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METHODS AND SYSTEMS THAT ESTIMATE control processes based on comparisons between calculated 
A DEGREE OF ABNORMALITY OF A degrees of abnormality for the historical time - series data and 

COMPLEX SYSTEM for the current time - series data . The larger the degree of 
abnormality of the current time - series data is from the 

TECHNICAL FIELD 5 historical degree of abnormality of the historical time - series 
data , the larger the violation of the thresholds and the greater 

The present disclosure is directed to automated manage- the probability the violation in the current time - series data is 
ment tools of data - generating entities , and in particular , to worthy of attention . 
methods and systems that estimate abnormalities in time 
series data . DESCRIPTION OF THE DRAWINGS 10 

BACKGROUND FIG . 1 shows a plot of example historical time - series data 
and upper and lower dynamic thresholds . 

With the advent of increased computing power and data FIG . 2 shows an example of distances of an upper 
storage , the development of computational tools to study 15 threshold event , shown in FIG . 1 . 
ever increasingly complex systems in detail has increased . FIG . 3 shows an example of a duration of an upper 
Examples of complex systems include weather systems , threshold event , shown in FIG . 1 . 
ecosystems , biological systems , business operations , infor- FIG . 4 shows an example of a count of an upper - threshold 
mation technology , systems monitored by one or more event , shown in FIG . 1 . 
sensors , and cloud computing systems just to name a few . Of 20 FIG . 5 shows a plot of an example histogram . 
particular importance to those who study these complex FIG . 6 shows a plot of an empirical cumulative distribu 
systems is the ability to identify abnormalities that occur tion and a corresponding parametric cumulative distribution . 
within these complex systems from time - series data gener- FIG . 7 shows a plot of current data generated for a 
ated by the complex system itself or by sensors used to complex system after the historical time - series data shown 
monitor the complex system . For example , in the case of a 25 in FIG . 1 . 
data center , variations from normal or expected computa- FIG . 8 shows an example of distances of a current event . 
tional operations could lead to failures , slowdown , and other FIG . 9 shows an example of a duration of a current event . 
problems . These types of problems are often triggered by FIG . 10 shows an example of a count of a current event . 
unobserved abnormalities in the operation of processes or FIGS . 11A - 11C show plots of example relative distances 
computational resources that may cascade into larger prob- 30 of the historical time - series data shown in FIG . 1 . 
lems . However , monitoring such complex systems generates FIG . 12 shows a plot of example relative distances used 
vast amounts of time - series data that is collected , analyzed , to calculate an estimated total relative distance . 
and presented for human understanding . Those working FIG . 13 shows a flow diagram of a method to estimate a 
with complex systems seek methods and systems that may degree of abnormality of a complex system . 
be used to identify out - of - control abnormalities of a com- 35 FIG . 14 shows a control - flow diagram of the routine 
plex system from time - series data . " compute estimated historical degree of abnormality ” called 

in FIG . 13 . 
SUMMARY FIG . 15 shows a control - flow diagram of the routine 

" compute upper and lower combined sets of abnormalities ” 
Methods and systems described herein are directed to 40 called in FIG . 14 . 

estimating a degree of abnormality of a complex system FIG . 16 shows control - flow diagram of the routine " com 
based on historical time - series data representative of the pute estimated current degree of abnormality ” called in FIG . 
complex system's past behavior and using the historical 13 . 
degree of abnormality to determine whether or not a degree FIG . 17 shows a control - flow diagram of the routine 
of abnormality determined from current time - series data 45 “ compare estimated current and historical degrees of abnor 
representative of the same complex system's current behav- mality ” called in FIG . 13 . 
ior is worthy of attention . The time - series data may be metric FIG . 18 shows a flow diagram of a method to estimate a 
data that represents behavior of a complex system as a result degree of abnormality of a complex system . 
of successive measurements of the complex system made FIG . 19 shows a control - flow diagram of the routine 
over time or in a time interval . For example , the complex 50 “ compute normalized total relative distance for each event ” 
system may be the earth and a seismometer that measures called in FIG . 18 . 
ground motion generates a signal composed of time - sampled FIG . 20 shows a flow diagram of the routine “ compute 
data that represents the motion of the earth . If the complex cumulative distribution parameters for upper- and lower 
system is a processor , the processor may generate time- threshold events " called in FIG . 18 . 
series data that represents the amount of the processor in use 55 FIG . 21 shows an example of a computer system that 
at regular points in time . If the complex system is a virtual executes efficient methods of determining a degree of abnor 
machine , the virtual machine may include instructions to mality of complex system based on time - series data . 
generate a number of different types of time - series data , each FIGS . 22-26 show an example of actual numerical results 
time series may represent usage of a different virtual computed for historical time - series data . 
machine component . A degree of abnormality represents the 60 
amount by which the time - series data violates a threshold . DETAILED DESCRIPTION 
The premise behind the methods and systems is that time 
series data often violates thresholds for certain periods of Methods and systems for estimating a degree of abnor 
time , but not all of these violations are worthy of attention , mality of a complex system via analysis of historical vio 
such as generating an alert . Methods and systems compare 65 lations of thresholds are described . The methods and sys 
current violations in time - series data with violations of tems are based on the assumption that the behavior , 
thresholds in historical time - series data and identify out - of- performance , or usage of a complex system may be char 
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acterized by the distance and duration of a threshold viola- consecutive time - series data of the set X that are greater than 
tion of current time - series data that represents the behavior , the upper threshold 108 and are called upper - threshold 
performance , or usage of the complex system . In a first events . For example , FIG . 1 includes a magnified view 112 
approach , each degree of abnormality is based separately on of the sub - series of consecutive time - series data that makes 
the distance and duration of threshold violations . In a second 5 up upper - threshold event E4 . In magnified view 112 , the 
approach , each degree of abnormality is based on a combi- time - series data are represented by dots . For example , dot 
nation of the distance and duration of the threshold viola 114 represents the kth time series datum Xz 
tions . Both approaches follow the same procedure . First , A first approach for determining historical and current 
historical time - series data that is representative of the past degrees of abnormality based separately on the distance and 
behavior , performance , or usage of the complex system are 10 duration of threshold violations are now described . Events 
collected . Historical analysis of threshold violations of the are determined by computing a distance of each data value 
historical time - series data is performed to generate an esti- from the upper and lower thresholds . Let uz denote the value 
mated historical degree of abnormality . Second , current of the upper threshold at time stamp tk . The distance of a data 
time - series data that is representative of the current behav- value Xz from the upper threshold uz at time stamp tz is given 
ior , performance , or usage of the complex system is also 15 by : 
analyzed for threshold violations to generate an estimated di " = Xx - UR ( 2 ) current degree of abnormality . Third , the estimated current 
degree of abnormality is compared with the estimated his- Likewise , let 1x denote the value of the lower threshold at 
torical degree of abnormality in order to determine whether time stamp tk . The distance of a data value Xz from the lower 
or not the current violations are worthy of attention . 20 threshold le at the time stamp tz is given by : 

Begin by considering a set of historical time - series data di = 1 xi ( 3 ) represented by : 
When the distance d , “ 50 and the distance d'so , the data 

( 1 ) value Xz is considered normal and an event has not occurred . 
where 25 On the other hand , when either d , " > 0 or d , > 0 occurs , the 
Xx = x ( tz ) is a data value generated with a time stamp tz ; and data value Xz is considered abnormal and an event has 
N is the number of historical data values . occurred . Returning to FIG . 1 , each of the upper - threshold 

Each data value may be a metric value that represents the events Ez and E4 correspond to a sub - series of consecutive 
result of a measurement performed on complex systems at a time - series data values where d ; " > 0 and each of the lower 
time stamp by , for example , a sensor or each data value may 30 threshold events E , and Ez correspond to a sub - series of 
be a metric value generated by the complex system itself that time - series data values where d ' > 0 . 
represents behavior , performance , or usage of the complex The distances d , " > 0 for the full set of time - series data 
system a time stamp . may be collected to form a set of historical upper - threshold 

