that is
guest operating systems within multiple virtual machines , delivered as a complete software stack installed within one
each of which supports one or more containers . or more virtual machines that is encoded within an OVF

In FIGS . 5A - D , the layers are somewhat simplified for package .
clarity of illustration . For example , portions of the virtual- 50 The advent of virtual machines and virtual environments
ization layer 550 may reside within the host - operating- has alleviated many of the difficulties and challenges asso
system kernel , such as a specialized driver incorporated into ciated with traditional general - purpose computing . Machine
the host operating system to facilitate hardware access by and operating - system dependencies can be significantly
the virtualization layer . reduced or entirely eliminated by packaging applications

It should be noted that virtual hardware layers , virtual- 55 and operating systems together as virtual machines and
ization layers , and guest operating systems are all physical virtual appliances that execute within virtual environments
entities that are implemented by computer instructions provided by virtualization layers running on many different
stored in physical data - storage devices , including electronic types of computer hardware . A next level of abstraction ,
memories , mass - storage devices , optical disks , magnetic referred to as virtual data centers which are one example of
disks , and other such devices . The term “ virtual ” does not , 60 a broader virtual - infrastructure category , provide a data
in any way , imply that virtual hardware layers , virtualization center interface to virtual data centers computationally con
layers , and guest operating systems are abstract or intan- structed within physical data centers . FIG . 7 illustrates
gible . Virtual hardware layers , virtualization layers , and virtual data centers provided as an abstraction of underlying
guest operating systems execute on physical processors of physical - data - center hardware components . In FIG . 7 , a
physical computer systems and control operation of the 65 physical data center 702 is shown below a virtual - interface
physical computer systems , including operations that alter plane 704. The physical data center consists of a virtual
the physical states of physical devices , including electronic infrastructure management (“ VI - management server

such as

US 11,050,624 B2
11 12

server ”) 706 and any of various different computers , such as a management - interface component 812 , distributed ser
PCs 708 , on which a virtual - data - center management inter- vices 814 , core services 816 , and a host - management inter
face may be displayed to system administrators and other face 818. The management interface is accessed from any of
users . The physical data center additionally includes gener- various computers , such as the PC 708 shown in FIG . 7. The
ally large numbers of server computers , such as server 5 management interface allows the virtual - data - center admin
computer 710 , that are coupled together by local area istrator to configure a virtual data center , provision virtual
networks , such as local area network 712 that directly machines , collect statistics and view log files for the virtual
interconnects server computer 710 and 714-720 and a mass- data center , and to carry out other , similar management
storage array 722. The physical data center shown in FIG . 7 tasks . The host - management interface 818 interfaces to
includes three local area networks 712 , 724 , and 726 that 10 virtual - data - center agents 824 , 825 , and 826 that execute as
each directly interconnects a bank of eight servers and a virtual machines within each of the physical servers of the
mass - storage array . The individual server computers , physical data center that is abstracted to a virtual data center
server computer 710 , each includes a virtualization layer and by the VI management server .
runs multiple virtual machines . Different physical data cen- The distributed services 814 include a distributed - re
ters may include many different types of computers , net- 15 source scheduler that assigns virtual machines to execute
works , data - storage systems and devices connected accord- within particular physical servers and that migrates virtual
ing to many different types of connection topologies . The machines in order to most effectively make use of compu
virtual - data - center abstraction layer 704 , a logical abstrac- tational bandwidths , data - storage capacities , and network
tion layer shown by a plane in FIG . 7 , abstracts the physical capacities of the physical data center . The distributed ser
data center to a virtual data center comprising one or more 20 vices further include a high - availability service that repli
resource pools , such as resource pools 730-732 , one or more cates and migrates virtual machines in order to ensure that
virtual data stores , such as virtual data stores 734-736 , and virtual machines continue to execute despite problems and
one or more virtual networks . In certain implementations , failures experienced by physical hardware components . The
the resource pools abstract banks of physical servers directly distributed services also include a live - virtual - machine
interconnected by a local area network . 25 migration service that temporarily halts execution of a

The virtual - data - center management interface allows pro- virtual machine , encapsulates the virtual machine in an OVF
visioning and launching of virtual machines with respect to package , transmits the OVF package to a different physical
resource pools , virtual data stores , and virtual networks , so server , and restarts the virtual machine on the different
that virtual - data - center administrators need not be con- physical server from a virtual - machine state recorded when
cerned with the identities of physical - data - center compo- 30 execution of the virtual machine was halted . The distributed
nents used to execute particular virtual machines . Further- services also include a distributed backup service that pro
more , the VI - management - server includes functionality to vides centralized virtual - machine backup and restore .
migrate running virtual machines from one physical server The core services provided by the VI management server
to another in order to optimally or near optimally manage include host configuration , virtual machine configuration ,
resource allocation , provide fault tolerance , and high avail- 35 virtual - machine provisioning , generation of virtual - data
ability by migrating virtual machines to most effectively center alarms and events , ongoing event logging and statis
utilize underlying physical hardware resources , to replace tics collection , a task scheduler , and a resource - management
virtual machines disabled by physical hardware problems module . Each physical server 820-822 also includes a host
and failures , and to ensure that multiple virtual machines agent virtual machine 828-830 through which the virtual
supporting a high - availability virtual appliance are execut- 40 ization layer can be accessed via a virtual - infrastructure
ing on multiple physical computer systems so that the application programming interface (" API ") . This interface
services provided by the virtual appliance are continuously allows a remote administrator or user to manage an indi
accessible , even when one of the multiple virtual appliances vidual server through the infrastructure API . The virtual
becomes compute bound , data - access bound , suspends data - center agents 824-826 access virtualization - layer server
execution , or fails . Thus , the virtual data center layer of 45 information through the host agents . The virtual - data - center
abstraction provides a virtual - data - center abstraction of agents are primarily responsible for offloading certain of the
physical data centers to simplify provisioning , launching , virtual - data - center management - server functions specific to
and maintenance of virtual machines and virtual appliances a particular physical server to that physical server . The
as well as to provide high - level , distributed functionalities virtual - data - center agents relay and enforce resource allo
that involve pooling the resources of individual physical 50 cations made by the VI management server , relay virtual
servers and migrating virtual machines among physical machine provisioning and configuration - change commands
servers to achieve load balancing , fault tolerance , and high to host agents , monitor and collect performance statistics ,
availability . alarms , and events communicated to the virtual - data - center
FIG . 8 illustrates virtual - machine components of a VI- agents by the local host agents through the interface API ,

