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METHODS AND SYSTEMS TO DETERMINE baseline event - type distributions . A normal discrepancy 
BASELINE EVENT - TYPE DISTRIBUTIONS radius of the event - type distributions is computed from the 

OF EVENT SOURCES AND DETECT baseline event - type distribution and the event - type distribu 
CHANGES IN BEHAVIOR OF EVENT tions . A block of run - time event messages generated by the 

SOURCES 5 event source is collected . A run - time event - type distribution 
is computed from the block of run - time event messages . 

CROSS - REFERENCE TO RELATED When the run - time event - type distribution is outside the 
APPLICATION normal discrepancy radius , an alert is generated indicating 

abnormal behavior of the event source . 
This application is a continuation of application Ser . No. 10 

DESCRIPTION OF THE DRAWINGS 15 / 828,227 , filed Nov. 30 , 2017 . 
TECHNICAL FIELD FIG . 1 shows an example of logging event messages in 

event logs . 
This disclosure is directed to automated computational 15 FIG . 2 shows an example of a source code with log write 

systems and methods to compute baseline event - type distri instructions . 
butions for event sources and use the baseline event - type FIG . 3 shows an example of a source code and event 
distributions to detect and report changes in behavior of messages generated from log write instructions . 
event sources . FIG . 4 shows an example of a log write instruction . 

FIG . 5 shows an example of an event message generated 
BACKGROUND by a log write instruction . 

FIG . 6 shows an eight - entry portion of an event log . 
Electronic computing has evolved from primitive , FIG . 7 shows an example of event - type analysis per 

vacuum - tube - based computer systems , initially developed formed on the event message shown in FIG . 5 . 
during the 1940s , to modern electronic computing systems 25 FIG . 8 shows an example of random sampling of event 
in which large numbers of multi - processor computer sys- messages generated by an event source . 
tems , such as server computers , work stations , and other FIG . 9 shows a method of determining an event - type 
individual computing systems are networked together with distribution from event messages . 
large - capacity data - storage devices and other electronic FIG . 10A shows a table of similarities computed for pairs 
devices to produce geographically distributed computing 30 of event - type distributions . 
systems with hundreds of thousands , millions , or more FIG . 10B shows an example plot of similarities . 
components that provide enormous computational band FIG . 11 shows an example of determining an event - type 
widths and data - storage capacities . These large , distributed distribution from run - time event messages . 
computing systems are made possible by advances in com- FIG . 12 shows examples of event - type distributions com 
puter networking , distributed operating systems and appli- 35 puted from continuous blocks of event messages . 
cations , data - storage appliances , computer hardware , and FIG . 13A shows an example plot of event - type distribu 
software technologies . tions as M - tuples in an M - dimensional space . 

In modern computing systems , individual computers , FIG . 13B shows local outlier factors computed for event 
subsystems , and components generally output large volumes type distributions in FIG . 13A . 
of status , informational , and error messages that are collec- 40 FIG . 14 shows a matrix of distances computed between 
tively referred to , in the current document , as “ event mes- pairs of event - type distribution . 
sages . ” In large , distributed computing systems , terabytes of FIG . 15 shows an example of three clusters of event - type 
event messages may be generated each day . The event distribution clusters for an event source that operates in three 
messages are sent to a log management server that records different normal states . 
the event messages in event logs that are in turn stored as 45 FIG . 16A shows a plot of an example run - time event - type 
files in data - storage appliances . Log management servers are distribution and a baseline event - type distribution for twenty 
typically used to determine the types of events recorded in event types . 
the event messages , but log management servers currently FIG . 16B shows a plot of rank ordered absolute values of 
lack the ability to detect anomalous behavior of an event event - type mismatches computed between relative frequen 
source from the many thousands , if not millions , of event 50 cies of the run - time and baseline event types of FIG . 16A . 
messages generated by the event source . System adminis- FIG . 16C shows a plot of event - type mismatches rank 
trators seek methods and systems that automatically detect ordered from largest positive value to largest negative value 
anomalous states of event sources based on the event of the run - time and baseline event types of FIG . 16A . 
messages generated by the event sources . FIG . 17 shows control - flow diagram of a method to 

55 determine a baseline event - type distribution and detect 
SUMMARY abnormal behavior of an event source . 

FIG . 18 shows a control - flow diagram of the routine 
This disclosure describes automated computational meth- “ determine baseline event - type distribution ” called in FIG . 

ods and systems to determine a baseline event - type distri- 17 . 
bution of an event source and use the baseline event type 60 FIG . 19 shows a control - flow diagram of the routine 
distribution to detect changes in the behavior of the event “ determine normal discrepancy radius ” called in FIG . 17 . 
source . In one implementation , blocks of event messages FIG . 20 shows a control - flow diagram of a method to 
generated by the event source are collected and an event- determine a baseline event - type distribution and detect 
type distribution is computed for each of block of event abnormal behavior of an event source . 
messages . Candidate baseline event - type distribution of the 65 FIG . 21 shows a control - flow diagram of the routine 
event - type distributions are identified . The baseline event- “ determine baseline even - type distribution ” called in FIG . 
type distribution has the largest entropy of the candidate 20 . 

a 
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3 4 

FIG . 22 shows a control - flow diagram of the routine then sends the constructed structured event messages to the 
“ determine baseline even - type distribution ” called in FIG . log management server . The administrative console 114 and 
20 . computer systems 102-106 can function without log man 
FIG . 23 shows a control - flow diagram of the routine agement agents and a log management server , but with less 

“ determine normal discrepancy radius ” called in FIG . 20 . 5 precision and certainty . 
FIG . 24 shows a control - flow diagram of the routine There are many different types of architectures of the 

“ determine which cluster run - time event - type distribution computer systems 102-106 and 112 that differ from one 
belongs to ” called in FIG . 20 . another in the number of different memories , including 

different types of hierarchical cache memories , the number 
DETAILED DESCRIPTION 10 of processors and the connectivity of the processors with 

other system components , the number of internal commu 
This disclosure presents automated computational meth nications busses and serial links , and in many other ways . 

ods and systems to determine a baseline event - type distri- FIG . 2 shows a general architectural diagram for various 
bution of event messages and detect abnormal behavior of types of computer systems . The computer system contains 
an event source based on the baseline event - type distribu- 15 one or multiple central processing units ( “ CPUs ” ) 202-205 , 
tion . In a first subsection , logging event messages in event one or more electronic memories 208 interconnected with 
logs is described in a first subsection are described . Methods the CPUs by a CPU / memory - subsystem bus 210 or multiple 
to determine baseline event - type distributions and detect busses , a first bridge 212 that interconnects the CPU / 
abnormal behavior of event sources are described in a memory - subsystem bus 210 with additional busses 214 and 
second subsection . 20 216 , or other types of high - speed interconnection media , 

including multiple , high - speed serial interconnects . These 
Logging Event Messages in Event Logs and busses or serial interconnections , in turn , connect the CPUs 

Determining Event Types and memory with specialized processors , such as a graphics 
processor 218 , and with one or more additional bridges 220 , 

