
US011061796B2

(12) United States Patent
Harutyunyan et al .

(10) Patent No .: US 11,061,796 B2
(45) Date of Patent : Jul . 13 , 2021

(54) PROCESSES AND SYSTEMS THAT DETECT
OBJECT ABNORMALITIES IN A
DISTRIBUTED COMPUTING SYSTEM

(58) Field of Classification Search
CPC combination set (s) only .
See application file for complete search history .

(71) Applicant : VMware , Inc. , Palo Alto , CA (US) (56) References Cited

U.S. PATENT DOCUMENTS (72) Inventors : Ashot Nshan Harutyunyan , Yerevan
(AM) ; Naira Movses Grigoryan ,
Yerevan (AM) ; Arnak Poghosyan ,
Yerevan (AM) ; Nicholas ushmerick ,
Seattle , WA (US)

8,949,677 B1 * 2/2015 Brundage

2014/0179270 A1 * 6/2014 Anand

(73) Assignee : VMware , Inc. , Palo Alto , CA (US)
2016/0350173 A1 * 12/2016 Ahad
2016/0352767 A1 * 12/2016 Owhadi
2016/0359695 A1 * 12/2016 Yadav
2018/0225391 A1 * 8/2018 Sali
2019/0087737 A1 * 3/2019 Pendar
2019/0147300 A1 * 5/2019 Bathen

GO6F 11/0745
714/48

H04W 12/12
455/410

HO4L 67/02
HO4L 63/1416
HO4L 43/04
GOON 20/00
GO6F 17/18

GOON 3/0454
706/12

GO6K 9/6219

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .

2020/0007563 A1 * 1/2020 Leibman
(21) Appl . No .: 16 / 279,043 * cited by examiner
(22) Filed : Feb. 19 , 2019 Primary Examiner – Viet D Vu
(65) Prior Publication Data

US 2020/0264965 A1 Aug. 20 , 2020

(51) Int . Cl .
H04L 12/24 (2006.01)
G06F 11/30 (2006.01)
G06F 11/34 (2006.01)
GO6N 20/00 (2019.01)
G06F 1716 (2006.01)
H04L 12/26 (2006.01)
U.S. CI .
CPC GO6F 11/3452 (2013.01) ; G06F 11/3419

(2013.01) ; G06F 11/3495 (2013.01) ; G06F
17/16 (2013.01) ; GO6N 20/00 (2019.01) ;
H04L 41/142 (2013.01) ; H04L 43/067

(2013.01) ; G06F 11/3006 (2013.01) ; GOOF
2201/835 (2013.01)

(57) ABSTRACT
Computational processes and systems are directed to detect
ing abnormally behaving objects of a distributed computing
system . An object can be a physical or a virtual object , such
as a server computer , application , VM , virtual network
device , or container . Processes and systems identify a set of
metrics associated with an object and compute an indicator
metric from the set of metrics . The indicator metric is used
to label time stamps that correspond to outlier metric values
of the set of metrics . The metrics and outlier time stamps are
used to compute rules by machine learning . Each rule
corresponds to a subset or combination of metrics and
represents specific threshold conditions for metric values .
The rules are applied to run - time metric data of the metrics
to detect run - time abnormal behavior of the object .

(52)

21 Claims , 30 Drawing Sheets

102 103

CPU CPU

MEMORY 110

CPU CPU
104

108 105

112
1 SPECIALIZED PROCESSOR BRIDGE

114 116

118

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

127
-122 123 - 124 125

126 MASS
STORAGE
DEVICE

128

U.S. Patent Jul . 13 , 2021 Sheet 1 of 30 US 11,061,796 B2

102 103

CPU CPU

MEMORY
110

CPU CPU
104

108 105

112
SPECIALIZED
PROCESSOR BRIDGE

114
116

118

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

127
122 123 124 - 125

126 MASS
STORAGE
DEVICE

FIG . 1 128

U.S. Patent Jul . 13 , 2021 Sheet 2 of 30 . US 11,061,796 B2

212

210

214

216 FIG . 2 .

I l I

/
205 204 203 202

316

U.S. Patent Jul . 13 , 2021

Cloud Services Interface

312

314

Internet

310

Sheet 3 of 30

Cloud Services Interface ????
306

302

304

Local Network

308

US 11,061,796 B2

FIG . 3

432

433

434

435

436

U.S. Patent

406

Application Programs

Jul . 13 , 2021

430

Operating System

426

428

non - privileged instructions and

System - call interface

memory addresses and registers
OS intervals

444

446

OS intervals

Scheduler

Device

Memory Management

File System

Task Mgmt

Drivers

privileged non - privileged

non - privileged instructions

privileged
instructions registers / addresses registers / addresses

418

420 422

424

404 442

448

416

Sheet 4 of 30

Hardware

Memory

Processors

1/0

1 / O

Mass Storage

402

410

408

410

412

414

US 11,061,796 B2

400

FIG . 4

510

U.S. Patent

application
application

application

application

application

514

511

OS

OS

OS

OS

OS

Jul . 13 , 2021

516

Non - privileged instructions

privileged instructions

non - privileged privileged
register / addresses register / addresses

508

520

VM Kernel

VM Kernel

518 504

Virtual Machine Monitor

504

Sheet 5 of 30

Non - privileged instructions

device drivers
privileged instructions

device drivers

non - privileged privileged
register / addresses register / addresses

506

Memory

Processors

1/0

1/0

Mass storage

502

502

US 11,061,796 B2

500

FIG . 5A

556

557

558

application

application

application

U.S. Patent

Virtual Machines

546

548 548

OS

OS

OS

552

Jul . 13 , 2021

550

Application Programs

Virtualization Layer

Virtualization

non - privileged instructions and memory addresses and registers

system - call interface

544

Sheet 6 of 30

Operating System 542

Memory

Processors
I / O

VO

Mass storage

Hardware

US 11,061,796 B2

?

FIG . 5B

540

622

Open Virtualization Format

620

U.S. Patent

Digest of package Digest of disk image file Digest of disk image file Digest of resource file

602

< Envelope
< References >

626

< / References > < Disk Section > :

628

< / Disk Section >
< Network Section >

630

< / Network Section >
< Virtual System Collection > < Virtual Hardware Section >

Digest of resource file

Jul . 13 , 2021

604

OVF Descriptor

636

?

OVF Manifest

634

606

682

OVF Certificate

608

< / Virtual Hardware Section > : < Virtual System Collection > :

< / Envelope >

disk image file

2

610

Sheet 7 of 30

disk image file

611

623

XML file

certificate that includes digest of manifest

resource file

612

640

resource file

613

FIG . 6

resource file

US 11,061,796 B2

614

OVF Package

732
731

Virtual Data Center

730

U.S. Patent

736

735

7 17

Resource Pool

Jul . 13 , 2021

734

708

706

LIA 11216 JOHDOT

Sheet 8 of 30

726

702

724 710

722

714

715

716

717

712

720

718

719
Physical Data Center

704

US 11,061,796 B2

FIG . 7

812

810

Host configuration VM configuration VM provisioning Alerts & events
Statistics collection or logging

Task scheduler Resource management

Distributed Resource Scheduler
High Availability Live VM migration Backup

U.S. Patent

Management Interface

814

Distributed Services

t

816

Core Services Host management

Jul . 13 , 2021

818

824

825

826

810

VDC agent

829

VDC agent

VDC agent

830

Virtual Data Center Management Server

Host Agent

Host Agent

Host Agent

Sheet 9 of 30

828

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

808

Virtual Data Center database

Virtualization Layer

Virtualization Layer

Virtualization Layer
Virtualization Layer

806

Hardware

Hardware

Hardware

Hardware

804

US 11,061,796 B2

- 802

820

821

822

FIG . 8

932

U.S. Patent

Management Interface

934

922

912

Cloud Director Services

Virtual Data Center Provisioning Organization Configuration and Organization Virtual Data Center Configuration
Template and Media Catalogs

Network Provisioning from network pool
926

930

ORG 1

ORG 2

908

VDC MS interface

936

cloud director

1 virtual data centers

Jul . 13 , 2021

920

910

921

916
917

918

904

911

919

17 .
ORGT , ORG 2 , ORG3 , ORG 4

ORG 1 , ORG 2 , ORG 3

907

cloud director

cloud director

Sheet 10 of 30

924

925

virtual data qenters
1

| virtual data centers

khairul
?

903

HHH

906

902

US 11,061,796 B2

FIG . 9

1005

VCC node

U.S. Patent

1020

3rd party

1004

cloud services

1006

VCC Node

MS

CO

VCC node

Jul . 13 , 2021

VDC MS Wo

virtual data center

1019

1007

1003

1021

VCC node

VCC node

virtual data center

VDC MS

CD

1

VDC MS

1002

Sheet 11 of 30

1018

1022

1008

1016

CD

VDCI MS

1023

1

VDC MS

I 1 1 |

???

VCC server

VCC node

1012

VCC node
1010
1014

US 11,061,796 B2

FIG . 10

1026

La

1108

1109

1110

U.S. Patent

1105

Jul . 13 , 2021

1106 1102

1104

container

container

container

428

426

OS - level Virtualization

430

non - privileged instructions
and memory addresses and registers

OS interface

system - call interface

Sheet 12 of 30

OS interface

404

Operating System
layer

Scheduler Task Mgmt

Memory Management
non - privileged instructions privileged

instructions
File

Device

System

Drivers

non - privileged privileged
registers / addresses registers / addresses

402

Memory

Processors

1/0

10

Mass Storage

Hardware layer

US 11,061,796 B2

?

FIG . 11

1206

1207

1208

7

U.S. Patent

1200

Jul . 13 , 2021

container

container

container

1204 1202

OS - level Virtualization
Guest OS

Non - privileged instructions

privileged instructions

non - privileged privileged
register / addresses register / addresses .

520

Sheet 13 of 30

508 518

VM Kernel

VM Kernel

Virtual Machine Monitor

504

504

Non - privileged instructions

device drivers
privileged instructions

device drivers

non - privileged privileged
register / addresses register / addresses

506

502

Memory

Processors

I / O

I / O

Mass Storage

Hardware layer

US 11,061,796 B2

?

FIG . 12

1302

U.S. Patent

1328

Virtualization layer

1332

1306

VM2

1334
VM5

VM1

VMA

1340

1324

1

Jul . 13 , 2021

1326

1338

Anp2
Anp3

1310

Conti

Contz

App1

1330

App4

Sheet 14 of 30

1308

1322

1312

1314

1316

1318

1320

Physical Data Center

1313

1315

1317

1319

1304

FIG . 13

US 11,061,796 B2

U.S. Patent

1408

1412

X ; T ,

1404

X ;-)

1410

1411

Jul . 13 , 2021

1406

Amplitude

Sheet 15 of 30

ti

Time

1402

FIG . 14A

US 11,061,796 B2

1302

U.S. Patent

Virtualization layer

—

1

-
1

1
1

Monitoring server

1306

Metrics

1414

Metrics

Jul . 13 , 2021

Metrics

Metrics

1344

1310

Sheet 16 of 30

1308

1346
1322

1312

1314

1316

1318

Physical Data Center

1320

1313

1315

1317

1319

1304

FIG . 14B

US 11,061,796 B2

1302

Virtualization layer

U.S. Patent

Metrics

Metrics

Monitoring server

1306

Jul . 13 , 2021

VM5

1414

VM

VM

1340
1338

Anp2

Cont1

Conta

App1

App4

1310

Sheet 17 of 30

1308

1322

1320

Physical Data Center

1304

US 11,061,796 B2

FIG . 14C

U.S. Patent Jul . 13 , 2021 Sheet 18 of 30 US 11,061,796 B2

1503

1507 1505 un Uj ???? *
tj Time

1501

FIG . 15A

1504

1506 1508

12

11 Time In
1502

FIG . 15B

U.S. Patent Jul . 13 , 2021 Sheet 19 of 30 US 11,061,796 B2

1610
1612 1602

CPU usage 1616

1608

1 ; Time

1613 1604

1617 Memory
li Time

1614 1606
1618

Network Throughput
1 Time

FIG . 16A

1627 1629
1630 1626 1631 1628 1622

M. 1620 11 12 13 to to t7 18 to 110 111 112 113 114 115 116
Time

1624

FIG . 16B

U.S. Patent Jul . 13 , 2021 Sheet 20 of 30 US 11,061,796 B2

corr (V1 , V1) corr (V1 , V2) corr (V1 , V3) ... corr (V1 , VM)

corr (V2 , V1) corr (V2 , V2) corr (V2 , V3) corr (V2 , VM)

corr (V3 , V1) corr (V3 , V2) corr (V3 , V3) corr (V3 , VM)

corr (VM , V1) corr (VM , V2) corr (VM , V3) corr (VM , VM)

FIG . 17

111 P12 [13 ... 1M

0 r22 123 ... [2M

[c : ! ca ! ... c) = ar = [a , da ------------ Qu 0 0 r33 ... ???