management - server and physical servers of a physical data 55 and to carry out other , similar virtual - data - management
center above which a virtual - data - center interface is pro- tasks .
vided by the VI - management - server . The VI - management- The virtual - data - center abstraction provides a convenient
server 802 and a virtual - data - center database 804 comprise and efficient level of abstraction for exposing the computa
the physical components of the management component of tional resources of a cloud - computing facility to cloud
the virtual data center . The VI - management - server 802 60 computing - infrastructure users . A cloud - director manage
includes a hardware layer 806 and virtualization layer 808 , ment server exposes virtual resources of a cloud - computing
and runs a virtual - data - center management - server virtual facility to cloud computing - infrastructure users . In addition ,
machine 810 above the virtualization layer . Although shown the cloud director introduces a multi - tenancy layer of
as a single server in FIG . 8 , the VI - management - server (“ VI abstraction , which partitions virtual data centers (“ VDCs ”)
management server ”) may include two or more physical 65 into tenant - associated VDCs that can each be allocated to a
server computers that support multiple VI - management- particular individual tenant or tenant organization , both
server virtual appliances . The virtual machine 810 includes referred to as a " tenant . ” A given tenant can be provided one

US 11,050,624 B2
13 14

or more tenant - associated VDCs by a cloud director man- data centers . The remaining cloud computing facilities
aging the multi - tenancy layer of abstraction within a cloud- 1003-1008 may be either public or private cloud - computing
computing facility . The cloud services interface (308 in FIG . facilities and may be single - tenant virtual data centers , such
3) exposes a virtual - data - center management interface that as virtual data centers 1003 and 1006 , multi - tenant virtual
abstracts the physical data center . 5 data centers , such as multi - tenant virtual data centers 1004
FIG . 9 illustrates a cloud - director level of abstraction . In and 1007-1008 , or any of various different kinds of third

FIG . 9 , three different physical data centers 902-904 are party cloud - services facilities , such as third - party cloud
shown below planes representing the cloud - director layer of services facility 1005. An additional component , the VCC
abstraction 906-908 . Above the planes representing the server 1014 , acting as a controller is included in the private
cloud - director level of abstraction , multi - tenant virtual data 10 cloud - computing facility 1002 and interfaces to a VCC node centers 910-912 are shown . The resources of these multi 1016 that runs as a virtual appliance within the cloud
tenant virtual data centers are securely partitioned in order to director 1010. A VCC server may also run as a virtual
provide secure virtual data centers to multiple tenants , or appliance within a VI management server that manages a
cloud - services - accessing organizations . For example , a single - tenant private cloud . The VCC server 1014 addition
cloud - services provider virtual data center 910 is partitioned 15 ally interfaces , through the Internet , to VCC node virtual
into four different tenant - associated virtual - data centers appliances executing within remote VI management servers ,
within a multi - tenant virtual data center for four different remote cloud directors , or within the third - party cloud
tenants 916-919 . Each multi - tenant virtual data center is services 1018-1023 . The VCC server provides a VCC server
managed by a cloud director comprising one or more interface that can be displayed on a local or remote terminal ,
cloud - director servers 920-922 and associated cloud - direc- 20 PC , or other computer system 1026 to allow a cloud
tor databases 924-926 . Each cloud - director server or servers aggregation administrator or other user to access VCC
runs a cloud - director virtual appliance 930 that includes a server - provided aggregate - cloud distributed services . In
cloud - director management interface 932 , a set of cloud- general , the cloud computing facilities that together form a
director services 934 , and a virtual - data - center management- multiple - cloud - computing aggregation through distributed
server interface 936. The cloud - director services include an 25 services provided by the VCC server and VCC nodes are
interface and tools for provisioning multi - tenant virtual data geographically and operationally distinct .
center virtual data centers on behalf of tenants , tools and
interfaces for configuring and managing tenant organiza- Method and Subsystems for Compressing Metric
tions , tools and services for organization of virtual data Data
centers and tenant - associated virtual data centers within the 30
multi - tenant virtual data center , services associated with FIG . 11 illustrate metric data that is collected , processed ,
template and media catalogs , and provisioning of virtual- and used by the administrative and management subsystems
ization networks from a network pool . Templates are virtual within a computer system . At the top of FIG . 11 , an abstract
machines that each contains an OS and / or one or more system block diagram 1102 is shown . This system includes
virtual machines containing applications . A template may 35 11 main subcomponents a - m and s 1104-1116 and four
include much of the detailed contents of virtual machines subcomponents in each of components a , b , and c , such as
and virtual appliances that are encoded within OVF pack- subcomponents 1117-1120 in component a 1104. The system
ages , so that the task of configuring a virtual machine or is abstractly characterized and no further details with regard
virtual appliance is significantly simplified , requiring only to component functionalities , interfaces , and connections are
deployment of one OVF package . These templates are stored 40 provided .
in catalogs within a tenant's virtual - data center . These In a complex system , various types of information are
catalogs are used for developing and staging new virtual collected with regard to the operational states and statuses of
appliances and published catalogs are used for sharing many , if not all , components , subcomponents , systems , and
templates in virtual appliances across organizations . Cata- subsystems . The information can be encoded in many dif
logs may include OS images and other information relevant 45 ferent ways , can be expressed in many different forms , and
to construction , distribution , and provisioning of virtual can be provided by a number of different information
appliances . sources . For example , metrics may be provided by various