FIG . 1 shows an example of logging event messages in 25 which are interconnected with high - speed serial links or 
event logs . In FIG . 1 , a number of computer systems with multiple controllers 222-227 , such as controller 227 , 
102-106 within a distributed computing system are linked that provide access to various different types of mass - storage 
together by an electronic communications medium 108 and devices 228 , electronic displays , input devices , and other 
additionally linked through a communications bridge / router such components , subcomponents , and computational 
110 to an administration computer system 112 that includes 30 devices . It should be noted that computer - readable data 
an administrative console 114. One or more of the computer storage devices include optical and electromagnetic disks , 
systems 102-106 may run a log monitoring agent that electronic memories , and other physical data - storage 
collects and forwards event messages to a log management devices . 
server that runs on the administration console 114. As FIG . 3 shows an example of a source code 302 of an 
indicated by curved arrows , such as curved arrow 116 , 35 application program , an operating system , a virtual machine , 
multiple components within each of the discrete computer a container , a guest operating system , or any other computer 
systems 102-106 as well as the communications bridge program or machine code . The source code 302 is just one 
router 110 generate event messages that are forwarded to the example of an event source that generates event messages . 
log management server . Event messages may be generated Rectangles , such as rectangle 304 , represent a definition , a 
by any event source . Event sources may be , but are not 40 comment , a statement , or a computer instruction that 
limited to , application programs , operating systems , VMs , expresses some action to be executed by a computer . The 
guest operating systems , containers , network devices , source code 302 includes log write instructions that generate 
machine codes , event channels , and other computer pro- event messages when certain events predetermined by the 
grams or processes running on the computer systems 102- developer occur during execution of the source code 302 . 
106 , the bridge / router 110 and any other components of the 45 For example , source code 302 includes an example log write 
distributed computing system . Event messages may be col- instruction 306 that when executed generates an “ event 
lected at various hierarchical levels within a discrete com- message 1 " represented by rectangle 308 , and a second 
puter system and then forwarded to the log management example log write instruction 310 that when executed gen 
server in the administration computer 112. For example , a erates " event message 2 ” represented by rectangle 312. In 
log monitoring agent may collect and forward the event 50 the example of FIG . 3 , the log write instruction 308 is 
messages at various hierarchical levels . The log manage- embedded within a set of computer instructions that are 
ment server in the administration computer 112 collects and repeatedly executed in a loop 314. As shown in FIG . 3 , the 
stores the received event messages in a data - storage device same event message 1 is repeatedly generated 316. The same 
or appliance 118 as event logs 120-124 . Rectangles , such as type of log write instructions may also be located in different 
rectangle 126 , represent individual event messages . For 55 places throughout the source code , which in turns creates 
example , event log 120 may comprise a list of event repeats of essentially the same type of event message in the 
messages generated within the computer system 102. Each event log . 
log monitoring agent has an agent monitoring configuration In FIG . 3 , the notation “ log.write ( ) ” is a general repre 
that includes a log path and a log parser . The log path sentation of a log write instruction . In practice , the form of 
specifies a unique file system path in terms of a directory tree 60 the log write instruction varies for different programming 
hierarchy that identifies the storage location of an event log languages . In general , event messages are relatively cryptic , 
associated with the event source on the administrative including generally only one or two natural - language words 
console 114 or the data - storage device or appliance 118. The and / or phrases as well as various types of text strings that 
log monitoring agent receives specific file and event channel represent file names , path names , and , perhaps various 
log paths to monitor event logs and the log parser includes 65 alphanumeric parameters . In practice , a log write instruction 
log parsing rules to extract and format lines of event may also include the name of the source of the event 
message into event message fields . The log monitoring agent message ( e.g. , name of the application program or operating 
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system and version ) and the name of the event log to which global unique identifiers ( “ GUIDs ” ) , hypertext transfer pro 
the event message is written . Log write instructions may be tocol status values ( “ HTTP statuses ” ) , universal resource 
written in a source code by the developer of an application locators ( “ URLs ” ) , network addresses , and other types of 
program or operating system in order to record events that common information entities that identify variable aspects 
occur while an operating system or application program is 5 of an event type . By contrast , the phrase “ Repair session ” in 
running . For example , a developer may include log write event message 502 likely occurs within each of many repair 
instructions that are executed when certain events occur , session event messages . In FIG . 7 , the parametric - valued 
such as failures , logins , or errors . tokens in the event message following initial token recog 
FIG . 4 shows an example of a log write instruction 402 . nition are indicated by shading . For example , initial token 

In the example of FIG . 4 , the log write instruction 402 10 recognition determines that the first token 706 is a date and 
includes arguments identified with “ $ . ” For example , the log the second token 707 is a time . The tokens identified as 
write instruction 402 includes a time - stamp argument 404 , a parameters are identified by shaded rectangles , such as 
thread number argument 405 , and an internet protocol ( " IP " ) shaded rectangle 710 of the date 706 and shaded rectangle 
address argument 406. The example log write instruction of 712 of the time 707. The parametric - valued tokens are 
402 also includes text strings and natural - language words 15 discarded leaving the non - parametric text strings , natural 
and phrases that identify the type of event that triggered the language words and phrases , punctuation , parentheses , and 
log write instruction , such as “ Repair session ” 408. The text brackets . Various types of symbolically encoded values , 
strings between brackets “ [ ] ” represent file - system paths , including dates , times , machine addresses , network 
such as path 410. When the log write instruction 402 is addresses , and other such parameters can be recognized 
executed , parameters are assigned to the arguments and the 20 using regular expressions or programmatically . For 
text strings and natural - language words and phrases are example , there are numerous ways to represent dates . A 
stored as an event message in an event log . program or a set of regular expressions can be used to 
FIG . 5 shows an example of an event message 502 recognize symbolically encoded dates in any of the common 

generated by the log write instruction 402. The arguments of formats . It is possible that the token - recognition process 
the log write instruction 402 may be assigned numerical 25 may incorrectly determine that an arbitrary alphanumeric 
parameters that are recorded in the event message 502 at the string represents some type of symbolically encoded param 
time the event message is written to the event log . For eter when , in fact , the alphanumeric string only coinciden 
example , the time stamp 404 , thread 405 , and IP address 406 tally has a form that can be interpreted to be a parameter . The 
of the log write instruction 402 are assigned corresponding currently described methods and systems do not depend on 
numerical parameters 504-506 in the event message 502. 30 absolute precision and reliability of the event - message 
The time stamp 504 , in particular , represents the date and preparation process . Occasional misinterpretations generally 
time the event message is generated . The text strings and do not result in mistyping of event messages and , in the rare 
natural - language words and phrases of the log write instruc- circumstances in which event messages may be mistyped , 
tion 402 also appear unchanged in the event message 502 the mistyping is most often discovered during subsequent 
and may be used to identify the type of event that occurred 35 processing . In the implementation shown in FIG . 7 , the 
during execution of the application program or operating event message 502 is subject to textualization in which an 
system . additional token - recognition step of the non - parametric por 
As event messages are received from various event tions of the event message is performed in order to remove 

sources , the event messages are stored in the order in which punctuation and separation symbols , such as parentheses 
the event messages are received . FIG . 6 shows a small , 40 and brackets , commas , and dashes that occur as separate 
eight - entry portion of an event log 602. In FIG . 6 , each tokens or that occur at the leading and trailing extremities of 
rectangular cell , such as rectangular cell 604 , of the portion previously recognized non - parametric tokens , as shown by 
of the event log 602 represents a single stored event mes- underlining in the retokenized event message 714 in FIG . 7 . 
sage . For example , event message 602 includes a short For example , brackets and a comma 718 are underlined . The 
natural - language phrase 606 , date 608 and time 610 numeri- 45 punctuation , parentheses , and brackets are discarded leaving 
cal parameters , as well as , an alphanumeric parameter 612 a textualized event message of interest 720 that comprises 
that appears to identify a particular host computer . only the non - parametric text strings and natural language 
FIG . 7 shows an example of event - type analysis per- words and phrases of the original event message 502. The 