Abnormalities in the time - series data may be assessed event distances given by 
with respect to an upper threshold denoted by u and / or a 35 ( 4 ) lower threshold denoted by 1. The upper and lower threshold 
may both be dynamic thresholds that vary with time , the where 
upper and lower thresholds may both be constant thresholds , d ; " > 0 ; and 
or the upper and lower thresholds may be a combination of M is the number of historical upper threshold violations . 
dynamic and constant thresholds . An abnormality occurs 40 Likewise , the distances dz > 0 for the full set of time - series 
when one or more data values in the time series are greater data may also be collected to form a set of historical 
than the upper threshold or less than the lower threshold . For lower - threshold event distances given by 
example , when a data value satisfies the condition lsx su , D ' = { di'r R ( 4 ) the data value is considered normal . By contrast , when a data 
value is Xx < l or u < Xz , the data value is considered abnormal 45 where 
and a series of one or more consecutive abnormal data d > 0 ; and 
values is called an “ event . ” In other words , the term " event " R is the number of historical lower threshold violations . 
refers to a sub - series of consecutive time - series data values Alternatively , a single distance metric may be calculated 
that do not satisfy ( i.e. , violates ) the condition lsx su . An for each upper - threshold event , and the distance metrics may 
event composed of consecutive data values that are greater 50 be collected to form a set of historical upper - threshold 
than the upper threshold is called an “ upper - threshold distance metrics . Consider an upper - threshold event E ; com 
event , ” and an event composed of data values that are less posed of a set of in distances greater than zero : 
than the lower threshold is called a “ lower - threshold event . " du ( j ) , d , u ( ) , ... , duli ) ( 6 ) FIG . 1 shows a plot of example historical time - series data 
and upper and lower dynamic thresholds . Horizontal axis 55 where dup > 0 , for 1sism . 
102 represents time and vertical axis 104 represents a range A distance metric for the upper - threshold event E ; may 
of data values . Curve 106 represents historical time - series calculated as follows : 
data X. Dashed curve 108 represents an upper dynamic 
threshold and dashed curve 110 represents a lower dynamic , " qid , ui ) , d ) , ... , di ) ) ( 7 ) 

threshold . A constant upper or lower threshold would be 60 where o represents one of the mean , median , and maxi 
represented by a straight line that runs parallel to the time mum of the distances . 
axis 102. The example historical time - series data shown in FIG . 2 shows an example of distances associated with the 
FIG . 1 includes four events denoted by E1 , E2 , E3 , and E4 : upper - threshold event E4 , shown in FIG . 1. The upper 
The events E , and Ez are each composed of a sub - series of threshold event E4 is composed of eleven ( i.e. , m = 11 ) data 
consecutive time - series data of the set X that are less the 65 values that are greater than of the upper threshold 108. The 
lower threshold 110 and are called lower - threshold events . set of distances associated with these data values may be 
The events E , and E4 are composed of a sub - series of represented by d , 4 ( 4 ) , d , u ( 4 ) , di ult ) and a distance 

Du = { d } " } = 1 M 

?? 
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metric d ' associated with the upper - threshold event E4 may G ' = ( D ' , T " ) ( 16 ) 
be the mean , median , or maximum of the set of distances . Alternatively , a lower - threshold combined set of abnormali This procedure may be repeated for each upper - threshold ties may be formed from the set of historical lower - threshold event and the distance metrics associated with the upper duration metrics and the set of historical lower - threshold 
threshold events may be collected to form a set of historical 5 event durations as follows : 
upper - threshold distance metrics represented by : 

G ' = D ! , T ' ) ( 17 ) D “ = { 2 " } } = 1 ( 8 ) 
When the duration between time stamps is substantially where J represents the number of upper - threshold events . constant , the set of historical upper - threshold durations may Likewise , consider a lower - threshold event E , composed 10 

of r lower - threshold distances greater than zero : be replaced by a set of historical upper - threshold counts . Let 
c ; be the number of time stamps ( i.e. , event counts ) associ 

0,19 ) , d ( 9 ) , ... , d , ! ( 9 ) ( 9 ) ated with data values of the jth upper - threshold event E ;, 
where d : ( 9 ) > 0 , for 1sisr . FIG . 4 shows an example of an event count for the 

A distance metric may be calculated as follows : upper - threshold event E4 shown in FIG . 1. The event count 
402 is the number of time stamps represented by line 

de " = v ( dju ( ) , dua ) , ... , d , u ( a ) ) ( 10 ) segments , such as line segment 404 , that correspond to the 
where o represents one of the mean , median , and maxi data values that form the upper - threshold event E4 . 

mum of the distances . The event counts of the upper - threshold events may be 
The distance metrics of the lower - threshold events may be collected to form a set of historical upper - threshold event 
collected to form a set of historical lower - threshold distance counts given by 
metrics represented by : C " = { c } = ' ( 18 ) 

D = { 2 , } ( 11 ) Analogously , the event counts of the lower - threshold 
where Q represents the number of lower - threshold events . 25 events may also be collected to form a set of historical 
The duration of each event may be determined . Let t ; be lower - threshold event counts given by 

the duration of the j - th event . The duration may be calculated 
where to ST ; Tj , end - Tj , start ? represents C ' = { calçº Tj , start the time stamp of ( 19 ) 

the first data value in the upper - threshold event E , to violate The sets C4 and C'are count sets of abnormalities that may 
the upper threshold and Tj , end represent the time stamp of the 30 be combined with distance sets of abnormalities D “ , D ’ , D “ , 
last data value in the upper - threshold event E ; to violate the and D ' as follows to provide additional two - component 
upper threshold . representations of historical threshold violations . An upper 

FIG . 3 shows an example of a duration for the upper- threshold combined set of abnormalities may be formed 
threshold event E4 shown in FIG . 1. The duration 302 may from the set of historical upper - threshold event distances 
be calculated as T4 T4 , end - T4 , start , where T4 , start represents 35 and the set of historical upper - threshold event counts as 
the time stamp of the first data value 304 to violate the upper follows : 
threshold 108 and T4 , end represent the time stamp of the last 
data value 306 to violate the upper threshold . GU = ( D4 , C4 ) ( 20 ) 

The durations of the upper - threshold events may be 
collected to form a set of historical upper - threshold event 40 malities may be formed from the set of historical upper Alternatively , an upper - threshold combined set of abnor 
durations given by threshold distance metrics and the set of historical upper 

T " = { v } -1 ' ( 12 ) threshold event counts as follows : 

Analogously , the durations of the lower - threshold events GU = ( D " , C4 ) ( 21 ) may also be collected to form a set of historical lower 
threshold event durations given by Likewise , a lower - threshold combined set of abnormali 

ties may be formed from the set of historical lower threshold T = { \ , } , ( 13 ) distances and the set of historical lower - threshold counts as 
The sets D4 , D ' , D4 , and D ' are distance sets of abnor- follows : 

malities and the sets Tu and T are duration sets of abnor 
malities that may combined as follows to provide a two G ' = ( D ' , C ) ( 22 ) 
component representation of historical threshold violations . Alternatively , a lower - threshold combined set of abnormali Upper - threshold combined set of abnormalities may be ties may be formed from the set of historical lower - threshold formed from the set of historical upper - threshold event distance metrics and the set of historical lower - threshold distances and the set of historical upper - threshold event event counts as follows : durations as follows : 

GU = ( D “ , T4 ) ( 14 ) G ' = D ' , C ) ( 23 ) 

Alternatively , an upper - threshold combined set of abnor- Equations ( 14 ) - ( 17 ) and ( 20 ) - ( 23 ) represent the various 
malities may be formed from the set of historical upper- types of combined sets of abnormalities that may be formed 
threshold distance metrics and the set of historical upper- 60 from historical time - series data . In practice , only one upper 
threshold event durations as follows : threshold combined set of abnormalities and only one lower 

threshold combined set of abnormalities are formed from Gu = D “ , T4 ) ( 15 ) historical time - series data . After an upper - threshold com 
Likewise , a lower - threshold combined set of abnormali- bined set of abnormalities and a lower - threshold combined 

ties may be formed from the set of historical lower - threshold 65 set of abnormalities are formed from the historical time 
event distances and the set of historical lower - threshold series data , a corresponding pair of upper and lower esti 
event durations as follows : mated historical degrees of abnormality are determined . 