Considering FIGS . 7 and 9 , the VI management server types of monitoring applications and monitoring hardware
and cloud - director layers of abstraction can be seen , as within a computer system . As another example , metrics may
discussed above , to facilitate employment of the virtual- 50 be obtained from log files that store various types of log
data - center concept within private and public clouds . How- messages and error messages generated by computer - system
ever , this level of abstraction does not fully facilitate aggre- components . However , for the purposes of the current dis
gation of single - tenant and multi - tenant virtual data centers cussion , this information can be described as a set of
into heterogeneous or homogeneous aggregations of cloud- time - stamped or time - associated floating - point numbers .
computing facilities . 55 Clearly , even for descriptive textural information , there is

FIG . 10 illustrates virtual - cloud - connector nodes (“ VCC generally a finite number of different values or forms of the
nodes ”) and a VCC server , components of a distributed information , as a result of which any such information can
system that provides multi - cloud aggregation and that be mapped to numeric values . Thus , no generality is lost by
includes a cloud - connector server and cloud - connector considering the information from various types of monitor
nodes that cooperate to provide services that are distributed 60 ing and diagnostic agents and subsystems within the system
across multiple clouds . VMware vCloudTM VCC servers and to be floating - point values , also referred to as “ metric
nodes are one example of VCC server and nodes . In FIG . 10 , values ” and “ metric data . ” Information may be generated ,
seven different cloud - computing facilities are illustrated within the system , with regard to each of the systems ,
1002-1008 . Cloud - computing facility 1002 is a private subsystems , components , and subcomponents within a com
multi - tenant cloud with a cloud director 1010 that interfaces 65 putational system . Thus , the operational state and status of
to a VI management server 1012 to provide a multi - tenant each component , subcomponent , system , and subsystem is
private cloud comprising multiple tenant - associated virtual described , at any given point in time , by the current values

US 11,050,624 B2
15 16

for all attributes reported for the component , subcomponent , 1302 and 1303. In certain implementations , relationships
system , or subsystem . Table 1130 , in the lower portion of may express , in addition to one - to - one relationships , one
FIG . 11 , illustrates a portion of the metric data collected for to - many and many - to - many relationships .
the system shown in block diagram 1102. Each row in the FIGS . 14A - B illustrate a CMBD representation of the
table , such as the first row 1132 , represents a time series of 5 hypothetical system 1102 discussed above with reference to
metric - data values . The first three rows 1134 of the table FIG . 11. In FIG . 14A , the object nodes of a CMDB repre
represent the data of three different metrics , S1 , S2 , and sz for sentation of the hypothetical system are shown with con
subcomponent s 1116. The next five rows 1136 of table 1130 necting arrows , rather than relationship nodes , logically
represent the data stored for five metrics associated with connecting the object nodes , with the relationship nodes ,
subcomponent 1 (1117 in FIG . 11) of subcomponent a 1104. 10 properties , and metrics omitted for the sake of clarity . The
Additional rows of the table represent data for additional system as a whole is represented by object node 1402 .
metrics collected for the other components of the abstract Subsystems a 1104 , b 1105 , and c 1106 shown in FIG . 11 are
computer system represented by block diagram 1102. In an represented by object nodes 1404-1406 , respectively . Each
actual computer system , there may be tens or hundreds of arrow connecting object node 1402 and object nodes 1404
different metrics associated with any particular main sub- 15 1406 , such as arrow 1408 , represent the “ is a component of
component of a distributed computing system , and there relationship . Object node 1410 represents an internal bus m
may be thousands , tens of thousands , or more subcompo- in the hypothetical system 1102. Arrow 412 represents an “ is
nents . a component of ” relationship while the arrows emanating
FIG . 12 illustrates metric data . In FIG . 12 , a metric 1202 from node 1410 to other object nodes , including arrow 1414 ,