formed on the event message 502 shown in FIG . 5. The textualized event message 720 represents an event type . 
event message 502 is first tokenized by considering the 50 Other textualized event messages with the same non - para 
event message as comprising tokens separated by non- metric text strings and natural language words and phrase as 
printed characters , referred to as “ white space . ” In FIG . 7 , the textualized event messages 720 are the same event type . 
this initial tokenization of the event message 502 is illus- Another textualized event message with one or more differ 
trated by underlining of the printed or visible characters . For ent non - parametric text strings or natural language words 
example , the date 702 , time 703 , and thread 1804 at the 55 and phrase from those of the textualized event messages 720 
beginning of the text contents of the event message 702 , is of a different event type . 
following initial tokenization , become a first token 706 , a 
second token 707 , and a third token 708 , as indicated by Methods to Determine Baseline Event - type 
underlining . Next , a token - recognition pass is made to Distributions and Detect Abnormal Behavior of 
recognize any of the initial tokens as various types of 60 Event Sources 
parameters . Parameters are tokens or message fields that are 
likely to be highly variable over a set of messages of a FIG . 8 shows an example of random sampling of event 
particular type . Date / time stamps , for example , are nearly messages 802 generated by an event source 804. In FIG . 8 , 
unique for each event message , with two event messages the event messages 804 are recorded an event log 806 as 
having an identical date / time stamp only in the case that the 65 described above . In one implementation , individual event 
two event messages are generated within less than a second messages and series of event messages recorded in the event 
of one another . Additional examples of parameters include log 806 are randomly sampled . Random sampling includes 

. 
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randomly selecting an event message or series of event Each event - type distribution is an M - tuple that corresponds 
messages , copying the selected event messages , and record- to a data point in an M - dimensional space . 
ing the copied event messages in a subset of event messages According to the maximum entropy principle , the event of a data - storage device . Shaded boxes identify randomly selected event messages , such as shaded box 808 , and s type distribution that best represents the state of the event 
randomly sampled series of event messages , such as shaded source and therefore can serve as a baseline event - type 
box 810. The randomly selected event messages are copied distribution is the event - type distribution with the largest 
and recorded as a block of event messages of the much large associated entropy . For each of the N event - type distribu 
set of event messages recorded in the event log 806. Direc tions obtained from N blocks of randomly sampled event 
tional arrows , such as directional arrow 812 , represent 10 messages generated by the event source as described , an 
copying the randomly selected event messages from the associated entropy is computed as follows : 
event log 806. Directional arrows , such as directional arrow 
814 , represent collecting the randomly selected event mes 
sages to form a subset of event messages 816 . H ( ET ) = - Dl0g , DM In the example of FIG . 8 , the random sampling is per- 15 
formed on event messages that have already been recorded 
in the event log 806. In an alternative implementation , 
random sampling is applied to event messages as the event The maximum entropy is given by 
messages are generated by the event source 804. For 
example , a randomly selected event message generated by 20 Hmax = max { H ( ET? ) , H ( ET2 ) , ... H ( ETn ) } ( 4 ) 
an event source is selected , copied , and recorded in as a 
block of event messages stored in a data - storage device The event - type distribution with the maximum correspond 
while the original event message is sent and recorded in the ing entropy , Hmax , is as a baseline even - type distribution for 
event log 806 . the event source and is denoted by 
A number N of blocks of event messages are collected for 25 

the event source . Event type analysis is applied to each block ET ; = D , D2 , D3 , ... DM ) ( 5 ) 
of event messages to compute a corresponding event - type 
distribution that comprises relative frequencies of different Once the baseline event - type distribution is determined , a 

normal discrepancy radius centered at the baseline event event types recorded in the block of event messages . FIG . 9 
shows a method of determining an event - type distribution 30 type distribution is determined based on the similarities 
from event messages recorded in a block of event messages between pairs of event - type distributions . In certain imple 
900. In block 902 , event - type analysis is applied to each mentations , the similarity between a pair of event - type 
event message of the block of event messages to determine distributions ET , and ET , may be computed using a cosine 
the event type of each event message . Event - type analysis similarity given by : 
reduces the event message to text strings and natural- 35 
language words and phrases ( i.e. , non - parametric tokens ) , as ( 6 ) described above with reference to FIG . 7. The different event ?D , D. types are denoted by et ;, where i is an event type index . In Simcs ( ET ;, ET ; ) = 1 . 1 - block 904 , a relative frequency is computed for each event 
type according to 2 ( Dim ) 2 ( Dih ) ? ? 

? 

m = 1 
COS 

?? | 

40 
m = 1 m = 1 

= 

i 

.. 

= 

n ( et ; ) ( 1 ) DI = Ln The closer the similarity Simcs ( ET ,, ET ) is to zero , the 
45 farther the event - type distributions ET ; and ET , are from 

each other . The closer the similarity Sim cs ( ET ;, ET ; ) is to where one , the closer the event - type distributions ET , and ÉT , are n ( et ; ) is the number of times an event type , et ;, appears in to each other . In another implementation , the similarity the block of event messages ; between pair of event - type distributions ET , and ET , may be subscript and superscript n is an integer event - type dis 50 computed as follows : 
tribution index n = 1,2 , N ; and 

L , is the total number of event messages in the block of 
event messages . Simjs ( ET ;, ET ; ) = ( 7 ) 

An event - type log 906 is formed from the different event 
types and associated relative frequencies . The event - type log 1 - Mm log Mm + D? , 108 , Din + ? D. , log D. log 906 comprises a list of the different event types 908 and 
corresponding relative frequencies 910 of each event type 
and serves as a record of the event - type distribution . FIG . 9 
also shows a histogram 912 of the event - type distribution The similarity in Equation ( 7 ) is based on the Jensen recorded in the event - type log 906. Horizontal axis 914 60 Shannon divergence and , like the cosine similarity , and is represents the different event types . Vertical axis 916 rep used to measure the similarity between two distributions ET , resents a range of relative frequencies . Shaded bars represent and ET ;. The closer Simjs ( ET ;, ET ; ) is to one , the more the relative frequency of each event type . For example , similar the distributions ET , and ET , are to one another . The shaded bar 918 represents the relative frequency D3 " of the closer Sim , s ( ET ;, ET ; ) is to zero , the more dissimilar the event type etz . An event - type distribution for M event types 65 distributions ET , and ÉT , are to one another . In the following in a block of event messages is denoted by discussion , the similarity Sim ( ET ;, ET ; ) represents the simi 

ET = ( D . " , D2 , D3 " , ... , DM " ) ( 2 ) larity Simcs ( ET ;, ET ; ) or the similarity Simys ( ET ;, ET ; ) . 