:

0 0 0 IMM

FIG . 18

U.S. Patent Jul . 13 , 2021 Sheet 21 of 30 US 11,061,796 B2

1904

1906

Time 1902

FIG . 19A

1904
1912

1908

Indicator
1906

1910

Time 1902

FIG . 19B

1914

1902

Time

1916

FIG . 19C

U.S. Patent Jul . 13 , 2021 Sheet 22 of 30 US 11,061,796 B2

1920 1921 1923
Outliers 1922 1914 Outliers

1918

+ a (91 - k- ak) 102 103 104 107 1902
ili .

T ! Time
tou 105 t06 -a (91 - k - ak)

1926 1927 1924 1928 Outlier Outliers

FIG . 19D

Contain
outliers 1904 1930

Contain
outliers 1931 1932 1933

Indicator Contain
outliers

1934
1935 1902

101 102 106 to Time 103 tot tos
Contain
outliers

FIG . 19E

U.S. Patent

Outlier time stamps tol , ... , ToQ

2012

2004

Metric 1

Amplitude

Jul . 13 , 2021

2006

Time

Metric 2

Rule 1

Amplitude

Rule 2

1

C5.0 Algorithm (Tree boosting)

Time

Sheet 23 of 30

2008

2002

Rule K

Metric J

Amplitude

Time

FIG . 20

US 11,061,796 B2

U.S. Patent Jul . 13 , 2021 Sheet 24 of 30 US 11,061,796 B2

2101 2102 2103
Abnormality Rule 1 Abnormality Rule 2

Metric 17 x { 17 / (t) > 21
Abnormality Rule 3
Metric 4 x { 4 } (t) > 10 Metric 6 x (6) t) < 16 2110

Metric 11 x { 11 } (t) < 74 -2111 Metric 23 x (23) (t) = 0
2104

Metric 68 (68) (t) > 25 2108 Metric 14 x (14) (t) = 1 2112

2105 Metric 17 x { 17) (t) < 8 2113

2106 Metric 6 X16) (t) = 10+ 2114

FIG . 21A

Metric values for
Metrics 4 , 6 , 11 , 14 , 17 , 23 , &

68 at time stamp to 2116

2118

- > Generate Alert : Rule 2 violation , Abnormal behavior at
object

(6 } (to) = 2 (< 16)
x { 11 / (to) = 15 (< 74)

X (68) (to) = 100 (> 25)
x { 17) (to) = 2 (> 21)
x { 4 } (to) = 200 (> 10)
x (23) (to) = 0 (510)

- > No Alert regarding Rule 2
2120

> Generate Alert : Rule 3 violation , Abnormal behavior at
object

X (14) (to) = 1 = 1)

FIG . 21B

U.S. Patent Jul . 13 , 2021 Sheet 25 of 30 US 11,061,796 B2

2201 Run - time
metric
data

2202
Rule a
violation

F T

2203 2204
Normal Abnormality A

generate alert

2205 Generate
recommended or
execute remedial

measures A

FIG . 22

U.S. Patent Jul . 13 , 2021 Sheet 26 of 30 US 11,061,796 B2

2301 Run - time
metric
data

2304

Rule a 2302
violation

Run - time
metric
data F T

2305

Ruler 2303
2307 violation

Run - time
metric
data F T

2306
2308 Abnormality B

generate alert
Rules

violation
F T

2309 2310
Generate

recommended or
execute remedial

measures B

2312 Abnormality C
generate alert

Abnormality D
generate alert

2313 2311
Generate

recommended or
execute remedial

measures C

Generate
recommended or
execute remedial
measures D

FIG . 23

U.S. Patent Jul . 13 , 2021 Sheet 27 of 30 US 11,061,796 B2

Method that detects abnormally
behaving objects of a DCS

2401 Identifying metrics associated
with a DCS object

2402 Apply data preparation to
the metrics

2403 Perform data labeling by
identifying outlier

time stamps

2404 Compute rules that classify
the state of the object

2405 Apply run - time abnormality
detection based on the rules

Return

FIG . 24

U.S. Patent Jul . 13 , 2021 Sheet 28 of 30 US 11,061,796 B2 2

Apply data preparation to
the metrics

2501
For each metric

2502
Compute mean u

2503
Compute standard deviation o

2504
N 2505 o > Est

?
Delete the metric

Y

2506 Y Another
metric

?

N.
2507 Synchronize time steps of

metric

2508 Compute correlation coefficient
matrix corr (x , x)

2512 Identify largest diagonal
elements of R based on

numerical rank 2509 Compute eigenvalues of
correlation matrix

2513
2510

Delete metrics that do not
correspond to largest diagonal

elements Determine numerical rank of
correlation matrix

2511 Perform QR - decomposition Return

FIG . 25

U.S. Patent Jul . 13 , 2021 Sheet 29 of 30 US 11,061,796 B2

Perform data labeling by
identifying outlier

time stamps

2601 Normalize each metric

2602 Compute sequence of object
indicators based on normalized

metrics

2603 Fit loess function to sequence of
object indicators

2604 Compute residuals

2605 Identify residuals that are
greater than an upper bound for

the residuals

2606 Identify residuals that are less
than a lower bound for the

residuals

2607 Label time stamps of residuals
that violate the upper and lower
bounds as outlier time stamps

Return

FIG . 26

U.S. Patent Jul . 13 , 2021 Sheet 30 of 30 US 11,061,796 B2

Apply run - time abnormality
detection based on the rules

2704 2701 2709 2712

Y Run - time
metric data

Rule 1
violation

?

Generate : Alert
Abnormality 1

Execute / recommend
remedial measures

2705 N. 2702 2710 2713
Y Run - time

metric data
Rule 2

violation
?

NI

Generate : Alert
Abnormality 2

Executelrecommend
remedial measures

2708

2706 N 2703 2711 2714

Y. Run - time
metric data

Rule Q
violation

?

Generate : Alert
Abnormality Q

Execute / recommend
remedial measures

2718 Nit 2715
Y Run - time

metric data
Rule

1 , 2 violation
?

N

Generate : Alert
Abnormality X

Execute / recommend
remedial measures

2719 2716 2722 2725
Y Run - time

metric data
Rule

1 , 2 , 3 violation
?

Generate : Alert
Abnormality Y

Execute / recommend
remedial measures

N. 2723 2726
2721

2720 N 2724 2727 2717
Y Run - time

metric data
Rule

1 , 2 , ... , X violation
?

Generate : Alert
Abnormality Z

Execute / recommend
remedial measures

Return

FIG . 27

US 11,061,796 B2
1 2

PROCESSES AND SYSTEMS THAT DETECT run - time abnormal behavior of the object . Processes and
OBJECT ABNORMALITIES IN A systems may execute remedial measures to correct the

DISTRIBUTED COMPUTING SYSTEM abnormal behavior of the object .

TECHNICAL FIELD 5 DESCRIPTION OF THE DRAWINGS

10

This disclosure is directed to processes and systems that FIG . 1 shows an architectural diagram for various types of
detect abnormal behavior of objects of a distributed com- computers .
puting system . FIG . 2 shows an Internet - connected distributed computer

system .
BACKGROUND FIG . 3 shows cloud computing .

FIG . 4 shows generalized hardware and software compo Electronic computing has evolved from primitive , nents of a general - purpose computer system . vacuum - tube - based computer systems , initially developed FIGS . 5A - 5B show two types of virtual machine (“ VM ”) during the 1940s , to modern electronic computing systems 15 and VM execution environments . in which large numbers of multi - processor computer sys FIG . 6 shows an example of an open virtualization format tems , such as server computers , work stations , and other package . individual computing systems are networked together with
large - capacity data - storage devices and other electronic FIG . 7 shows virtual data centers provided as an abstrac
devices to produce geographically distributed computing 20 tion of underlying physical - data - center hardware compo

nents . systems with numerous components that provide enormous
computational bandwidths and data - storage capacities . FIG . 8 shows virtual - machine components of a virtual
These large , distributed computing systems are made pos data - center management server and physical servers of a
sible by advances in computer networking , distributed oper- physical data center .
ating systems and applications , data - storage appliances , 25 FIG . 9 shows a cloud - director level of abstraction .
computer hardware , and software technologies . FIG . 10 shows virtual - cloud - connector nodes .

Because distributed computing systems have an enor- FIG . 11 shows an example server computer used to host
mous number of computational resources , various manage three containers .
ment systems have been developed to collect performance FIG . 12 shows an approach to implementing containers
information about these resources . For example , a typical 30 on a VM .
management system may collect hundreds of thousands of FIG . 13 shows an example of a virtualization layer located
streams of metric data to monitor various computational above a physical data center .
resources of a data center infrastructure . Each data point of FIG . 14A shows a plot of an example metric represented
a stream of metric data may represent an amount of the as a sequence of time series data associated with a resource
resource in use at a point in time . However , the enormous 35 of a distributed computing system .
number of metric data streams received by a management FIGS . 14B - 14C show numerous metrics transmitted to a
system makes it impossible for information technology monitoring server .
(“ IT ”) administrators to manually monitor the metrics , FIGS . 15A - 15B shows plots of two different example
detect performance issues , and respond in real time to metrics .
performance issues . Failure to respond in real time to 40 FIG . 16A shows example plots of three unsynchronized
performance problems can interrupt computer services and metrics for an object recorded in the same time interval .
have enormous cost implications for data center tenants , FIG . 16B shows a plot of metric values of a metric
such as when a tenant's server applications stop running or synchronized to time steps of a general set of uniformly
fail to timely respond to client requests . spaced time steps .

FIG . 17 shows an example correlation matrix for M
SUMMARY metrics .

FIG . 18 shows QR decomposition applied to the correla
Computational processes and systems described herein tion matrix shown in FIG . 17 .

are directed to detecting abnormally behaving objects of a FIGS . 19A - 19C show an example of determining a
distributed computing system . An object can be a physical or 50 sequence of residuals for an example indicator metric .
a virtual object , such as a server computer , network device , FIG . 19D shows a plot of residuals and quantiles that
application , VM , virtual network device , container , or any serve as upper and lower residual thresholds for outlier
other physical or virtual object of a distributed computing residuals .
system for which metrics can be collected to evaluate FIG . 19E shows a plot of an indicator metric with outlier
abnormal or normal behavior of the object . Processes and 55 indicators that correspond to outlier time stamps .
systems identify a set of metrics comprising metrics asso- FIG . 20 shows an example of generating rules from
ciated with resources used by the object and metrics char- metrics associated with an object and outlier time stamps .
acterizing performance and other properties of the object . FIGS . 21A - 21B show example rules used to identify
Each metric comprises a sequence of time series metric data . abnormal object behavior .
Processes and systems compute an indicator metric from the 60 FIG . 22 shows an example graph of operations that may
set of metrics and use the indicator metric to label time be executed in response to a single rule violation .
stamps that correspond to outlier metric values of the set of FIG . 23 shows an example graph of operations that may
metrics . The set of metrics and outlier time stamps are used be executed in response to different combinations of rule
to compute rules using machine learning . Each rule corre- violations .
sponds to a subset or combination of metrics and represents 65 FIG . 24 shows a control - flow diagram of a method that
specific threshold conditions for metric values . The rules are detects abnormally behaving objects of a distributed com
applied to run - time metric data of the metrics to detect puting system .