is shown to be associated with a component 1204 of a 20 represent an “ is connected to ” or “ provides communications
system 1206. The metric generates a time - associated services to ” relationship . Were the relationship nodes , prop
sequence of numeric values , a portion of which is shown in erties , and metrics for the small hypothetical system 1102
plot 1208. The vertical axis represents floating - point values discussed above with reference to FIG . 11 included in the
1210 and the horizontal axis represents time 1212. Each data graph shown in FIG . 14A , it would be far too complex to
point is shown in the plot as a vertical bar , such as vertical 25 illustrate in a single - page diagram .
bar 1214 associated with time t? 1216 , the length of the FIG . 14B shows several example nodes of a CMDB at a
vertical bar representing a floating - point value . In many greater level of detail than shown in FIGS . 13 and 14A . A
cases , a metric outputs data values associated with time- first object node 1420 represents a server and a second object
stamps over an extended period of time . Often , the data node 1422 represents a multi - core processor within the
values associated with particular time intervals are com- 30 server . Relationship node 1424 represents a “ is a component
pressed and stored in long - term storage . For example , the of relationship between the server 1420 and multi - core
raw data values may be temporarily stored without com- processor 1422. Both object nodes 1420 and 1422 are linked
pression , and blocks , chunks , or other such portions of these to multiple property nodes and metric es , including
data values may be periodically compressed and stored in property nodes 1426 and metric nodes 1428 linked to object
long - term storage while newly generated data values con- 35 node 1420. The server node 1420 includes a variety of
tinue to accumulate in raw form . The data values for a metric different fields , including a type field 1430 , a name field
may be alternatively represented by a table 1220 that 1431 , a start - time field 1432 , an end - time field 1433 , and an
includes a first column 1222 that stores numeric values and ID field 1434. In addition , the server node includes refer
a second column 1224 that stores the associated times or ences or links 1436 to the various property and metric nodes
timestamps . As shown in expression 1226 in FIG . 12 , the 40 1426 and 1428 to which the server node is linked . Similarly ,
metric may be represented as a series of numeric values Xxes the multi - core - processor node 1422 includes multiple fields .
each numeric value Xz generated by a function x (tz) , where Each node includes a start - time and end - time field that
tz is the time associated with the kth numeric value Xz . There indicates when the node was initially added to the CMDB
are n numeric values in the metric data Xx . representation of the system and , in case a node is subse
FIG . 13 illustrates a configuration - management database 45 quently deleted , the delete time . CMDB nodes may contain

(“ CMDB ”) . A CMDB is logically organized as a graph in many additional fields and information . The details of the
which various components and subsystems of the computer property and metric nodes are not shown in FIG . 14B , but
system are represented by object nodes . The object nodes each of these node types also include multiple fields .
may be associated with metrics and properties and are linked The CMDB - like graph representation of the configuration
together via relationship nodes . FIG . 13 shows a small 50 and state of a computer system is used , in the following
portion of the logical organization of a CMDB representing discussion , as an example of an organization and implemen
a current state of a computer system . This portion includes tation of a metric - data - collection subsystem . The population
three object nodes 1302-1305 . Each object node is associ- metrics discussed below can , however , be implemented in
ated with multiple properties , such as properties 1306 asso- many other types of metric - data - collection subsystems .
ciated with object node 1305 , and multiple metrics , such as 55 FIGS . 15A - F illustrate a typical CMDB - like representa
metrics 1308 associated with object 1305. Properties are tion of the state of a system that includes a distributed
essentially attributes and have values . A property value may application running within a multi - processor system . For
be expressed as a string , numeric value , and by other types ease of discussion and illustration , a system with four
of encodings . Metrics are generally associated with a multi - core processors is described , but the same principles
sequence of data points , each comprising a data value and an 60 and concepts would apply to very large distributed computer
associated timestamp , as discussed above with reference to systems that include tens of thousands or more servers . FIG .
FIG . 12. Pairs of objects are connected through relation- 15A illustrates the four multi - core processors , in block
ships , such as relationship 1310 connecting object 1302 to diagram form . The four multi - core processors 1502-1505
object 1303. Object 1302 may , for example , represent a are designated “ P1 , ” “ P2 , ” “ P3 , ” and “ P4 . " Each multi - core
data - storage device , object 1303 may represent a data- 65 processor , including multi - core processor 1502 , includes
storage - device controller , and relationship 1310 may repre- four cores 1506-1509 , designated “ C1 , " " C2 , ” “ C3 , " and
sent a “ is a component of relationship between objects “ C4 . ”

US 11,050,624 B2
17 18

FIG . 15B shows an abbreviated CMDB - like graph - like tively stable . The final mapping at timepoint t , 1544 does not
representation of a system that includes the four multi - core differ appreciably from the initial mapping 1546 at timepoint
processors discussed above with reference to FIG . 15A . The ti
CMDB - like graph - like representation includes a system FIGS . 16A - B illustrate aspects of modern , distributed
object node 1510 , four multi - core - processor object nodes 5 applications that differ from the traditional distributed appli
1511-1514 , and 16 core object nodes , including core - object cation discussed above with reference to FIG . 15C . As
nodes 1516-1519 linked to processor object node 1511. Of shown in FIG . 16A , an example modern distributed appli
course , an actual CMDB representation of the configuration cation 1602 may start out , when initially configured , to have
and state of even a small system would be much larger and the same seven components distributed among the same
more complex and would include many additional object , 10 three component types as in the traditional application

discussed above with reference to FIG . 15C . However , over relationship , metric , and property nodes . a period of time 1604 , the application may expand 1606 to FIG . 15C illustrates a traditional distributed application . include many more components , each running within a The traditional distributed application 1520 includes seven virtual machine and / or container , and may even expand to distributed components 1522-1528 , each of which runs 15 include additional component types 1608 and 1609. Fur within a virtual machine and / or container that , in turn , runs thermore , as shown in FIG . 16B , using the same illustration on one of the cores of a multi - processor core . The illustrated conventions previously used in FIG . 15F , the mappings of
application includes two request - handling servers 1527 application components to cores in the example multi - core
1528 , referred to as components “ hl ” and “ h2 , ” for backend processor system may be quite dynamic and unstable over
servers 1523-1526 , referred to as “ b1 , " " b2 , ” “ b3 , ” and “ b4 , ” 20 time , with components created and destroyed over relatively
and a database server 1522 , referred to as " d1 . " The appli- small intervals of time with respect to the lifetime of the
cation may , for example , represent a distributed web - server distributed application . With modern distributed applica
application that executes client requests by returning web tions , the accumulation of metric data by conventional
pages that include information extracted from a database by storage of metric data and metric containers corresponding
the database server 1522 . 25 to metric objects in the CMDB - like representation shown in
FIG . 15D illustrates a mapping of the seven components FIG . 15E becomes problematic . For one thing , the lifetime