55 -- , Li + m 

j = 1 Lm = 1 m = 1 
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FIG . 10A shows a table of similarities computed between the event source is assumed to be in a normal state and no 
each pair of event - type distributions ET ; and ET , for i = alert is generated . On the other hand , when the average 
1 , 2 , N and j = 1 , 2 , ... , N with jäi . The average similarity of the run - time event - type distributions satisfies 
similarity of each event - type distribution is given by : the condition : 

ThNDR > Sim Ave ( ETrt ) ( 13b ) 
an alert is generated indicating that the event source has 

( 8 ) entered an abnormal state . Sim Ave ( ET ; ) GSim ( ET ;, ET ; ) Additional severity - level thresholds Th , and Th , that 
distinguish severity levels of abnormal behavior of the event 
source can be used to generate alerts that identify the 
severity of the alert as follows : The average similarities form a set of average similarities Th < Th1 < THNDR ( 130 ) represented by : 
When Th , < Sim qve ( ET , t ) < THNDR the alert may be identified { Sim Ave ( ETi ) , Sim Ave ( ET2 ) , ... „ Sim Ave ( ETN ) } 15 as a warning . When Th > < Sim Ave ( ET , t ) < Th? , the alert may be 

The average similarities are rank ordered from smallest to identified as an error . When Sim Ave ( ET , t ) < Th2 , the alert may 
largest . FIG . 10B shows an example set of average simi- be identified as critical and the event source may be shut 
larities plotted along a number line 1002 between zero and down or taken off line . 
one . Solid dots , such as solid dot 1004 , represent the values Returning to FIG . 10B , when the average similarity of the 
of averages similarities . The largest average similarity is run - time distributions is less than the threshold 1010 , as 
denoted by Sim Ave ( max ) and the smallest average similarity represented by directional arrow 1012 , an alert is generated 
is denoted by Sim qve ( min ) . A select number L of the largest indicating that the event source has entered an abnormal 
average similarities are identified as the dominant average state . When the average similarity of the run - time distribu 
similarities with a minimum average similarity in the domi- tions is greater than the threshold 1010 , as represented by 
nant average similarities denoted by Sim * ave ( min ) , where directional arrow 1014 , the event source is assumed to be in 
Sim * ave ( min ) > Sim qve ( min ) . Dot 1006 represents the mini- normal state and no alert is generated . 
mum average similarity of the set of dominant similarities The number N of event - type distributions and select 
denoted by Sim * Ave ( min ) . Average similarities less than number of L event - type distributions that are candidate 
Sim * * Ave ( min ) are ignored or discarded . A normal discrep- baseline event - type distributions may be determined based 
ancy radius 1008 is calculated as the difference between the 30 on a percentage of the time the event source maintains a 
maximum and minimum average similarities of the domi- normal state . The percentage of the time the event source 
nant average similarities as follows : maintains a normal operational state is Px100 % , where P is 

the probability the event source is in a normal state when an NDR = Sim Ave ( max ) -Sim * Ave ( min ) event message is collected . Each randomly sampled event 
The normal discrepancy radius is used to calculate a normal 35 message is independent and does change the probability of 
discrepancy radius threshold given by : randomly selecting another event message . For example , 

ThNDR = Sim Ave ( ET ) -NDR ( 10 ) when normal state probability is P = 0.99 , then there is a 99 % 
chance that a randomly sampled event message or portion of where Sim Ave ( ET ) is the average similarity of the base event messages , as described above with reference to FIG . line event - type distribution . In FIG . 10B , dashed line 1012 represents the normal dis- 40 8 , is collected during a normal state of the event source . On the other hand , there is a 1 % chance that a randomly sampled crepancy radius threshold . event message or portion of event messages is collected FIG . 11 shows run - time event messages 1102 recorded in during an abnormal state of the event source . an event log 806. Behavior of the event source 804 is The binomial distribution gives the probability of gener monitored with sets of consecutive run - time event messages . ating L candidate baseline event - type distributions from The time to represents a randomly or periodically selected randomly sampled event messages generated by the event 

point in time when identification of run - time event messages source in a normal state out a total of N event - type distri begins . Shaded box 1102 identifies run - time event messages butions generated from randomly sampled event messages : that comprise a fixed number Q of the most recent , con 
secutively generated event messages after the time to . Event 
type analysis is applied to the run - time event messages 1104 ( 14a ) 
copied from the event log 806 , as described above with ) 

reference to FIG . 9 , to obtain a corresponding run - time 
event - type distribution 1106 represented by 

L ! ( N – L ) ! 
ETY = ( D " , D " , D3 " , , DM " ) ( 11 ) 55 

An average similarity of the run - time event - type distribution 
and the event - type distributions is computed as follows : The probability of L or more candidate baseline event - type 

distributions generated from randomly sampled event mes 
sages generated by the event source in a normal state is 

60 computed from the cumulative binomial distribution : 
Simave ( ETH ) = Sim ( ETH , ET ; ) 

! 

a 

a 

45 

50 
N N - L Probal successes in N trials ) = ( ) p ( 1 - P ) where 

2 

N ! 
= 

N 1 ( 12 ) 
? 

N ( 14b ) 
Pcum ( X > L ) = ? * ) ra – Py CH N ) where L < N . 

When the average similarity of the run - time event - type 
distributions satisfies the condition : 65 i = L 

Sim Ave ( ETre ) STINDR ( 13a ) rt : 
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The cumulative binomial distribution of Equation ( 14b ) is a FIG . 9 is applied to event messages in each block of event 
confidence level that L of the N event - type distributions and messages in order to obtain a corresponding event - type 
candidate event - type distributions will be obtained when the distribution . For example , event - type distributions 1211 
event source is in a normal state . 1213 are obtained from corresponding blocks of event 

Three examples of normal state probabilities and associ- 5 messages 1201-1203 . 
ated total number N of event - type distributions and confi Event - type distributions are M - tuples in an M - dimen 
dence levels that L of the N event - type distributions are sional space . FIG . 13A shows a random scattering of candidate event - type distributions that are representative of M - tuples in an example M - dimensional space . Each M - tuple 
the event source in a normal state are provided in the table : 10 represents an event - type distribution obtained from a block 

of event messages , as described above with reference to 
FIG . 12. For example , dots 1301-1303 are M - tuples that N ET distributions L ET distributions represent event - type distributions ET ;, ET ; +19 and ET ; 
A local outlier factor ( “ LOF ” ) is computed for each 

event - type distribution in the M - dimensional space repre 
sented by a set of event - type distributions : 

The above table indicates that when the normal state prob C = ( ET1 , ET2 , ... , ETN ) ( 15 ) ability is 0.99 , five ( i.e. , N = 5 ) event - type distributions are 
generated from randomly selected event messages , as 20 Computation of a local outlier factor begins by computing a 
described above with reference FIGS . 8 and 9. The confi distance between each pair of event - type distributions in the 
dence level of 0.9990 indicates that four ( i.e. , L = 4 ) of the M - dimensional space . In certain implementations , the dis 
five are candidate baseline event - type distributions with the tance between each pair of event - type distributions is com largest average similarities can be used to generate a normal puted using a cosine distance given by : discrepancy radius as described above with reference to FIG . 25 
10B and Equation ( 8 ) , and the candidate baseline event - type 
distribution with the largest entropy computed as described D ; D ( 16 ) 
above with reference to Equations ( 3 ) and ( 4 ) is the baseline Distcs ( ET ;, ET ; ) event - type distributions . When the normal state probability 
is 0.95 , seven ( i.e. , N = 7 ) event - type distributions are gen- 30 
erated from randomly selected event messages , as described 
above with reference FIGS . 8 and 9. The confidence level of 
0.9998 indicates that four ( i.e. , L = 4 ) of the seven are The closer the distance Distcs ( ET ,, ET ; ) is to zero , the closer 
candidate baseline event - type distributions with the four the event - type distributions ET , and ÉT , are to each other . largest average similarities can be used to generate a normal 35 The closer the distance Distcs ( ET ,, ET ; ) is to one , the farther discrepancy radius as described above with reference to FIG . distributions ET ; and ET , are from each other . In another 10B and Equation ( 8 ) , and the candidate baseline event - type implementation , the distance between event - type distribu distribution with the largest entropy computed as described tions may be computed using Jensen - Shannon divergence : 
above with reference to Equations ( 3 ) and ( 4 ) is the baseline 
event - type distributions . When the normal state probability 40 
is 0.90 , eight ( i.e. , N = 8 ) event - type distributions are gener Distjs ( ET ;, ET ; ) = ( 17 ) 
ated from randomly selected event messages , as described 
above with reference FIGS . 8 and 9. The confidence level of Mmlog , Mm + Dy log Dm + 2 0.9996 indicates that four ( i.e. , L = 4 ) of the eight are can DinlogD ; where 
didate baseline event - type distributions with the four largest 45 
average similarities can be used to generate a normal dis Mm = ( Dm + D ; m ) / 2 . 
crepancy radius as described above with reference to FIG . 
10B and Equation ( 8 ) , and the candidate baseline event - type 
distribution with the largest entropy computed as described The Jensen - Shannon divergence ranges between zero and 
above with reference to Equations ( 3 ) and ( 4 ) is the baseline 50 one and has the properties that the distributions ET , and ET , 
event - type distributions . are similar the closer Distys ( ET ;, ET ; ) is to zero and are 