45

5

10

US 11,061,796 B2
3 4

FIG . 25 shows a control - flow diagram of the routine interconnects . These busses or serial interconnections , in
" apply data preparation to the metrics ” called in FIG . 24 . turn , connect the CPUs and memory with specialized pro
FIG . 26 shows a control - flow diagram of the routine cessors , such as a graphics processor 118 , and with one or

" perform data labelling by identifying outlier time stamps " more additional bridges 120 , which are interconnected with
called in FIG . 24 . high - speed serial links or with multiple controllers 122-127 ,
FIG . 27 shows a control - flow diagram of the routine such as controller 127 , that provide access to various dif

“ apply run - time abnormality detection based on the rules ” ferent types of mass - storage devices 128 , electronic dis
called in FIG . 24 . plays , input devices , and other such components , subcom

ponents , and computational devices . It should be noted that
DETAILED DESCRIPTION computer - readable data storage devices include optical and

This disclosure is directed to computational processes and electromagnetic disks , electronic memories , and other
physical data - storage devices . Those familiar with modern stems to detect abnormal behavior exhibited by physical

and virtual objects of a distributed computing system . In a science and technology appreciate that electromagnetic
first subsection , computer hardware , complex computational is radiation and propagating signals do not store data for
systems , and virtualization are described . Processes and subsequent retrieval , and can transiently “ store ” only a byte
systems for detecting abnormally behaving objects of a or less of information per mile , far less information than
distributed computing system are described below in a needed to encode even the simplest of routines .
second subsection . Of course , there are many different types of computer

20 system architectures that differ from one another in the
Computer Hardware , Complex Computational number of different memories , including different types of

Systems , and Virtualization hierarchical cache memories , the number of processors and
the connectivity of the processors with other system com

The term “ abstraction ” is not , in any way , intended to ponents , the number of internal communications busses and
mean or suggest an abstract idea or concept . Computational 25 serial links , and in many other ways . However , computer
abstractions are tangible , physical interfaces that are imple- systems generally execute stored programs by fetching
mented using physical computer hardware , data - storage instructions from memory and executing the instructions in
devices , and communications systems . Instead , the term one or more processors . Computer systems include general
“ abstraction ” refers , in the current discussion , to a logical purpose computer systems , such as personal computers
level of functionality encapsulated within one or more 30 (“ PCs ”) , various types of server computers and worksta
concrete , tangible , physically - implemented computer sys- tions , and higher - end mainframe computers , but may also
tems with defined interfaces through which electronically- include a plethora of various types of special - purpose com
encoded data is exchanged , process execution launched , and puting devices , including data - storage systems , communi
electronic services are provided . Interfaces may include cations routers , network nodes , tablet computers , and mobile graphical and textual data displayed on physical display 35 telephones .
devices as well as computer programs and routines that FIG . 2 shows an Internet - connected distributed computer
control physical computer processors to carry out various system . As communications and networking technologies
tasks and operations and that are invoked through electroni- have evolved in capability and accessibility , and as the
cally implemented application programming interfaces computational bandwidths , data - storage capacities , and
(“ APIs ”) and other electronically implemented interfaces . 40 other capabilities and capacities of various types of com
Software is essentially a sequence of encoded symbols , such puter systems have steadily and rapidly increased , much of
as a printout of a computer program or digitally encoded modern computing now generally involves large distributed
computer instructions sequentially stored in a file on an systems and computers interconnected by local networks ,
optical disk or within an electromechanical mass - storage wide - area networks , wireless communications , and the
device . Software alone can do nothing . It is only when 45 Internet . FIG . 2 shows a typical distributed system in which
encoded computer instructions are loaded into an electronic many PCs 202-205 , a high - end distributed mainframe sys
memory within a computer system and executed on a tem 210 with a large data - storage system 212 , and a large
physical processor that “ software implemented ” functional- computer center 214 with large numbers of rack - mounted
ity is provided . The digitally encoded computer instructions server computers or blade servers all interconnected through
are a physical control component of processor - controlled 50 various communications and networking systems that
machines and devices . Multi - cloud aggregations , cloud- together comprise the Internet 216. Such distributed com
computing services , virtual - machine containers and virtual puting systems provide diverse arrays of functionalities . For
machines , containers , communications interfaces , and many example , a PC user may access hundreds of millions of
of the other topics discussed below are tangible , physical different web sites provided by hundreds of thousands of
components of physical , electro - optical - mechanical com- 55 different web servers throughout the world and may access
puter systems . high - computational - bandwidth computing services from

FIG . 1 shows a general architectural diagram for various remote computer facilities for running complex computa
types of computers . Computers that receive , process , and tional tasks .
store event messages may be described by the general Until recently , computational services were generally
architectural diagram shown in FIG . 1 , for example . The 60 provided by computer systems and data centers purchased ,
computer system contains one or multiple central processing configured , managed , and maintained by service - provider
units (“ CPUs ”) 102-105 , one or more electronic memories organizations . For example , an e - commerce retailer gener
108 interconnected with the CPUs by a CPU / memory- ally purchased , configured , managed , and maintained a data
subsystem bus 110 or multiple busses , a first bridge 112 that center including numerous web server computers , back - end
interconnects the CPU / memory - subsystem bus 110 with 65 computer systems , and data - storage systems for serving web
additional busses 114 and 116 , or other types of high - speed pages to remote customers , receiving orders through the
interconnection media , including multiple , high - speed serial web - page interface , processing the orders , tracking com

US 11,061,796 B2
5 6

pleted orders , and other myriad different tasks associated ing a set of non - privileged computer instructions 418 , a set
with an e - commerce enterprise . of privileged computer instructions 420 , a set of non
FIG . 3 shows cloud computing . In the recently developed privileged registers and memory addresses 422 , and a set of

cloud - computing paradigm , computing cycles and data- privileged registers and memory addresses 424. In general ,
storage facilities are provided to organizations and individu- 5 the operating system exposes non - privileged instructions ,
als by cloud - computing providers . In addition , larger orga- non - privileged registers , and non - privileged memory
nizations may elect to establish private cloud - computing addresses 426 and a system - call interface 428 as an oper
facilities in addition to , or instead of , subscribing to com- ating - system interface 430 to application programs 432-436
puting services provided by public cloud - computing service that execute within an execution environment provided to
providers . In FIG . 3 , a system administrator for an organi- 10 the application programs by the operating system . The
zation , using a PC 302 , accesses the organization's private operating system , alone , accesses the privileged instructions ,
cloud 304 through a local network 306 and private - cloud privileged registers , and privileged memory addresses . By
interface 308 and accesses , through the Internet 310 , a reserving access to privileged instructions , privileged reg
public cloud 312 through a public - cloud services interface isters , and privileged memory addresses , the operating sys
314. The administrator can , in either the case of the private 15 tem can ensure that application programs and other higher
cloud 304 or public cloud 312 , configure virtual computer level computational entities cannot interfere with one
systems and even entire virtual data centers and launch another's execution and cannot change the overall state of
execution of application programs on the virtual computer the computer system in ways that could deleteriously impact
systems and virtual data centers in order to carry out any of system operation . The operating system includes many
many different types of computational tasks . As one 20 internal components and modules , including a scheduler
example , a small organization may configure and run a 442 , memory management 444 , a file system 446 , device
virtual data center within a public cloud that executes web drivers 448 , and many other components and modules . To a
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous
public cloud to remote customers of the organization , such levels of abstraction above the hardware level , including
as a user viewing the organization's e - commerce web pages 25 virtual memory , which provides to each application program
on a remote user system 316 . and other computational entities a separate , large , linear

Cloud - computing facilities are intended to provide com- memory - address space that is mapped by the operating
putational bandwidth and data - storage services much as system to various electronic memories and mass - storage
utility companies provide electrical power and water to devices . The scheduler orchestrates interleaved execution of
consumers . Cloud computing provides enormous advan- 30 different application programs and higher - level computa
tages to small organizations without the devices to purchase , tional entities , providing to each application program a
manage , and maintain in - house data centers . Such organi- virtual , stand - alone system devoted entirely to the applica
zations can dynamically add and delete virtual computer tion program . From the application program's standpoint ,
systems from their virtual data centers within public clouds the application program executes continuously without con
in order to track computational - bandwidth and data - storage 35 cern for the need to share processor devices and other system
needs , rather than purchasing sufficient computer systems devices with other application programs and higher - level
within a physical data center to handle peak computational- computational entities . The device drivers abstract details of
bandwidth and data - storage demands . Moreover , small orga- hardware - component operation , allowing application pro
nizations can completely avoid the overhead of maintaining grams to employ the system - call interface for transmitting
and managing physical computer systems , including hiring 40 and receiving data to and from communications networks ,
and periodically retraining information - technology special- mass - storage devices , and other I / O devices and subsystems .
ists and continuously paying for operating - system and data- The file system 446 facilitates abstraction of mass - storage
base - management - system upgrades . Furthermore , cloud- device and memory devices as a high - level , easy - to - access ,
computing interfaces allow for easy and straightforward file - system interface . Thus , the development and evolution
configuration of virtual computing facilities , flexibility in 45 of the operating system has resulted in the generation of a
the types of applications and operating systems that can be type of multi - faceted virtual execution environment for
configured , and other functionalities that are useful even for application programs and other higher - level computational
owners and administrators of private cloud - computing entities .
facilities used by a single organization . While the execution environments provided by operating
FIG . 4 shows generalized hardware and software compo- 50 systems have proved to be an enormously successful level of

nents of a general - purpose computer system , such as a abstraction within computer systems , the operating - system
general - purpose computer system having an architecture provided level of abstraction is nonetheless associated with
similar to that shown in FIG . 1. The computer system 400 is difficulties and challenges for developers and users of appli
often considered to include three fundamental layers : (1) a cation programs and other higher - level computational enti
hardware layer or level 402 ; (2) an operating - system layer or 55 ties . One difficulty arises from the fact that there are many
level 404 ; and (3) an application - program layer or level 406 . different operating systems that run within different types of
The hardware layer 402 includes one or more processors computer hardware . In many cases , popular application
408 , system memory 410 , different types of input - output programs and computational systems are developed to run
(" I / O ”) devices 410 and 412 , and mass - storage devices 414 . on only a subset of the available operating systems and can
Of course , the hardware level also includes many other 60 therefore be executed within only a subset of the different
components , including power supplies , internal communi- types of computer systems on which the operating systems
cations links and busses , specialized integrated circuits , are designed to run . Often , even when an application pro
many different types of processor - controlled or micropro- gram or other computational system is ported to additional
cessor - controlled peripheral devices and controllers , and operating systems , the application program or other com
many other components . The operating system 404 inter- 65 putational system can nonetheless run more efficiently on
faces to the hardware level 402 through a low - level oper- the operating systems for which the application program or
ating system and hardware interface 416 generally compris- other computational system was originally targeted . Another

US 11,061,796 B2
7 8

difficulty arises from the increasingly distributed nature of The virtualization layer 504 includes a virtual machine
computer systems . Although distributed operating systems monitor module 518 (“ VMM ”) that virtualizes physical
are the subject of considerable research and development processors in the hardware layer to create virtual processors
efforts , many of the popular operating systems are designed on which each of the VMs executes . For execution effi
primarily for execution on a single computer system . In 5 ciency , the virtualization layer attempts to allow VMs to
many cases , it is difficult to move application programs , in directly execute non - privileged instructions and to directly
real time , between the different computer systems of a access non - privileged registers and memory . However ,
distributed computer system for high - availability , fault - tol when the guest operating system within a VM accesses
erance , and load balancing purposes . The problems are even virtual privileged instructions , virtual privileged registers ,
greater in heterogeneous distributed computer systems 10 and virtual privileged memory through the virtualization

layer 504 , the accesses result in execution of virtualization which include different types of hardware and devices layer code to simulate or emulate the privileged devices . The running different types of operating systems . Operating virtualization layer additionally includes a kernel module systems continue to evolve , as a result of which certain older 520 that manages memory , communications , and data - stor application programs and other computational entities may 15 age machine devices on behalf of executing VMs (“ VM
be incompatible with more recent versions of operating kernel ”) . The VM kernel , for example , maintains shadow systems for which they are targeted , creating compatibility page tables on each VM so that hardware - level virtual
issues that are particularly difficult to manage in large memory facilities can be used to process memory accesses .
distributed systems . The VM kernel additionally includes routines that imple
For the above reasons , a higher level of abstraction , 20 ment virtual communications and data - storage devices as