of the example application , discussed above with reference of an individual application component may be insufficiently
to FIG . 15C , to cores within the four multi - core processors long to accumulate meaningful metric data . For another , the
discussed above with reference to FIG . 15A . As shown in metric data for a particular type of application component ,
FIG . 15D , each application component is mapped to a 30 such as the backend - server components , may be distributed
different core . For example , components h1 and h2 1520 and among many different highly dynamic object nodes , which
1518 are mapped to cores C3 and C4 1530 and 1532 of makes processing and analysis of the data difficult .
multi - core processor P4 1505. In traditional distributed FIGS . 17-18 illustrate an object - entity - aggregation
applications , as discussed further below , these mappings of method , using illustration conventions employed in previous
application components , running within virtual machines 35 figures , that addresses the above - discussed problems asso
and / or containers , to processor cores is relatively stable . ciated with collecting metric data for application compo
FIG . 15E illustrates a CMDB - like graph - like representa- nents of modern , highly dynamic and mobile distributed

tion of the system and distributed application discussed applications . As shown in FIG . 17 , using the CMDB - like
above with reference to FIGS . 15A - C . Again , the graph - like graph - like representation of a portion of the configuration
representation of the system configuration and state shown 40 and state information for the multi - processor - based system ,
in FIG . 15E is only a very small portion of a full state - and- a new type of node , referred to as an “ aggregation node , ” has
configuration representation for a multi - processor system . been added to the logical representation . A first aggregation
The graph - like state - and - configuration representation node 1702 represents all of the backend - server application
shown in FIG . 15B is supplemented to include object nodes components 1704-1714 . A second aggregation node 1706
that represent the application components , such as object 45 represents the request - processing application components
node 1534 that represents application component b1 . Each 1718-1722 . A third aggregation node 1724 represents all of
of these application - component object nodes include links to the application components of type r 1726-1727 and a final
metric nodes , such as metric node 1536 , which include aggregation node 1730 represents the database - server appli
containers for accumulating metric data points over time . A cation components 1732-1733 . An aggregation node is a
metric node may include various fields describing the type 50 meta - level node that represents multiple object nodes . In
of metric , start time and end time for the metric , and other FIG . 17 , the aggregation nodes represent all of the object
such information as well as a variable - length container for nodes of a particular type but , in alternative implementa
storing a time - ordered sequence of data points , as discussed tions , an aggregation node may represent a subset of the
above with reference to FIG . 12B . nodes of a particular type . Aggregation nodes allow certain
FIG . 15F provides a two - dimensional table - like represen- 55 of the metrics associated with particular types of object

tation of the mappings of application components of the nodes to be accumulated within a single metric container
application discussed above with reference to FIG . 15C onto associated with the aggregation node , rather than individual
the system discussed above with reference to FIGS . 15A - B . metric containers associated with the object nodes of the
A horizontal axis 1540 represents a timeline , with each type represented by the aggregation node . In other words ,
column in the table - like representation representing the 60 the metric data collected by metric entities associated with
mapping of components to cores at a particular point in time . aggregation nodes is population data generated by multiple
A vertical axis 1542 represents the 16 cores within the four object nodes , rather than data generated by a single indi
multi - core processors . Entries in the cells of the table vidual node . Aggregation nodes can therefore be used to
represent a mapping of an application component to a collect , process , and analyze population data for types and
particular core . As can be seen by viewing these mappings 65 classes of application components , even though individual
in left - to - right fashion through the table - like representation , application components may have relatively short lifetimes
the mappings of application components to cores is rela- with respect to the overall lifetime of a distributed applica

Occur .

US 11,050,624 B2
19 20

tion and even though application - component nodes may be control returns to step 1906. Otherwise , control returns to
highly distributed and mobile . The collection of population step 1902 where the event handler waits for a next event to
data for classes of component types can greatly facilitate
analysis of distributed - application operational characteris- FIG . 19B provides a control - flow diagram for the add
tics and behavior , allowing conclusions to be drawn with 5 aggregation handler called in step 1908 of FIG . 19A . In step
respect to the performance of classes or subsets of applica- 1920 , the handler receives an indication of the type of entity
tion components over extended periods of time . to be aggregated by the aggregation node , a list of metrics

FIG . 18 illustrates greater details of aggregation nodes . In to aggregate , and other information needed to construct and
FIG . 18 , an aggregation node 1802 and an object node of a maintain a new aggregation node . In step 1922 , an aggre
type aggregated by the aggregation node 1804 are shown . 10 gation entity is created and added to the CMDB - like con figuration - and - state representation along with a special The object node 1804 includes various fields 1806 , as
discussed above , and references various metric entities that aggregation metric referenced from the aggregation entity .

