a2 United States Patent

Harutyunyan et al.

US011184219B2

US 11,184,219 B2
Nov. 23, 2021

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND SYSTEMS FOR
TROUBLESHOOTING ANOMALOUS
BEHAVIOR IN A DATA CENTER

(58) Field of Classification Search
CPC HO4L 41/0631; HO4L 41/12; HO4L 41/22;
GOG6F 16/2379; GO6F 16/252
See application file for complete search history.

(71) Applicant: VMware, Inc., Palo Alto, CA (US) (56) References Cited
(72) Inventors: Ashot Nshan Harutyunyan, Yerevan U.S. PATENT DOCUMENTS
(AM); Naira Movses Grigoryan, 10,721,142 B1* 7/2020 Mathur HOAL 41/5074
Yerevan (AM); Arnak Poghosyan, 2011/0154119 Al* 6/2011 Wang GOGF 11/006
Yerevan (AM); Hovhannes Antonyan, 714/37
Yerevan (AM); Vardan Hovhannisyan, 2014/0136684 Al* 52014 Jain ..., HO4L 65/40
Palo Alto, CA (US) 709/224
2014/0136690 Al* 52014 Jainc..... HO4L 41/5012
. 709/224
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 2017/0373932 Al* 12/2017 Subramanian HOAL 41/0853
2018/0034685 Al* 2/2018 Naous ... HO41. 41/22
* e H H H H 2018/0219743 Al* 82018 Garcia ... HO4AL 41/12
(*) Notice: Subject. to any dlsclalmer,. the term of this 5010/0034254 AL* 12019 Nataraj GOSF L1075
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. * cited by examiner
Primary Examiner — Kristie D Shingles
21) Appl. No.: 16/742,239
(1) Appl- No ’ (57) ABSTRACT
o Methods and systems described herein are directed to
(22) Filed: Jan. 14, 2020 troubleshooting anomalous behavior in a data center.
. L Anomalous behavior in an object of a data center, such as a
(65) Prior Publication Data computational resource, an application, or a virtual machine
US 2021/0218619 Al Tul. 15. 2021 (‘fVM”), may be .related to the behavior of other objects at
b ’ different hierarchies of the data center. Methods and systems
provide a graphical user interface that enables a user to
nt. CL select a selected metric associated with an object ot the data
(51) Int. Cl 1 lected metri jated with an object of the d
HO4L 1224 (2006.01) center experiencing a performance problem. Unexpected
GO6F 16/23 (2019.01) metrics of an object topology of the data center that corre-
GO6F 16/25 (2019.01) spond to the performance problem are identified. A recom-
(52) US.CL mendation for executing remedial measures to correct the
CPC ... HO4L 41/0631 (2013.01); GOGF 16/2379 performance problem is generated based on the unexpected
(2019.01); GOGF 16/252 (2019.01); HO4L ~ ™MetIcs.
41/12 (2013.01); HO4L 41/22 (2013.01) 15 Claims, 39 Drawing Sheets
Object | 0 } No.of Top g Metiic | v }
e = Ranked Metrics : ' :
s A
) Correlation XIZN’ ' Vs
Rank Correlated metics vglues Raling /
1 ‘ V,%LC ~ (Vs!‘ "")’i,(l') Q’;.\\) ‘:’:’:7 7/,:{ Sf\q T’/A\T{
2 Vr’:zA;I ~ !\Vs > V}n;A) ‘;‘ﬁf’ vﬁ{/ tf’? 7}5 ?’:\f
3 ";;[1 IO(V,)’VIZZ,B) %{? ﬂ??ﬁu‘?({?}\(S{‘\{
4 "jz;('f /’O(X"s“ "3:.C') * /('\f * 33,\‘? ‘i\:{
Vi ﬂ("w Vi } S & ke
6 Vo vl) Yo ve Yoy ve
8 Vaer plovms)| Fedededede
9 plvvie)l Tedde v o
10 v;ln,{} ﬂ(%«‘v}r‘(}) Tj\T ?/A\i" ‘_ij? \.7/1% i\(
Save

U.S. Patent Nov. 23,2021 Sheet 1 of 39 US 11,184,219 B2

102 103
/)

CPU [— CPU

BRSNS MEMORY

mAJ CPU Y4 CPU

— 108
\\~—105
112
| SPECIALIZED
— PROCESSOR / BRIDGE
714~/
----- 116
/ //
118
120
BRIDGE
(‘
CONTROULER CONMTROLLER CONTROLLER CONTROLLER COMTROLLER CONTROULER

I I\ i ‘\ A\ |
122 123 w104 125 -
106) tT%@SGE
DEVICE.

FIG. 1 NP

Sheet 2 of 39

Nov. 23, 2021

U.S. Patent

US 11,184,219 B2

¢ 9Ol

US 11,184,219 B2

Sheet 3 of 39

Nov. 23, 2021

U.S. Patent

N]i\

J— /
F\
/o
R
c0g
}\ﬁ/\/
e~/ /_/

ﬂ ERIEY .
./

N

Smé&/ ‘
E

cLe ™\ _ 302L01U] SA0IAJSS DROIT) w
N TR

<

—

1 =
—\

N,

€ 9l

\\N\j\]

8007

MIOMIBN

— y0¢

US 11,184,219 B2

Sheet 4 of 39

Nov. 23, 2021

U.S. Patent

— 00
1434 chy 0Ly 30V
J, \ [[
\ | I]]
/ \ / /]
L , / / 1
\ \ / / /
abe.ojg
| » S
ssej o]} o)l 510858201 AIOWa
alempieH T o7 7
ey — 8Ly —
8ry — w@mmm\ﬁo@@mm_wm_ suosnsy; pabispand-uoy
vebeyiand
siehid Walshg ojid Jawabeurpy Aiowep 1B §se
i 801A8(] ; 18[Npayosg
HE
BunessdQ SIPMB SO by — vy || SIEASIUI SO
) SN Si51510a1 PUE B65851ppE AOWBU
0Bl (- wlsh pue sucgonisul pafayaud-uou
8¢y 9cy
swelboid
uoieoyddy
9ty — Gey — 1434 2% -~/ ey —

v

US 11,184,219 B2

Sheet 5 of 39

Nov. 23, 2021

U.S. Patent

VG Old \t 005
L\ Ne
obeiois . P ¢0%
SSEly oh ol $10858201d Aowspy
N]
S S T S DR “ T
SIBALD BOIAED —
JOHUOR \\\ .WO@
%P\\ . BUIBY WA AUNORYY A | L 8L
SASS5I00E8150a]] Sessaippe/ieisiDas
e e APPSR = S
018
S0 30 SO S0 S0
P 2
uoneondde uogeodde uoneondde uoneondde uojiesidde

QEL

US 11,184,219 B2

Sheet 6 of 39

Nov. 23, 2021

U.S. Patent

0pS

45 Old

5 1
BIEMDIEH sbesors 0] o/ $10858001d AJOWB
\ SSEI
s j
7 R
.
waysAg Bugeledp <
4 M
125 / oo ek S7015156; pUE SoSSaIppE AIolaw
" soeRul fiBo-wisishs QB suoqonssu Ummmmzm_‘ ~UOU
-
1eke LOREZIENLIA
soezienpiA
\\\
085 P
2567
SO 30 50 S/ 4
o5 ors”
SOUIIBY
L
uoiesydde uoneddde uoneoydde
~ 7
/ / /

866/

/G557

966/

5

sueifold
uopesyddy

US 11,184,219 B2

Sheet 7 of 39

Nov. 23, 2021

U.S. Patent

afiesoed 4A0

g
Bl 80IN0SS!
3|} 82IN088: 219
0v9 T \ oo |7
// e e /N/ 8§l 804N0SA!
\ 7y N
/ 2 NEEN //
\\ \\ \. lllllllllllllllll ~N //// /
1seylueul 038851 [ai SO
sepnjou 1ey; sjeoyeo | ¢/ b X £ S //// AN e sbeuivep | b9
i / = St H
A ! \ NN
) <S0O[BAUT/> |\ ARSI
. : N ,/// N | anebewvep | 019
P <UCHO8||07) WAISAS [BNUIA/> N 809
[’ .
L ” SN N | eeonned 30 |
I <UOOBS BIEMPIEH [BNUIA>) NN
o : 0 N e e 909
: jiuepn 4/
J) ¢69 <U008S BIEMPIEH [BNLIA> S ves vy A0
;] <UO}oB|0D) WalSAS ENA> dusssg 4n0 | V09
o ¢ <UONDBS YIOMIBN/>
bl 09 /
aji} 20IN0ss |0 “wwgm \ L ACOSU@@ vto>>w®ZV / /
’ /
M <Uoo8g sl / \
829 : / — 209
- <U0f0es s8I0 /
/

a1 9oinosal jo 1sefig
1

aly afewi yeip 10 1588ig
/

a1ty sbewlf ¥sip jo 18880
{

979 [<seoUalBlaY/>
M Ammo&_&@mv

abeyoed jo jsabic

< @Qo_mémv/
029 |\

1BWLIO- UOREZIBNMIA Usd(

/} ¢es

US 11,184,219 B2

Sheet 8 of 39

Nov. 23, 2021

U.S. Patent

L Ol
v0.
18JU87) elR(] [RoISAU /

6lL—8H T\ \ — L= Ok — S~y ST
mm\,i/ | omxl/ / !// \ \ \ \ /

L
\ Y \ / / \ 4

w
]

W4) 7 7 / ey Sl Y 7
| Vel
- |

* * m \ﬁ m _ \M 9¢L
T e e R
T s 4
’ L /802
/
(004 80IN0SaY
7

121Ua7) BIB(T [BNUIA \ 20 Le/

US 11,184,219 B2

Sheet 9 of 39

Nov. 23, 2021

U.S. Patent

g 9l

¢C8 / 128 0¢8 / 08 ./
/ 708 j,/
alemplely SIBMPIEH alempie SIBMDIBH e
908 —1 mmgﬁmu
18heT JEY R lake IEYCa R » SHECIS! H
uonezZIenLIA uoRezIeniiA UONBZIENHIA g0g — 1 LUoREZIBNLIA eleq [BnliA |
EAREE ESREN P %\N L
INA WA |] JETSEISRIAN
_.!*L . - wowsbeuepy
weby EoE ! 1uabBy 1S0H weby ywor % g Buay Bled
“ N ernuia L/
- . S
‘ wabe J0A 3 M wabe UDI;>£ 68 wabe 9aAa e T
7 <) 7 A yd \ /j
/ , ™ / / s / 018
N 818/
//N/\/ W\i /
wswabeusw 180K AN
/ S \
\\\ 3 ~
S82INBT 810 A .
98 —7 e B0 | /T~ wewsbeusw 80n0sey
e — | / 18|npsyos yse |
| seomas painausi T BuibBoy 1o UoRos|0a SolselS
dnyoeg g — \— /T - , SJUBAS 9 SUBYY
uoneibiw WA 8al - aoepayu Juawebeuen / I Buuoisinosd WA
Ayeeny 4B — N / " uogeinByuoo WA
18|NPaY0S 80IN0saY paInguisigq — P y/ uoleINbYU02 JSOH
I —Cl8
0l8