45 

50 

55 
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Upper and lower threshold estimated historical degrees of probability V , associated with the l - th subinterval represents 
abnormality that correspond to the upper and lower com- the probability that a randomly selected value s from in the 
bined sets of abnormalities given by Equations ( 15 ) - ( 17 ) are set S lies within the 1 - th subinterval . 
denoted by FIG . 5 shows a plot of an example histogram of values s 

5 in the set S. Horizontal axis 502 represents a range of values , Gou = ( D “ , 104 ) ( 24a ) and vertical axis 504 represents a range of real numbers 
Gu = D . “ T “ ) ( 246 ) greater than 0. Bars represent the probability of values in S 

lies within subintervals . For example , bar 506 represent the 
Go ' = ( D . ' , 7,5 ( 240 ) probability V , that a value s selected from the set S lies in the 

10 lth subinterval 508 . 
Go = D. , 7 . ) ( 240 ) An empirical probability density function is then calcu 

lated for the set S based on the histogram . An empirical Upper and lower threshold estimated historical degrees of 
abnormality that correspond to the upper and lower com probability density function denoted by fe be inter may ??? . 
bined sets of abnormalities given by Equations ( 20 ) - ( 23 ) are polated or estimated from the histogram of the set S. The 
denoted by 15 empirical probability density function may be obtained 

using density estimation of the histogram corresponding to 
Go " = ( D . " . COM ) ( 25a ) the set S or by fitting a polynomial to the probabilities ( i.e. , 

fractions ) of the histogram for the set S. 
G " = ( D . " . COM ) ( 25b ) Returning to FIG . 5 , a dashed curve 510 that passes 

20 through the probabilities V , represented by the bars repre G- ( D.C . ) ( 250 ) sents an interpolated empirical probability density function 
fem that characterizes the probability of the random distri Go = D.C . ) ( 250 ) bution of values in the set S. 

In Equations ( 24 ) - ( 25 ) , the two quantities within the brack- An empirical cumulative distribution Fs , emp associated 
ets are called “ abnormality degree components . ” For 25 with the set S is calculated from the corresponding empirical 
example , the quantities D. " and To " in Equation ( 24a ) are the probability density function femp . The empirical cumulative 
abnormality degree components of the upper historical distribution F s , emp represents the probability that a randomly 
degree of abnormality G. " . Each abnormality degree com- selected value in the set S will have a value less than or equal 
ponent of an upper or a lower historical degree of abnor- to a particular value s . An empirical cumulative distribution 
mality is a numerical value . For example , the quantities Do " 30 Fs , emp may be represented mathematically as the integral of 
and To “ in Equation ( 24a ) are numerical values . an empirical probability density function femp as follows : 

The follow description presents a method for determining 
an abnormality degree component S , based on a correspond 
ing set of abnormalities S. In the following description , the ( 26 ) 
set of abnormalities S represents any one or the sets of 35 Fsemp ( s ) = f * dufemru 
abnormalities described above with reference to Equations 
( 14 ) - ( 17 ) and ( 20 ) - ( 23 ) and the abnormality degree compo 
nent S , represents any one of the corresponding abnormality where s represents a value along the axis 502 in FIG . 5 . 

An empirical cumulative distribution F degree components introduced in Equations ( 24 ) - ( 25 ) . For 
example , the set S may represents the set of historical 40 lated from a probability density function femp using any one 
upper - threshold event distances D ' represented by Equation of many different numerical integration techniques . Alter 
( 4 ) and S , may represent the corresponding abnormality natively , an empirical cumulative distribution F , be may S , emp 
degree component D. " . The abnormality degree component calculated as a sum of the probabilities v ; up to and including 

the lth interval that contains the value s as follows : So may be computed as the inverse of an empirical cumu 
lative distribution of the set S denoted by Fs , emp = ' ( s ) . 45 
Methods for computing the inverse of the empirical cumu ( 27 ) lative distribution for the set S are now described . It should Fs , emp ( s ) = be noted that although in the following description only one 
method is described for determining abnormality degree 
component So , other methods may be used to determine an 50 
abnormality degree component S , based on a corresponding where 1 , is the subinterval that contains the value s . 
set of abnormalities S. For example , an abnormality degree The abnormality degree component S , may be determined 
component So of the set S may be determined based on hard by computing the inverse of an empirical cumulative distri 
or dynamic thresholds for S. In the case of dynamic thresh bution as follows : 
olds , the abnormality degree component So may include 55 So = Fs , emp - ( so ) ( 28 ) cyclical behavior of the set S. In other words , different time 
segments may have different degrees of abnormalities . where Oss , sl ( e.g. , So = 0.7 ) . 

First , a histogram of the values s comprising the set S is For example , the lower - threshold estimated historical degree 
computed . The histogram is formed by dividing the range of of abnormality of Equation ( 25c ) is given by 
value s in the set S into L subintervals ( i.e. , bins ) . Each 60 
subinterval covers a range of values associated with the G = D.C . ) = ( Fpiemp ( $ DF comp ( s ) ) ( 29 ) 
value s . The fraction of values in each subinterval may be where 
calculated by counting the number of values s in the set S Ossp.Sesl ( e.g. , Sp = s = 0.7 ) ; and 
that lie within each subinterval and dividing by the total Fp , emp ( sp ) is the inverse of the empirical cumulative 
number of values s in the set S. The fraction of values s 65 distribution for the set D ' ; and 
calculated for each subinterval is a probability denoted by V1 , Fc , emp - ' ( sc ) is the inverse of the empirical cumulative 
where Osv ; s1 for a subinterval index 1 = 1 , . . . , L. The distribution for the set C ° . 

S.emp may be calcu 

Is 
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In an alternative implementation , a parametric cumulative 
distribution Fs may be calculated based on the empirical ( 34 ) Fs ( s ) = exp { -exp ( -S74 ) cumulative distribution Fs , emp by making an appropriate 
selection of the parameters of the parametric cumulative 
distribution Fs . For example , the parameters associated with 5 for = 0 . 
a parametric cumulative distribution Fs may be calculated so The parameters u , o , & of the GEV distribution are deter 
that the parametric cumulative distribution Fs approximates mined as a best fit to the empirical cumulative distribution 
the empirical cumulative distribution F. F 

FIG . 6 shows a plot of an empirical cumulative distribu- The abnormality level component S , may be given by the 
tion F S.emp represented by dashed curve 602 and a corre- inverse of a parameter cumulative distribution as follows : 
sponding parametric cumulative distribution Fs represented So = Fs- ( 50 ) ( 35 ) by solid curve 604. The parametric cumulative distribution 
FS 604 may be obtained by calculating the parametric where Oss , sl ( e.g. , So = 0.7 ) . 
cumulative distribution parameters as a best fit to the empiri- 15 of abnormality of Equation ( 24a ) is given by For example , the upper - threshold estimated historical degree 
cal cumulative distribution Fs , emp : 
One type of parametric cumulative distribution selected G " = ( D " , 1,1 ) = ( Fpx " ( sd ) .F - " ( S ) ) ( 36 ) 

for the set S is based primarily on the shape of the histogram where of the set S. For example , a Cauchy distribution may be used where Ossp , szsl ( e.g. , SD = Sc = 0.7 ) . as a parametric cumulative distribution Fs that characterizes Fqw ( sp ) is the inverse of a parametric cumulative dis the distribution of value s of the set S as follows : tributions for the set D ' ; and 
F7 - ' ( sq ) is the inverse of a parametric cumulative distri 

butions for the set Tu . 
( 30 ) Fs ( s ) = -arctan Any one of the upper historical abnormality levels given 

25 by Equations ( 24a ) - ( 24b ) and Equations ( 25a ) - ( 25b ) may be 
used to determine whether or not a current upper - threshold 

where violation is worthy of attention , and any one of the lower 
u is a location parameter ; and historical abnormality levels given by Equations ( 24c ) - ( 240 ) 
y is a scale parameter . and Equations ( 25c ) - ( 25d ) may be used to determine 

The parameters u and y are determined as a best fit to an 30 whether or not a current lower - threshold violation is worthy 
empirical cumulative distribution F of attention . When a threshold violation occurs , a number of ' S , emp : 

Examples of other parametric cumulative distributions additional current violations may be allowed to accumulate . 
that may to be used includes a generalized Pareto ( “ GP ” ) Consider a sequence of n current threshold violations rep 
distribution and a generalized extreme value ( “ GEV ” ) dis resented by 
tribution . The GP distribution is given by : dM + 1 , dM + 2 , , dM + n ( 37 ) 

where the distance dmun corresponds to the most recent 
( 31 ) current violation of a threshold . 