referred to as the “ virtual machine , ” (“ VM ”) has been well as device drivers that directly control the operation of
developed and evolved to further abstract computer hard- underlying hardware communications and data - storage
ware in order to address many difficulties and challenges devices . Similarly , the VM kernel virtualizes various other
associated with traditional computing systems , including the types of I / O devices , including keyboards , optical - disk
compatibility issues discussed above . FIGS . 5A - B show two 25 drives , and other such devices . The virtualization layer 504
types of VM and virtual - machine execution environments . essentially schedules execution of VMs much like an oper
FIGS . 5A - B use the same illustration conventions as used in ating system schedules execution of application programs ,
FIG . 4. FIG . 5A shows a first type of virtualization . The so that the VMs each execute within a complete and fully
computer system 500 in FIG . 5A includes the same hardware functional virtual hardware layer .
layer 502 as the hardware layer 402 shown in FIG . 4. 30 FIG . 5B shows a second type of virtualization . In FIG . 5B ,
However , rather than providing an operating system layer the computer system 540 includes the same hardware layer
directly above the hardware layer , as in FIG . 4 , the virtual- 542 and operating system layer 544 as the hardware layer
ized computing environment shown in FIG . 5A features a 402 and the operating system layer 404 shown in FIG . 4 .
virtualization layer 504 that interfaces through a virtualiza- Several application programs 546 and 548 are shown run
tion - layer / hardware - layer interface 506 , equivalent to inter- 35 ning in the execution environment provided by the operating
face 416 in FIG . 4 , to the hardware . The virtualization layer system 544. In addition , a virtualization layer 550 is also
504 provides a hardware - like interface to VMs , such as VM provided , in computer 540 , but , unlike the virtualization
510 , in a virtual machine layer 511 executing above the layer 504 discussed with reference to FIG . 5A , virtualization
virtualization layer 504. Each VM includes one or more layer 550 is layered above the operating system 544 , referred
application programs or other higher - level computational 40 to as the “ host OS , ” and uses the operating system interface
entities packaged together with an operating system , to access operating - system - provided functionality as well as
referred to as a “ guest operating system , ” such as application the hardware . The virtualization layer 550 comprises pri
514 and guest operating system 516 packaged together marily a VMM and a hardware - like interface 552 , similar to
within VM 510. Each VM is thus equivalent to the operat- hardware - like interface 508 in FIG . 5A . The hardware - layer
ing - system layer 404 and application - program layer 406 in 45 interface 552 , equivalent to interface 416 in FIG . 4 , provides
the general - purpose computer system shown in FIG . 4. Each an execution environment VMs 556-558 , each including one
guest operating system within a VM interfaces to the virtu- or more application programs or other higher - level compu
alization layer interface 504 rather than to the actual hard- tational entities packaged together with a guest operating
ware interface 506. The virtualization layer 504 partitions system .
hardware devices into abstract virtual - hardware layers to 50 In FIGS . 5A - 5B , the layers are somewhat simplified for
which each guest operating system within a VM interfaces . clarity of illustration . For example , portions of the virtual
The guest operating systems within the VMs , in general , are ization layer 550 may reside within the host - operating
unaware of the virtualization layer and operate as if they system kernel , such as a specialized driver incorporated into
were directly accessing a true hardware interface . The the host operating system to facilitate hardware access by
virtualization layer 504 ensures that each of the VMs cur- 55 the virtualization layer .
rently executing within the virtual environment receive a fair It should be noted that virtual hardware layers , virtual
allocation of underlying hardware devices and that all VMs ization layers , and guest operating systems are all physical
receive sufficient devices to progress in execution . The entities that are implemented by computer instructions
virtualization layer 504 may differ for different guest oper- stored in physical data - storage devices , including electronic
ating systems . For example , the virtualization layer is gen- 60 memories , mass - storage devices , optical disks , magnetic
erally able to provide virtual hardware interfaces for a disks , and other such devices . The term “ virtual ” does not ,
variety of different types of computer hardware . This allows , in any way , imply that virtual hardware layers , virtualization
as one example , a VM that includes a guest operating system layers , and guest operating systems are abstract or intan
designed for a particular computer architecture to run on gible . Virtual hardware layers , virtualization layers , and
hardware of a different architecture . The number of VMs 65 guest operating systems execute on physical processors of
need not be equal to the number of physical processors or physical computer systems and control operation of the
even a multiple of the number of processors . physical computer systems , including operations that alter

US 11,061,796 B2
9 10

the physical states of physical devices , including electronic displayed to system administrators and other users . The
memories and mass - storage devices . They are as physical physical data center additionally includes generally large
and tangible as any other component of a computer since , numbers of server computers , such as server computer 710 ,
such as power supplies , controllers , processors , busses , and that are coupled together by local area networks , such as
data - storage devices . 5 local area network 712 that directly interconnects server
A VM or virtual application , described below , is encap- computer 710 and 714-720 and a mass - storage array 722 .

sulated within a data package for transmission , distribution , The physical data center shown in FIG . 7 includes three
and loading into a virtual - execution environment . One pub- local area networks 712 , 724 , and 726 that each directly
lic standard for virtual - machine encapsulation is referred to interconnects a bank of eight server computers and a mass
as the “ open virtualization format " (" OVF ”) . The OVF 10 storage array . The individual server computers , such as
standard specifies a format for digitally encoding a VM server computer 710 , each includes a virtualization layer and
within one or more data files . FIG . 6 shows an OVF package . runs multiple VMs . Different physical data centers may
An OVF package 602 includes an OVF descriptor 604 , an include many different types of computers , networks , data
OVF manifest 606 , an OVF certificate 608 , one or more storage systems and devices connected according to many
disk - image files 610-611 , and one or more device files 15 different types of connection topologies . The virtual - inter
612-614 . The OVF package can be encoded and stored as a face plane 704 , a logical abstraction layer shown by a plane
single file or as a set of files . The OVF descriptor 604 is an in FIG . 7 , abstracts the physical data center to a virtual data
XML document 620 that includes a hierarchical set of center comprising one or more device pools , such as device
elements , each demarcated by a beginning tag and an ending pools 730-732 , one or more virtual data stores , such as
tag . The outermost , or highest - level , element is the envelope 20 virtual data stores 734-736 , and one or more virtual net
element , demarcated by tags 622 and 623. The next - level works . In certain implementations , the device pools abstract
element includes a reference element 626 that includes banks of server computers directly interconnected by a local
references to all files that are part of the OVF package , a disk area network .
section 628 that contains meta information about all of the The virtual - data - center management interface allows pro
virtual disks included in the OVF package , a network section 25 visioning and launching of VMs with respect to device
630 that includes meta information about all of the logical pools , virtual data stores , and virtual networks , so that
networks included in the OVF package , and a collection of virtual - data - center administrators need not be concerned
virtual - machine configurations 632 which further includes with the identities of physical - data - center components used
hardware descriptions of each VM 634. There are many to execute particular VMs . Furthermore , the virtual - data
additional hierarchical levels and elements within a typical 30 center management server computer 706 includes function
OVF descriptor . The OVF descriptor is thus a self - describ- ality to migrate running VMs from one server computer to
ing , XML file that describes the contents of an OVF pack- another in order to optimally or near optimally manage
age . The OVF manifest 606 is a list of cryptographic - hash- device allocation , provides fault tolerance , and high avail
function - generated digests 636 of the entire OVF package ability by migrating VMs to most effectively utilize under
and of the various components of the OVF package . The 35 lying physical hardware devices , to replace VMs disabled by
OVF certificate 608 is an authentication certificate 640 that physical hardware problems and failures , and to ensure that
includes a digest of the manifest and that is cryptographi- multiple VMs supporting a high - availability virtual appli
cally signed . Disk image files , such as disk image file 610 , ance are executing on multiple physical computer systems
are digital encodings of the contents of virtual disks and so that the services provided by the virtual appliance are
device files 612 are digitally encoded content , such as 40 continuously accessible , even when one of the multiple
operating - system images . A VM or a collection of VMs virtual appliances becomes compute bound , data - access
encapsulated together within a virtual application can thus bound , suspends execution , or fails . Thus , the virtual data
be digitally encoded as one or more files within an OVF center layer of abstraction provides a virtual - data - center
package that can be transmitted , distributed , and loaded abstraction of physical data centers to simplify provisioning ,
using well - known tools for transmitting , distributing , and 45 launching , and maintenance of VMs and virtual appliances
loading files . A virtual appliance is a software service that is as well as to provide high - level , distributed functionalities
delivered as a complete software stack installed within one that involve pooling the devices of individual server com
or more VMs that is encoded within an OVF package . puters and migrating VMs among server computers to

The advent of VMs and virtual environments has allevi- achieve load balancing , fault tolerance , and high availability .
ated many of the difficulties and challenges associated with 50 FIG . 8 shows virtual - machine components of a virtual
traditional general - purpose computing . Machine and oper- data - center management server computer and physical
ating - system dependencies can be significantly reduced or server computers of a physical data center above which a
eliminated by packaging applications and operating systems virtual - data - center interface is provided by the virtual - data
together as VMs and virtual appliances that execute within center management server computer . The virtual - data - center
virtual environments provided by virtualization layers run- 55 management server computer 802 and a virtual - data - center
ning on many different types of computer hardware . A next database 804 comprise the physical components of the
level of abstraction , referred to as virtual data centers or management component of the virtual data center . The
virtual infrastructure , provide a data - center interface to virtual - data - center management computer 802
virtual data centers computationally constructed within includes a hardware layer 806 and virtualization layer 808
physical data centers . 60 and runs a virtual - data - center management - server VM 810

FIG . 7 shows virtual data centers provided as an abstrac- above the virtualization layer . Although shown as a single
tion of underlying physical - data - center hardware compo- server computer in FIG . 8 , the virtual - data - center manage
nents . In FIG . 7 , a physical data center 702 is shown below ment server computer (“ VDC management server ”) may
a virtual - interface plane 704. The physical data center con- include two or more physical server computers that support
sists of a virtual - data - center management server computer 65 multiple VDC - management - server virtual appliances . The
706 and any of different computers , such as PC 708 , on virtual - data - center management - server VM 810 includes a
which a virtual - data - center management interface may be management - interface component 812 , distributed services

server

US 11,061,796 B2
11 12

814 , core services 816 , and a host - management interface services interface (308 in FIG . 3) exposes a virtual - data
818. The host - management interface 818 is accessed from center management interface that abstracts the physical data
any of various computers , such as the PC 708 shown in FIG . center .
7. The host - management interface 818 allows the virtual- FIG.9 shows a cloud - director level of abstraction . In FIG .
data - center administrator to configure a virtual data center , 5 9 , three different physical data centers 902-904 are shown
provision VMs , collect statistics and view log files for the below planes representing the cloud - director layer of
virtual data center , and to carry out other , similar manage- abstraction 906-908 . Above the planes representing the
ment tasks . The host - management interface 818 interfaces to cloud - director level of abstraction , multi - tenant virtual data
virtual - data - center agents 824 , 825 , and 826 that execute as centers 910-912 are shown . The devices of these multi
VMs within each of the server computers of the physical 10 tenant virtual data centers are securely partitioned in order to
data center that is abstracted to a virtual data center by the provide secure virtual data centers to multiple tenants , or
VDC management server computer . cloud - services - accessing organizations . For example , a

The distributed services 814 include a distributed device cloud - services - provider virtual data center 910 is partitioned
scheduler that assigns VMs to execute within particular into four different tenant - associated virtual - data centers
physical server computers and that migrates VMs in order to 15 within a multi - tenant virtual data center for four different
most effectively make use of computational bandwidths , tenants 916-919 . Each multi - tenant virtual data center is
data - storage capacities , and network capacities of the physi- managed by a cloud director comprising one or more
cal data center . The distributed services 814 further include cloud - director server computers 920-922 and associated
a high - availability service that replicates and migrates VMs cloud - director databases 924-926 . Each cloud - director
in order to ensure that VMs continue to execute despite 20 server computer or server computers runs a cloud - director
problems and failures experienced by physical hardware virtual appliance 930 that includes a cloud - director manage
components . The distributed services 814 also include a ment interface 932 , a set of cloud - director services 934 , and
live - virtual machine migration service that temporarily halts a virtual - data - center management - server interface 936. The
execution of a VM , encapsulates the VM in an OVF pack- cloud - director services include an interface and tools for
age , transmits the OVF package to a different physical server 25 provisioning multi - tenant virtual data center virtual data
computer , and restarts the VM on the different physical centers on behalf of tenants , tools and interfaces for con
server computer from a virtual - machine state recorded when figuring and managing tenant organizations , tools and ser
execution of the VM was halted . The distributed services vices for organization of virtual data centers and tenant
814 also include a distributed backup service that provides associated virtual data centers within the multi - tenant virtual
centralized virtual - machine backup and restore . 30 data center , services associated with template and media