US 11,184,219 B2

Sheet 10 of 39

Nov. 23, 2021

U.S. Patent

6~ A Y
€06 //\ (m
| _ b
/ g { i ! {
| ! i
e SIQUSD BIBD [BNLIA m
< | |
e d _ w , a \
| 7 T
I sianueb eiep femn — §¢b P) P Z4e
P | hobm{ onop \] / L e e 10138510 PAOED \
e re \ e s ’ 4 : .!x
£06 l\ S ouo, 0w, 260 FU yOUC €980, "7 2H0,” 1 BEC)
-/ @31\ /116~ \ \ | p
S

|
sigjuaon Emu fenIA

0c6 e

soBpSIU SIY DOA

966

woml\ 290 oo J@L/\})

/
26—

— 9¢6

jo0d yiomsu woly BUuOISIAGLY SomiaN
sBoipien Bipepy pue sledue |

~

— uoeInByLos JBlUaY BIBq 1BNLIA uoieziuebio
6 —/ Il pue uoeinByuos uofeziveBio

SB0IAIBS 1010841(] PNO|D)

—{¢6

N vE6

™ Bliuoisinoid J8jus)) B8 BMAA -

soeyie) Juswabeueyy

N ’eb

US 11,184,219 B2

Sheet 11 of 39

Nov. 23, 2021

U.S. Patent

0L Ol

BAIBS DOA

pLoL

/ 8POU DOA

0101 ¢iol

s,

~

R

w BIED (ENUA

SROAIBS PISIT T

fued ot //f/. 0201

\ ‘
/ \ 8pOU 30A

J9juR0
Blep [eniia

US 11,184,219 B2

Sheet 12 of 39

Nov. 23, 2021

U.S. Patent

_—

S5

L
Y

b , N
1efe| abejoig w R
orempiey —_— o 0l 10888001 e Aowaiy
07— |
L T T
g sesseIppe/sioisibey | sassalppe/siaisibal | suconfsul)
U% oinud pebopaud-uou | pabepaud suofansul psbisaud-uod
sakey Mwwwm weishs usweBeueyy Alowap w&mﬁ wmmw
weishs Buyesado M elia f8[npeyds
0y~ 80BYI8)U! SO || eoepaulSO
BoRUSIUI [[BO-LUBSAS sias(bas pUB §36521pPR AJOuwat pue
4 T suoonysul palejnud-tuou
P
Oey uojezienyiA [2481-50 97
A \ — —
7 S
4 1B1uoo
2011 - JBUIRIUCD \\ 18UBIU0D lsuiel 0Ll
-~
S0LL e
7
\\
GOl
OLLL 601 8011

US 11,184,219 B2

Sheet 13 of 39

Nov. 23, 2021

U.S. Patent

£ 1
sake| abeiolg o
siempiey) ssepy o el 81088001 hiowap
205
T T T
-
ot suonansul peBaiinyd-uoN L 908
SiBAUD 8heD . @Om
705 . OO —
9 BURY A (RO A sutoe i | _—— QLG
Lt . et
0¢S i\\\iiﬂmmwmmWMmamgm sucgonjsui pabepand-uon S
g SO iseng
7 GoeZIBNLIA 23S0
20l }
p0C JeUIBJUCD 18UIRIUOD 1BUIEIUOD
e
Ve
8021 L0z}

US 11,184,219 B2

Sheet 14 of 39

Nov. 23, 2021

U.S. Patent

Ceel —
5

9cel e
v
geelt / .
rddy | eddy @Nm
\\Jl% @P
90t —~"

I8Ae] UCHBZIBNUIA

181U8N BIR(1BYiSAU 0cel
8l¢l \ il \3@ \NE \\

€l ol

VoL~
TR

i i i T

mo?\AE

U.S. Patent Nov. 23,2021 Sheet 15 of 39 US 11,184,219 B2

<
<

N

\ 1402

1406

Time

FIG. 14A

.
o
e
e <
P e
<F
.

apnjdwy

1404 —_]

US 11,184,219 B2

Sheet 16 of 39

Nov. 23, 2021

U.S. Patent

gyl Ol

SO

Soue

JohB| UONBZIBNLIA

N

c0el —

US 11,184,219 B2

Sheet 17 of 39

Nov. 23, 2021

U.S. Patent

orl Ol

POCL —
Yoeler e glsl e ey

.\\ @WQ \39 \ mrmw \

18jue) e [Bo1sAud

NNW—\ S

: \ 4 ;s: WA

_ A@ﬂw w_ﬂ,
Zee!

e
<

1ake] uolezieniiA

mom_‘\A

US 11,184,219 B2

Sheet 18 of 39

Nov. 23, 2021

U.S. Patent

.

e

uoimgh

A
- \\\

7

L BI0%
-2ieQ

US 11,184,219 B2

_M%:if_f :::52::7:5 3
i M.
- __ S
m g
r | :
| g /
L s 0%
\\\ el \ N \\
os /%S

v \\
%E,m&\ WIMSH 7 UAMSA /

Sheet 19 of 39

Nov. 23, 2021

U.S. Patent

b f

E;

:

e
s UDUMGA

LS

WA

s

NA

-

-

e
y

o

WA

WA

s

S

NA

3ty asuodsay

U.S. Patent Nov. 23,2021

)/

SR NG

Amplitude

Time

J\j \W\/\/\/ /\/\/\/\/L\J\,

Sheet 20 of 39 US 11,184,219 B2

First
,/ level

0, /

Second

level

/ Third
level

L

a4

U.S. Patent Nov. 23,2021 Sheet 21 of 39 US 11,184,219 B2

Arplitude
C
Amplitude

NM“\/\AN LA

Time .“"\ / Time

/
/
/

/ ‘V:R;ff {X } /

i (2) /

\ Ob;ect

U.S. Patent Nov. 23,2021 Sheet 22 of 39 US 11,184,219 B2

émmmse
| > '
5\

A\
\\)(04 \/i/ ;/ // /Second
/ | {9/3\/ / level

U.S. Patent Nov. 23,2021 Sheet 23 of 39 US 11,184,219 B2

Amplitude
<\>

Amplitude

4

/ Os g / Second

level

U.S. Patent Nov. 23,2021 Sheet 24 of 39 US 11,184,219 B2

0, /
Second

v (1) —" / level

10(Voo Vfliz./ 5 >\
N /

|

s
mrvr
/ // é
c e

/ V;,w([} ’*’ip(g)

3
e e fF {vg 2 Vm, o }

H

\ \\ \x /
. LN

f N /
/ @D\ / / Third
! level

1 ey
ATy
Ve § e

g | oS v A

Time

U.S. Patent Nov. 23,2021

Sheet 25 of 39

Recent Recent
: correlation correlated
Rank values metric

2 2

1 p(“"s Vi) ‘/m,(
. R

2 }0(\1'.5'? Vi F) Vi 1
4 (o ol i

pt"s k m.E }”m,,l:
3 3

5 £ ("v' Vo) Yo
' 50 3

6 /}(vsf “m B) 1’” B
YA 2

7 p("s s vm,/}) ‘P'm,B
4 4

8 ~ (1’5 ? ‘m_/[j) ’”m:,{g
A !

9 2 (V?*Vm A } Vin

‘iO p(b§7‘/’” l’)) m_)(t}
4 2

11 2 (" s V., } Vi, 4

12 ,a(vV p) b

13 VYo, () v;?,(.

US 11,184,219 B2

US 11,184,219 B2

Sheet 26 of 39

Nov. 23, 2021

U.S. Patent

§

(71aca)o

b

0t

ot N
“ Dt
m.,\r
Qg
4
-
u;m» 0l W
A,\,Mwm @ wlx_m\w
i 57w
m;, g @%
o gl
?3, am Mx
e n @ 4%?.:
! ¢
& M% m @ NM_.\ L
#4q p 7y
e,
m; e
H 4:? z
ot
W
golall WU aLetl
palejeLID paleleLo0
pajadxaun 1U808Y

sanfea
uolejaLI0D
R

Rl
o
<

ey

4

g
L

A

M o ;i%

Y =

a1

SoLIU
pPEIR[ELID
[EOLIOISIH

SaneA
U000
[EDLIONSIH

US 11,184,219 B2

Sheet 27 of 39

Nov. 23, 2021

U.S. Patent

aprdusy

<

SoLEN

“0

“0

0

0

mw&:mg peje|eli0o Em@

s
£

SO povUey
doj 10 o

108la0

U.S. Patent Nov. 23,2021 Sheet 28 of 39 US 11,184,219 B2

{ Get correlated malrics }

O

O

oy)

H
O I
|
Op
ey
; {
e AN S
Time

W
L
25
=2
=
LB o1
= 5]
o
— opryfdury
¥
5
S
[¢23
[
& .
“q‘)‘ -
b
P~
—
o
Rl
=
]

US 11,184,219 B2

Sheet 29 of 39

Nov. 23, 2021

U.S. Patent

- .
E|
©
&
&
STUBIN
f i
Qmu
f
) \ 4
e 0 L O v
e
i]
L
p - SOUBIN pavjuey v 1e
mmoEmE pelejRLI0d «m& 20 doy 10 ON O » 108la0

US 11,184,219 B2

Sheet 30 of 39

Nov. 23, 2021

U.S. Patent

sneg
,.\.V_Nma. ¢ ,,“L o M...,:m,\, ol
a xmz 4 v o a Hy 8
<
i JM 4°¢ .me v o T:M..« m
Q,Mf 5y v P Q;M 4 /
! .,am.» : »V o ¥ h..w_,\w g
& Nﬂ% 54 v] g RNM,\,, g
m ;my “a v o g hmr, w
a MM\,;.LQ m?m; ¢
‘Niﬁn ?w.»vmu\ @,:ﬁ\,\w z
!wx S v o .‘_?M.A |
/ sengen SOLIBL PBlBIBLI0D RUBY
HONBIBLIOT
o 4 . o SOLIBIN payuEY >

12el0

US 11,184,219 B2

Sheet 31 of 39

Nov. 23, 2021

U.S. Patent

N ot) [Y, o e
N AR AL () i 0
MM | @t qu,
SEOL R L P ari) ta 8
VR i pou as Pl
SR SE L | (M asa)d “a 8
BB ¥ [(rue, o 7w
r\)\i !M,._.,/; b\/%v \)/MW »M,Mx_vr A/ a 1.@ ¢ \»VQ\ d w«m A
] Yt v N [ST N i t?]
LSS LOL ([THart)d 4 9
23 ~{ S 3 g, s gus
SLSEL L (T hasta)of “A g
™ M 3 B Am..ib?a» V g,
AR) ! v
SY AP PN ARIENP AN AQ 4t v o ¢ ¢
g] qoui, g8 R
R R o L ¢
3 M ML M Ol s, o
MMM&&V NS bzx ﬂ o Kavm\ mz. L
/ Buiey sanjen s solleUl PRERHIOD ey
S uopBRID ’
i - SOUISI PaUEY .
{ : < 0 do} 10 ON o

| 108090

U.S. Patent Nov. 23, 2021
Unexpected
correlated

Rank metrics
1 ‘if
4 ‘;i
5 | v
6 ‘/'j; A
[
& | v
10 v

Sheet 32 of 39

US 11,184,219 B2

Rating

Unexpected
carrelated

Rank metrics

1 Vil.C

g

/s 2 "m,,é

3 V;z B

4’ 3 (.