Fs ( s ) = 1 - 11 A current distance metric is computed for the current event 
as follows : 

20 

Laretam 1 
+ 

35 

+ 1- ( 1-2 40 

Fs ( s ) = 1-6 

grun - time = ( dM + 1 , dM + 2 , · .dM + n ) ( 38 ) for 2 + 0 and o > 0 ; and 
where p is the mean , median , or maximum of the dis 

tances given by Equation ( 37 ) . 
( 32 ) 45 An estimated current degree of abnormality may be given by 

Grun - time = ( drun - time , n ) ( 39 ) 
for a = 0 and o > 0 , where n is the time stamp count of the current event . 
where s20 if y = 0 ; and Alternatively , the estimated current degree of abnormality 

Osssoly if y > 0 . 50 may be given by 
The parameters y and o of the GP distribution are deter 

Grun - time = ( drun - time , Trun - time ) ( 40 ) mined as a best fit to an empirical cumulative distribution 
F ' S , emp . The GEV distribution is given by : where Trun - time is the current duration of the current event . 

FIG . 7 shows a plot of current data generated for the 
55 complex system after the historical time - series data shown 

( 33 ) in FIG . 1. Time stamp ty identifies the final time stamp of the Fs ( s ) = exp historical time - series data . As shown FIG . 7 , current data 
collected after the time stamp ty includes an upper - threshold 
event Es . When a threshold violation occurs at data value 

for 60 702 in magnified view 704 of upper - threshold event E5 , 
eight additional data values are allowed to accumulate , 
where data value 706 represents the most recent data value 

1 + $ ( $ 34 ) > 0 , generated by the complex system . 
FIG . 8 shows an example distance dx + 4 calculated for the 

65 data value XM + 4 from the upper threshold . Distances are 
where & # 0 is the shape parameter , u is a location parameter , likewise computed for each of data values comprising the 
and o > 0 ; and event E5 

Fals -exp { - ( 1 + ( ) 
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FIG . 9 shows the count of the upper - threshold event Es . -continued 
The count 902 is the number of time stamps represented by 
line segments that correspond to the data values that form 
the upper - threshold event Es . } 

} FIG . 10 shows the duration of the upper - threshold event 5 12 if ( G Grun - time corresponds to a lower - threshold event ) { Es . The duration 1002 may be calculated as Trun - time = tend f ( drun - time , Trun - time ) ; 
tstart where tstart represents the time stamp of the data value f ( D . ' , T , ' ) ; 

if ( f ( drun frun - time , Trun - time ) > f ( D . ' , T , ' ) { // event is worthy of XM + 1 and tend represent the time stamp of the data value 
XM + 9 . generate alert ; 
When the current degree of abnormality Grun - time is pro- 10 return ; 

duced for an event , the components of the current degree of } 
abnormality G’un - time are compared with the components of 19 } 
the estimated historical degree of abnormality computed for 
the historical time - series data . If one or both components of A second approach to determining historical and current 
the current degrees of abnormality are greater than one or 15 degrees of abnormality is now described . Methods begin by 
more both of the corresponding components of the estimated computing by computing relative distances as follows . For 
historical degree of abnormality , the event may be consid- each data value x , greater than a corresponding upper thresh 
ered worthy of attention and an alert may be generated . old u , at time stamp t ;, a relative distance may be calculated 

Consider , for example , the following pseudo - code repre- according to 
sentation of determining whether the current degree of 20 
abnormality Grun - time associated with an event triggers an 
alert : ( 41 ) 

U ; - l ; 

16 
17 
18 

X ; -U ; 

25 

30 

E 

35 

1 Compute Go " = ( D “ , T . “ ) for historical time - series data ; 
2 Compute Go ' = ( D . ' , T . ) for historical time - series data ; where 
3 Compute Grun - time for a current current time - series data ; subscript “ 1 ” is a time stamp index ; and 
4 if ( Grun - time corresponds to an upper - threshold event ) { 
5 if ( drun - time > D. and Trun - time > T , “ { ll event is worthy of subscript “ j ” is an event index . 

For each data value x ; less than a corresponding lower attention 
6 generate alert ; threshold l ; at time stamp ti , a relative distance may be 
7 return ; calculated according to 
8 } 
9 } 
10 if ( Grun - time corresponds to a lower - threshold event ) { 
11 if ( drun - time > Do ' and Trun - time > T. ) { // event is worthy of l ; – x ; ( 42 ) 

attention U ; - 1 
12 generate alert ; 
13 return ; 
14 } FIGS . 11A - 11C show an example calculation of the 15 } relative distances for two data values of the historical 

time - series data shown in FIG . 1. FIG . 11A shows the 
In an alternative implementation , rather than comparing 40 historical time - series data shown in FIG . 1 with a first 

both current abnormality degree components with historical dashed - line box 1101 enclosing the lower - threshold event E , 
abnormality degree components , a single metric based on and a second dashed - line box 1102 enclosing the upper 
the abnormality degree components may be used . Consider threshold event E2 . FIG . 11B shows a magnified view of the 
a metric of the form f ( x , y ) , where x and y are abnormality lower - threshold event E? and portions the upper threshold 
degree components of an estimated historical degree of 45 108 and lower threshold 110 contained within the first box 
abnormality . For example , the metric may be product to the 1101. Line segment 1104 represents the distance between 
abnormality degree components f ( x , y ) = xy or a linear com- the upper threshold u , and the lower threshold l ; at time 
bination of the abnormality degree components f ( x , y ) = ax + stamp t ;. Line segment 1105 represents the distance between 
by , where a and b are weights assigned to the components . the lower threshold l , and the data value x , at the same time 
An abnormality threshold may also be defined by f ( x , y ) 50 stamp t ;. Relative distance ri , 1 1106 is the distance of the data 
and compared with a current metric f ( x Pun - time , youn - time ) . value x , from the lower threshold l ; divided by the distance 
When f ( x ” un - time , y'un - time ) > f ( x , yo ) , an alert is generated . of the upper threshold u ; from the lower threshold l ; at the 

Consider , for example , the following pseudo - code repre- time stamp t? . FIG . 11C shows a magnified view of the 
sentation of determining whether the current degree of upper - threshold event E , and portions the upper threshold 
abnormality Grun - time associated with an event triggers an 55 108 and lower threshold 110 contained within the second 
alert : box 1102. Line segment 1108 represents the distance 

between the upper threshold u , and the lower threshold l , at 
time stamp t ;. Line segment 1109 represents the distance 

Compute Go " = ( D . “ , T . “ ) for historical time - series data ; from the data value x ; to the lower threshold 1 , at the same Compute G. ' = ( D . ' , T , ' ) for historical time - series data ; 
Compute Grun - time ( drun - time , Trun - time ) for a current current time 60 time stamp t ;. Relative distance ri , 2 1110 is the distance of the 
series data ; data value x , from the upper threshold u ; divided by the 
if ( Grun - time corresponds to an upper - threshold event ) { distance from the upper threshold u ; to the lower threshold 

f ( drun - time , Trun - time ) ; 1 , at the time stamp ti . f ( D “ .T . " ) ; 
if ( f ( drun - time , Trun - time ) > f ( D . “ , T " ) ) { // event is worthy of After the relative distances have been computed for each 
attention 65 event , the relative distances associated with each event are 

generate alert ; integrated over the duration of the event . Consider a set of 
relative distances associated with an event E ;: 

1 
2 
3 

4 
5 
6 
7 

8 
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{ r1_2.jp ... , ' ; j } ( 43 ) 
( 47 ) where n ; represents the number of time stamps ( i.e. , 

counts ) associated with the event E ;. 
The event E , may be an upper - threshold event or a lower 
threshold event . 