The core services 816 provided by the VDC management catalogs , and provisioning of virtualization networks from a
server VM 810 include host configuration , virtual - machine network pool . Templates are VMs that each contains an OS
configuration , virtual machine provisioning , generation of and / or one or more VMs containing applications . A template
virtual - data - center alerts and events , ongoing event logging may include much of the detailed contents of VMs and
and statistics collection , a task scheduler , and a device- 35 virtual appliances that are encoded within OVF packages , so
management module . Each physical server computers 820- that the task of configuring a VM or virtual appliance is
822 also includes a host - agent VM 828-830 through which significantly simplified , requiring only deployment of one
the virtualization layer can be accessed via a virtual - infra- OVF package . These templates are stored in catalogs within
structure application programming interface (“ API ”) . This a tenant's virtual - data center . These catalogs are used for
interface allows a remote administrator or user to manage an 40 developing and staging new virtual appliances and published
individual server computer through the infrastructure API . catalogs are used for sharing templates in virtual appliances
The virtual - data - center agents 824-826 access virtualiza- across organizations . Catalogs may include OS images and
tion - layer server information through the host agents . The other information relevant to construction , distribution , and
virtual - data - center agents are primarily responsible for off- provisioning of virtual appliances .
loading certain of the virtual - data - center management- 45 Considering FIGS . 7 and 9 , the VDC - server and cloud
server functions specific to a particular physical server to director layers of abstraction can be seen , as discussed
that physical server computer . The virtual - data - center agents above , to facilitate employment of the virtual - data - center
relay and enforce device allocations made by the VDC concept within private and public clouds . However , this
management server VM 810 , relay virtual machine provi- level of abstraction does not fully facilitate aggregation of
sioning and configuration - change commands to host agents , 50 single - tenant and multi - tenant virtual data centers into het
monitor and collect performance statistics , alerts , and events erogeneous or homogeneous aggregations of cloud - comput
communicated to the virtual - data - center agents by the local ing facilities .
host agents through the interface API , and to cavy out other , FIG . 10 shows virtual - cloud - connector nodes (“ VCC
similar virtual - data - management tasks . nodes ”) and a VCC server , components of a distributed
The virtual - data - center abstraction provides a convenient 55 system that provides multi - cloud aggregation and that

and efficient level of abstraction for exposing the computa- includes a cloud - connector server and cloud - connector
tional devices of a cloud - computing facility to cloud - com- nodes that cooperate to provide services that are distributed
puting - infrastructure users . A cloud - director management across multiple clouds . VMware vCloudTM VCC servers and
server exposes virtual devices of a cloud - computing facility nodes are one example of VCC server and nodes . In FIG . 10 ,
to cloud - computing - infrastructure users . In addition , the 60 seven different cloud - computing facilities are shown 1002
cloud director introduces a multi - tenancy layer of abstrac- 1008. Cloud computing facility 1002 is a private multi
tion , which partitions VDCs into tenant - associated VDCs tenant cloud with a cloud director 1010 that interfaces to a
that can each be allocated to a particular individual tenant or VDC management server 1012 to provide a multi - tenant
tenant organization , both referred to as a “ tenant . ” A given private cloud comprising multiple tenant - associated virtual
tenant can be provided one or more tenant - associated VDCs 65 data centers . The remaining cloud computing facilities
by a cloud director managing the multi - tenancy layer of 1003-1008 may be either public or private cloud - computing
abstraction within a cloud - computing facility . The cloud facilities and may be single - tenant virtual data centers , such

US 11,061,796 B2
13 14

as virtual data centers 1003 and 1006 , multi - tenant virtual not provide for live migration of containers between hosts ,
data centers , such as multi - tenant virtual data centers 1004 high - availability functionality , distributed resource schedul
and 1007-1008 , or any of various different kinds of third- ing , and other computational functionality provided by
party cloud - services facilities , such as third - party cloud- traditional virtualization technologies .
services facility 1005. An additional component , the VCC 5 FIG . 11 shows an example server computer used to host
server 1014 , acting as a controller is included in the private three containers . As discussed above with reference to FIG .
cloud computing facility 1002 and interfaces to a VCC node 4 , an operating system layer 404 runs above the hardware
1016 that runs as a virtual appliance within the cloud 402 of the host computer . The operating system provides an
director 1010. A VCC server may also run as a virtual interface , for higher - level computational entities , that
appliance within a VDC management server that manages a 10 includes a system - call interface 428 and the non - privileged
single - tenant private cloud . The VCC server 1014 addition- instructions , memory addresses , and registers 426 provided
ally interfaces , through the Internet , to VCC node virtual by the hardware layer 402. However , unlike in FIG . 4 , in
appliances executing within remote VDC management serv- which applications run directly above the operating system
ers , remote cloud directors , or within the third - party cloud layer 404 , OSL virtualization involves an OSL virtualization
services 1018-1023 . The VCC server provides a VCC server 15 layer 1102 that provides operating - system interfaces 1104
interface that can be displayed on a local or remote terminal , 1106 to each of the containers 1108-1110 . The containers , in
PC , or other computer system 1026 to allow a cloud- turn , provide an execution environment for an application
aggregation administrator or other user to access VCC- that runs within the execution environment provided by
server - provided aggregate - cloud distributed services . In container 1108. The container can be thought of as a
general , the cloud computing facilities that together form a 20 partition of the resources generally available to higher - level
multiple - cloud - computing aggregation through distributed computational entities through the operating system inter
services provided by the VCC server and VCC nodes are face 430 .
geographically and operationally distinct . FIG . 12 shows an approach to implementing the contain
As mentioned above , while the virtual - machine - based ers on a VM . FIG . 12 shows a host computer similar to the

virtualization layers , described in the previous subsection , 25 host computer shown in FIG . 5A , discussed above . The host
have received widespread adoption and use in a variety of computer includes a hardware layer 502 and a virtualization
different environments , from personal computers to enor- layer 504 that provides a virtual hardware interface 508 to a
mous distributed computing systems , traditional virtualiza- guest operating system 1102. Unlike in FIG . 5A , the guest
tion technologies are associated with computational over- operating system interfaces to an OSL - virtualization layer
heads . While these computational overheads have steadily 30 1104 that provides container execution environments 1206
decreased , over the years , and often represent ten percent or 1208 to multiple application programs .
less of the total computational bandwidth consumed by an Although only a single guest operating system and OSL
application running above a guest operating system in a virtualization layer are shown in FIG . 12 , a single virtualized
virtualized environment , traditional virtualization technolo- host system can run multiple different guest operating sys
gies nonetheless involve computational costs in return for 35 tems within multiple VMs , each of which supports one or
the power and flexibility that they provide . more OSL - virtualization containers . A virtualized , distrib

While a traditional virtualization layer can simulate the uted computing system that uses guest operating systems
hardware interface expected by any of many running within VMs to support OSL - virtualization layers to
ating systems , OSL virtualization essentially provides a provide containers for running applications is referred to , in
secure partition of the execution environment provided by a 40 the following discussion , as a “ hybrid virtualized distributed
particular operating system . As one example , OSL virtual- computing system . ”
ization provides a file system to each container , but the file Running containers above a guest operating system within
system provided to the container is essentially a view of a a VM provides advantages of traditional virtualization in
partition of the general file system provided by the under- addition to the advantages of OSL virtualization . Containers
lying operating system of the host . In essence , OSL virtu- 45 can be quickly booted in order to provide additional execu
alization uses operating - system features , such as namespace tion environments and associated resources for additional
isolation , to isolate each container from the other containers application instances . The resources available to the guest
running on the same host . In other words , namespace operating system are efficiently partitioned among the con
isolation ensures that each application is executed within the tainers provided by the OSL - virtualization layer 1204 in
execution environment provided by a container to be iso- 50 FIG . 12 , because there is almost no additional computational
lated from applications executing within the execution envi- overhead associated with container - based partitioning of
ronments provided by the other containers . A container computational resources . However , many of the powerful
cannot access files not included the container's namespace and flexible features of the traditional virtualization tech
and cannot interact with applications running in other con- nology can be applied to VMs in which containers run above
tainers . As a result , a container can be booted up much faster 55 guest operating systems , including live migration from one
than a VM , because the container uses operating - system- host to another , various types of high - availability and dis
kernel features that are already available and functioning tributed resource scheduling , and other such features . Con
within the host . Furthermore , the containers share compu- tainers provide share - based allocation of computational
tational bandwidth , memory , network bandwidth , and other resources to groups of applications with guaranteed isolation
computational resources provided by the operating system , 60 of applications in one container from applications in the
without the overhead associated with computational remaining containers executing above a guest operating
resources allocated to VMs and virtualization layers . Again , system . Moreover , resource allocation can be modified at
however , OSL virtualization does not provide many desir- run time between containers . The traditional virtualization
able features of traditional virtualization . As mentioned layer provides for flexible and scaling over large numbers of
above , OSL virtualization does not provide a way to run 65 hosts within large distributed computing systems and a
different types of operating systems for different groups of simple approach to operating - system upgrades and patches .
containers within the same host and OSL - virtualization does Thus , the use of OSL virtualization above traditional virtu

different oper

9

many different

US 11,061,796 B2
15 16

alization in a hybrid virtualized distributed computing sys- example , a resource may be a virtual processor used by a
tem , as shown in FIG . 12 , provides many of the advantages virtual object formed from one or more cores of a multicore
of both a traditional virtualization layer and the advantages processor , virtual memory formed from a portion of physical
of OSL virtualization . memory , virtual storage formed from a sector or image of a

5 hard disk drive , a virtual switch , and a virtual router . Each
Processes and Systems for Detecting Abnormally virtual object uses only the physical resources assigned to
Behaving Objects of a Distributed Computing the virtual object .

System Processes and systems are implemented in a monitoring
server that monitors physical and virtual resources by col

FIG . 13 shows an example of a virtualization layer 1302 10 lecting numerous streams of time - dependent metric data
located above a physical data center 1304. For the sake of associated with numerous physical and virtual resources .
illustration , the virtualization layer 1302 is separated from Each stream of metric data is time series data that may be
the physical data center 1304 by a virtual - interface plane generated by an operating system or by an object itself . A
1306. The physical data center 1304 is an example of a stream of metric data associated with a resource comprises
distributed computing system . The physical data center 1304 15 a sequence of time - ordered metric values that are recorded
comprises physical objects , including a management server in spaced points in time called “ time stamps . ” A stream of
computer 1308 , any of various computers , such as PC 1310 , metric data is simply called a “ metric ” and is denoted by
on which a virtual - data - center (“ VDC ”) management inter
face may be displayed to system administrators and other v (t) = (x ;) = 1N = (x (t :)) ; = 1 ̂ (1)

users , server computers , such as server computers 1312- 20 where
1319 , data - storage devices , and network devices . The server N is the number of metric values in the sequence ;
computers may be networked together to form area networks X ; = x (t ;) is a metric value ;
within the data center 1904. The example physical data t ; is a time stamp indicating when the metric value was
center 1304 includes three area networks that each directly recorded in a data - storage device ; and
interconnects a bank of eight server computers and a mass- 25 subscript i is a time stamp index i = 1 , N.
storage array . For example , area network 1320 interconnects FIG . 14A shows a plot of an example metric associated
server computers 1312-1319 and a mass - storage array 1322 . with a physical or virtual resource . Horizontal axis 1402
Different physical data centers may include represents time . Vertical axis 1404 represents a range of
types of computers , networks , data - storage systems and metric value amplitudes . Curve 1406 represents a metric as
devices connected according to many different types of 30 time series data . In practice , a metric comprises sequence of
connection topologies . The virtualization layer 1302 discrete metric values in which each metric value is recorded
includes virtual objects , such as VMs , applications , and in a data - storage device . FIG . 14 includes a magnified view

ers , hosted by the server computers in the physical 1408 of three consecutive metric values represented by
data center 1304. The virtualization layer 1302 may also points . Each point represents an amplitude of the metric at
include a virtual network (not illustrated) of virtual switches , 35 a corresponding time stamp . For example , points 1410-1412
routers , load balancers , and network interface cards formed represent consecutive metric values (i.e. , amplitudes) Xi - 1 ,
from the physical switches , routers , and network interface x , and x +1 recorded in a data - storage device at correspond
cards of the physical data center 1304. Certain server ing time steps ti - 1 , t ;, and ti + 1 . The example metric may
computers host VMs and containers as described above . For represent usage of a physical or virtual resource . For
example , server computer 1314 hosts two containers 1324 , 40 example , the metric may represent CPU usage of a core in
server computer 1326 hosts four VMs 1328 , and server a multicore processor of a server computer over time . The
computer 1330 hosts a VM 1332. Other server computers metric may represent the amount of virtual memory a VM
may host applications as described above with reference to uses over time . The metric may represent network through
FIG . 4. For example , server computer 1318 hosts four put for a server computer . Network throughput is the number
applications 1334. The virtual - interface plane 1306 abstracts 45 of bits of data transmitted to and from a physical or virtual
the resources of the physical data center 1304 to one or more object and is recorded in megabits , kilobits , or bits per
VDCs comprising the virtual objects and one or more virtual second . The metric may represent network traffic for a server
data stores , such as virtual data stores 1338 and 1340. For computer . Network traffic at a physical or virtual object is a
example , one VDC may comprise VMs 1328 and virtual count of the number of data packets received and sent per
data store 1338 . 50 unit of time .