When there is no metric table already created for the type of include metric containers 1808. In addition , the object node
1804 includes a reference 1810 to a metric table 1812. The 15 table is added to the CMDB - like representation in step 1926 .

entity to be aggregated , as determined in step 1924 , a metric
metric table contains entries for metrics associated with the In the for - loop of steps 1928-1930 , each entity of the type of
type or class of object nodes to which object node 1804 entity to aggregate is considered . In certain cases , only a
belongs . Each entry includes an indication of the type of subset of the entities of the type are aggregated , in which
metric as well as a reference to the aggregation node for any case only entities of the subset are considered in this
of the metrics that are currently being aggregated for the 20 for - loop . For each entity that is being aggregated , an entry
type or class of object node . Thus , the metrics represented by in the special metric for the aggregation node is added and ,
entries 1814 and 1816 are both population metrics accumu- when a new metric table is added in step 1926 , a reference
lated within metric entities associated with the aggregation to the metric table is added to each entity that is being
node 1802. There may be multiple aggregation nodes that aggregated . In the for - loop of steps 1932-1934 , an entry in
accumulate population metrics for any particular class or 25 the metric table is added and a metric entity is added to the
type of application component . An aggregation node aggregation entity for each metric that is being aggregated .
includes a special metric 1818 with entries such as the entry FIG . 19C provides a control - flow diagram for the add
1820 expanded in inset 1822. Entries in the special metric , entity handler called in step 1912 of FIG . 19A . In step 1940 ,
such as entry 1820 , record when members of the aggrega the type of entity to add and other information for the entity
tion , object nodes of the type or class being aggregated , are 30 is received . In step 1942 , an entity is created and added to
added to the aggregation and deleted from the aggregation , the CMDB - like representation . Metric containers are created
with each addition and deletion event including an object and added to the entity in step 1944. When the created entity

is an entity that has been aggregated , as determined in step node ID 1824 and a timestamp 1826 , an indication of the 1946 , then , in the for - loop of steps 1948-1951 , an entry in event type 1828 , and often additional information . The 35 the special metric is added to each aggregation node that special metric provides information to processing and analy aggregates a metric associated with the entity and a refer sis logic that is useful in understanding the nature of the ence to the metric table for the aggregation is added for those population of application components represented by the metrics aggregated by the aggregation node in step 1950 .
aggregation over time . Special - metric entries , or data points , FIG . 19D provides a control - flow diagram for the metric
may include sufficient information to reconstitute the map- 40 update handler called in step 1915 of FIG . 19A . In step 1960 ,
pings of nodes to processor cores , for example , at different the value , timestamp , entity , metric identifier , and other such
points in time , as represented by the table - like representa- information needed to update a metric is received . In step
tions shown in FIG . 15F and FIG . 16B . 1962 , this information is used to find the entity associated

FIGS . 19A - D provide control - flow diagrams that repre- with the metric to update . When the metric is an aggregated
sent supplemental logic for a CMDB representation of the 45 metric , as determined in step 1964 , the metric data is added
configuration and state of a system that includes aggregation to a metric container associated with the appropriate aggre
nodes . The CMDB logic is represented by an event loop , as gation entity , in step 1966. Otherwise , in step 1968 , the
shown in FIG . 19A . The CMDB logic waits for a next event , metric container associated with the entity is updated .
in step 1902 , and then handles the event . Events may include FIG . 20A provides additional details of aggregation enti
an add - aggregation event , an add - entity event , and a metric- 50 ties and population metrics . In FIG . 20A , the aggregation
update event , among many of the various different possible entity 1802 previously discussed with reference to FIG . 18
events that may occur and that may be handled during the is shown again , along with the special metric 1818. FIG .
lifetime of a CMDB - like representation of the configuration 20A provides greater details with regard to the non - special
and state of a complex system . Ellipses 1904 indicate that population metrics 2002 and 2004. The population metrics
many additional types of events are generally raised and 55 each include a number of fields that describe statistical
handled . For example , entities , including aggregation enti- values maintained for the population metrics 2006 and 2008 ,
ties , may be deleted and population metrics may be added or respectively , in addition to accumulated population - metric
deleted . When an add - aggregation event occurs , as deter- data , 2010 and 2012 , respectively . As shown in inset 2014 ,
mined in step 1906 , an add - aggregation handler is called in the metric data may include a metric - data value 2016 as well
step 1908 to handle the event . When an add - entity event 60 as an ID or other identifier of the aggregated entity that
occurs , as determined in step 1910 , an add - entity handler is generated the data 2018 , in order to facilitate analysis of the
called in step 1912. When a metric - update event occurs , as population - metric data with respect to individual aggregated
determined in step 1914 , a metric - update handler is called in entities . In the described implementation , the statistical
step 1915. When a monitoring - timer expiration occurs , as values maintained for the population metrics include an
determined in step 1916 , a monitor handler is called in step 65 upper threshold 2020 , a lower threshold 2022 , and an
1917. When , following handling of an event , there are more average variance 2024. These values are computed , over
events queued for handling , as determined in step 1918 , time , from accumulated population - metric data . The vari

US 11,050,624 B2
21 22

ance o ’ is computed as the sum of the squared differences subspace 2078 , the associated entity is considered to be an
between metric values and the mean of the metric values , outlier . The vector subspace 2078 is obtained by analysis of
divided by one less than the number of metric values and the the vectors computed for all or a subset of the aggregated
standard deviation o is computed as the square root of the entities , over time , and represents an expected distribution of
variance . The upper and lower thresholds are computed as 5 non - outlying vectors . However , there are many other
the mean metric value plus a first coefficient times the approaches to outlier evaluation , such as determining
standard deviation and the average mean value minus a whether the average population - metric values for the aggre
second coefficient times the standard deviation , respectively . gated entity exceed more than a threshold percentage of the
However , in alternative implementations , many different associated thresholds maintained in the aggregation entity .
computed statistical values may be employed for popula- 10 Other approaches may be used when other types of statis
tion - metric - monitoring purposes . In alternative implemen- tical quantities are computed and maintained . Following
tations , the stored values used for outlier identification may identification of the outliers , the outliers may be ranked
be obtained by machine learning approaches , and , in par- according to how much the metrics computed for them
ticular , on similarity analysis of multi - dimensional key different from population - based metrics . For example , using
performance indicator data . 15 the above vector - space approach , the outliers may be ranked