FIG . 12 shows an example plot of a few relative distances Methods then compute a cumulative distribution that a 
associated with an event E ;. Dots represent relative distances current event EA generates an alert . The current event E , is 
at corresponding time stamps . For example , dot 1202 rep composed of a number of data values that are either greater 

than an upper threshold or less than a lower threshold . The resents a relative distance ri - 1 , j at time stamp ti - 1 . The relative cumulative distribution is represented by distances for the event E ; are integrated over the duration of 
the event . FIG . 12 illustrates integration based on the p ( EAlwa ) ( 48 ) 
average relative distance between two consecutive time where wa = 44 / n , is the normalized total relative distance stamps . For example , equation 1203 represents the average of the event EA 
relative distance between relative distances 1202 and 1204. 15 The quantity ng is a count of the number of time stamps of 
Each bar represents an area defined by the average relative the relative distances ( i.e. , data values ) that form the event 
distance between each pair of consecutive relative distances . EA , and the estimated total relative distance Va of the current 
For example , equation 1205 represents the area of bar 1206 . event E4 is calculated as described above with reference to 
The areas of the bars are summed to obtain an estimated total Equation ( 44 ) using the data values that comprise the event 
relative distance of the event E ; as follows : The cumulative distribution given by Equation ( 48 ) is the 

estimated current degree of abnormality used to determine 
( 44 ) whether or not the event EA generates an alert . An alert may 

( rigj + ri - 1 , ; ) ( ti , j - 1 , -1,1 ) be generated when the cumulative distribution satisfies the 
25 following condition : 

p ( EWAY ( 49 ) 
In order to incorporate the duration of the event into the where 0 < y < 1 is minimum threshold for generating an total relative distance of the event , the estimated total alert . 

relative distance of an event is divided by the number of time 30 For example , 0.6 may be a suitable value for y . 
stamps to obtain a normalized total relative distance given The cumulative distribution given by Equation ( 48 ) may 
by : be approximated by 

20 EA 

ni 

Vi 
i = 1 

?? ( 45 ) 35 ( 50 ) W ; = PIEA | wa ) = 1-2 ( 4 ) 

where w > 0 . 
The parameters a and B in Equation ( 50 ) are related to the 

40 median w and the mean w calculated in Equations ( 46 ) and 
( 47 ) as follows : 

( 51a ) 1 
7 = 

Q 45 

( 51b ) 

Division by the count n , in Equation ( 45 ) distinguishes 
between different types of events that may have nearly 
identical estimated total relative distances . For example , 
consider two example events Ex and Ey that have nearly the 
same total relative distances represented by Yx and Uy 
respectively ( i.e. , Yr Wy ) . The first event Ex may be a 
narrow spike composed of a small number of large relative 
distances over a short event duration while the second event 
Ey may be a broad spike composed of large number of small 
relative distances over a long event duration ( i.e. , ng < ny ) . 
Equation ( 45 ) distinguishes between these types of events by 
dividing by the time stamp count associated with each of the 
events . For example , because ny is smaller than ny , Wx will 
be larger than Wy . This way the variable of interest contains 
both the total relative distance associated with the event and 
also the time factor which can then provide a better repre 
sentation of the event . 
The median of the normalized total relative distances is 

calculated as follows : 

w = BT ( 1 + 7 ) 
and 

W = B ( ln2 ) ( 510 ) 
50 

where I ( 1 + z ) is the Gamma function of 1 + z . 
Using the following property of the Gamma function : 

T ( 1 + z ) = z1 ( z ) ( 52 ) 

the parameter a in Equation ( 51 a ) may be computed using 
a ratio : 

55 

W 
60 W , = = IS 

û = { w ; : j = 1 , ... , J } ( 46 ) zr ( z ) ( 53 ) 
where ( In2 ) 
i is the median operator ; and 
J is the total number of upper and lower - threshold events . The quantity w , is typically non - linear and is calculated from 

In practice , the median operator sorts the set { w ; } } = 1 " and the median û and the mean w , which are computed as 
finds the ( 5 + 1 ) / 2 rank value of the set { w ; } j = 1 " . The average 65 described above with reference to corresponding Equations 
of the normalized total relative distances is calculated as ( 46 ) and ( 47 ) . Equation ( 53 ) is then used to compute the 
follows : value of z , which is used to compute the cumulative distri 



5 

W , 
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bution parameters a and ß according to Equations ( 51a )- mance , or usage of the complex system is collected . In block 
( 510 ) . After values have been determined for the parameters 1304 , a routine " computed estimated current degree of 
a and B , the cumulative distribution of the event Ea given abnormality ” is called as described below with reference to 
WA is computed using Equation ( 50 ) . Table 1 shows an FIG . 16. In block 1305 , a routine " compare estimated 
example of numerical values for W , and corresponding current and historical degrees of abnormality ” is called to 
values computed for z from the values for w ,. compare the results obtained from blocks 1302 and 1304 as 

described below with reference to FIG . 17 . 
TABLE 1 FIG . 14 shows a control - flow diagram of the routine 

" compute estimated historical degree of abnormality ” called 
10 in block 1302 of FIG . 13. In block 1401 , a routine “ compute 

upper and lower combined sets of abnormalities ” is called as 
described below with reference to FIG . 15. A for - loop in 

0.295 block 1402 , repeats the operations of blocks 1403-1407 for 
each set of abnormalities S in the upper and lower combined 

Although calculation of the cumulative distribution has 15 sets of abnormalities determined in block 1401. For 
been described above in general , in practice , the parameters example , the set of abnormalities S may represent the set of 
of the cumulative distribution given by Equation ( 50 ) may historical upper - threshold event distances D “ in Equation 

( 4 ) . In block 1403 , a histogram of the set S is formed as be separately computed for upper - threshold events and described above with reference to FIG . 5. In block 1404 , an lower - threshold events . 20 empirical probability distribution is computed for the set S For the upper - threshold events in the historical time - series based on the histogram formed in block 1403 , as described data , the total relative distance and normalized total relative above with reference to FIG . 5. In block 1405 , a cumulative distance associated with each upper - threshold event E ; are distribution is computed based on the empirical probability denoted by Y ; " and w ; " and computed according to Equa distribution , as described above with reference to FIG . 6. In tions ( 44 ) and ( 45 ) , respectively . The median of the upper , 25 one implementation , the cumulative distribution may be an threshold events is computed according to Equation ( 46 ) and empirical cumulative distribution computed as described is denoted by wu and the mean of the upper - threshold events above with reference to Equation ( 27 ) . In another imple is computed according to Equation ( 47 ) and is denoted by mentation , the cumulative distribution may be a parametric w " . An upper - threshold ratio w , " is computed according to cumulative distribution obtained as described above with 
Equation ( 53 ) , which in turn may be used to compute 30 reference to Equations ( 30 ) - ( 34 ) . In block 1406 , an inverse upper - threshold parameters a " and ßu that are used to com of the cumulative distribution is computed as described pute an upper - threshold cumulative distribution . When the above with reference Equations ( 28 ) and ( 35 ) . In decision event EA is an upper - threshold event , an upper - threshold block 1407 , the operations represented by blocks 1403-1406 cumulative distribution may be computed as follows : are repeated for each set of abnormalities . In block 1408 , an 

35 upper - threshold estimated historical degree of abnormality , 
described above with reference to Equations ( 24a ) , ( 24b ) , ( 54 ) p " ( EA WA ) = 1 - expl - Game ) ( 25a ) and ( 25b ) , is formed . In block 1409 , a lower - threshold 
estimated historical degree of abnormality , described above 
with reference to Equations ( 24c ) , ( 24d ) , ( 25c ) and ( 25d ) , is 

For the lower - threshold events in the historical time - series 40 formed . 
data , the total relative distance and normalized total relative FIG . 15 shows a control - flow diagram of the routine 
distance associated with each lower - threshold event E ; are " compute upper and lower combined sets of abnormalities ” 
denoted by y , and w , and computed according to Equations called in block 1401 of FIG . 14. A for - loop in block 1501 
( 44 ) and ( 45 ) , respectively . The median of the lower - thresh- repeats the operations represented by blocks 1502-1508 for 
old events is computed according to Equation ( 46 ) and is 45 each data in the historical time - series data . In block 1502 , 
denoted by w and the mean of the lower - threshold events is distances are computed as described above with reference to 
computed according to Equation ( 47 ) and is denoted by w ' . Equations ( 2 ) and ( 3 ) . In decision block 1503 , when the 
A lower - threshold ratio w , ' is computed according to Equa distance d ; " computed according to Equation ( 2 ) is greater 
tion ( 53 ) , which in turn may be used to compute lower than zero , control flows to block 1504 , otherwise control 
threshold parameters a ' and ß ? that are used to compute a 50 flows to block 1505. In decision block 1505 , when the 
lower - threshold cumulative distribution . When the event EA distance di computed according to Equation ( 3 ) is greater 
is a lower - threshold event , a lower - threshold cumulative than zero , control flows to block 1506. In block 1504 , 
distribution may be computed as follows : distances du may be collected to form the set Du as 

described above with reference to Equation ( 4 ) . Alterna 
55 tively , distances may be used to compute a set of distance 

( 55 ) metrics Do " as described above with reference to Equations 
p ' ( EA | w ) = 1 – expl ( 6 ) - ( 8 ) . The durations of the upper threshold events are 

collected to form the set Tu described above with reference 
to Equation ( 12 ) . Alternatively , a set of event counts Cº may 