In the following discussion , the term " object " is used to In FIGS . 14B - 14C , a monitoring server 1414 collects
refer to a physical object or virtual object , such as a server numerous metrics associated with numerous physical and
computer , network device , application , VM , virtual network virtual resources . The monitoring server 1414 may be imple
device , container , or any other physical or virtual object of mented in a VM to collect and processes the metrics , as
a distributed computing system for which metric data can be 55 described below , to identify abnormal behaving objects of
collected to evaluate abnormal or normal behavior of the the distributed computing system and may generate recom
object . The term “ resource ” refers to a physical resource of mendations to correct abnormally behaving objects or
a distributed computing system , such as , but are not limited execute remedial measures , such as reconfiguring a virtual
to , a processor , a core , memory , a network connection , network of a VDC or migrating VMs from one server
network interface , data - storage device , a mass - storage 60 computer to another . For example , remedial measures may
device , a switch , a router , and other any other component of include , but are not limited to , powering down server
the physical data center 1304. Resources of a server com- computers , replacing VMs disabled by physical hardware
puter and clusters of server computers may form a resource problems and failures , spinning up cloned VMs on addi
pool for creating virtual resources of a virtual infrastructure tional server computers to ensure that the services provided
used to run virtual objects . The term “ resource ” may also 65 by the VMs are accessible to increasing demand or when one
refer to virtual resource , which may have been formed of the VMs becomes compute or data - access bound . As
from physical resources assigned to a virtual object . For shown in FIGS . 14B - 14C , directional arrows represent met

N

5 ZWI 1.)

15

US 11,061,796 B2
17 18

rics sent from physical and virtual resources to the moni- where the mean of the metric is given by
toring server 1414. In FIG . 14B , PC 1310 , server computers
1308 and 1312-1315 , and mass - storage array 1322 sends a
metric to the monitoring server 1414. Clusters of server (3b)

? Hj computers may also send metrics to the monitoring server
1414. For example , a cluster of server computers 1312-1315
sends metrics to the monitoring server 1414. In FIG . 14C ,
the operating systems , VMs , containers , applications , and When the standard deviation 0 ; > Est where & st is a standard
virtual storage may independently send metrics to the moni deviation threshold (e.g. , Est = 0.01) , the metric v ; (t) is con
toring server 1414 , depending on when the time series data 10 sidered to have acceptable variation and is retained . Other
of the metric are generated . For example , certain objects wise , when the standard deviation 0 , ses , the metric v ; (t) is

omitted from consideration of abnormal and normal behav may send time series data of metric as the time series data ior of the object . Let M be the number of metrics that have is generated while other objects may only send time series acceptable variation i.e. , > Ext) . data of metric at certain times or when requested to send by FIGS . 15A - 15B show plots of two different example
the monitor server 1414 . metrics . Horizontal axes 1501 and 1502 represent time .

The millions of metrics collected and recorded by the Vertical axis 1503 represents a range of metric values for a
monitoring server 1414 contain information that is used to first metric vi (t) . Vertical axis 1504 represents the same
determine , as described below , whether individual objects of range of metric values for a second metric v2 (t) . Curve 1505
the physical data center exhibit abnormal or normal behav- 20 represents the metric vz (t) over a time interval between time
ior . Each object may have tens to hundreds of associated stamps t , and ty . Curve 1506 represents the metric v2 (t) over
metrics . A server computer may have numerous metrics that the same time interval . FIG . 15A includes a plot an example
represent usage of each core of a multicore core processor , first distribution 1507 of the first metric centered about a
memory usage , storage usage , network throughput , error mean value Ui , and FIG . 15B includes a plot an example
rates , datastores , disk usage , average response times , peak 25 second distribution 1508 of the second metric centered about
response times , thread counts , and power usage , just to name a mean value ul2 . The distributions 1507 and 1508 reveal that
a few . A virtual object , such as a VM , may have hundreds of the first metric 1505 has a much higher degree of variability

than the second metric . associated metrics that monitor both physical and virtual
resource usage , such as virtual CPU metrics , virtual memory The resources associated with an object have different
usage metrics , virtual disk usage , virtual storage space , 30 corresponding metrics in which the intervals between time
number of data stores , average and peak response times for stamps for certain metrics may not be uniform and the time

stamps for many metrics may be different . For example , various physical and virtual resources of the VM , network various different resources may generate metric data peri throughput , and power usage , just to name a few . odically at regular intervals , and the regular intervals In order to determine whether an object is exhibiting be
35 similar or identical for the resources . Other resources may abnormal or normal behavior , processes and systems iden generate metric values nonperiodically and the times at tify the metrics associated with the object . A set of metrics which a given resource generates metric data may be syn associated with an object is denoted by : chronized with respect to the times at which another

resource generate metric data . In certain cases , a data
40 collection computational entity , such as the monitoring (2) { v ; (0) 44 = { { x ?) = { x } (e) server 1414 , may request metric data from data sources at

regular intervals while , while in other cases , the data sources
may actively send metric data at periodic intervals or ,

where alternatively , whenever metric data becomes available . As a
j is a metric index for the object j = 1 , ... , J ; and 45 result , the metrics associated with an object may not be
J is the number of metrics associated with the object . synchronized .
Processes and system prepare the set of metrics associated FIG . 16A shows example plots of three unsynchronized

with an object by deleting constant and almost - constant metrics for CPU usage 1602 , memory 1603 , and network
metrics , which are not helpful in identifying abnormal throughput 1606 for an object recorded in the same time
behavior of the object . Constant or nearly constant metrics 50 interval . Horizontal axes , such as horizontal axis 1608 ,
may be identified by computing the standard deviation of represent the length of the time interval . Vertical axes , such
each metric . The standard deviation is a measure of the as vertical axis 1610 , represent ranges of metric values for
amount of variation or dispersion associated with a metric . the CPU , memory , and network throughput . Dots represent
A large standard deviation indicates large variability in the metric values recorded at different time stamps in the time
metric . A small standard deviation indicates low variability 55 interval . Dashed lines 1612-1614 mark the same time t ; in
in the metric . The standard deviation is compared with a the time interval . A metric value 1616 represents CPU usage
threshold to determine whether the metric has acceptable for the object recorded at time step t ;. However , metric
variation for identifying abnormal or normal behavior of the values 1617 and 1618 representing memory and network
object . throughput are not recorded at the same time step t ;.

The standard deviation of a metric is computed by : For the types of processing carried out by the currently
disclosed processes and systems , it is convenient to ensure
that the metric values for all metrics used to evaluate normal

(3a) and abnormal behavior of an object are logically emitted in
0 ; = (x – 4 ; } ? a periodic manner and that the transmission of metric data is

65 synchronized among the metrics to a general set of uni
formly spaced time stamps . The metrics may be synchro
nized to the general set of uniformly spaced time stamps .

may

60

M

5

10

=

US 11,061,796 B2
19 20

Metric values may be synchronized by computing a running- The numerical rank m indicates that the metrics { v } (t) } ; = 1
time average of metric values in a sliding time window independent metrics .
centered at a time step of the general set of uniformly spaced
time stamps . In an alternative implementation , the metric Given the numerical rank m , the m independent metrics
values with time stamps in the sliding time window may be may be determined using QR decomposition of the corre
smoothed by computing a running time median of metric lation matrix . In particular , the m independent metrics (i.e. ,
values in the sliding time window centered at a time stamp uncorrelated metrics) are determined based on the m largest
of the general set of uniformly spaced time steps . Processes diagonal elements of an R matrix obtained from QR decom
and systems may also synchronize the metrics by deleting position of the correlation matrix .
time stamps of missing metric values or interpolating miss FIG . 18 shows QR decomposition of the correlation ing metric data at time stamps of the general set of uniformly matrix shown in FIG . 17. The M columns of the correlation spaced time stamps using linear , quadratic , or spline inter
polation . matrix are denoted by C1 , C2 , Cm , M columns of the
FIG . 16B shows a plot of metric values of a metric Q matrix are denoted by Q1 , Q2 , ... , Qm , and M diagonal

synchronized to time steps of a general set of uniformly elements of the R matrix are denoted by r11 , r22 , . , IMM
spaced time steps . Horizontal axis 1620 represents time . 15 The columns of the Q matrix are determined based on the
Vertical axis 1622 represents a range of metric values . Solid columns of the correlation matrix as follows :
dots represent metric values recorded at time stamps . Marks
located along time axis 1620 represent time stamps of a
general set of uniformly spaced time stamps . Note that the U ; (8a) Qi = metric values are not aligned with the time stamps of the 20 || U ; ||
general set of uniformly spaced time stamps . Open dots
represent metric values aligned with the time steps of the
general set of uniformly spaced time stamps . Bracket 1624 where
represents a sliding time window centered at a time stamp t4 || U || denotes the length of a vector Uj ; and or the general set . The metric values 1626-1630 located with 25
the sliding time window 1624 are averaged to obtain syn the vectors U , are calculated according to
chronized metric value 1631 at the time stamp 14 .

Certain metrics associated with an object may also be U1 = C1 (86) correlated . Correlated sequences are not independent and
may contain redundant information . Processes and systems (Q ;, C ;) (8C) further reduce the number of metrics by eliminating corre U ; = C ; - -Q ;
lated metrics form the set of metrics associated with the (Q ;, Q ;)
object . Processes and systems begin by computing a corre
lation matrix from pairs of the time synchronized sequences
of metric data . 35 where (: , :) denotes the scalar product .
FIG . 17 shows an example an MxM correlation matrix of The diagonal matrix elements of the R matrix are given by

M metrics . Each element of the correlation matrix is com
puted as follows : (8d)

40 The metrics that correspond to the largest in (i.e. , numerical
(6) rank) diagonal elements of the R matrix are uncorrelated ,

(x - 2) (x-) synchronized , and have acceptable variation over time . Let
corr (vj , Vk)

30

IWT

(2.c)

ZWI
ojok

45 { v } (O) 2-1 = { { * ")) - * = { (zky (4) { (9)

50

where j , k = 1 , M.
The correlation matrix is a square symmetric matrix . The
eigenvalues of the correlation matrix are computed . A
numerical rank of the correlation matrix is determined from
the eigenvalues based on tolerance Ostsl . For example , the
tolerance t may be in an interval 0.8sts) . Consider a set of
eigenvalues , { x } = 1M , of the correlation matrix . The eigen
values of the correlation matrix are positive values . The
eigenvalues are rank ordered from largest to smallest (i.e. ,
akik + 1 for k = 1 , ... , M with à , the largest eigenvalue and
ày the smallest eigenvalue) . The accumulated impact of the
eigenvalues is determined based on the tolerance T accord
ing to the following conditions :

where k is the index for metrics that are uncorrelated ,
synchronized , and have acceptable variation over time .

Processes and system normalize each of the m metrics and
compute a sequence of object indicators from the m nor
malized metrics . First , a normalized metric is denoted given
by

55

N Dr (t) = (x2 (10)

60 The normalized metric values of the normalized metric are
computed by ?? + + m - 1 (7a)

< T
M

?? + (75) + ?? - 1 + ??
M

2 ? - (k)
x

(k) (k) X ; — xmin
(k) (k) Xmax – Xmin 65

where m is the numerical rank of the correlation matrix .

US 11,061,796 B2
21 22

where Xmax ") is the maximum metric value and Xmin ' is the where
minimum metric value in the k - th metric L is an integer ;

(ind) is the object indicator value at time stamp ti + 1 ;
p (t :) is the moving average at time step t? ; and
the sliding time window is [ti - L , ... , ti , ... , \ __) .