5 VD

5

U.S. Patent Nov. 23,2021 Sheet 33 of 39 US 11,184,219 B2

fr | N 3 ; i - ©
LT 198 % AT 4T 9T ST | 2
§ Por s s B
PP P 9198 K
Dbl by B e PRI NI S N
P PR 9L 9292 9922
b | D Iy N
_ 29 |9 40 e x4 4
Y Do bob VP R N L N S W N
R S5 S5 9% SR SR AErE ExgRrg R
Ry
.
B e it e I e P B B D
=S S N I N IR I S T N DS IR S R
= l% ploLE | B oE R "ﬁ E e Tl w& M:‘g
-1 ICH BUCE BUCE BUCE BUCE ENCE BUCE IS BRI
5 = = = - > PN - - =N = =
O gy B S B e MVW’W\W’\?’/\——-’/
QR SR Q
Q
o
=
\%"\.
7y
o @
- E] wi ol ow owio4a oo owonl ooy
Gl E e B e B en F w8 e E o B w® &
- RO R =N O N N N PO - 2
&2 s
85 2
= 2 &
R o
g £
=5
of
ol
- Gle v |lm i w | @i~ 0 o 2
o e d

Object |

US 11,184,219 B2

Sheet 34 of 39

Nov. 23, 2021

U.S. Patent

{y) ainsespy | {(y) Wejgold VA X X

() emseapy | (©wagerg | X | X X

X
(g) sunseapy | (7) welqoid uwm wxm wxM wym
(1) enseapy | (1) wepgoid X X X X

einsesu wsiqold Afw %,L Aaé.\,,z...& Aaswwaxv Tﬁf,;@ Au..ﬁ, ;:v Au.w\i,,,i Amuaat,i AM?HN;;,Q szﬁﬁf

Elpsuiey ¢ ¢ ; i

U.S. Patent Nov. 23,2021 Sheet 35 of 39 US 11,184,219 B2

Method for froubleshooting
anomalous behavior in 2 data cente/r/
S

7

Identify a selected metric associsted L el
with an object of the data center ‘

v

ldentify unexpected metrics of
an object topology that
correspond to a performance
problem with executing the object

‘

Generale a recommendation fo
correct the performance problem
based on the unexpected metrics

Stop

U.S. Patent

Nov. 23, 2021

Identify unexpected metrics of
an object topology that
correspond to a performance
problem with executing the object

¥

Sheet 36 of 39

For each correlation techniqgue |7

%ﬁ
Computing correlation
coefficients for the selected
metric and melrics of objects
of the object topology

h

For each correlation coefficient

Yes —

EN
%

Corralation
coefficient greater than a
correlation threshold

Record metric and correlation
coefficient in an unexpected metric
file

Another ~—

correlation coefficient

melric file emply
7

—

Identify unexpected metrics
associated with the object

v

Rank order the unexpecied metrics
and record associated user identified
performance problem and remedial
measure

Display message stating that no
metrics of objects of the object
topotogy are associated with the
selected metric

¥

Rate the unexpected metrics

l«

@W

Return

US 11,184,219 B2

corrslation teW
?

U.S. Patent

Nov. 23, 2021 Sheet 37 of 39

Computing correlation
coefficients for the selected metric
and melrics of objects of the
object topology

.

Computing correlation cosfficients for
the selected metric and metrics of
the object associated with the
selected metric

A

Computing correlation coefficients for
the selected metric and medrics of
objscts at the same level as the
object in the object topology

.

Computing correfation coefficients for
the selected metric and metrics of
objects in different levels of the
object topelogy

User selected
obiects outside the ohject
\ topology
7
Yes

Computing correlation coefficients for
the selected metric and metrics of
user sslected oblects oulside the

object topology

le

[Return

\

US 11,184,219 B2

U.S. Patent

Nov. 23,2021 Sheet 38 of 39 US 11,184,219 B2

_// ldentify unexpected metrics U

associated with the abject

v
For each metric in the unexpected | - 2 0%
metric file

1
i

B,
ok

Discard the metric from the
unexpected metric file

k4

wr metric 2R

No
Return
(\, /

U.S. Patent

Nov. 23, 2021

< Rate the unexpected melrics >

Y

For sach metric in the unexpected
metic file

W s St

H /

User
selected two stars
?

—

User

User

@d four sta>\ie—§—b

\N'g"/

04
User

selected five stars
?

Assign a zero-star rating fo the
metric

L«

Sheet 39 of 39

US 11,184,219 B2

User Yes
selected one star
7

Assign a one-star rating to the metric

Yes

Assign a two-star rating to the metric

v
selected threes‘cars>\—{§5—%
?

Assign a three-star rating to the
metric

Assign a four-star rating to the metric

Yes

Assign a five-star rating fo the mefric ‘

User
rating below cut

off\f{—?é—%

Discard metrics from the unexpected

matric file

é

Anther

mettic
7

Yes

US 11,184,219 B2

1
METHODS AND SYSTEMS FOR
TROUBLESHOOTING ANOMALOUS
BEHAVIOR IN A DATA CENTER

TECHNICAL FIELD

This disclosure is directed to data centers and, in particu-
lar, to troubleshooting anomalous behavior in a data center
from streams of metric data.

BACKGROUND

Electronic computing has evolved from primitive,
vacuum-tube-based computer systems, initially developed
during the 1940s, to modern electronic computing systems
in which large numbers of multi-processor computer sys-
tems, such as server computers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands of components that
provide enormous computational bandwidths and data-stor-
age capacities. These large, distributed computing systems
are typically housed in data centers and made possible by
advances in computer networking, distributed operating
systems and applications, data-storage appliances, computer
hardware, and software technologies.

In recent years, data centers have grown meet the increas-
ing demand for information technology (“IT”) services, such
as running applications for organizations that provide busi-
ness and web services to millions of customers. In order to
proactively manage IT systems and services, management
tools have been developed to collect metric data and process
the metric data to detect performance problems and generate
alerts when problems arise. However, typical management
tools are not able to troubleshoot the cause of many types of
performance problems, which leads to lost revenue for IT
service providers when system administrators and applica-
tion owners are forced to manually troubleshoot perfor-
mance problems. For example, a typical management tool
generates an alert when the response time of a service to a
request from a client exceeds a response time threshold. As
a result, system administrators are made aware of the
problem when the alert is generated. But system adminis-
trators may not be able to timely troubleshoot the delayed
response time because the cause of the problem may be the
result of performance problems occurring with different
hardware and software executing in the data center. System
administrators and application owners seek methods and
systems that troubleshoot problems, giving system admin-
istrators and owners an opportunity to timely correct the
problems.

SUMMARY

Methods and systems described herein are directed to
troubleshooting anomalous behavior in a data center.
Anomalous behavior in an object of a data center, such as a
computational resource, an application, or a virtual machine
(“VM”), may be related to the behavior of other objects at
different hierarchies of the data center. Methods and systems
described herein use correlation measures to determine
whether any metrics associated with the object exhibiting
anomalous behavior are correlated with metrics associated
with other objects of the data center to detect correlations of
the metrics for specific time ranges. Specific combinations

10

15

20

25

30

35

40

45

50

55

60

65

2

of pair-wise correlated metrics may be used to identify
problems and apply appropriate remedial measures.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an architectural diagram for various types of
computers.

FIG. 2 shows an Internet-connected distributed computer
system.

FIG. 3 shows cloud computing.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system.

FIGS. 5A-5B show two types of virtual machine (“VM”)
and VM execution environments.

FIG. 6 shows an example of an open virtualization format
package.

FIG. 7 shows example virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server and physical servers of a
physical data center.

FIG. 9 shows a cloud-director level of abstraction.

FIG. 10 shows virtual-cloud-connector nodes.

FIG. 11 shows an example server computer used to host
three containers.

FIG. 12 shows an approach to implementing containers
on a VM.

FIG. 13 shows an example of a virtualization layer located
above a physical data center.

FIG. 14A shows a plot of an example metric.

FIGS. 14B-14C shows an operations manager that
receives metrics from physical and virtual resources.

FIG. 15A shows an example object topology formed from
objects of a cluster in a data center.

FIG. 15B shows example plots of metrics associated with
two VMs and a server computer of the cluster shown in FIG.
15A.

FIG. 16 A shows an example object topology comprising
three levels of data center objects.

FIGS. 16B-16E show examples correlation coeflicients
calculated for a selected metric and metrics of objects in the
levels of the object topology shown in FIG. 16A.

FIG. 17 shows an example table of rank ordered metrics
of objects of the object topology.

FIG. 18 shows an example of reducing the list of rank
ordered metrics to a list of rank ordered unexpected metrics.

FIGS. 19A-19C show an example graphical use interface
(“GUI”) that enables a user to select a metric and view
correlated metrics.

FIG. 20A shows a GUI that list the unexpected metrics,
associated correlation coeflicients, and user rating icons.

FIG. 20B shows the GUI with a rating assigned to each of
the top ten ranked unexpected metrics.

FIG. 20C shows unexpected metrics rank ordered accord-
ing to the user ratings.

FIG. 20D shows a GUI that list the highest user rated
unexpected metrics and recently determined unexpected
metrics.

FIG. 21 shows a table of ten frequently occurring unex-
pected metrics that are correlated with the selected metric.

FIG. 22 is a flow diagram illustrating an example imple-
mentation of a “method for troubleshooting anomalous
behavior in a data center.”

FIG. 23 is a flow diagram illustrating an example imple-
mentation of the “identify unexpected metrics of an object

US 11,184,219 B2

3

topology of the data center that correspond to a performance
problem with executing the object” procedure performed in
FIG. 22.

FIG. 24 is a flow diagram illustrating an example imple-
mentation of the “computing correlation coefficient for the
selected metric and metrics of the object associated with the
selected metric” procedure performed in FIG. 23.

FIG. 25 is a flow diagram illustrating an example imple-
mentation of the “identify unexpected metrics associated
with the object” procedure performed in FIG. 23.

FIG. 26 is a flow diagram illustrating an example imple-
mentation of the “rate the unexpected metrics” procedure
performed in FIG. 23.

DETAILED DESCRIPTION

This disclosure presents automated methods and systems
for troubleshooting anomalous behavior in a data center. In
a first subsection, computer hardware, complex computa-
tional systems, and virtualization are described. Methods
and systems for troubleshooting anomalous behavior in a
data center based on pair-wise correlated streams of metric
data are described below in a second subsection.

Computer Hardware, Complex Computational
Systems, and Virtualization

The term “abstraction” as used to describe virtualization
below is not intended to mean or suggest an abstract idea or
concept. Computational abstractions are tangible, physical
interfaces that are implemented, ultimately, using physical
computer hardware, data-storage devices, and communica-
tions systems. Instead, the term “abstraction” refers, in the
current discussion, to a logical level of functionality encap-
sulated within one or more concrete, tangible, physically-
implemented computer systems with defined interfaces
through which electronically-encoded data is exchanged,
process execution launched, and electronic services are
provided. Interfaces may include graphical and textual data
displayed on physical display devices as well as computer
programs and routines that control physical computer pro-
cessors to carry out various tasks and operations and that are
invoked through electronically implemented application
programming interfaces (“APIs”) and other electronically
implemented interfaces.