FIG . 13 shows a flow diagram of a method to estimate a 60 be formed , as described above with reference to Equation 
degree of abnormality of a complex system . In block 1301 , ( 18 ) . In block 1506 , distances d may be collected to form 
historical time - series data that represents the past behavior , the set D'as described above with reference to Equation ( 5 ) . 
performance , or usage of a complex system is retrieved from Alternatively , distances may be used to compute a set of 
a data - storage device . In block 1302 , a routine " compute distance metrics D ' as described above with reference to 
estimated historical degree of abnormality ” is called as 65 Equations ( 9 ) - ( 11 ) . The durations of the lower threshold 
described below with reference to FIG . 14. In block 1303 , events are collected to form the set T ' , as described above 
current time - series data that represents the behavior , perfor- with reference to Equation ( 13 ) . Alternatively , a set of event 

-expl - Cad ) ) 
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counts are collected to form C ' , as described above with for each event ” is called to compute normalized total relative 
reference to Equation ( 19 ) . In decision block 1507 , when the distances for upper- and lower - threshold events in the his 
index k equals N control flows control flows to block 1508 , torical time - series data as described below with reference to 
otherwise , control flows to block 1509 in which k is incre- FIG . 19. In block 1803 , a routine “ compute cumulative 
mented and the operations associated with blocks 1502-1506 5 distribution parameters for upper- and lower - threshold 
are repeated . In block 1508 , a upper - threshold of combined events ” is as described below with reference to FIG . 20. In 
sets of abnormalities Gº is formed . In block 1510 , a lower- block 1804 , current time - series data that represents the 
threshold of combined sets of abnormalities G ’ is formed . current behavior , performance , or usage of a complex sys 
FIG . 16 shows control - flow diagram of the routine " com- tem is retrieved from a data - storage device . In block 1805 , 

pute estimated current degree of abnormality ” called in 10 the routine “ compute normalized total relative distances for 
block 1304 of FIG . 13. In block 1601 , a data value Xx of each event " is called to compute a normalized total relative 
current time - series data is received . In block 1602 , distances distances for an upper- or lower - threshold event in the 
d . “ and d ; ' are computed as described above with reference current time - series data as described below with reference to 
to Equations ( 2 ) and ( 3 ) . In decision block 1603 , when di " FIG . 19. In decision block 1806 , when an event in the 
is greater than zero , control flows to block 1604 , otherwise , 15 current time - series data is an upper - threshold event , control 
control flows to decision block 1605. In block 1604 , the flows to block 1807. Otherwise , the event is a lower 
distances du greater than zero are collected to form a set of threshold event and control flows to block 1808. In block 
distances { d , “ } and an upper - threshold event is created . In 1807 , a cumulative distribution is computed according to 
block 1606 , the distances d ' greater than zero are collected Equation ( 54 ) . In block 1808 , a cumulative distribution is 
to form a set of distances { dk ? } and a lower - threshold event 20 computed according to Equation ( 55 ) . In decision block 
is created . In block 1607 , the index k is incremented . In 1809 , when the cumulative distribution is greater than a 
decision block 1608 , when enough distances have collected threshold as described above with reference to Equation 
in either the set { d , “ } or the set { d / ? } , control flows to block ( 49 ) , control flows to block 1810 and an alert is generated . 
1609 , otherwise , the operations represented by blocks 1601- FIG . 19 shows a control - flow diagram of the routine 
1608 are repeated for another current data value . In block 25 “ compute normalized total relative distance for each event ” 
1609 , a current distance metric is computed as described called in blocks 1802 and 1805 of FIG . 18. A for - loop 
above with reference to Equation ( 38 ) . In block 1610 , a beginning in block 1901 repeats the operations represented 
current duration Trun - time is determined as described above by blocks 1902-1909 for each data value in time - series data . 
with reference to Equation ( 40 ) . Alternatively , a current In decision block 1902 , when a data value Xz is greater than 
count , n , is determined as described above with reference to 30 a corresponding upper threshold uz for the same time stamp 
Equation ( 39 ) . In block 1611 , an estimated current degree of tk , control flows to block 1903. Otherwise , control flows to 
abnormality Grun - time is formed as described above with decision block 1905. In block 1903 , a relative distance is 
reference to Equation ( 40 ) . Alternatively , an estimated cur- computed as described above with reference to Equation 
rent degree of abnormality Grun - time is formed as described ( 41 ) . In block 1904 , events are formed from the relative 
above with reference to Equation ( 39 ) . 35 distances as described above with reference to the set ( 43 ) . 
FIG . 17 shows a control - flow diagram of the routine In decision block 1905 , when a data value Xz is less than a 

" compare estimated current and historical degrees of abnor- corresponding lower threshold 1 , for the same time stamp tk , 
mality ” called in block 1305 of FIG . 13. In block 1701 , the control flows to block 1906. In block 1903 , a relative 
estimate current degree of abnormality Grun - time formed in distance is computed as described above with reference to 
block 1611 of FIG . 16 is retrieved from a data - storage 40 Equation ( 42 ) . In block 1907 , events are formed from the 
device . In decision block 1702 , when the estimate current relative distances as described above with reference to the 
degree of abnormality Grun - time corresponds to an upper- ( 43 ) . In decision block 1908 , when the iteration index k 
threshold event in the current time - series data , control flows equals the number of data values N in the historical time 
to block 1703 , otherwise , control flows to block 1706. In series data , control flows to block 1910 , otherwise , control 
block 1703 , the upper - threshold estimated historical degree 45 flows to block 1909 in which the index k is incremented and 
of abnormality Go “ formed in block 1408 of FIG . 14 is the operations associated with blocks 1902-1908 are 
retrieved from a data storage device . In decision block 1704 , repeated . A for - loop beginning with block 1910 repeats the 
when current duration Trun - time is greater than To “ , control operations represented by blocks 1911-1913 for each upper 
flows to decision block 1705. In decision block 1705 , when threshold event . In block 1911 , a total relative distance is 
current distance d'un - time is greater than D. “ , control flows to 50 computed each upper - threshold event as described above 
block 1709 and an alert may be generated . In block 1706 , the with reference to Equation ( 44 ) . In block 1912 , a normalized 
lower - threshold estimated historical degree of abnormality total relative distance is computed as described above with 
Go ' formed in block 1409 of FIG . 14 is retrieved from a reference to Equation ( 45 ) . In decision block 1913 , the 
data - storage device . In decision block 1707 , when current operations represented by blocks 1911 and 1912 are repeated 
duration Trm - time is greater than To ' , control flows to deci- 55 for each upper - threshold event . A for - loop beginning with 
sion block 1708. In decision block 1708 , when current block 1914 repeats the operations represented by blocks 
distance d'un - time is greater than Do ' , control flows to block 1915-1917 for each lower - threshold event . In block 1915 , a 
1709 and an alert may be generated . Note that decision total relative distance is computed each lower - threshold 
blocks 1704 , 1705 , 1707 , and 1708 may have been imple- event as described above with reference to Equation ( 44 ) . In 
mented using any pair of sets of abnormalities formed in 60 block 1916 , a normalized total relative distance is computed 
blocks 1504 and 1506 . as described above with reference to Equation ( 45 ) . In 
FIG . 18 shows a control - flow diagram of a method to decision block 1917 , the operations represented by blocks 

estimate a degree of abnormality of a complex system . In 1915 and 1916 are repeated for each lower - threshold event . 
block 1801 , historical time - series data that represents the FIG . 20 shows a flow diagram of the routine “ compute 
historical behavior , performance , or usage of a complex 65 cumulative distribution parameters for upper- and lower 
system is retrieved from a data - storage device . In block threshold events ” called in block 1803 of FIG . 18. In block 
1802 , a routine “ compute normalized total relative distances 2001 , medians w " and w ' of the upper and lower normalized 
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total relative distances are computed according to Equation such data - storage devices . The computer - readable medium 
( 46 ) . In block 2002 , means w “ and w ' of the upper and lower 2128 can be used to store machine - readable instructions that 
normalized total relative distances are computed according encode the computational methods described below and can 
to Equation ( 47 ) . In block 2003 , an upper - threshold ratio w , be used to store encoded data , during store operations , and 
is computed as described above with reference to Equation 5 from which encoded data can be retrieved , during read 
( 53 ) from the upper - threshold median û " and mean w “ . In operations , by computer systems , data - storage systems , and 
block 2004 , the upper - threshold parameters a " and ßu based peripheral devices . 
on the upper - threshold ratio w , “ . In block 2005 , an lower 
threshold ratio w , ' is computed as described above with Numerical Results 
reference to Equation ( 53 ) from the lower - threshold median 10 
û and mean w ' . In block 2006 , the lower - threshold param FIG . 22 shows actual historical time - series data . The 
eters a ' and B ? based on the lower - threshold ratio w ,? corresponding distances are shown in FIG . 23. FIG . 24 