In another implementation , the loess function is given by

Xi + 1

5
i = 1 "

(13)
p (ti) = Bit + € ? 10

The sequence of object indicators is a combined represen
tation of the m normalized metrics and is called an “ indicator
metric . ” One of the following object indicator functions
below may be used to compute the indicator metric values
of an indicator metric from the in normalized metrics :
(1) An average of available time series as an object indicator
is given by

15

Vave (t) = (xave) ; = N (11a)

where
B ; ' s are the coefficients ; and
E is a randomly selecting value from a fixed normal

distribution with mean zero and non - zero variance .
If the indicator metric is also seasonal , a seasonal component
may be determined by harmonic analysis , such as Fourier
analysis , applied to the metric . The seasonal component may
be added to the loess function as follows :

where

m

(ave) Xi xik ? 20
m

k = 1

(14)
(2) An average of absolute available time series as an object
indicator is given by

plc) = ? Biti + & + s ()
j = 0

25

(ave_abs)
i = 1

where
30 71

(ave_abs)
X ; ?? m

(E) N

where

+

where s (t ;) is the seasonal component at time stamp t ;.
Vave_abs (t) = (xlave_ad (11b) Residuals are computed between the object indicator values

of the sequences of object indicators and corresponding
points along the loess function by :

| xk ; and ri = x ; (ind) -p (t :) (15)

for i = 1 , ... , N.
FIGS . 19A - 19C show an example of determining a

1 : 1 is the absolute value operator . sequence of residuals for an example indicator metric . FIG .
(3) Euclidean distance as an object indicator is given by 35 19A shows a plot of the example indicator metric . Horizon

tal axis 1902 represents time . Vertical axis 1904 represents
a range of indicator values . Dots , such as dot 1906 , represent

VE (t) = (x " object indicator values computed from in normalized (110)
sequences of metric data according to one of the four object

40 indicators represented by Equations (11a) - (11d) . FIG . 19B
shows a curve 1908 that represents an example loess func x) = V2 ... + ({ M) , 2 . tion computed from the indicator metric , as described above
with reference to Equations (12) and (13) . Open dots along

(4) Maximum - distance as an object indicator is given by curve 1908 represents loess function values at the time
45 stamps of the indicator metric . Vertical line 1910 between

object indicator value 1906 and loess function value 1912
ve (t) = (x) " represents a residual according to Equation (15) . FIG . 19C (110)

shows a plot of residuals between the indicator metric and
the loess curve shown in FIG . 19A . Vertical axis 1914

x { max) = max { \ x { 1 } , ... , M) } } . 50 represents a range of indicator values . Dots represent residu
als between the loess curve values and object indicator
values . For example , dot 1916 represents the value of the

Processes and systems identify outlier indicator values in residual 1910 between the object indicator value 1906 and
the indicator metric by first fitting a loess function to the loess curve value 1912 .
indicator metric and subtracting the loess function from the 55 Outlier residuals of a sequence of residuals are residuals
indicator metric . If the indicator metric is non - trendy and that lie outside a quantile range of a (q? - a - 9a) , where la is
non - seasonal data , the loess function may be a locally the a - th quantile of the residuals and 0 < a < 1 . For example ,
weighted scatterplot smoothing function fit to the indicator if the residuals are normally distributed , outlier residuals lie
metric . In one implementation , the locally weighted scat- outside boxplots with a range of +1.5 (90.75-90.25) and
tered smoothing function may be a moving average in a 60 extreme outlier residuals lie outside the range 13 (90.75–
sliding time window given by 40.25) , where 9025 and are quartiles and the difference

(90.75-40.25) is the inner quartile range . The time stamps of
the outlier residuals are identified as outlier time stamps in

(12) which one or more of the metrics used to form the indicator
p (t ;) 65 metric record abnormal behavior exhibited by the object .

The object indicators that correspond to the outlier time
stamps are outlier indicators .

(max) i = 1

where

90.75

1 (ind) Xiti 2L +1
-L

(68)

US 11,061,796 B2
23 24

FIG . 19D shows a plot of residuals and quantiles that FIG . 21B shows an example of the rules Rule 1 , 2 , and 3
serve as upper and lower residual thresholds . The upper limit applied to run - time metric data generated by metrics 4 , 6 , 11 ,
1918 of the quantile alq? - a - 9 .) is an upper threshold . 14 , 17 , 23 , and 64. FIG . 21A shows examples of run - time
Residuals 1920-1923 are greater than the upper limit 1918 metric values 2116 of each of the metrics 4 , 6 , 11 , 14 , 17 , 23 ,
and are identified as outlier residuals . The lower limit 1924 5 and 64 generated at the same time stamp to . For example ,
of the quantile -a (q? - a - 9a) is a lower threshold . Residuals x® (t) = 2 is the metric value for the metric 6 generated at the
1926-1928 are less than the lower limit 1924 and are also tune stamp to . The conditions for the rules are displayed next
identified as outlier residuals . Outlier time stamps that to each of the run - time metric values . According to Rule 1
correspond to the outlier residuals are denoted by toi , to2 , toz , in FIG . 21A , the metric values x (t .) = 2 , x (11) (t .) = 15 , and
104 , 105 , 106 , and to7 . FIG . 19E shows a plot of the indicator 10 x (t .) = 100 satisfy the three conditions for a Rule 1 vio
metric , shown in FIG . 19A , with outlier indicators 1930- lation , which triggers an alert 2118. The example of FIG .
1935 that correspond to the outlier time stamps . One or more 21B reveals that the run - time metric value of metric 17 does
of the metrics at the outlier time stamps records is assumed not violate Rule 2 , which does not trigger an alert . The
to record abnormal behavior by the object . For example , run - time metric values for metrics 4 , 6 , 14 , 17 , and 23
suppose the indicator metric in FIG . 19E was created using 15 violate the Rule 3 , which triggers an alert 2120. The alerts
the maximum distance given by Equation (11d) . The outlier may be generated on an administration console to notify IT
indicator 1930 is the maximum value of the absolute values administrators of the abnormal behavior of the object .
18 (1) (04) , 18 (2) (4) , and , ... , 18 (M) (404) , which is an outlier Given the many different types of abnormal object states ,
for the corresponding metric . IT administrators may have developed different remedial

Processes and systems compute rules for evaluating the 20 measures for correcting the various different abnormal
metrics of the object using a tree boosting C5.0 Algorithm . object states . Processes and systems identify a rule violation
The outlier time stamps and the in metrics are input to the that triggers an alert identifying the abnormal object state
C5.0 Algorithm , which uses machine learning to generate and may also generate instructions for correcting the abnor
rules that are used to identify abnormal behavior of the mality or execute preprogrammed computer instructions that
object . FIG . 20 shows an example of C5.0 Algorithm used 25 correct the abnormality . For example , if an object is a virtual
to generate rules for each of the metrics associated with the object and an alert is generated indicating inadequate virtual
object . Block 2002 represents the computation operations processor capacity , remedial measures that increase the
carried out by C5.0 Algorithm . Example plots 2004 , 2006 , virtual processor capacity of the virtual object may be
and 2008 represent J metrics associated with the object . For executed or the virtual object may be migrated to a different
example , plot 2004 represents a metric 1 , plot 2006 repre- 30 server computer with more available processing capacity .
sents a metric 2 , and plot 2008 represents a metric J. Ellipsis FIG . 22 shows an example graph that represents opera
2010 represents the remaining metrics associated with the tions executed in response to a single rule violation . Nodes
object . As shown in FIG . 20 , the J metrics associated with represent a run - time metric value , Rule q , and operations
the object and the outlier time stamps 2012 are input to the that are executed if Rule q is violated . Directional arrows
C5.0 Algorithm to generate K rules , where K < J . Each rule 35 represent directed edges that represent the relationships
provides a classification of an abnormal state of the object . between nodes . Truth values are represented by T and F and
A rule may be associated with a single metric , or a rule may are used to represent whether the rule has been violated , as
be associated with numerous metrics . Violation of a rule described above with reference to FIGS . 21A - 21B . Node
may be an indication of a particular abnormal state of the 2201 represents run - time or newly identified metric value .
object . Depending on the type of rule violation , processes 40 Node 2202 represents violation of Rule q . Node 2203
and systems may generate an alert identifying an abnormal represents normal operation of the resource . If the Rule q is
state of the object . The rules obtained by the C5.0 Algorithm violated , node 2204 represents generating an alert that
in FIG . 20 may be used to identify outliers in run - time metric identifies the type of rule violation , denoted by Abnormality
values added to corresponding metrics . A. For example , Abnormality A may represent an excessive
FIG . 21A shows three examples of rules obtained from the 45 error rate . Node 2205 represents generating recommended

process described with reference to FIG . 20. The three remedial measure A that correct Abnormality A or automati
example rules are identified as Rule 1 2101 , Rule 2 2102 , cally execute remedial measure A.
and Rule 3 2103. Rule 1 comprises three conditions 2104- In other instances , certain abnormal behaviors may be
2106 regarding run - time metric values for metrics 6 , metric identified by a combination of two or more rule violations .
11 , and metric 68. When the three conditions 2104-2106 are 50 Each combination of rule violations may have associated
satisfied for three run - time metric values of corresponding remedial measures for correcting the problem . For example ,
metrics 6 , metric 11 , and metric 68 at about the same time a computer server that has become compute bound may be
stamp , Rule 1 has been violated and an alert is generated identified when rules associated with CPU response time
indicating the object is behaving abnormally due to a Rule and memory usage are violated . A single alert may be
1 violation . Rule 2 comprises a single condition 2108 55 generated indicating the server computer has become com
regarding run - time metric values for metric 17. When the pute bound . Remedial measures may include restarting the
condition 2108 is satisfied for a run - time metric value of server computer or migrating virtual objects to other server
corresponding metric 17 , Rule 2 has been violated and an computers in order to reduce the workload at the server
alert is generated indicating the object is behaving abnor- computer .
mally due to a Rule 2 violation . Rule 3 comprises five 60 FIG . 23 shows an example graph that represents opera
conditions 2110-2114 regarding run - time metric values for tions that may be executed in response to different combi
metrics 4 , 6 , 14 , 17 , and 23. When the four conditions nations of rule violations . Nodes 2301-2303 represents
2111-2114 are satisfied for four run - time metric values of the run - time metrics values for the metrics . Nodes 2304-2306
corresponding metrics 4 , 6 , 14 , 17 , and 23 at about the same represent rules denoted by Rule q , Rule r , and Rule s .
time stamp , Rule 3 has been violated and an alert is 65 Ellipsis 2307 represents other nodes of the graph not shown .
generated indicating the object is behaving abnormally due Nodes 2308 , 2310 , and 2312 represent three different types
to a Rule 3 violation . of alerts associated with three different types of abnormali

D.

US 11,061,796 B2
25 26

ties identified as Abnormality B , Abnormality C , and Abnor- tion matrix based on the eigenvalues . In block 2511 , QR
mality D. For example , Abnormality B may represent exces- decomposition is performed on the correlation matrix , as
sive virtual CPU usage , Abnormality C may represent a described above with reference to Equations (8a) - (8d) to
combination of excessive virtual CPU and virtual memory obtain a diagonal R matrix . In block 2512 , largest diagonal
usage , and Abnormality D may represent a combination of 5 elements of the R matrix are identified based on the numeri
excessive virtual CPU usage , virtual memory usage , and cal rank . In block 2513 , metrics that do not correspond to the
virtual data storage usage . Nodes 2309 , 2311 , and 2313 largest diagonal elements of the R matrix are deleted from
represent three different types of remedial measures identi further consideration below .
fied as remedial measure B , remedial measure C , and
remedial measure D. For example , remedial measure B may 10 FIG . 26 shows a control - flow diagram of the routine
represent increasing virtual CPU , remedial measure C may “ perform data labelling by identifying outlier time stamps ”
represent increasing virtual CPU and virtual memory , and called in block 2403 of FIG . 24. In block 2601 , each metric
remedial measure D may represent migrating the virtual is normalized as described above with reference to Equation
object to a different server computer . As shown in FIG . 23 , (10) . In block 2602 , a indicator metric is computed accord
if the Rule q is violated and the Rule r is not violated , node 15 ing to one of the object indicators described above with
2308 generates an alert identifying abnormality B. Node reference to Equations (11a) - (11d) and FIG . 19A . In block
2309 generates recommended remedial measure B or auto- 2603 , a loess function is fit to the indicator metric as
matically executes remedial measure B. If the Rules q and described above with reference to Equations (12) - (14) and
r are violated and the Rule s is not violated , node 2310 FIG . 19B . In block 2604 , a sequence of residuals is com
generates an alert identifying Abnormality C. Node 2311 20 puted as described above with reference to Equation (15)
generates recommended remedial measure C or automati- and FIG . 19C . In block 1605 , residuals are compared to
cally executes remedial measure C. If the Rules q , r , and s upper and lower bounds . Residuals that violate the upper and are violated , node 2312 generates an alert identifying Abnor lower bounds are identified as outlier residuals as described mality D. Node 2313 generates recommended remedial above with reference to FIG . 19D . In block 1906 , time measure D or automatically executes the remedial measures 25 stamps of the outlier residuals are identified as outlier time