FIG. 1 shows a general architectural diagram for various
types of computers. Computers that receive, process, and
store log messages may be described by the general archi-
tectural diagram shown in FIG. 1, for example. The com-
puter system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
interconnects. These busses or serial interconnections, in
turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or
more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various dif-
ferent types of mass-storage devices 128, electronic dis-
plays, input devices, and other such components, subcom-
ponents, and computational devices. It should be noted that
computer-readable data-storage devices include optical and

10

15

20

25

30

35

40

45

50

55

60

65

4

electromagnetic disks, electronic memories, and other
physical data-storage devices.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of server computers and worksta-
tions, and higher-end mainframe computers, but may also
include a plethora of various types of special-purpose com-
puting devices, including data-storage systems, communi-
cations routers, network nodes, tablet computers, and mobile
telephones.

FIG. 2 shows an Internet-connected distributed computer
system. As communications and networking technologies
have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted server computers or blade servers all inter-
connected through various communications and networking
systems that together comprise the Internet 216. Such dis-
tributed computing systems provide diverse arrays of func-
tionalities. For example, a PC user may access hundreds of
millions of different web sites provided by hundreds of
thousands of different web servers throughout the world and
may access high-computational-bandwidth computing ser-
vices from remote computer facilities for running complex
computational tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web server computers, back-end
computer systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

FIG. 3 shows cloud computing. In the recently developed
cloud-computing paradigm, computing cycles and data-
storage facilities are provided to organizations and individu-
als by cloud-computing providers. In addition, larger orga-
nizations may elect to establish private cloud-computing
facilities in addition to, or instead of, subscribing to com-
puting services provided by public cloud-computing service
providers. In FIG. 3, a system administrator for an organi-
zation, using a PC 302, accesses the organization’s private
cloud 304 through a local network 306 and private-cloud
interface 308 and accesses, through the Internet 310, a
public cloud 312 through a public-cloud services interface
314. The administrator can, in either the case of the private
cloud 304 or public cloud 312, configure virtual computer

US 11,184,219 B2

5

systems and even entire virtual data centers and launch
execution of application programs on the virtual computer
systems and virtual data centers in order to carry out any of
many different types of computational tasks. As one
example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the devices to purchase,
manage, and maintain in-house data centers. Such organi-
zations can dynamically add and delete virtual computer
systems from their virtual data centers within public clouds
in order to track computational-bandwidth and data-storage
needs, rather than purchasing sufficient computer systems
within a physical data center to handle peak computational-
bandwidth and data-storage demands. Moreover, small orga-
nizations can completely avoid the overhead of maintaining
and managing physical computer systems, including hiring
and periodically retraining information-technology special-
ists and continuously paying for operating-system and data-
base-management-system upgrades. Furthermore, cloud-
computing interfaces allow for easy and straightforward
configuration of virtual computing facilities, flexibility in
the types of applications and operating systems that can be
configured, and other functionalities that are useful even for
owners and administrators of private cloud-computing
facilities used by a single organization.

FIG. 4 shows generalized hardware and software compo-
nents of a general-purpose computer system, such as a
general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one

10

20

30

35

40

45

50

55

60

65

6

another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor devices and other
system devices with other application programs and higher-
level computational entities. The device drivers abstract
details of hardware-component operation, allowing applica-
tion programs to employ the system-call interface for trans-
mitting and receiving data to and from communications
networks, mass-storage devices, and other /O devices and
subsystems. The file system 446 facilitates abstraction of
mass-storage-device and memory devices as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems
and can therefore be executed within only a subset of the
different types of computer systems on which the operating
systems are designed to run. Often, even when an applica-
tion program or other computational system is ported to
additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,

US 11,184,219 B2

7

creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” (“VM”) has been
developed and evolved to further abstract computer hard-
ware in order to address many difficulties and challenges
associated with traditional computing systems, including the
compatibility issues discussed above. FIGS. 5A-B show two
types of VM and virtual-machine execution environments.
FIGS. 5A-B use the same illustration conventions as used in
FIG. 4. FIG. 5A shows a first type of virtualization. The
computer system 500 in FIG. 5A includes the same hardware
layer 502 as the hardware layer 402 shown in FIG. 4.
However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment shown in FIG. 5A features a
virtualization layer 504 that interfaces through a virtualiza-
tion-layer/hardware-layer interface 506, equivalent to inter-
face 416 in FIG. 4, to the hardware. The virtualization layer
504 provides a hardware-like interface to VMs, such as VM
510, in a virtual-machine layer 511 executing above the
virtualization layer 504. Each VM includes one or more
application programs or other higher-level computational
entities packaged together with an operating system,
referred to as a “guest operating system,” such as application
514 and guest operating system 516 packaged together
within VM 510. Each VM is thus equivalent to the operat-
ing-system layer 404 and application-program layer 406 in
the general-purpose computer system shown in FIG. 4. Each
guest operating system within a VM interfaces to the virtu-
alization layer interface 504 rather than to the actual hard-
ware interface 506. The virtualization layer 504 partitions
hardware devices into abstract virtual-hardware layers to
which each guest operating system within a VM interfaces.
The guest operating systems within the VMs, in general, are
unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer 504 ensures that each of the VMs cur-
rently executing within the virtual environment receive a fair
allocation of underlying hardware devices and that all VMs
receive sufficient devices to progress in execution. The
virtualization layer 504 may differ for different guest oper-
ating systems. For example, the virtualization layer is gen-
erally able to provide virtual hardware interfaces for a
variety of different types of computer hardware. This allows,
as one example, a VM that includes a guest operating system
designed for a particular computer architecture to run on
hardware of a different architecture. The number of VMs
need not be equal to the number of physical processors or
even a multiple of the number of processors.

The virtualization layer 504 includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the VMs executes. For execution effi-
ciency, the virtualization layer attempts to allow VMs to
directly execute non-privileged instructions and to directly
access non-privileged registers and memory. However,
when the guest operating system within a VM accesses
virtual privileged instructions, virtual privileged registers,
and virtual privileged memory through the virtualization
layer 504, the accesses result in execution of virtualization-
layer code to simulate or emulate the privileged devices. The
virtualization layer additionally includes a kernel module
520 that manages memory, communications, and data-stor-
age machine devices on behalf of executing VMs (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each VM so that hardware-level virtual-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

memory facilities can be used to process memory accesses.
The VM kernel additionally includes routines that imple-
ment virtual communications and data-storage devices as
well as device drivers that directly control the operation of
underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer 504
essentially schedules execution of VMs much like an oper-
ating system schedules execution of application programs,
so that the VMs each execute within a complete and fully
functional virtual hardware layer.

FIG. 5B shows a second type of virtualization. In FIG. 5B,
the computer system 540 includes the same hardware layer
542 and operating system layer 544 as the hardware layer
402 and the operating system layer 404 shown in FIG. 4.
Several application programs 546 and 548 are shown run-
ning in the execution environment provided by the operating
system 544. In addition, a virtualization layer 550 is also
provided, in computer 540, but, unlike the virtualization
layer 504 discussed with reference to FIG. SA, virtualization
layer 550 is layered above the operating system 544, referred
to as the “host OS,” and uses the operating system interface
to access operating-system-provided functionality as well as
the hardware. The virtualization layer 550 comprises pri-
marily a VMM and a hardware-like interface 552, similar to
hardware-like interface 508 in FIG. SA. The hardware-layer
interface 552, equivalent to interface 416 in FIG. 4, provides
an execution environment for a number of VMs 556-558,
each including one or more application programs or other
higher-level computational entities packaged together with a
guest operating system.

In FIGS. 5A-5B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term “virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A VM or virtual application, described below, is encap-
sulated within a data package for transmission, distribution,
and loading into a virtual-execution environment. One pub-
lic standard for virtual-machine encapsulation is referred to
as the “open virtualization format” (“OVF”). The OVF
standard specifies a format for digitally encoding a VM
within one or more data files. FIG. 6 shows an OVF package.
An OVF package 602 includes an OVF descriptor 604, an
OVF manifest 606, an OVF certificate 608, one or more
disk-image files 610-611, and one or more device files
612-614. The OVF package can be encoded and stored as a
single file or as a set of files. The OVF descriptor 604 is an

US 11,184,219 B2

9

XML document 620 that includes a hierarchical set of
elements, each demarcated by a beginning tag and an ending
tag. The outermost, or highest-level, element is the envelope
element, demarcated by tags 622 and 623. The next-level
element includes a reference element 626 that includes
references to all files that are part of the OVF package, a disk
section 628 that contains meta information about all of the
virtual disks included in the OVF package, a network section
630 that includes meta information about all of the logical
networks included in the OVF package, and a collection of
virtual-machine configurations 632 which further includes
hardware descriptions of each VM 634. There are many
additional hierarchical levels and elements within a typical
OVF descriptor. The OVF descriptor is thus a self-describ-
ing, XML file that describes the contents of an OVF pack-
age. The OVF manifest 606 is a list of cryptographic-hash-
function-generated digests 636 of the entire OVF package
and of the various components of the OVF package. The
OVF certificate 608 is an authentication certificate 640 that
includes a digest of the manifest and that is cryptographi-
cally signed. Disk image files, such as disk image file 610,
are digital encodings of the contents of virtual disks and
device files 612 are digitally encoded content, such as
operating-system images. A VM or a collection of VMs
encapsulated together within a virtual application can thus
be digitally encoded as one or more files within an OVF
package that can be transmitted, distributed, and loaded
using well-known tools for transmitting, distributing, and
loading files. A virtual appliance is a software service that is
delivered as a complete software stack installed within one
or more VMs that is encoded within an OVF package.

The advent of VMs and virtual environments has allevi-
ated many of the difficulties and challenges associated with
traditional general-purpose computing. Machine and oper-
ating-system dependencies can be significantly reduced or
eliminated by packaging applications and operating systems
together as VMs and virtual appliances that execute within
virtual environments provided by virtualization layers run-
ning on many different types of computer hardware. A next
level of abstraction, referred to as virtual data centers or
virtual infrastructure, provide a data-center interface to
virtual data centers computationally constructed within
physical data centers.

FIG. 7 shows virtual data centers provided as an abstrac-
tion of underlying physical-data-center hardware compo-
nents. In FIG. 7, a physical data center 702 is shown below
a virtual-interface plane 704. The physical data center con-
sists of a virtual-data-center management server computer
706 and any of various different computers, such as PC 708,
on which a virtual-data-center management interface may be
displayed to system administrators and other users. The
physical data center additionally includes generally large
numbers of server computers, such as server computer 710,
that are coupled together by local area networks, such as
local area network 712 that directly interconnects server
computer 710 and 714-720 and a mass-storage array 722.
The physical data center shown in FIG. 7 includes three
local area networks 712, 724, and 726 that each directly
interconnects a bank of eight server computers and a mass-
storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple VMs. Different physical data centers may
include many different types of computers, networks, data-
storage systems and devices connected according to many
different types of connection topologies. The virtual-inter-
face plane 704, a logical abstraction layer shown by a plane
in FIG. 7, abstracts the physical data center to a virtual data

10

15

20

25

30

35

40

45

50

55

60

65

10

center comprising one or more device pools, such as device
pools 730-732, one or more virtual data stores, such as
virtual data stores 734-736, and one or more virtual net-
works. In certain implementations, the device pools abstract
banks of server computers directly interconnected by a local
area network.