It should be noted that the currently disclosed computa- shows an empirical and a parametric cumulative distribu 
tional methods and systems are directed to real , tangible , tions ( i.e. , cumulative distribution in Equation ( 20 ) ) com 
physical systems and the methods carried out within physi- 15 puted for the distance shown in FIG . 23 with cumulative 
cal systems , including client computers and server comput- distribution parameters y = -0.0588 and o = 2.97.107 . A rela 
ers . Those familiar with modern science and technology well tive mean square error for this fit is less than 0.1 ( actually 
appreciate that , in modern computer systems and other equal to 0.82 ) then the fit is satisfactory and may be used for 
processor - controlled devices and systems , the control com- further analysis . FIG . 24 shows the density function of 
ponents are often fully or partially implemented as 20 n - point alerts . FIG . 26 shows the empirical cumulative 
sequences of computer instructions that are stored in one or distribution ( dashed curve ) and parametric distribution 
more electronic memories and , in many cases , also in one or ( solid curve ) ( i.e. , cumulative distribution in Equation ( 20 ) ) 
more mass - storage devices , and which are executed by one with parameters y = -0.2 and o = 0.82 . The fit is again satis 
or more processors . As a result of their execution , a proces- factory with a relative error equal to 0.04 . 
sor - controlled device or system carries out various opera- 25 Assuming an alert in the on - line mode , where the third 
tions , generally at many different levels within the device or point ( n = 3 ) violates the threshold by some distance ( d = 100 , 
system , according to control logic implemented in the stored 000 ) . Parametric cumulative distributions gave a probability 
and executed computer instructions . Computer - instruction- vector ( 0.003 , 0.936 ) , which means that the distance is not 
implemented control components of modern processor - con- dangerous but the number of sequential data values that 
trolled devices and systems are as tangible and physical as 30 violate the threshold is dangerous . Based on this estimate the 
any other component of the system , including power sup- user can be informed about the abnormality or not . 
plies , cooling fans , electronic memories and processors , and It is appreciated that the various implementations 
other such physical components . described herein are intended to enable any person skilled in 

FIG . 21 shows an example of a computer system that the art to make or use the present disclosure . Various 
executes efficient methods of determining a degree of abnor- 35 modifications to these implementations will be readily 
mality of complex system based on time - series data . The apparent to those skilled in the art , and the generic principles 
internal components of many small , mid - sized , and large defined herein may be applied to other implementations 
computer systems as well as specialized processor - based without departing from the spirit or scope of the disclosure . 
storage systems can be described with respect to this gen For example , any of a variety of different implementations 
eralized architecture , although each particular system may 40 can be obtained by varying any of many different design and 
feature many additional components , subsystems , and simi- development parameters , including programming language , 
lar , parallel systems with architectures similar to this gen- underlying operating system , modular organization , control 
eralized architecture . The computer system contains one or structures , data structures , and other such design and devel 
multiple central processing units ( “ CPUs ” ) 2102-2105 , one opment parameters . Thus , the present disclosure is not 
or more electronic memories 2108 interconnected with the 45 intended to be limited to the implementations described 
CPUs by a CPU / memory - subsystem bus 2110 or multiple herein but is to be accorded the widest scope consistent with 
busses , a first bridge 2112 that interconnects the CPU / the principles and novel features disclosed herein . 
memory - subsystem bus 2110 with additional busses 2114 
and 2116 , or other types of high - speed interconnection The invention claimed is : 
media , including multiple , high - speed serial interconnects . 50 1. A method stored in one or more data - storage devices 
The busses or serial interconnections , in turn , connect the and executed using one or more processors of a computer 
CPUs and memory with specialized processors , such as a system to identify abnormal behavior of a virtual machine , 
graphics processor 2118 , and with one or more additional the method comprising : 
bridges 2120 , which are interconnected with high - speed retrieving historical time - series data that represents one of 
serial links or with multiple controllers 2122-2127 , such as 55 past behavior , performance , and usage of the virtual 
controller 2127 , that provide access to various different machine from a data - storage device ; 
types of computer - readable media , such as computer - read- retrieving current time - series data that represents one of 
able medium 2128 , electronic displays , input devices , and current behavior , performance , and usage of the virtual 
other such components , subcomponents , and computational machine from a data - storage device ; 
resources . The electronic displays , including visual display 60 computing estimated upper - threshold and lower - threshold 
screen , audio speakers , and other output interfaces , and the historical degrees of abnormality based on the histori 
input devices , including mice , keyboards , touch screens , and cal time - series data ; 
other such input interfaces , together constitute input and computing estimated current degree of abnormality based 
output interfaces that allow the computer system to interact on the current time - series ; 
with human users . Computer - readable medium 2128 is a 65 comparing the estimated current degree of abnormality 
data - storage device , including electronic memory , optical or with one of the estimated upper - threshold and lower 
magnetic disk drive , USB drive , flash memory and other threshold historical degrees of abnormality to deter 
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mine whether one of the current behavior , performance , estimated current degree of abnormality with the esti 
and usage of the virtual machine is abnormal ; and mated upper - threshold historical degree of abnormal 

displaying an alert on a visual display screen in response ity ; 
to the virtual machine experiencing the abnormal when the estimated current degree of abnormality corre 
behavior , performance , or usage , the alert indicating an sponds to a lower - threshold event , comparing the esti 
out - of - control process of the virtual machine . mated current degree of abnormality with the estimated 

2. The method of claim 1 , wherein computing the esti lower - threshold historical degree of abnormality ; and 
mated historical degree of abnormality further comprises generating an alert when a current distance metric and one 

of a current count and a current duration of the esti computing upper and lower combined sets of abnormali mated current degree of abnormality are greater than ties based on the historical time - series data ; 
for each set of abnormalities , the abnormality degree components one of the upper 

threshold historical degree of abnormality and lower forming a histogram of the set of abnormalities ; threshold degree of historical degree of abnormality . computing an empirical probability density function 7. A system to identify abnormal behavior of a virtual based on the histogram ; 15 machine , the system comprising : 
computing a cumulative distribution based on the one or more processors ; empirical probability ; one or more data - storage devices ; 
computing an inverse empirical cumulative distribution a visual display screen ; and 

based on the empirical cumulative distribution , the machine - readable instructions stored in the one or more 
inverse empirical cumulative distribution is one of an 20 data - storage devices that when executed using the one 
upper - threshold abnormality degree component of or more processors controls the system to perform 
the upper - threshold historical degree of abnormality operations comprising : 
and a lower - threshold abnormality degree compo retrieving historical time - series data that represents one 
nent of the lower - threshold historical degree of of past behavior , performance , and usage of the 
abnormality ; virtual machine from the one or more data - storage 

forming the upper - threshold estimated historical degree of device ; 
abnormality based the upper - threshold abnormality retrieving current time - series data that represents one of 
degree components , and current behavior , performance , and usage of the 

forming the lower - threshold estimated historical degree of virtual machine from the one or more data - storage 
abnormality based the lower - threshold abnormality 30 device ; 
degree components . computing estimated upper - threshold and lower 

3. The method of claim 2 , wherein computing the upper threshold historical degrees of abnormality based on 
and lower combined sets of abnormalities further comprises : historical time - series data ; 

forming upper - threshold combined set of abnormalities , computing estimated current degree of abnormality 
the upper - threshold combined set of abnormalities hav- 35 based on current time - series data ; 
ing one of a set of historical upper - threshold event comparing the estimated current degree of abnormality 
distances and a set of historical upper - threshold dis with one of the estimated upper - threshold and lower 
tance metrics and one of a set of historical upper threshold historical degrees of abnormality to deter 
threshold event durations and a set of historical upper mine whether one of the current behavior , perfor 
threshold event counts ; and mance , and usage of the virtual machine is abnormal ; 

forming lower - threshold combined set of abnormalities , and 
the upper - threshold combined set of abnormalities hav displaying an alert on the visual display screen in 
ing one of a set of historical lower - threshold event response to the virtual machine experiencing the 
distances and a set of historical lower - threshold dis abnormal behavior , performance , or usage , the alert 
tance metrics and one of a set of historical lower- 45 indicating an out - of - control process of the virtual 
threshold event durations and a set of historical lower machine . 
threshold event counts . 8. The system of claim 7 , wherein computing the esti 