FIGS . 20B - C provide control - flow diagrams for the moni- by the distance between the points in the vector space
tor handler called in step 1917 in FIG . 19A . FIG . 20B computed for them and the nearest point on the boundary of
provides a control - flow diagram for the monitor handle . In the vector subspace .
step 2030 , the monitor handler determines the population Although the present invention has been described in
metric and associated aggregation entity with which the 20 terms of particular embodiments , it is not intended that the
expired timer is associated . In step 2032 , the monitor handle invention be limited to these embodiments . Modifications
computes a current mean u and variation o2 for a most recent within the spirit of the invention will be apparent to those
time interval from the accumulated population - metric data . skilled in the art . For example , any of many different design
In step 2034 , the monitor handler compares the computed and implementation parameters may be varied in order to
values u + ao and u - bo to the upper and lower thresholds , 25 generate alternative implementations of the aggregation
respectively . When one of the computed values exceeds the nodes and population metrics discussed above . These design
respective threshold , in a positive direction for the upper and implementation parameters may include hardware ,
threshold and a negative direction for the lower threshold , as operating - system , and virtualization - layer types , program
determined in step 2036 , the routine “ outlier analysis ” is ming languages , control structures , data structures , modular
called , in step 2038 , to determine whether one or more of the 30 organization , and other such design and implementation
aggregated entities represents an outlier with respect to the parameters . Although population metrics have been dis
population metrics and aggregation entity through which it cussed with respect to a particular implementation in which
is aggregated . Otherwise , the upper and lower thresholds aggregation nodes are added to CMDB - like representations
and average o associated with the population metric are of the state and configuration of distributed systems , similar
adjusted , in step 2040 , in view of the currently computed u 35 types of metric populations may be included in many other
and o . Finally , in step 2042 , the timer is reset . types of configuration and state representations or other
FIG . 20C shows a control - flow diagram for the routine systems in which metric data is collected for components of

" outlier analysis ” called in step 2038 of FIG . 20B . In step distributed applications .
2050 , a set candidates is set to the empty set . In the for - loop It is appreciated that the previous description of the
of steps 2052-2056 , each of the aggregated entities corre- 40 disclosed embodiments is provided to enable any person
sponding to the population metric for which the timer skilled in the art to make or use the present disclosure .
expired is considered . In step 2053 , the average population- Various modifications to these embodiments will be readily
metric value for the aggregated entity is computed , using apparent to those skilled in the art , and the generic principles
those population - metric entries with ID fields (2018 in FIG . defined herein may be applied to other embodiments without
20A) corresponding to the currently considered aggregated 45 departing from the spirit or scope of the disclosure . Thus , the
entity . When this value exceeds one of the thresholds , as present disclosure is not intended to be limited to the
determined in step 2054 , in a positive direction for the upper embodiments shown herein but is to be accorded the widest
threshold or a negative direction for the lower threshold , the scope consistent with the principles and novel features
aggregated entity is added to the set of candidates in step disclosed herein .
2055. Then , in step 2060 , the routine “ evaluate candidates ” 50 The invention claimed is :
is called to determined whether any of the candidate outliers 1. A state - information - storage subsystem within a com
is an outlier with respect to the population metrics associated puter system that includes one or more processors , one or
with the aggregated entities . When a candidate outlier is more memories , and one or more data - storage devices , the
determined to be an outlier , the CMDB logic triggers and state - information - storage subsystem comprising :
alert or exception to invoke any of various outlier - handling 55 current state information , including object entities asso
functionalities , including propagating the alert or exception ciated with metrics and aggregation entities associated
to automated problem diagnosis and amelioration subsys- with population metrics , that is maintained within a
tems or to a human system administrator . combination of one or more memories and one or more

There are many approaches for outlier evaluation . FIG . data - storage devices , and
20D illustrates one approach . Vectors 2070 and 2072 are 60 a state - information - storage subsystem control component
constructed for each candidate . The elements of the vectors that maintains the current state information and that
are the computed average values for each of the different adds data points to population metrics associated with
population metrics associated with the candidate aggregated aggregation entities .
entries . The points in a vector space represented by these 2. The state - information - storage subsystem of claim 1
vectors 2074 and 2076 , respectively , are then evaluated with 65 wherein each metric entity stores a time - ordered sequence of
respect to a vector subspace 2078. When the point repre- data points , each data point comprising a time - associated
sented by a vector falls outside the boundaries of the vector numeric data value .

10

15

US 11,050,624 B2
23 24

3. The state - information - storage subsystem of claim 2 12. A method that stores and maintains state information
wherein an aggregation entity aggregates two or more object with respect to a computer system , within the computer
entities so that data - point - generating events with respect to system , the method carried out within the computer system
computer - system components represented by the two or that includes one or more processors , one or more memories ,
more object entities that produce data points for a population 5 and one or more data - storage devices , the method compris
metric associated with the aggregation entity result in stor- ing :
age of the data points by a population metric associated with representing , as objects entities , components of the com
the aggregation entity . puter system with respect to which metric - data - point

4. The state - information - storage subsystem of claim 3 generating events are associated ;
wherein an aggregation entity is associated with a special representing an aggregation of two or more object entities
metric that includes entries that represent time - associated as an aggregation entity ;
addition and deletion events in which object entities are associating a population metric with the aggregation
added to and deleted from the aggregation . entity ;