The virtual-data-center management interface allows pro-
visioning and launching of VMs with respect to device
pools, virtual data stores, and virtual networks, so that
virtual-data-center administrators need not be concerned
with the identities of physical-data-center components used
to execute particular VMs. Furthermore, the virtual-data-
center management server computer 706 includes function-
ality to migrate running VMs from one server computer to
another in order to optimally or near optimally manage
device allocation, provides fault tolerance, and high avail-
ability by migrating VMs to most effectively utilize under-
lying physical hardware devices, to replace VMs disabled by
physical hardware problems and failures, and to ensure that
multiple VMs supporting a high-availability virtual appli-
ance are executing on multiple physical computer systems
so that the services provided by the virtual appliance are
continuously accessible, even when one of the multiple
virtual appliances becomes compute bound, data-access
bound, suspends execution, or fails. Thus, the virtual data
center layer of abstraction provides a virtual-data-center
abstraction of physical data centers to simplify provisioning,
launching, and maintenance of VMs and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the devices of individual server com-
puters and migrating VMs among server computers to
achieve load balancing, fault tolerance, and high availability.

FIG. 8 shows virtual-machine components of a virtual-
data-center management server computer and physical
server computers of a physical data center above which a
virtual-data-center interface is provided by the virtual-data-
center management server computer. The virtual-data-center
management server computer 802 and a virtual-data-center
database 804 comprise the physical components of the
management component of the virtual data center. The
virtual-data-center management server computer 802
includes a hardware layer 806 and virtualization layer 808
and runs a virtual-data-center management-server VM 810
above the virtualization layer. Although shown as a single
server computer in FIG. 8, the virtual-data-center manage-
ment server computer (“VDC management server”) may
include two or more physical server computers that support
multiple VDC-management-server virtual appliances. The
virtual-data-center management-server VM 810 includes a
management-interface component 812, distributed services
814, core services 816, and a host-management interface
818. The host-management interface 818 is accessed from
any of various computers, such as the PC 708 shown in FIG.
7. The host-management interface 818 allows the virtual-
data-center administrator to configure a virtual data center,
provision VMs, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
VMs within each of the server computers of the physical
data center that is abstracted to a virtual data center by the
VDC management server computer.

The distributed services 814 include a distributed-device
scheduler that assigns VMs to execute within particular
physical server computers and that migrates VMs in order to
most effectively make use of computational bandwidths,
data-storage capacities, and network capacities of the physi-

US 11,184,219 B2

11

cal data center. The distributed services 814 further include
a high-availability service that replicates and migrates VMs
in order to ensure that VMs continue to execute despite
problems and failures experienced by physical hardware
components. The distributed services 814 also include a
live-virtual-machine migration service that temporarily halts
execution of a VM, encapsulates the VM in an OVF pack-
age, transmits the OVF package to a different physical server
computer, and restarts the VM on the different physical
server computer from a virtual-machine state recorded when
execution of the VM was halted. The distributed services
814 also include a distributed backup service that provides
centralized virtual-machine backup and restore.

The core services 816 provided by the VDC management
server VM 810 include host configuration, virtual-machine
configuration, virtual-machine provisioning, generation of
virtual-data-center alerts and events, ongoing event logging
and statistics collection, a task scheduler, and a device-
management module. Each physical server computers 820-
822 also includes a host-agent VM 828-830 through which
the virtualization layer can be accessed via a virtual-infra-
structure application programming interface (“API”). This
interface allows a remote administrator or user to manage an
individual server computer through the infrastructure APIL.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server information through the host agents. The
virtual-data-center agents are primarily responsible for off-
loading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server computer. The virtual-data-center agents
relay and enforce device allocations made by the VDC
management server VM 810, relay virtual-machine provi-
sioning and configuration-change commands to host agents,
monitor and collect performance statistics, alerts, and events
communicated to the virtual-data-center agents by the local
host agents through the interface API, and to carry out other,
similar virtual-data-management tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional devices of a cloud-computing facility to cloud-com-
puting-infrastructure users. A cloud-director management
server exposes virtual devices of a cloud-computing facility
to cloud-computing-infrastructure users. In addition, the
cloud director introduces a multi-tenancy layer of abstrac-
tion, which partitions VDCs into tenant-associated VDCs
that can each be allocated to an individual tenant or tenant
organization, both referred to as a “tenant.” A given tenant
can be provided one or more tenant-associated VDCs by a
cloud director managing the multi-tenancy layer of abstrac-
tion within a cloud-computing facility. The cloud services
interface (308 in FIG. 3) exposes a virtual-data-center man-
agement interface that abstracts the physical data center.

FIG. 9 shows a cloud-director level of abstraction. In FIG.
9, three different physical data centers 902-904 are shown
below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The devices of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director server computers 920-922 and associated

10

15

20

25

30

35

40

45

50

55

60

65

12

cloud-director databases 924-926. Each cloud-director
server computer or server computers runs a cloud-director
virtual appliance 930 that includes a cloud-director manage-
ment interface 932, a set of cloud-director services 934, and
a virtual-data-center management-server interface 936. The
cloud-director services include an interface and tools for
provisioning multi-tenant virtual data center virtual data
centers on behalf of tenants, tools and interfaces for con-
figuring and managing tenant organizations, tools and ser-
vices for organization of virtual data centers and tenant-
associated virtual data centers within the multi-tenant virtual
data center, services associated with template and media
catalogs, and provisioning of virtualization networks from a
network pool. Templates are VMs that each contains an OS
and/or one or more VMs containing applications. A template
may include much of the detailed contents of VMs and
virtual appliances that are encoded within OVF packages, so
that the task of configuring a VM or virtual appliance is
significantly simplified, requiring only deployment of one
OVF package. These templates are stored in catalogs within
a tenant’s virtual-data center. These catalogs are used for
developing and staging new virtual appliances and published
catalogs are used for sharing templates in virtual appliances
across organizations. Catalogs may include OS images and
other information relevant to construction, distribution, and
provisioning of virtual appliances.

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this
level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-
erogeneous or homogeneous aggregations of cloud-comput-
ing facilities.

FIG. 10 shows virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are shown 1002-
1008. Cloud-computing facility 1002 is a private multi-
tenant cloud with a cloud director 1010 that interfaces to a
VDC management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-

US 11,184,219 B2

13

server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

As mentioned above, while the virtual-machine-based
virtualization layers, described in the previous subsection,
have received widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have steadily
decreased, over the years, and often represent ten percent or
less of the total computational bandwidth consumed by an
application running above a guest operating system in a
virtualized environment, traditional virtualization technolo-
gies nonetheless involve computational costs in return for
the power and flexibility that they provide.

While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems, OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system. As one example, OSL virtual-
ization provides a file system to each container, but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system of the host. In essence, OSL virtu-
alization uses operating-system features, such as namespace
isolation, to isolate each container from the other containers
running on the same host. In other words, namespace
isolation ensures that each application is executed within the
execution environment provided by a container to be iso-
lated from applications executing within the execution envi-
ronments provided by the other containers. A container
cannot access files that are not included in the container’s
namespace and cannot interact with applications running in
other containers. As a result, a container can be booted up
much faster than a VM, because the container uses operat-
ing-system-kernel features that are already available and
functioning within the host. Furthermore, the containers
share computational bandwidth, memory, network band-
width, and other computational resources provided by the
operating system, without the overhead associated with
computational resources allocated to VMs and virtualization
layers. Again, however, OSL virtualization does not provide
many desirable features of traditional virtualization. As
mentioned above, OSL virtualization does not provide a way
to run different types of operating systems for different
groups of containers within the same host and OSL-virtu-
alization does not provide for live migration of containers
between hosts, high-availability functionality, distributed
resource scheduling, and other computational functionality
provided by traditional virtualization technologies.

FIG. 11 shows an example server computer used to host
three containers. As discussed above with reference to FIG.
4, an operating system layer 404 runs above the hardware
402 of the host computer. The operating system provides an
interface, for higher-level computational entities, that
includes a system-call interface 428 and the non-privileged
instructions, memory addresses, and registers 426 provided
by the hardware layer 402. However, unlike in FIG. 4, in
which applications run directly above the operating system
layer 404, OSL virtualization involves an OSL virtualization
layer 1102 that provides operating-system interfaces 1104-
1106 to each of the containers 1108-1110. The containers, in
turn, provide an execution environment for an application
that runs within the execution environment provided by

10

15

20

25

30

35

40

45

50

55

60

65

14

container 1108. The container can be thought of as a
partition of the resources generally available to higher-level
computational entities through the operating system inter-
face 430.

FIG. 12 shows an approach to implementing the contain-
ers on a VM. FIG. 12 shows a host computer similar to that
shown in FIG. 5A, discussed above. The host computer
includes a hardware layer 502 and a virtualization layer 504
that provides a virtual hardware interface 508 to a guest
operating system 1102. Unlike in FIG. 5A, the guest oper-
ating system interfaces to an OSL-virtualization layer 1104
that provides container execution environments 1206-1208
to multiple application programs.

Note that, although only a single guest operating system
and OSL virtualization layer are shown in FIG. 12, a single
virtualized host system can run multiple different guest
operating systems within multiple VMs, each of which
supports one or more OSL-virtualization containers. A vir-
tualized, distributed computing system that uses guest oper-
ating systems running within VMs to support OSL-virtual-
ization layers to provide containers for running applications
is referred to, in the following discussion, as a “hybrid
virtualized distributed computing system.”

Running containers above a guest operating system within
a VM provides advantages of traditional virtualization in
addition to the advantages of OSL virtualization. Containers
can be quickly booted in order to provide additional execu-
tion environments and associated resources for additional
application instances. The resources available to the guest
operating system are efficiently partitioned among the con-
tainers provided by the OSL-virtualization layer 1204 in
FIG. 12, because there is almost no additional computational
overhead associated with container-based partitioning of
computational resources. However, many of the powerful
and flexible features of the traditional virtualization tech-
nology can be applied to VMs in which containers run above
guest operating systems, including live migration from one
host to another, various types of high-availability and dis-
tributed resource scheduling, and other such features. Con-
tainers provide share-based allocation of computational
resources to groups of applications with guaranteed isolation
of applications in one container from applications in the
remaining containers executing above a guest operating
system. Moreover, resource allocation can be modified at
run time between containers. The traditional virtualization
layer provides for flexible and scaling over large numbers of
hosts within large distributed computing systems and a
simple approach to operating-system upgrades and patches.
Thus, the use of OSL virtualization above traditional virtu-
alization in a hybrid virtualized distributed computing sys-
tem, as shown in FIG. 12, provides many of the advantages
of both a traditional virtualization layer and the advantages
of OSL virtualization.