4. The method of claim 2 , wherein the cumulative distri- mated historical degree of abnormality further comprises 
bution further comprises one of an empirical cumulative computing upper and lower combined sets of abnormali 
distribution and a parametric cumulative distribution . ties based on the historical time - series data ; 

5. The method of claim 1 , wherein computing the esti- for each set of abnormalities , 
mated current degree of abnormality further comprises : forming a histogram of the set of abnormalities ; 

computing a current distance metric for data values of the computing an empirical probability density function 
current time - series that violates one of an upper thresh based on the histogram ; 
old and a lower threshold ; computing a cumulative distribution based on the 

computing one of a current count and a current duration empirical probability ; 
of the data values of the current time - series that violates computing an inverse empirical cumulative distribution 
one of an upper threshold and a lower threshold ; and based on the empirical cumulative distribution , the 

forming the estimated current degree of abnormality inverse empirical cumulative distribution is one of an 
based on the current distance metric and one of the 60 upper - threshold abnormality degree component of 
current count and the current duration . the upper - threshold historical degree of abnormality 

6. The method of claim 1 , wherein comparing the esti and a lower - threshold abnormality degree compo 
mated current degree of abnormality with one of the esti nent of the lower - threshold historical degree of 
mated upper - threshold and lower - threshold historical abnormality ; 
degrees of abnormality further comprises : forming the upper - threshold estimated historical degree of 
when the estimated current degree of abnormality corre- abnormality based the upper - threshold abnormality 

sponds to an upper - threshold event , comparing the degree components ; and 
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forming the lower - threshold estimated historical degree of computing a median of the normalized total relative 
abnormality based the lower - threshold abnormality distances , and 
degree components . computing a mean of the normalized total relative 

9. The method of claim 8 , wherein computing the upper distances ; 
and lower combined sets of abnormalities further comprises : computing one of an upper - threshold cumulative distri 

forming upper - threshold combined set of abnormalities , bution and lower - threshold cumulative distribution for 
the current time - series data based on the median and the upper - threshold combined set of abnormalities hav 

ing one of a set of historical upper - threshold event mean of the normalized total relative distance , the 
distances and a set of historical upper - threshold dis cumulative distribution is the estimate of the degree of 
tance metrics and one of a set of historical upper abnormality ; and 
threshold event durations and a set of historical upper displaying an alert on a visual display screen in 
threshold event counts ; and response to the cumulative distribution of the current 

upper - threshold event or the current lower - threshold forming lower - threshold combined set of abnormalities , event being greater than a threshold , the alert indi the upper - threshold combined set of abnormalities hav cating an out - of - control process of the virtual ing one of a set of historical lower - threshold event machine . 
distances and a set of historical lower - threshold dis 14. The method of claim 13 , wherein determining the 
tance metrics and one of a set of historical lower upper - threshold events in the historical time - series data 
threshold event durations and a set of historical lower- further comprises : 
threshold event counts . for each data value of the historical time - series greater 

10. The method of claim 8 , wherein the cumulative than the upper threshold , computing a relative distance ; 
distribution further comprises one of an empirical cumula and 
tive distribution and a parametric cumulative distribution . forming an upper - threshold event , each upper - threshold 

11. The method of claim 7 , wherein computing the event corresponds to set of consecutive relative dis 
estimated current degree of abnormality further comprises : 25 tances . 

computing a current distance metric for data values of the 15. The method of claim 13 , wherein determining the 
current time - series that violates one of an upper thresh- lower - threshold events in the historical time - series data 
old and a lower threshold ; further comprises : 

computing one of a current count and a current duration for each data value of the historical time - series greater 
of the data values of the current time - series that violates 30 than the lower threshold , computing a relative distance ; 
one of an upper threshold and a lower threshold ; and and 

forming the estimated current degree of abnormality forming a lower - threshold event , each lower - threshold 
based on the current distance metric and one of the event corresponds to set of consecutive relative dis 
current count and the current duration . tances . 

12. The method of claim 7 , wherein comparing the 35 16. The method of claim 13 , wherein computing 
estimated current degree of abnormality with one of the malized total relative distance further comprises integrating 
estimated upper - threshold and lower - threshold historical over the relative distances comprising one of an upper 
degrees of abnormality further comprises : threshold event and a lower - threshold event . 
when the estimated current degree of abnormality corre 17. The method of claim 13 , wherein computing the 

sponds to an upper - threshold event , comparing the 40 cumulative distribution for the current data further com 
estimated current degree of abnormality with the esti- prises : 
mated upper - threshold historical degree of abnormal- determining one of an upper - threshold event and a lower 
ity ; threshold event in the current time - series data ; 

when the estimated current degree of abnormality corre- computing a total relative distance of one of the upper 
sponds to a lower - threshold event , comparing the esti- 45 threshold event and the lower - threshold event ; 
mated current degree of abnormality with the estimated normalizing the total relative distance based on the event 
lower - threshold historical degree of abnormality ; and counts of the event ; and 

generating an alert when a current distance metric and one computing a value for the cumulative distribution based 
of a current count and a current duration of the esti on the normalized total relative distance of the event , 
mated current degree of abnormality are greater than 50 the value is the degree of abnormality of the current 
the abnormality degree components one of the upper time - series data . 
threshold historical degree of abnormality and lower- 18. A non - transitory computer - readable medium encoded 
threshold degree of historical degree of abnormality . with machine - readable instructions that implement a method 

13. A method stored in one or more data - storage devises carried out by one or more processors of a computer system 
and executed using one or more processors of a computer 55 to perform operations comprising : 
system to identify abnormal behavior of a virtual machine , retrieving historical time - series data that represents one of 
the method comprising : past behavior , performance , and usage of the virtual 

retrieving historical time - series data that represents one of machine from a data - storage device ; 
past behavior , performance , and usage of the virtual retrieving current time - series data that represents one of 
machine from the one or more data - storage device ; current behavior , performance , and usage of the virtual 

retrieving current time - series data that represents one of machine from a data - storage device ; 
current behavior , performance , and usage of the virtual determining upper - threshold events and lower - threshold 
machine from the one or more data - storage device ; event in the historical time - series data ; 

determining upper - threshold events and lower - threshold for each upper and lower threshold event , 
event in the historical time - series data ; computing a normalized total relative distance , 

for each upper and lower threshold event , computing a median of the normalized total relative 
computing a normalized total relative distance , distances , and 
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computing a mean of the normalized total relative for each data value of the historical time - series greater 
distances ; than the lower threshold , computing a relative distance ; 

computing one of an upper - threshold cumulative distri and 
bution and lower - threshold cumulative distribution for forming a lower - threshold event , each lower - threshold the current time - series data based on the median and 5 event corresponds to set of consecutive relative dis 
mean of the normalized total relative distance , the tances . 
cumulative distribution is the estimate of the degree of 21. The computer - readable medium of claim 18 , wherein abnormality ; and computing a normalized total relative distance further com displaying an alert on a visual display screen in response 
to the cumulative distribution of the current upper- 10 prises integrating over the relative distances comprising one 
threshold event or the current lower - threshold event of an upper - threshold event and a lower - threshold event . 
being greater than a threshold , the alert indicating an 22. The computer - readable medium of claim 18 , wherein 
out - of - control process of the virtual machine . computing the cumulative distribution for the current data 

further comprises : 19. The computer - readable medium of claim 18 , wherein 
determining the upper - threshold events in the historical 15 determining one of an upper - threshold event and a lower 
time - series data further comprises : threshold event in the current time - series data ; 

for each data value of the historical time - series greater computing a total relative distance of one of the upper 
threshold event and the lower - threshold event ; than the upper threshold , computing a relative distance ; 

and normalizing the total relative distance based on the event 
forming an upper - threshold event , each upper - threshold 20 counts of the event ; and 

event corresponds to set of consecutive relative dis computing a value for the cumulative distribution based 
on the normalized total relative distance of the event , tances . 

20. The computer - readable medium of claim 18 , wherein the value is the degree of abnormality of the current 
determining the lower - threshold events in the historical time - series data . 
time - series data further comprises : 