stamps as described above with reference to FIGS . 19D and The methods described below with reference to FIGS . 19E . 24-27 are stored in one or more data - storage devices as
machine - readable instructions that when executed by one or FIG . 27 shows a control - flow diagram of the routine
more processors of the computer system shown in FIG . 1 30 " apply run - time abnormality detection based on the rules ”
detect abnormally behaving objects of distributed comput- called in block 2405 of FIG . 24. In decision blocks , 2701 ,
ing system . 2701 , and 2703 rules are applied to run - time metric data
FIG . 24 shows a control - flow diagram of a method that 2704 , 2705 , and 2706 , respectively . Ellipsis 2708 represents

detects abnormally behaving objects of a distributed com- rules (not shown) applied to the run - time metric data . When
puting system . In block 2401 , metrics associated with an 35 one of the rules represented by decision blocks 2701 , 2702 ,
object of a distributed computing system are identified . In and 2703 are violated , control flows to corresponding blocks
block 2402 , a routine “ apply data preparation to the metrics ” 2709 , 2710 , and 2711 , in which a corresponding alert is called to remove constant and nearly constant metrics , identifying the abnormality associated with the rule viola synchronize the metrics , and remove correlated metrics from
consideration . In block 2403 , a routine “ perform data label- 40 21 and 22. In blocks 2712 , 2713 , and 2714 , remedial tion is generated as described above with reference to FIGS .
ling by identifying outlier time stamps ” is called to identify
the time steps when abnormalities occur . In block 2404 , measures are provided or executed to correct the abnormal
rules that classify the state of the object are generated based behavior of the object . In decision blocks , 2715 , 2716 , and
on the collected metrics and the outlier time stamps , as 2717 combinations of rules are applied to the run - time
described above with reference to FIG . 20. In block 2405 , a 45 metric data 2718 , 2719 , and 2720 , respectively . Ellipsis
routine " apply run - time abnormality detection based on the 2721 represents combinations of rules (not shown) associ
rules ” is called to detect anomalous behavior of the object ated with combinations of run - time metric data . When one
using the rules . of the rules represented by decision blocks 2715 , 2716 , and

FIG . 25 shows a control - flow diagram of the routine 2717 are violated , control flows to corresponding blocks
“ apply data preparation to the metrics ” called in block 2402 50 2722 , 2723 , and 2724 , in which a corresponding alert
of FIG . 24. A loop beginning with block 2501 repeats the identifying the abnormality associated with combinations of
operations represented by blocks 2502-2506 for each metric rule violations is generated as described above with refer
associated with the object . In block 2502 , a mean is com- ence to FIG . 23. In blocks 2725 , 2726 , and 2727 , remedial
puted for the metric . In block 2503 , a standard deviation is measures are provided or executed to correct the abnormal
computed based on the metric and the mean computed in 55 behavior of object .
block 2502. In block 2504 , when the standard deviation is It is appreciated that the previous description of the less than a standard deviation threshold , control flows to disclosed embodiments is provided to enable any person block 2505. In block 2505 , the metric is deleted and not used
to below . In block 2506 , the operations represented by skilled in the art to make or use the present disclosure .
blocks 2502-2505 are repeated for another metric . In block 60 Various modifications to these embodiments will be appar
2507 , each metric is synchronized to a general set of ent to those skilled in the art , and the generic principles
uniformly spaced time stamps , as described above with defined herein may be applied to other embodiments without
reference to FIG . 16B . In block 2508 , correlation matrix is departing from the spirit or scope of the disclosure . Thus , the
computed for each pair of metrics as described above with present disclosure is not intended to be limited to the
reference to Equation (6) and FIG . 17. In block 2509 , 65 embodiments shown herein but is to be accorded the widest
eigenvalues are computed for the correlation matrix . In scope consistent with the principles and novel features
block 2510 , a numerical rank is determined for the correla- disclosed herein .

10

15

20

25

US 11,061,796 B2
27 28

The invention claimed is : generating an alert displayed on an administration
1. In a process stored in one or more data - storage devices console when the run - time outlier metric values are

and executed using one or more processors of a computer detected .
system for detecting abnormally behaving objects of a 7. The process of claim 1 wherein applying the rules to the
distributed computing system , the improvement comprising : 5 run - time metric data of the metrics to detect run - time

identifying a set of metrics associated with an object of a abnormal behavior of the object comprises :
distributed computing system ; for each of combination of metrics

labelling time stamps of outlier metric values of the set of comparing run - time metric values of each metric in the
metrics as outlier time stamps ; combination of metrics to a rule associated with the

computing rules based on the set of metrics and the outlier metric ;
time stamps , each rule able to identify a type of identifying run - time metric values that violate the rules
abnormal behavior exhibited by the object ; as run - time outlier metric values ; and

applying the rules to run - time metric data of the set of generating an alert displayed on an administration
metrics to detect run - time abnormal behavior of the console when the run - time outlier metric values for
object ; and the combination of metrics are detected .

executing remedial measures to correct the abnormal 8. A computer system for detecting abnormally behaving
behavior of the object when at least one of the rules has objects of a distributed computing system , the system com
been violated by the run - time metric data . prising :

2. The process of claim 1 further comprising : one or more processors ;
deleting constant and nearly constant metrics from the set one or more data storage devices ; and

of metrics ; machine - readable instructions stored in the one or more
synchronizing the set of metrics to a general sequence of data - storage de that cuted using the one

time steps ; and or more processors controls the system to execute
deleting correlated metrics from the set of metrics . operations comprising :
3. The process of claim 2 wherein deleting the constant identifying a set of metrics associated with an object of and nearly constant metrics in the set of metrics comprises : a distributed computing system ; computing a standard deviation for each metric in the set labelling time stamps of outlier metric values of the of metric data ; and metrics as outlier time stamps ; deleting each metric with a standard deviation less than a 30

standard deviation threshold . computing rules based on the set of metrics and the
outlier time stamps , each rule able to identify a type 4. The process of claim 2 wherein deleting the correlated

metrics from the set of metrics comprises : of abnormal behavior exhibited by the object ;
computing a correlation matrix for the sets of metrics ; applying the rules to run - time metric data of the set of
determining eigenvalues of the correlation matrix ; metrics to detect run - time abnormal behavior of the
determining numerical rank of the correlation matrix object ; and

based on the eigenvalues ; executing remedial measures to correct the abnormal
decomposing the correlation matrix into a Q matrix and behavior of the object , when at least one of the rules

an R matrix ; has been violated by the run - time metric data .
identifying a largest number of diagonal elements of the 40 9. The computer system of claim 8 further comprising :
R matrix , the largest number of diagonal elements deleting constant and nearly constant metrics from the set
equal to the numerical rank ; and of metrics ;

deleting the metrics from sets of metric data that do not synchronizing the set of metrics to a general sequence of correspond to the diagonal elements . time steps ; and 5. The process of claim 1 wherein labelling the time 45
stamps of the outlier metric values of the metrics as the deleting correlated metrics from the set of metrics .
outlier time stamps comprises : 10. The computer system of claim 9 wherein deleting the

normalizing each metric to obtain a normalized set of constant and nearly constant metrics in the set of metrics
metrics ; comprises :

computing an indicator metric from the normalized set of 50 computing a standard deviation for each metric in the set
metrics ; of metric data ; and

fitting a loess function to the indicator metric ; deleting each metric with a standard deviation less than a
computing a sequence of residuals based on differences standard deviation threshold .

between the loess function and the indicator metric ; 11. The computer system of claim 9 wherein deleting the
identifying residuals in the sequence of residuals that 55 correlated metrics from the set of metrics comprises :

violate an upper bound or a lower bound for object computing a correlation matrix tor the sets of metrics ;
indicator values as outlier residuals ; and determining eigenvalues of the correlation matrix ; identifying time stamps of the outlier residuals as outlier determining numerical rank of the correlation matrix

based on the eigenvalues ; 6. The process of claim 1 wherein applying the rules to the 60
run - time metric data of the metrics to detect run - time decomposing the correlation matrix into a Q matrix and
abnormal behavior of the object comprises : an R matrix ;

for each metric identifying a largest number of diagonal elements of the
comparing run - time metric values to a rule associated R matrix , the largest number of diagonal elements

with the metric ; equal to the numerical rank ; and
identifying run - time metric values that violate the rules deleting the metrics from sets of metric data that do not

as run - time outlier metric values ; and correspond to the diagonal elements .

35

time stamps .

65

5

10

15

US 11,061,796 B2
29 30

12. The computer system of claim 8 wherein labelling the 17. The medium of claim 16 wherein deleting the constant
time stamps of the outlier metric values of the metrics as the and nearly constant metrics in the set of metrics comprises :
outlier time stamps comprises : computing a standard deviation for each metric in the set

normalizing each metric to obtain a normalized set of of metric data ; and
metrics ; deleting each metric with a standard deviation less than a

computing a indicator metric from the normalized set of standard deviation threshold .
metrics ; 18. The medium of claim 16 wherein deleting the corre fitting a loess function to the indicator metric ; lated metrics from the set of metrics comprises : computing a sequence of residuals based on differences computing a correlation matrix for the sets of metrics ; between the loess function and the indicator metric ; determining eigenvalues of the correlation matrix ; identifying residuals in the sequence of residuals that
violate an upper bound or a lower bound for object determining numerical rank of the correlation matrix

based on the eigenvalues ; indicator values as outlier residuals ; and
identifying time stamps of the outlier residuals as outlier decomposing the correlation matrix into a Q matrix and

time stamps . an R matrix ;
13. The computer system of claim 8 wherein applying the identifying a largest number of diagonal elements of the

rules to the run - time metric data of the metrics to detect R matrix , the largest number of diagonal elements
run - time abnormal behavior of the object comprises : equal to the numerical rank ; and

for each metric deleting the metrics from sets of metric data that do not
comparing run - time metric values to a rule associated 20 correspond to the diagonal elements .

with the metric ; 19. The medium of claim 15 wherein labelling the time
identifying run - time metric values that violate the rules stamps of the outlier metric values of the metrics as the

as run - time outlier metric values ; and outlier time stamps comprises :
generating an alert displayed on an administration normalizing each metric to obtain a normalized set of

console when the run - time outlier metric values are 25 metrics ;
detected . computing a indicator metric from the normalized set of

14. The computer system of claim 8 wherein applying the metrics ;
rules to the run - time metric data of the metrics to detect fitting a loess function to the indicator metric ; run - time abnormal behavior of the object comprises : computing a sequence of residuals based on differences for each of combination of metrics between the loess function and the indicator metric ; comparing run - time metric values of each metric in the identifying residuals in the sequence of residuals that combination of metrics to a rule associated with the violate an upper bound or a lower bound for object metric ; indicator values as outlier residuals ; and identifying run - time metric values that violate the rules

as run - time outlier metric values ; and identifying time stamps of the outlier residuals as outlier
time stamps . generating an alert displayed on an administration

console when the run - time outlier metric values for 20. The medium of claim 15 wherein applying the rules to
the combination of metrics are detected . the run - time metric data of the metrics to detect run - time

15. A non - transitory computer - readable medium encoded abnormal behavior of the object comprises :
with machine - readable instructions for enabling one or more 40 for each metric
processors of a computer system to execute operations comparing run - time metric values to a rule associated
comprising : with the metric ;

identifying a set of metrics associated with an object of a identifying run - time metric values that violate the rules
distributed computing system ; as run - time outlier metric values ; and

labelling time stamps of outlier metric values of the set of 45 generating an alert displayed on an administration
metrics as outlier time stamps ; console when the run - time outlier metric values are

computing rules based on the set of metrics and the outlier detected .
time stamps , each rule able to identify a type of 21. The medium of claim 15 wherein applying the rules to
abnormal behavior exhibited by the object ; the run - time metric data of the metrics to detect run - time

applying the rules to run - time metric data of the set of 50 abnormal behavior of the object comprises :
metrics to detect run - time abnormal behavior of the for each of combination of metrics object ; and comparing run - time metric values of each metric in the executing remedial measures to correct the abnormal combination of metrics to a rule associated with the behavior of the object when at least one of the rules has metric ; been violated by the run - time metric data .

16. The medium of claim 15 further comprising : identifying run - time metric values that violate the rules
deleting constant and nearly constant metrics from the set as run - time outlier metric values ; and

of metrics ; generating an alert displayed on an administration
console when the run - time outlier metric values for synchronizing the set of metrics to a general sequence of the combination of metrics are detected . time steps ; and

deleting correlated metrics from the set of metrics .

30

35

55

60