Methods and Systems for Troubleshooting
Anomalous Behavior in a Data Center Based on
Pair-Wise Streams of Metric Data

FIG. 13 shows an example of a virtualization layer 1302
located above a physical data center 1304. For the sake of
illustration, the virtualization layer 1302 is separated from
the physical data center 1304 by a virtual-interface plane
1306. The physical data center 1304 is an example of a
distributed computing system. The physical data center 1304
comprises physical objects, including an administration
computer system 1308, any of various computers, such as
PC 1310, on which a virtual-data-center (“VDC”) manage-

US 11,184,219 B2

15

ment interface may be displayed to system administrators
and other users, server computers, such as server computers
1312-1319, data-storage devices, and network devices. Each
server computer may have multiple network interface cards
(“NICs”) to provide high bandwidth and networking to other
server computers and data storage devices. The server
computers may be networked together to form server-com-
puter groups within the data center 1304. The example
physical data center 1304 includes three server-computer
groups each of which have eight server computers. For
example, server-computer group 1320 comprises intercon-
nected server computers 1312-1319 that are connected to a
mass-storage array 1322. Within each server-computer
group, certain server computers are grouped together to form
a cluster that provides an aggregate set of resources (i.e.,
resource pool) to objects in the virtualization layer 1302.
Different physical data centers may include many different
types of computers, networks, data-storage systems and
devices connected according to many different types of
connection topologies.

The virtualization layer 1302 includes virtual objects,
such as VMs, applications, and containers, hosted by the
server computers in the physical data center 1304. The
virtualization layer 1302 may also include a virtual network
(not illustrated) of virtual switches, routers, load balancers,
and NICs formed from the physical switches, routers, and
NICs of the physical data center 1304. Certain server
computers host VMs and containers as described above. For
example, server computer 1318 hosts two containers iden-
tified as Cont; and Cont,; cluster of server computers
1312-1314 host six VMs identified as VM,, VM,, VM,
VM, VM, and VMg; server computer 1324 hosts four VM
identified as VM,, VM,, VM,, VM, ,. Other server com-
puters may host applications as described above with refer-
ence to FIG. 4. For example, server computer 1326 hosts an
application identified as App.,.

The virtual-interface plane 1306 abstracts the resources of
the physical data center 1304 to one or more VDCs com-
prising the virtual objects and one or more virtual data
stores, such as virtual data stores 1328 and 1330. For
example, one VDC may comprise the VMs running on
server computer 1324 and virtual data store 1328. Auto-
mated methods and systems described herein may be
executed by an operations manager 1332 in one or more
VMs on the administration computer system 1308. The
operations manager 1332 provides several interfaces, such
as graphical user interfaces, for data center management,
system administrators, and application owners. The opera-
tions manager 1332 receives streams of metric data from
various physical and virtual objects of the data center as
described below.

In the following discussion, the term “object” refers to a
physical object, such as a server computer and a network
device, or to a virtual object, such as an application, VM,
virtual network device, container, or any other physical or
virtual object of the physical data center 1304 for which
metric data can be collected to evaluate abnormal or normal
behavior of the object. The term “resource” refers to a
physical resource of the data center, such as, but are not
limited to, a processor, a core, memory, a network connec-
tion, network interface, data-storage device, a mass-storage
device, a switch, a router, and other any other component of
the physical data center 1304. Resources of a server com-
puter and clusters of server computers may form a resource
pool for creating virtual resources of a virtual infrastructure
used to run virtual objects. The term “resource” may also
refer to a virtual resource, which may have been formed

10

15

20

25

30

35

40

45

50

55

60

65

16

from physical resources assigned to a virtual object. For
example, a resource may be a virtual processor used by a
virtual object formed from one or more cores of a multicore
processor, virtual memory formed from a portion of physical
memory and a hard drive, virtual storage formed from a
sector or image of a hard disk drive, a virtual switch, and a
virtual router. Each virtual object uses only the physical
resources assigned to the virtual object.

The operations manager 1332 monitors physical and
virtual resources for anomalous behavior by collecting
numerous streams of time-dependent metric data. Each
stream of metric data is time series data that may be
generated by an operating system, a resource, or by an object
itself. A stream of metric data associated with a resource
comprises a sequence of time-ordered metric values that are
recorded in spaced points in time called “time stamps.” A
stream of metric data is simply called a “metric” and is
denoted by

V(O=) = =)=

where

v denotes the name of the metric;

N is the number of metric values in the sequence;

X,~X(t;) is a metric value;

1, is a time stamp indicating when the metric value was

recorded in a data-storage device; and

subscript i is a time stamp index i=1, ..., N.

FIG. 14A shows a plot of an example metric. Horizontal
axis 1402 represents time. Vertical axis 1404 represents a
range of metric value amplitudes. Curve 1406 represents a
metric as time series data. In practice, a metric comprises a
sequence of discrete metric values in which each metric
value is recorded in a data-storage device. FIG. 14A includes
a magnified view 1408 of three consecutive metric values
represented by points. Each point represents an amplitude of
the metric at a corresponding time stamp. For example,
points 1410-1412 represent consecutive metric values (i.e.,
amplitudes) x,_;, X,, and X,,, recorded in a data-storage
device at corresponding time stamps t,_, t,, and t,,,. The
example metric may represent usage of a physical or virtual
resource. For example, the metric may represent CPU usage
of'a core in a multicore processor of a server computer over
time. The metric may represent the amount of virtual
memory a VM uses over time. The metric may represent
network throughput for a server computer. Network
throughput is the number of bits of data transmitted to and
from a physical or virtual object and is recorded in megabits,
kilobits, or bits per second. The metric may represent
network traffic for a server computer. Network traffic at a
physical or virtual object is a count of the number of data
packets received and sent per unit of time. The metric may
also represent object performance, such as CPU contention,
response time to requests, and wait time for access to a
resource of an object.

Each object may have numerous associated metrics. A
server computer may have hundreds of associated metrics
including usage of each core of a multicore core processor,
memory usage, storage usage, network throughput, error
rates, datastores, disk usage, average response times, peak
response times, thread counts, and power usage just to name
a few. A virtual object, such as a VM, may have hundreds of
associated metrics that monitor both physical and virtual
resource usage, such as virtual CPU metrics, virtual memory
usage metrics, virtual disk usage, virtual storage space,
number of data stores, average and peak response times for
various physical and virtual resources of the VM, network
throughput, and power usage just to name a few.

M

US 11,184,219 B2

17

In FIGS. 14B-14C, the operations manager 1332 receives
numerous metrics associated with numerous resources and
objects. Directional arrows represent metrics sent from
physical and virtual resources to the operations manager
1332. In FIG. 14B, the operating systems of PC 1310, server
computers 1308 and 1324, and mass-storage array 1322
send metrics to the operations manager 1332. A cluster of
server computers 1312-1314 send metrics to the operations
manager 1332. In FIG. 14C, the operating systems, VMs,
containers, applications, and virtual storage may indepen-
dently send metrics to the operations manager 1332. Certain
objects may send metrics as the time series data is generated
while other objects may only send time series data of a
metric at certain times or when requested to send metrics by
the operations manager 1332. The operations manager 1332
may be implemented in a VM to collect and processes the
metrics to identify abnormal behaving objects and may
generate recommendations to correct abnormally behaving
objects or execute remedial measures, such as reconfiguring
a virtual network of a VDC or migrating VMs from one
server computer to another. For example, remedial measures
may include, but are not limited to, powering down server
computers, replacing VMs disabled by physical hardware
problems and failures, spinning up cloned VMs on addi-
tional server computers to ensure that the services provided
by the VMs are accessible to increasing demand or when one
of the VMs becomes compute or data-access bound.

Unexpected abnormal behavior in an object of a data
center may be the result of abnormal behavior exhibited by
another object at different levels of an object topology of a
data center. Alternatively, abnormal behavior in an object of
a data center may create unexpected abnormal behavior
exhibited by other objects located in different levels of the
object topology. These unexpected abnormal behaviors may
be exhibited in correlations of the associated metrics for
specific time intervals.

An object topology of objects of a data center is deter-
mined by parent/child relationships between the objects
comprising the set. For example, a server computer is a
parent with respect VMs (i.e., children) executing on the
host, and, at the same time, the server computer is a child
with respect to a cluster (i.e., parent). The object topology
may be represented as a graph of objects. The object
topology for a set of objects may be dynamically created by
the operations manager 1332 subject to continuous updates
to VMs and server computers and other changes to the data
center.

FIG. 15A shows an example object topology of a cluster
in a data center. In this example, a cluster 1502 comprises
four server computers, identified as SC,, SC,, SC;, and SC,,
that are networked together to provide computational and
network resources for virtual objects in a virtualization level
1504. The physical resources of the cluster 1502 are aggre-
gated to create virtual resources for the virtual objects in the
virtualization layer 1504. The virtual objects include six
VMs 1506-1511, three virtual switches 1512-1514, and two
datastores 1516-1517. In FIG. 15A, an example object
topology 1518 comprises four levels. A first level of objects
comprises the VMs 1506-1511 that share the same resources
of the cluster 1502. A second level of objects comprises the
virtual switches 1512-1514 of a virtual network that con-
nects the VMs 1506-1511 to each other. A third level
comprises the datastores 1516 and 1517 that store the virtual
hard disks of the VMs 1506-1511. A fourth level comprises
the server computers SC,, SC,, SC;, and SC,. In other
implementations, the object topology may be further divided
based on whether the objects are related. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

18

first level of VMs may be divided into two levels if VMs
1506-1509 comprise modules of a first distributed applica-
tion and VMs 1510 and 1511 comprise modules of a second
distributed application. An object topology may include
objects of multiple server computers in a data center. FIG.
15B shows an example object topology 1520 formed from
the object topology of objects 1518 in FIG. 15A expanded
to include objects of a server computer identified as SCs.
Virtual objects of the server computer SC; include four VMs
1522-1525, a virtual switch 1526, and a datastore 1528.

FIG. 15B also shows three example plots 1530-1532 of
metrics associated with VM 1506, VM 1508, and server
computer SCs. Plot 1530 shows a plot of response time for
the application executing in VM 1506. Plot 1531 shows a
plot of virtual memory of the VM 1508. Plot 1532 shows a
plot of CPU contention for cores of a multicore processor of
the server computer SCs. The plots 1530-1532 reveal that
before time, t, response time of the application executing in
the VM 1506, virtual memory of the VM 1508, and CPU
contention at the server computer SC5 are uncorrelated.
After time t the response time of the application executing
in the VM 1506, virtual memory of the VM 1509, and CPU
contention at the server computer SC, appear correlated with
peaks and troughs occurring at about the same times.