In an alternative implementation , rather that forming a dissimilar the closer Distys ( ET ;, ET ; ) is to one . In the 
block of event messages from random sampling of event following discussion , the distance Dist ( ET , ET ) represents 
messages as described above , blocks of event messages can the distance Distcs ( ET ;, ET ; ) or the distance Distys ( ET ;, 
be generated by copying consecutively recorded event mes- 55 ET ; ) . 
sages generated by event source . Event - type analysis is For each event - type distribution ET ;, i = 1 , N , the 
applied to each block of event messages as described above distances dist ( ET ,, ET ; ) are rank ordered for j = 1 , N and 
with reference to FIG . 9 to obtain an associated event - type jäi . The K - th nearest neighbor distance of the rank ordered 
distribution . distances for the even - type distribution ET ; is determined 
FIG . 12 shows examples of blocks of event messages 60 and denoted by distz ( ET ; ) , where K is a selected natural 

1201-1203 obtained from copying corresponding consecu- number . The K - th nearest neighbor distance distz ( ET , ) is 
tively recorded event messages 1205-1207 , respectively . In called the K - distance . Given the K - distance , a K - distance 
the example of FIG . 12 , the blocks of event messages neighborhood of event - type distributions with a distance to 
1205-1207 overlap by four event messages . In other imple- the event - type distribution ET , that is less than or equal to 
mentations , blocks of event messages can be obtained from 65 the K - distance is given by : 
non - overlapping consecutively recorded event messages . 
Event - type analysis as described above with reference to Nx ( ET ; ) = { ET , EC1 { ET ; } dist ( ET ; ET ; ) sdisty ( ET ; ) } ( 18 ) 
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A local reachability density is computed for the event - type distances computed between each event - type distribution to 
distribution ET , as follows : each of the other event - type distributions . The average 

distance of each event - type distribution from the other 
event - type distributions is located below each column and is 

|| NK ( ET ; ) | ( 19 ) 5 computed as follows : Ird ( ET ; ) EET ; ENG ( ET ;, reach – disix ( ET ;, ET ; ) 

i 

N ( 23 ) 
Dist ̂ ( ET ; ) Dist ( ET ;, ET ; ) N - 1 

j = 1 , j = i KO 10 

where 
|| N ( ET : ) || is the number of event - type distributions in the 

K - distance neighborhood N ( ET ) ; and 
reach - distx ( ET ;, ET ; ) is the reachability distance of the 

event - type distribution ET , to the event - type distribu 
tion ET ; 

15 

: N 

The reachability distance is given by : 
reach - distz ( ET , ET ; ) = max { dist : AET ) , dist ( ET ,, ET ) ) } ( 20 ) 

where j = 1 , . N and jui . 
An LOF is computed for the event - type distribution ET , as 
follows : 

For example , column 1402 is a list of distances computed 
between the even - type distribution ET , and each of the 
event - type distributions ET2 , ET3 , . . . , and ETy . The 
average distance from the even - type distribution ET , to the 
other event - type distributions ET2 , ET3 , ... , and ETy is 
denoted by Dist4 ( ET , ) . The event - type distribution with the 
minimum average distance is identified as the baseline 
event - type distribution ET , for the event - type distributions 

20 in the M - dimensional space . 
A mean distance from the baseline event - type distribution 

to other event - type distributions is computed as follows : ( 21 ) ????? , ??? Ird ( ET ; ) 
ET ; ENK ( ET ; ) Ird ( ET ; ) 

|| NK ( ET ; ) || LOF ( ET ; ) 
25 N 1 ( 24a ) 

u ( ET ) Dist ( ET ) , ET ; ) N - 1 j = 1 , j # b 

A standard deviation of distance from the baseline event 
type distribution to other event - type distributions is com 
puted as follows : 

1 N ( 246 ) 
std ( ET ) ) = = N -1 ; = 1 , j + b ( Dist ( ET ) , ET ; ) – 4 ( ETD ) ) 2 

The LOF of Equation ( 21 ) is an average local reachability 
density of the neighboring coordinate data points divided by 
the local reachability density . An LOF is computed for each 
event - type distribution in C. FIG . 13B shows LOF's com- 30 
puted for each event - type distribution in the M - dimensional 
space of FIG . 13A . 

The LOF's determined for the event - type distributions are 
rank ordered and an event - type distribution , ETc , with the 
smallest corresponding LOF is the baseline event - type dis- 35 
tribution LOF ( ET ) ) sLOF ( ET ; ) for j = 1 , ... , N and bæj . Ideally , the smallest LOF is unique and the corresponding 
event - type distribution is the baseline event - type distribu 
tion . In the case where there are two or more equal value 
LOF minima , the corresponding two or more event - type 40 
distributions are candidate baseline event - type distributions . 
Entropies of the two or more candidate baseline event - type 
distributions are computed . The candidate baseline event 
type distribution with the largest corresponding entropy is 
identified at the only baseline event - type distribution . For 
example , suppose there are two candidate baseline event 
type distributions ET ) . and ET ) , with minimum 
LOF ( ET ) , ) = LOF ( ETp , ) . The corresponding entropies of the 
two candidate baseline event - type distributions are com 
puted as follows : 

When the event - type distributions are normally distrib 
uted about the mean given by Equation ( 24a ) , the normal 
discrepancy radius is given by : 

45 

NDR , Fu ( ET ) ) = B * std ( ETK ) ( 25 ) 

where B is an integer number of standard deviations ( e.g. , 
B = 3 ) from the mean in Equation ( 24a ) . 
The normal discrepancy radius is centered at the mean 
distance from the baseline event - type distribution to other 
event - type distributions given by Equation ( 25 ) . When the 
average distance of a run - time event - type distribution ET , 
to the event - type distributions is obtained as described above 
with reference to FIG . 11 satisfies the following condition : 

50 

( 22a ) 
H ( ETD ) ) = - Dit log?D 

NDRsDist4 ( ET , ) 5NDR + ( 26a ) 

where the average distance of the run - time event - type 
distribution ET , to the event - type distributions is given by : m = 1 

55 
M ( 22b ) 

H ( ET ) 2 ) = -D ? logo ? 
m = 1 ( 266 ) 

DistA ( ETH ) = N ? Dist ( ET , + , ET ; ) 

If H ( ET , [ b? ) > H ( ET ) ; ) , then the candidate baseline event - type 60 
distribution ET ) , is the baseline event - type distribution . If 
H ( ET bz ) > H ( ET ) ) , then the candidate baseline event - type 
distribution ET6 , is the baseline event - type distribution . 