5. The state - information - storage subsystem of claim 3 storing the object entities and aggregation entity as state
wherein each aggregated object entity includes a reference information in one or more memories and / or data
to a metric table , entries of which indicate an aggregation storage devices ; and
entity associated with a population metric for metrics that when a metric - data - point - generating event occurs with
have been aggregated . respect to an object of the aggregation ,

6. The state - information - storage subsystem of claim 1 20 when the metric for which the metric - data - point - gen
wherein an object entity represents a component of the erating event generated a data point is the population
computer system . metric associated with the aggregation entity ,

7. The state - information - storage subsystem of claim 1 adding the data - point generated by the data - point
wherein the state - information - storage subsystem control generating event to the population - metric .
component generates object entities to represent compo- 25 13. The method of claim 12 wherein each metric is
nents of a distributed application that each run within one of associated with a stored time - ordered sequence of data
a virtual machine , container , and another execution envi- points , each data point comprising a time - associated
ronment . numeric data value .

8. The state - information - storage subsystem of claim 7 14. The method of claim 12 wherein multiple object
wherein the state - information - storage subsystem control 30 entities within the stored state information represent mul
component generates an aggregation entity associated with tiple components of a distributed application , each execut
a type of distributed - application component , the aggregation ing , within one of a virtual machine , container , and another
entity associated with a population metric that stores data execution environment , that executes within the computer
points representing data generated , with respect to the met- system .
ric , by distributed - application components of the type that 35 15. The method of claim 14 wherein a distributed - appli
are aggregated by the aggregation entity . cation - representing aggregation entity aggregates two or

9. The state - information - storage subsystem of claim 8 more object entities that represent components of the dis
wherein the aggregation entity is associated with a special tributed application through a population metric associated
metric that includes entries that represent time - associated with the aggregation object .
addition and deletion events in which distributed - application 40 16. The method of claim 15 wherein the distributed
components of the type are added to and deleted from the application - representing aggregation entity is associated
aggregation . with a special metric that includes entries that represent

10. The state - information - storage subsystem of claim 8 time - associated addition and deletion events in which dis
wherein each object entity representing a distributed - appli- tributed - application components represented by the aggre
cation component aggregated by the aggregation entity 45 gated object entities are added to and deleted from the
includes one of a reference to a metric table and a metric aggregation .
table , entries of the metric table each indicating an aggre 17. The method of claim 14 wherein each distributed
gation entity associated with a population metric associated application - component - representing object entity includes a
with the object entity . reference to a metric table , entries of which indicate that the

11. The state - information - storage subsystem of claim 1 50 distributed - application - representing aggregation entity
wherein the state - information - storage subsystem control receives data points generated with respect to the population
component monitors the distribution of population - metric metric associated with distributed application - representing
values , for a population metric associated with an aggrega- aggregation entity .
tion entity that aggregates aggregation entities as an aggre- 18. The method of claim 12 further comprising monitor
gation , to : 55 ing a distribution of population - metric values , for a popu

detect candidate aggregated - entity outliers , the distribu- lation metric associated with an aggregation entity that
tion of population - metric values generated by a candi- aggregates aggregation entities as an aggregation , to :
date aggregated - entity outlier falling outside a normal detect candidate aggregated - entity outliers , the distribu
population - metric - value distribution for the aggrega- tion of population - metric values generated by a candi
tion of aggregated entities ; date aggregated - entity outlier falling outside a normal

evaluate the candidate aggregated - entity outliers with population - metric - value distribution for the aggrega
respect to the population metrics through which they tion of aggregated entities ;
are aggregated ; and evaluate the candidate aggregated - entity outliers with

trigger and alarm or exception when a candidate aggre- respect to the population metrics through which they
gated - entity outlier is determined to be an outlier with 65 are aggregated ; and
respect to the population metrics through which it is trigger and alarm or exception when a candidate aggre
aggregated by the aggregation entity . gated - entity outlier is determined to be an outlier with

60

5

10

US 11,050,624 B2
25 26

respect to the population metrics through which it is adding the data - point generated by the data - point
aggregated by the aggregation entity . generating event to the population - metric .

19. Computer instructions , stored within a physical data 20. The computer instructions of claim 19
storage device , that , when executed by one or more proces wherein each metric is associated with a stored time
sors of a computer system that includes the one or more ordered sequence of data points , each data point com

prising a time - associated numeric data value ; processors , one or more memories , and one or more data wherein a distributed - application - representing aggrega storage devices , control the computer system to store and tion entity aggregates two or more object entities that
maintain state information that describes the state of the represent components of the distributed application computer system , by : through a population metric associated with the aggre

representing , as objects entities , components of the com gation object ;
puter system with respect to which metric - data - point- wherein the distributed - application representing aggrega
generating events are associated ; tion entity is associated with a special metric that

representing an aggregation of two or more object entities includes entries that represent time - associated addition
as an aggregation entity ; and deletion events in which distributed - application

associating a population metric with the aggregation components represented by the aggregated object enti
entity ; ties are added to and deleted from the aggregation ; and

storing the object entities and aggregation entity as state wherein each distributed - application - component - repre
information in one or more memories and / or data senting object entity includes a reference to a metric
storage devices ; and table , entries of which indicate that the distributed

when a metric - data - point - generating event occurs with application - representing aggregation entity receives
respect to an object of the aggregation , data points generated with respect to the population
when the metric for which the metric - data - point - gen metric associated with distributed - application - repre

erating event generated a data point is the population senting aggregation entity .
metric associated with the aggregation entity ,

15

20