Methods and systems described herein compute correla-
tions between metrics of an object exhibiting unexpected
abnormal behavior and other metrics of objects in different
levels of an object topology of a data center. The object
topology contains the object exhibiting unexpected abnor-
mal behavior. The combination of correlations may be used
to identify a type of problem in the data center. For example,
in FIG. 15B, suppose VMs 1506 and 1508 use services
provided by the VMs 1522-1525 executing on the server
computer SC5. When the services provided by the VMs
1522-1525 are interrupted or perturbed, VM 1506 experi-
ences a response time delay revealed by plot 1530 and VM
1508 experiences spikes in memory usage revealed by plot
1531. A system administrator or owner of the VMs 1506-
1511 may be alerted to the abnormally high response times
and memory spikes occurring after time t. Methods and
systems described below may be used to determine a cor-
relation between the response time and the virtual memory,
a correlation between the virtual memory and the CPU
contention, and a correlation between the virtual memory
and the response time. The system administrator or owner
may determine that the correlation between the virtual
memory and the response time is a less significant indicator
of the problem than the correlation between the response
time and the CPU contention and the correlation between the
virtual memory and the CPU contention. Methods and
systems described below enable a system administrator or
application owner to associate an alert with the combination
of correlations between the response time and virtual
memory with the CPU contention such that when the same
alert is triggered in the future with the same combination of
correlations, the administrator or application owner may
immediately recognize the problem and immediately
execute appropriate remedial measures to correct the prob-
lem. For example, the administrator or owner may have
determined that the problem with CPU contention leads to
delayed response times and memory spikes at VMs 1506 and
1508, respectively, and is resolved by increasing virtual
CPU usage for the VM 1522 at the server computer SCs.
Methods and systems may automatically execute a script
program that increases virtual CPU usage for the VM 1522
when the alert with the same combination of correlations is
detected.

US 11,184,219 B2

19

Methods and systems compute correlations between a
selected metric, v (t), of an object in an object topology and
metrics, v,,(t), of other objects in the object topology, where
v, denotes the name of the selected metric, v,, denotes the
name of the metric associated with objects of the object
topology, where index m=1, . . . , M, and M is the number
of metrics in the object topology, excluding the selected
metric. The metric values of the selected metric and the
metric values of the other metrics of the object topology may
have been generated with different intervals between time
stamps, the intervals may not be uniform, and the time
stamps of the metric values may not be aligned in time. For
example, metric data associated with different resources of
an object may be generated periodically at regular intervals
and the time stamps of the metric values may be aligned in
time. On the other hand, metrics of other resources may be
generated nonperiodically and the time stamps of the metric
values are not aligned in time. In certain cases, the opera-
tions manager 1332 may request metric data from data
sources at regular intervals, while in other cases, the metrics
may be sent to the operations manager 1332 at periodic
intervals or whenever metric data becomes available. As a
result, the metric values of the selected metric and the metric
values of other metrics of the object topology may not be
time aligned.

In order to compute correlations of the selected metric
with each metric of an object topology, the selected metric
and other metrics may be aligned in time with a general set
of uniformly spaced time stamps. Metric values may be
aligned in time by computing a running-time average of
metric values in a sliding time window centered at each time
stamp of the general set of uniformly spaced time stamps. In
an alternative implementation, the metric values with time
stamps in the sliding time window may be smoothed by
computing a running time median of metric values in the
sliding time window centered at each time stamp of the
general set of uniformly spaced time stamps. Methods and
systems may also align in time the metrics by deleting time
stamps of missing metric values or interpolating missing
metric data at time stamps of the general set of uniformly
spaced time stamps using interpolation, such as linear,
quadratic, or spline interpolation. After the selected metric
and the other metrics of the object topology have been time
aligned, correlations are computed for the selected metric v,
with each metric v,,,.

In one implementation, for each metric v,,, a correlation
between the metric v,, and the selected metric v, may be
computed using a product-moment correlation coeflicient
(“PMCC”) given by:

(Vs Vi) = i N (xi,x_ﬂx)(xi,m_ﬂm) @
e 3 e
where
X

Hs = N : Xi,s

i=1

1N
o5 = ﬁiZI(xi,x_ﬂx)

20

25

40

45

50

55

65

20

-continued
1w
Om = N‘; (Xign = tm)

In another implementation, for each metric v,,, a corre-
lation between the metric v,, and the selected metric v, may
be computed using a distance correlation. The distance
correlation is executed by computing an NxN distance
matrix for the selected metric v, with matrix elements given

by

"/'Jr:\/’%';z‘zlc,s2
where j, k=1,2, ..., N.
The matrix elements of Equation (3a) are doubly centered
to obtain a doubly centered distance matrix for the selected
metric v, with matrix elements given by

(3a)

Ajp=ajy—a;—ar+a (3b)

where

For each metric v,, matrix elements of a corresponding
NxN distance matrix are given by

by, k:\/xj mz—xk ,,,2 (4a)
where j, k=1,2, ..., N.

The matrix elements of Equation (4a) are doubly centered to

obtain a doubly centered distance matrix for the metric v,,

with matrix elements given by

Biy=bjy-bj—b+b (4b)

where

The distance correlation coefficient is given by

dCor(vg, v,,)
Pc(Vss Vi) = —————e——
VdVar(vy)dVar(v,)

where

®

US 11,184,219 B2

21

-continued

1 &N
dCorl(vg, v,,) = mz Z AjuBx

=1 k=1

NH
M=
1=
e
e

dVar(vg) = o
=1 k=1
and
1 N N
dVar(v,) = ZZZBfk

~
I

J=1

In another implementation, for each metric v,,, a corre-
lation between the metric v,, and the selected metric v, may
be computed using rank correlation. A rank correlation
coeflicient is computed using the product-moment correla-
tion coeflicient of Equation (2) with elements of the selected
metric v, and the metric v,, rank ordered:

©

=)

Ts Tm

Lrc(Vss Vin) = Ppm(1Vs, Vi) =

N |

N
7o (et
i=1
where

N
rvs = (ie)il)

and

N
Pom = (i)Y

Elements of the rank ordered selected metric, rv,, and the
rank ordered metric, rv,,, may be obtained by rank ordering
elements of the corresponding selected metric v, and the
metric v, (t) from largest to smallest (or smallest to largest).
For example, rx; , may be assigned the largest element in v,
X, . may be assigned the second largest element in v, and so
on with the final element rx,, , assigned the smallest element
in v,. The elements of the rank ordered metric rv,, are
obtained in the same manner.

Correlation coefficients are computed for the selected
metric v, and the other metrics v,, of an object topology in
a recent time interval as follows. 1) Correlation coefficients
are computed for the selected metric and other metrics of the
object associated with the selected metric. 2) Correlation
coeflicients are computed for the selected metric and other
metrics of objects at the same level of the object topology.
3) Correlation coefficients are computed for the selected
metric and other metrics of objects at different levels of the
object topology. 4) Correlation coefficients may be com-
puted for the selected metric and other metrics outside the
object topology as selected by a user, such as by a system
administrator or an application owner.

FIG. 16 A shows an example object topology comprising
three levels 1601-1603 of data center objects. Each object is
represented by a rectangle. The objects may be virtual
objects or physical objects. FIG. 16A shows a plot 1606 of
metric data of a selected metric v, associated with an object,
O,. The time axis represents a recent time interval that
begins at time t, where t denotes point in time that may be
selected by a system administrator after which correlations
between the selected metric and other metrics of the object
topology are computed. The selected metric v, may have
been selected for investigation by a system administrator.
Alternatively, the selected metric v, may have been identi-
fied because recently generated metric values violated a

10

15

20

25

30

35

40

45

50

55

60

65

22

threshold for the metric, indicating a performance problem
with the object O . If the object O, is a physical object, such
as a server computer, the selected metric v, may represent
CPU usage, memory usage, network throughput, request per
second, error rates, average response time, CPU contention,
uptime, and thread count just to name a few. If the object O,
is a virtual object, such as a virtual machine, the selected
metric v, may represent virtual CPU usage, virtual memory
usage, virtual network throughput, request per second, error
rates, and average response time just to name a few.

FIGS. 16B-16E show example correlation coeflicients
calculated over the recent time interval for the selected
metric and metrics of objects in different levels of the object
topology shown in FIG. 16 A. Objects of the object topology
are denoted by Oy with associated metrics denoted by v,, ;7
where the subscript Y identifies the object and the super-
script X is a numerical value that distinguishes different
metrlcs of the object. For example, the metrics v, ! and
V,,.y> may represent CPU usage and memory usage of the
obJect Oy A correlation coefficient, p, is computed for the
selected metric with each of the other metrics in the object
topology. The correlation coefficient p represents the
PMCC, the distance correlation, or the rank correlation.

FIG. 16B shows correlation coefficients for the selected
metric and other metrics of the object O,. The object O is
enlarged to represent computation of correlations for the
selected metric v, with other metrics v,, A V. 2
associated with the object O,. FIG 16B shows a plot 1608
of metric data of the metric v, ! in the recent time interval.
Ellipsis 1610 denotes other metrics of the object O, that are
not represented. A correlation coeflicient is computed for the
selected metric with each of the other metrics. For example,
P(VeV s 1y is the correlation coefficient for the selected
metric v, and the metric v, Al and p(v,, V,, 4 %) is the
correlation coeflicient between of the selected metric v, and
the metric v,,

FIG. 16C shows correlation coeflicients for the selected
metric and metrics of objects in the second level. An object
Oy represents an object in the second level 1602 and is
shown enlarged to represent computation of correlations for
the selected metric v, with metrics v, ’31, V. ’32, ... of the
object O. FIG. 16C shows a plot 1612 of metric data of the
metric v, ,Bl in the recent time interval. Ellipsis 1614 denotes
other metrics of the object O, that are not represented. A
correlation is computed for the selected metric with each of
the metrics associated with the object O and for the metrics
of other objects in the second level. For example, p(v,,

Vo5 ! is the correlation coefficient between the selected
metric v, and the metric v, ;' and p(v,, v, 5°) is the
correlation coeflicient between of the selected metrrc v, and
the metric v,,

FIG. 16D shows correlations for the selected metric with
metrics of objects in the first level. An object O represents
an object in the first level 1601 and is shown enlarged to
represent computation of correlations for the selected metric
v,(t) with metrics v, ', v,, /7 . . . of the object O. FIG
16D shows a plot 1616 of metric data of the metric V. C in
the recent time interval. Ellipsis 1618 denotes other metrics
of the object O that are not represented. A correlation is
computed for the selected metric with each of the metrics
associated with the object O and for the metrics of other
objects in the first level. For example, p(v,, v,,c) is the
correlation coefficient between the selected metric v, and the
metric v, o and p(v,, Voo ?) is the correlation coefﬁment
between of the selected metric v, and the metric v, o

FIG. 16E shows correlations for the selected metric with
metrics of objects in the first level. An object O, represents

US 11,184,219 B2

23

an object in the third level 1602 and is shown enlarged to
represent computation of correlations for the selected metric
v, with metrics Vm,Dl, Vm,Dz, ... of the object O, FIG. 16E
shows a plot 1620 of metric data of the metric v,, Dl in the
recent time interval. Ellipsis 1622 denotes other metrics of
the object O, that are not represented. A correlation is
computed for the selected metric with each of the metrics
associated with the object O, and for the metrics of other
objects in the third level. For example, p(v,, v,, Dl) is the
correlation coefficient between the selected metric v, and the
metric V,,,,D1 and p(v,, v, Dz) is the correlation coefficient
between of the selected metric v, and the metric v,, ,,°.

Correlation coefficients of a selected metric and metrics of
objects in an object topology computed over a recent time
interval may be compared to a correlation threshold to
determined which metrics are correlated with the selected
metric. A metric v, () is identified as correlated with the
selected metric v (t) when the following condition is satis-
fied:

M

PV V¥ V> Theoy

where

Th,,, is a correlation threshold; and

0<Th,,,<1 (e.g., Th_,,=0.80).