In another implementation , an event - type distribution 
having a minimum average distance to the other event - type 65 
distributions in the M - dimensional space is identified as the 
baseline event - type distribution . FIG . 14 shows a matrix of 

The event source is in a normal state . On the other hand , 
when the average distance satisfies either of the following 
conditions : 

( 260 ) Dist4 ( ET / : ) < NDRor NDR , sDist “ ( ET , t ) 
the event source is in an abnormal state . 
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Additional thresholds may be used to identify a severity until the event - type distributions assigned to the k clusters 
level for the abnormal state of the event source . In one do not change . The resulting clusters are represented by : 
implementation , additional severity - level thresholds that C = { ET ) ( 30 ) distinguish severity levels of abnormal behavior of the event 
source can be used to generate alerts that identify the 5 where 
severity of the problem as follows : Ni is the number of data points in the cluster Ci ; 

i = 1,2 , .. 
NDR < Thi + < That ( 26d ) p is a cluster data point subscript . 

When NDR , < Dist4 ( ET , ) < Th * the alert may be identified K ++ means clustering , or Gaussian - based clustering , can be 
as a warning . When Th + < Dist * ( ET , } < Th2 * , the alert may 10 used to optimize the number of k centroids of k clusters of 
be identified as an error . When Th2 * < Dist ( ET , t ) , the alert event - type distributions in the M - dimensional space . For 
may be identified as critical and the event source may be example , k - means cluster may be started with k = 1 cluster 
shut down or taken off line . Analogous severity - level thresh- centers and k ++ means clustering or Gaussian - based clus 
olds may be defined and used with NDR_ as follows : tering are applied to k - means clustering to optimize the 

15 number of clusters . 
NDR > Thi- > Th2 ( 26 ) FIG . 15 shows an example of three event - type distribution 

When NDR_ > Dist4 ( ET , 1 ) > Th , the alert may be identified clusters 1501-1503 ( i.e. , k = 3 ) in an M - dimensional space for 
as a warning . When Thy- > Dist ° ( ET , 1 ) > Th2 , the alert may an event source that operates in three different normal states . 
be identified as an error . When Th2- > Dist4 ( ET , t ) , the alert Unshaded hexagonal - shaped dots 1505-1507 represent cen 
may be identified as critical and the event source may be 20 troids the clusters 1501-1503 . A baseline event - type distri 
shut down or taken off line . bution computed for each cluster is the event - type distribu 

In an alternative implementation , when the event - type tion with the smallest LOF of event - type distributions in the 
distribution about the mean is unknown , the Chebyshev's cluster , as described above with reference to FIGS . 13A - 13B 
inequality may be used to compute a normal discrepancy and Equations ( 14 ) - ( 21 ) . Alternatively , a baseline event - type 
radius given by : 25 distribution computed for each cluster is the event - type 

distribution with the minimum average distance to the other 
NDR = ( ET ) ) + k * std ( ET ) ( 27a ) event - type distributions within the same cluster , as described 

where k > 1 . above with reference to Equation ( 22 ) . Circled data points 
The Chebyshev inequality states that 1505-1507 are baseline event - event distributions for each 

30 cluster . The normal discrepancy radius is computed for each 
cluster according to Equations ( 25a ) - ( 25c ) or Equation ( 26 ) . 

( 276 ) When a run - time event - type distribution ET , violates a P ( | Dist ̂ ( ET , ) – u ( ET ) 2 k.std ( ETD ) ) < normal discrepancy radius , as described above with refer 
ence to Equations ( 13b ) and ( 26c ) , a mismatch between the 

35 relative frequencies of each event type of the run - time An event source may operate in two or more normal states event - type distribution ET , and the baseline event - type or modes . For example , an event source may have high , distribution ET ) . For each event type , m = 1,2 , ... , M , an medium , and low usage states . As result , the event - type event - type mismatch is computed as follows : distributions in the M - dimensional space may also clustered 
according to the different normal states . Clustering tech mism = 1Dm " -Dm ( 31 ) 
niques may be used to determine the different clusters of The event - type mismatches can be rank ordered from largest event - type distributions . K - means clustering is applied to to smallest and displayed on system administrators console the full set of event - type distributions with an initial set of in order to enable a system administrator to observe how the cluster centroids denoted by { q ; } j = 1 * . The locations of the k event types have changed when the event source enters an cluster centers are recalculated with each iteration to obtain 45 abnormal state . k clusters . Each event - type distribution ET , assigned to one FIG . 16A shows a plot of an example run - time event - type of the k clusters defined by : distribution ET , and a baseline event - type distribution ET , 

C , ( m ) = { ET , : | ET , -9 ; ( m ) | s | ETn - 9 ; ( m ) Vj , 1sjsk } ( 28 ) for twenty event types . The run - time event - type distribution 
is substantially different from the baseline event - type dis where 50 tribution and has violated a corresponding normal discrep c ; ( m ) is the i - th cluster i = 1 , 2 , ... , k ; and ancy radius as described above . Horizontal axis 1601 rep 

m is an iteration index m = 1 , 2 , 3 , resents a range of the event types . Vertical axis 1602 The cluster centroid q : ( M ) is the mean value of the event - type represents a range of relative frequencies . Hash - marked 
distribution in the i - th cluster , which is computed as follows : bars , such as bar 1604 , represent the relative frequency of 

55 the baseline event types . Shaded bars , such as bar 1606 , 
represent the relative frequency of the run - time even types . 

( 29 ) ? ?? , FIG . 16B shows a plot of rank ordered absolute values cm ( i.e. , Imisml ) of the event - type mismatches computed 
between the relative frequencies of the event types . Each bar 

60 represents an absolute value of an event - type mismatch . The 
where IC ( m ) is the number of event - type distributions in absolute values are displayed in rank order from largest to 

the i - th cluster . smallest . For example , event types etz and et16 experienced 
For each iteration m , Equation ( 28 ) is used to determine if the greatest change in frequency while event types et4 and 
an event - type distribution ET , belong to the i - th cluster et 4 experienced the smallest change in frequency . FIG . 16C 
followed by computing the cluster center according to 65 shows a plot of event - type mismatches rank ordered from 
Equation ( 29 ) . The computational operations represented by largest positive value to largest negative value . The plot in 
Equations ( 28 ) and ( 29 ) are repeated for each value of m FIG . 16C reveals that event types etz decreased and event 
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types et16 increased in frequency . Example plots in FIGS . of FIG . 17. In block 1901 , an average similarity is computed 
16A - 16C may be displayed on a system administration for each event - type distribution as described above with 
console enable system administrators visually inspection reference to FIG . 10A and Equation ( 8 ) . In block 1902 , the 
of how event types generated by an event source change in L largest average similarities are rank ordered , where L is 
transitioning from a normal state to an abnormal state . The 5 determined based on the cumulative binomial distribution , 
event messages of event types with the largest magnitude as described above with reference to Equation ( 14b ) . In 
event - type mismatch may be collected and displayed to block 1903 , determine the maximum and minimum average 
enable a system administrator an opportunity to investigate similarities of the L largest average similarities , as described 
and trouble shoot the source of the abnormality . above with reference to FIG . 10B . In block 1904 , compute 

The methods described below with reference to FIGS . 10 a normal discrepancy radius as a difference between the 
17-24 are stored in one or more data - storage devices as maximum and minimum average similarities as described 
machine - readable instructions that when executed by one or above with reference to Equation ( 9 ) . 
more processors of the computer system shown in FIG . 2 to FIG . 20 shows a control - flow diagram of a method to 
detect abnormal behavior of an event sources . determine a baseline event - type distribution and detect 
FIG . 17 shows control - flow diagram of a method to 15 abnormal behavior of an event source . In block 2001 , blocks 

determine a baseline event - type distribution and detect of event messages generated by an event source are col 
abnormal behavior of an event source . In block 1701 , blocks lected as described above with reference to FIG . 12. In block 
of randomly selected event messages generated by an event 2002 , an event - type distribution is computed for each block 
source are formed as described above with reference to FIG . of event messages as described above with reference to 
8. The number N of blocks of event messages may be 20 FIGS . 9 and 12. In block 2003 , clusters of event - type 
determined by the normal state probability P , which is the messages that correspond to different normal states are 
percentage of the time the event source maintains a normal determined as described above with reference to Equations 
state . Using the normal state probability , the number of ( 28 ) and ( 29 ) . A loop beginning with block 2004 repeats the 
blocks N is computed using the cumulative binomial distri- operations of blocks 2005 and 2006 for each cluster of 
bution as described above with reference to Equation ( 14b ) . 25 event - type distributions . In block 2005 , a routine “ determine 
In block 1702 , an event - type distribution is computed for baseline event - type distribution ” is called to compute a 
each block of event messages formed in the block 1701 , as baseline even - type distribution . In block 2006 , a routine 
described above with reference to FIG . 9. In block 1703 , a “ determine normal discrepancy radius ” is called . In decision 
routine “ determine baseline event - type distribution ” is block 2007 , control flows to block 2008 when blocks 2005 
called to compute a baseline even - type distribution . In block 30 and 2006 have been repeated for each cluster of event - type 
1704 , a routine " determine normal discrepancy radius ” is distributions . In block 2008 , a block of run - time event 
called . In block 1705 , a block of run - time event messages is messages is collected as described above with reference to 
collected as described above with reference to FIG . 11. In FIG . 11. In block 2009 , a run - time event - type distribution is 
block 1706 , a run - time event - type distribution is computed computed for the run - time event messages as described 
for the block of run - time event messages as described above 35 above with reference to FIG . 9. In block 2010 , a routine 
with reference to FIG . 9. In block 1707 , an average simi- “ determine which cluster run - time event - type distribution 
larity of the run - time event - type distribution and the event- belongs to ” is called . In block 2011 , average distance from 
type distributions of each block of event messages is com- run - time distribution to event - type distributions in the clus 
puted , as described above with reference to Equation ( 12 ) . In ter is computed , as described above with reference to 
decision block 1708 , when the average similarity of the 40 Equation ( 26b ) . In decision block 2012 , when the average 
run - time event - type distribution is not within the normal distance of the run - time event - type distribution is not within 
discrepancy radius threshold of the event - type distributions , the normal discrepancy radius of the cluster associated with 
as described above with reference to Equation ( 13b ) , control the run - time event - type distribution , control flows to block 
flows to block 1707. In block 1709 , an alert is generated and 2013. In block 2013 , an alert is generated and the criticality 
the criticality of the alert is determined as described above 45 of the alert is as described above with reference to Equations 
with reference to Equations ( 13c ) and ( 26d ) . In decision ( 26d ) and ( 26e ) . In decision block 2014 , when another block 
block 1710 , when another block of run - time event messages of run - time event messages are received , control flows back 
is received , control flows back to block 1705 . to block 2008 . 
FIG . 18 shows a control - flow diagram of the routine FIG . 21 shows a control - flow diagram of the routine 

" determine baseline event - type distribution ” called in block 50 “ determine baseline even - type distribution ” called in block 
1703 of FIG . 17. In block 1801 , a maximum entropy Hmax 2005 of FIG . 20. A loop beginning with block 2101 repeats 
is initialized to zero . A loop beginning with block 1802 the operation represented by block 2102 for each event - type 
repeats the computational operations of blocks 1803-1806 distribution . In block 2102 , an LOF is computed for each 
for each event - type distribution determined in block 1702 of event - type distribution as described above with reference to 
FIG . 17. In block 1803 , an entropy is computed for each 55 Equations ( 15 ) - ( 21 ) . In decision block 2103 , when an LOF 
event - type distribution as described above with reference to has been computed for each event - type distribution , control 
Equation ( 3 ) . In decision block 1804 , when the entropy flows to block 2104. In block 2104 , a minimum LOF 
computed in block 1803 is greater than the parameter Hmax? determined from the LOF computed in block 2102. In 
control flows to block 1805. Otherwise control flows to decision block 2105 , when two or more minimum LOFs are 
block 1806. In block 1805 , maximum entropy is reassigned 60 equal , control flows to block 2107. Otherwise , control flows 
the entropy computed in block 1803. In decision block 1806 , to block 2106. In block 2106 , the event - type distribution 
when all event - type distributions have been considered with the minimum LOF is identified as the baseline event 
control flows to block 1807. In block 1807 , the event - type type distribution . In block 2107 , a maximum entropy H , 
distribution with maximum entropy is identified as baseline is initialized to zero . A loop beginning with block 2108 
event - type distribution . 65 repeats the computational operations of blocks 2109-2112 

FIG . 19 shows a control - flow diagram of the routine for each event - type distribution . In block 2109 , an entropy 
“ determine normal discrepancy radius ” called in block 1704 is computed for each event - type distribution as described 
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above with reference to Equation ( 3 ) . In decision block computing an average similarity between a block of 
2110 , when the entropy computed in block 2109 is greater run - time event messages generated by the event source 
than the maximum entropy Hmax , control flows to block and the event messages ; and 
2111. Otherwise control flows to block 2112. In block 2111 , generating an alert indicating abnormal behavior of the the maximum entropy is reassigned the entropy computed in 5 event source when the average similarity is greater than 
block 2109. In decision block 2112 , when all event - type the normal discrepancy radius threshold . distributions have been considered control flows to block 
2113. In block 2113 , the event - type distribution with mini 2. The method of claim 1 wherein computing the normal 

discrepancy radius threshold comprises : mum LOF and maximum entropy is identified as the base 
line event - type distribution . computing an event - type distribution for each block of 
FIG . 22 shows a control - flow diagram of the routine event messages generated by the event source ; 

“ determine baseline even - type distribution ” called in block determining a baseline event - type distribution of the 
2005 of FIG . 20. A loop beginning with block 2201 repeats event - type distributions , the baseline event - type distri 
the computational operation represented by block 2202 for bution having the largest entropy of the event - type 
each event - type distribution computed in block 2002 of FIG . 15 distributions ; and 
20. In block 2202 , an average distance from the event - type computing the normal discrepancy radius threshold based 
distribution to other event - type distributions is computed as on the event - type distributions centered at the baseline 
described above with reference to FIG . 14 and Equation event - type distribution . 
( 23 ) . In decision block 2203 , when an average distance has 
been computed for each event - type distribution control 20 block of event messages by randomly selected event mes 3. The method of claim 2 further comprising forming each 
flows to block 2204. In block 2204 , a minimum average sages from an event log of the event source . distance is determined from the distances . In block 2205 , the 
event - type distribution with the minimum average distance 4. The method of claim 2 wherein determining the base 
is identified as the baseline event - type distribution . line event - type distribution of the event - type distributions 
FIG . 23 shows a control - flow diagram of the routine 25 comprises : 

" determine normal discrepancy radius ” called in block 2006 computing an entropy for each event - type distribution ; 
of FIG . 20. In block 2301 , a mean distance is computed as determining a maximum entropy of the entropies com from the baseline event - type distribution to the other event puted for each event - type distribution ; and 
type distributions , as described above with reference to 
Equation ( 24a ) . In block 2302 , a standard deviation of 30 identifying the event - type distribution with the maximum 
distances is computed as described above with reference to entropy as the baseline event - type distribution . 
Equation ( 24b ) . In block 2303 , a normal discrepancy radius 5. The method of claim 1 wherein computing the normal 
is computed as described above with reference to Equation discrepancy radius threshold comprises : 
( 25 ) or Equation ( 26 ) . computing event - type distributions from blocks of event 
FIG . 24 shows a control - flow diagram of the routine 35 messages previously generated by the event source ; 

" determine which cluster run - time event - type distribution computing a similarity between each event - type distribu 
belongs to ” called in block 2010 of FIG . 20. A loop tion and other event - type distributions ; beginning with block 2401 repeats the computational opera 
tion of block 2402 for each cluster determined in block 2003 computing an average similarity of each event - type dis 
of FIG . 20. In block 2402 , a distance is computed from the 40 tribution based on the similarities computed between 
run - time event - type distribution and the baseline event - type the event - type distribution and the event - type distribu 
distribution of the cluster using Equation ( 16 ) or Equation tions ; 
( 17 ) . In decision block 2403 , control flows to block 2404 , rank order the average similarities obtained for event - type 
when the distance has been computed for the clusters . In distribution from maximum to minimum average simi 
block 2404 , determined minimum distance of the distances 45 larities ; 
computed in block 2402. In block 2405 , run - time event - type calculating a normal discrepancy radius as a difference 
distribution is identified as belonging to the cluster with the between the maximum and minimum average similari 
smallest distance . ties ; and 

It is appreciated that the previous description of the 
disclosed embodiments is provided to enable any person 50 calculating a normal discrepancy radius threshold as a 

difference between the average similarity of the base skilled in the art to make or use the present disclosure . 
Various modifications to these embodiments will be appar line event - type distribution and normal discrepancy 

radius . ent to those skilled in the art , and the generic principles 
defined herein may be applied to other embodiments without 6. The method of claim 1 wherein computing the average 
departing from the spirit or scope of the disclosure . Thus , the 55 similarity comprises : 
present disclosure is not intended to be limited to the computing event - type distributions from blocks of event 
embodiments shown herein but is to be accorded the widest messages previously generated by the event source ; 
scope consistent with the principles and novel features computing a run - time event - type distribution from a block disclosed herein . of the run - time event messages ; 

The invention claimed is : computing a similarity between the run - time event - type 
1. A method stored in one or more data - storage devices distribution and each of the event - type distributions ; 

and and executed using one or more processors of a computer 
system to detect abnormal behavior of an event source , the computing an average similarity of run - time event - type 
method comprising : distribution based the similarities computed 

computing a normal discrepancy radius threshold based between the run - time event - type distribution and the 
on event messages generated by the event source ; event - type distributions . 
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7. A computer system that detects abnormal behavior of computing an average similarity of run - time event - type 
an event source , the system comprising : distribution based the similarities computed 

one or more processors ; between the run - time event - type distribution and the 
one or more data storage devices ; and event - type distributions . 
machine - readable instructions stored in the one or more 13. A non - transitory computer - readable medium encoded 

data - storage devices that when executed using the one with machine - readable instructions that implement a method 
or more processors controls performs the operations carried out by one or more processors of a computer system 
comprising : to perform the operations comprising : 
computing a normal discrepancy radius threshold based computing a normal discrepancy radius threshold based 
on event messages generated by the event source ; on event messages generated by an event source ; 

computing an average similarity between a block of computing an average similarity between a block of 
run - time event messages generated by the event run - time event messages generated by the event source 
source and the event messages ; and and the event messages ; and 

generating an alert indicating abnormal behavior of the generating an alert indicating abnormal behavior of the 
event source when the average similarity is greater 15 event source when the average similarity is greater than 
than the normal discrepancy radius threshold . the normal discrepancy radius threshold . 

8. The computer system of claim 7 wherein computing the 14. The medium of claim 1 wherein computing the normal 
normal discrepancy radius threshold comprises : discrepancy radius threshold comprises : 

computing an event - type distribution for each block of computing an event - type distribution for each block of 
event messages generated by the event source ; event messages generated by the event source ; 

determining a baseline event - type distribution of the determining a baseline event - type distribution of the 
event - type distributions , the baseline event - type distri- event - type distributions , the baseline event - type distri 
bution having the largest entropy of the event - type bution having the largest entropy of the event - type 
distributions ; and distributions ; and 

computing the normal discrepancy radius threshold based 25 computing the normal discrepancy radius threshold based 
on the event - type distributions centered at the baseline on the event - type distributions centered at the baseline 
event - type distribution . event - type distribution . 

9. The computer system of claim 8 further comprising 15. The medium of claim 14 further comprising forming 
forming each block of event messages by randomly selected each block of event messages by randomly selected event 
event messages from an event log of the event source . 30 messages from an event log of the event source . 

10. The computer system of claim 8 wherein determining 16. The medium of claim 14 wherein determining the 
the baseline event - type distribution of the event - type distri- baseline event - type distribution of the event - type distribu 
butions comprises : tions comprises : 

computing an entropy for each event - type distribution ; computing an entropy for each event - type distribution ; 
determining a maximum entropy of the entropies com- 35 determining a maximum entropy of the entropies com 

puted for each event - type distribution , and puted for each event - type distribution ; and 
identifying the event - type distribution with the maximum identifying the event - type distribution with the maximum 

entropy as the baseline event - type distribution . entropy as the baseline event - type distribution . 
11. The computer system of claim 7 wherein computing 17. The medium of claim 13 wherein computing the 

the normal discrepancy radius threshold comprises : 40 normal discrepancy radius threshold comprises : 
computing event - type distributions from blocks of event computing event - type distributions from blocks of event 

messages previously generated by the event source ; messages previously generated by the event source ; 
computing a similarity between each event - type distribu- computing a similarity between each event - type distribu 

tion and other event - type distributions ; tion and other event - type distributions ; 
computing an average similarity of each event - type dis- 45 computing an average similarity of each event - type dis 

tribution based on the similarities computed between tribution based on the similarities computed between 
the event - type distribution and the event - type distribu- the event - type distribution and the event - type distribu 
tions ; tions ; 

rank order the average similarities obtained for event - type rank order the average similarities obtained for event - type 
distribution from maximum to minimum average simi- 50 distribution from maximum to minimum average simi 
larities ; larities ; 

calculating a normal discrepancy radius as a difference calculating a normal discrepancy radius as a difference 
between the maximum and minimum average similari- between the maximum and minimum average similari 
ties ; and ties ; and 

calculating a normal discrepancy radius threshold as a 55 calculating a normal discrepancy radius threshold as a 
difference between the average similarity of the base- difference between the average similarity of the base 
line event - type distribution and normal discrepancy line event - type distribution and normal discrepancy 
radius . radius . 

12. The computer system of claim 7 wherein computing 18. The medium of claim 13 wherein computing the 
the average similarity comprises : 60 average similarity comprises : 

computing event - type distributions from blocks of event computing event - type distributions from blocks of event 
messages previously generated by the event source ; messages previously generated by the event source ; 

computing a run - time event - type distribution from a block computing a run - time event - type distribution from a block 
of the run - time event messages ; of the run - time event messages ; 

computing a similarity between the run - time event - type 65 computing a similarity between the run - time event - type 
distribution and each of the event - type distributions ; distribution and each of the event - type distributions ; 
and and 
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computing an average similarity of run - time event - type 

distribution based on the similarities computed 
between the run - time event - type distribution and the 
event - type distributions . 
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