If none of the metrics of objects in the object topology
satisfy the condition given by Equation (7) for one of the
correlation techniques, the process of computing correlation
coeflicients for the selected metric with the metrics of the
object topology may be repeated for a different correlation
technique. For example, if none of the correlation coeffi-
cients computed using PMCC satisty the condition given by
Equation (7), computation of the correlation coefficients for
the selected metric with the metrics of the objects in the
object topology may be repeated using the distance corre-
lation of Equation (5) or the rank correlation of Equation (6).
The metrics and associated correlation coeflicients may be
stored in an unexpected metric file. The correlation coeffi-
cients that satisfy the condition in Equation (7) are used to
rank order the corresponding metrics. The metric with the
largest correlation coefficient over the recent time interval is
assigned the highest rank. The metric with the second largest
correlation coefficient over the recent time interval is
assigned the second highest rank and so on.

FIG. 17 shows an example table of rank ordered metrics
of objects of an object topology. Column 1701 list the rank
with the number 1 corresponding to the highest rank. Col-
umn 1702 list correlation coefficients for the selected metric
v, with metrics of objects of the object topology that satisfy
the condition represented by Equation (7). Column 1703 list
the metrics with correlation coefficients in column 1702. In
this example, the metric V,,,,C3 has the highest correlation
with the selected metric v,. The metric v,, " has the second
highest correlation with the selected metric v..

The list of rank ordered correlated metrics may be
reduced to a rank ordered list of unexpected metrics by
discarding correlated metrics that are correlated with the
selected metric over the recent time interval and are corre-
lated with the selected metric over historical time intervals
when the objects in the object topology exhibited normal
behavior. The unexpected metrics are metrics that have not
historically been correlated with the selected metric and may
be useful in troubleshooting a performance problem.

FIG. 18 shows an example of reducing the list of rank
ordered correlated metrics to a rank order list of unexpected
metrics by discarding metrics in the table of FIG. 17 that are
correlated with the selected metric over historical time
intervals when the objects in the object topology exhibited

20

30

40

45

50

24

normal behavior. FIG. 18 shows an example table of his-
torical rank ordered metrics of objects in the object topology.
Column 1801 list the historical rank ordered metrics. Col-
umn 1802 list the top ten correlation coefficients for the
selected metric with metrics of the objects of the object
topology over historical time intervals when the objects in
the object topology exhibited normal behavior. Column
1803 list the metrics that correspond to the correlation
coeflicients in column 1802. Lines 1804-1806 identify three
recent rank ordered metrics that are historically rank ordered
metrics. Lines 1808-1810 represent discarding the metrics
that are historically correlated with the selected metric to
obtain a list of rank ordered unexpected metrics listed in
column 1812.

FIGS. 19A-19C show an example graphical use interface
(“GUI”) that enables a user to select a metric and view
correlated metrics of the object topology described above
with reference to FIGS. 16A-16E. In FIG. 19A, names of the
metrics are listed in a metrics window 1902. In this example,
a user has selected the selected metric v,, described above as
indicated by shading. The user may have selected the
selected metric because an alert was previously generated
indicating that the selected metric violated an associated
threshold or an alert may have been generated indicating that
a problem has occurred with the object O . The user selects
objects of an object topology to compute correlations with
the selected metric using a drop-down menu 1904. The
object topology associated with the selected metric is dis-
played in window 1906 with the object associated with the
selected metric identified by a circle 1908. The user then
initiates the process of determining correlated metrics of
objects in the object topology by clicking on the “Get
correlated metrics” button 1910. In field 1912, the user may
also select a number of highest ranked unexpected metrics
that are correlated with the selected metric to view in
window 1914. The user may then view the selected metric
and the highest ranked unexpected metrics that are corre-
lated with the selected metric using the scroll bar 1916.
FIGS. 19B and 19C show example plots of the two highest
ranked unexpected metrics of FIG. 18.

After executing processes for determining unexpected
metrics that are correlated with the selected metric, a user
may rate the unexpected metrics that were helpful in trouble-
shooting the problem associated with the selected metric.
Poorly rated unexpected metrics may be discarded from the
list of recommended metrics. By contrast, highly rated
unexpected metrics may be used to troubleshoot the perfor-
mance problem and are saved to troubleshoot and generate
recommendations for remedying the problem in the future.

FIGS. 20A-20B show a GUI with a user rating window
used to assign a user rating to each of the top ranked
unexpected metrics. In FIG. 20A, the GUI list the unex-
pected metrics in a column 2002 and associated correlation
coeflicients in a column 2004 obtained as described above
with reference to FIG. 18. Column 2006 list five-star ratings
the user may use to rate each unexpected metric. In this
example, a user selects a rating ranging from zero to five
stars, where a zero-star rating for an unexpected metric
indicates the user did not find the metric helpful in trouble-
shooting the problem with the object O, and an unexpected
metric with a five-star rating indicates the user found the
metric very helpful in troubleshooting the performance
problem. FIG. 20B shows an example of user ratings
assigned to each of the top ranked unexpected metrics. For
example, unexpected metrics Vm,c2 and v, ' have been
assigned five-star ratings indicating the metrics where very
helpful in troubleshooting the performance problem. By

US 11,184,219 B2

25

contrast, unexpected metrics v, ,El and V,,,,D3 have been
assigned zero-star ratings indicating these metrics where not
help in troubleshooting the performance problem.

The user may specify a rating cutoff for discarding
unexpected metrics regarded as not helpful in troubleshoot-
ing a performance problem. For example, metrics with user
rating below a three-star rating may be discarded from the
list of rank order unexpected metrics. The list of rank
ordered unexpected metrics may be reorganized by discard-
ing metrics with a user rating below the rating cutoff and the
unexpected metrics with user ratings above the cutoff may
be re-ranked according to the associated user ratings. FIG.
20C shows unexpected metrics with ratings below three
stars discarded as indicated by lines through the metric name
and unexpected metrics with user ratings greater than or
equal to three stars rank ordered according to the user
ratings.

When the selected metric v, is selected again in the future,
the highest rated unexpected metrics are displayed in a GUI
along with any other metrics with correlation coefficients
that satisfy the condition given by Equation (7). The poorly
rated unexpected metrics may be excluded from the list.
FIG. 20D shows a GUI that list the highest user rated
unexpected metrics obtained as described above with refer-
ence to FIGS. 20B-20C and unexpected metrics determined
for a most recent time interval. The top five entries are the
five highest user rated unexpected metrics determined from
a previously executed search for unexpected metrics and list
the recently determined unexpected metrics with corre-
sponding correlation coeflicients that satisfy the correlation
condition given by Equation (7). The user may also rate the
unexpected metrics.

Methods and systems may also maintain a record of
frequently or periodically occurring unexpected metrics to
immediately identify and remedy performance problems. A
system administrator or application owner may identify a
performance problem associated with a set of unexpected
metrics obtained as described above and determine remedial
measures for correcting the performance problem. Different
frequently or periodically occurring sets of unexpected
correlation metrics corresponding to different performance
problems and remedial measures may be stored in a data
storage device.

FIG. 21 shows a table of ten frequently occurring unex-
pected metrics that are correlated with the selected metric v,.
The top row of columns 2101 identify examples of fre-
quently occurring unexpected metrics with the selected
metric v,. For example, entry 2102 represents an unexpected
metric v,, ,* and the selected metric v, in which the corre-
lation coefficient p(v,,, 2, v,) has repeatedly satisfied the
condition given by Equation (7). The “X’s” in rows of
columns 2101 identify combinations of frequently occurring
correlations between unexpected metrics and the selected
metric. Column 2103 list problems associated with different
combinations of unexpected metrics correlated with the
select metric. For example, Problem (1) may be CPU
contention at a host server computer, Problem (2) may be
virtual memory usage exceeded a threshold, Problem (3)
may be average response time exceeds a limit, and Problem
(4) may be the number of thread counts for a server
computer has exceeded a threshold. Column 2104 list reme-
dial measures that may be taken to correct the corresponding
problems listed in column 2103, such as allocating more
CPU usage to VMs, increasing virtual memory or CPU to
VMs, and migrating VMs to a different server computers.
For example, the fourth row indicates that when correlation
coeflicients p(v,, v,, Al), p(v,, Vm’cz), p(v,, Vm,c3) and p(v,,

10

15

20

25

30

35

40

45

50

55

60

65

26
V. D3) satisfy the condition given by Equation (7) and the
correlation coefficients p(v, v, °), p(Vy V,5), PV,
Vm,B4), p(v,, Vm’Dz), p(v,, Vmp4), and p(v,, VmAS) do not
satisfy the condition given by Equation (7), the performance
problem is “Problem (4)” and remedial measures “Measure
(4)” is recommended to resolve the performance problem.

The methods described below with reference to FIGS.
22-25 are stored in one or more data-storage devices as
machine-readable instructions that when executed by one or
more processors of the computer system, such as the com-
puter system shown in FIG. 1, troubleshoot anomalous
behavior in a data center.

FIG. 22 is a flow diagram illustrating an example imple-
mentation of a “method for troubleshooting anomalous
behavior in a data center.” In block 2201, a selected metric
associated with an object of a data center is identified. In
block 2202, an “identify unexpected metrics of an object
topology of the data center that correspond to a performance
problem with executing the object” procedure is performed.
In block 2203, a recommendation to correct the performance
problem based on the unexpected metrics is generated.

FIG. 23 is a flow diagram illustrating an example imple-
mentation of the “identify unexpected metrics of an object
topology of the data center that correspond to a performance
problem with executing the object” procedure performed in
step 2202 of FIG. 22. A loop beginning with block 2301
performs the computational operations represented by
blocks 2302-2311. In block 2302, a “compute correlation
coeflicients for the selected metric and metrics of objects of
the object topology” procedure is performed. A loop begin-
ning with block 2304 performs the computational operations
represented by blocks 2304-2306 for each correlation coef-
ficient computed in block 2302. In decision block 2304,
when a correlation coefficient is greater than a correlation
threshold, as described above with reference Equation (7),
control flows to 2305. Otherwise, control flows to decision
block 2306. In block 2305, the metric and associated cor-
relation coefficient that exceeds the correlation threshold are
recorded in an unexpected metric file as described above
with reference to FIG. 17. In decision block 2306, the
operations represented by blocks 2304 and 2305 are
repeated for other correlation coefficients. In decision block
2307, when the unexpected metric file is empty control flows
to block 2311. Otherwise, control flows to block 2308. In
block 2308, an “identify unexpected metrics associated with
the object” procedure is performed. In block 2309, the
unexpected metrics in the unexpected metric file are rank
ordered as described above with reference to FIGS. 17 and
18 and an associated user-identified performance problem
and remedial measure for correcting the performance prob-
lem are recorded. In block 2310, a “rate the unexpected
metrics” procedure is performed. In decision block 2311,
when the correlation techniques have been exhausted and
the unexpected metric file is empty, control flows to block
2312. In block 2312, a message is displayed stating that no
metrics of the objects of the object topology are associated
with the selected metric.

FIG. 24 is a flow diagram illustrating an example imple-
mentation of the “computing correlation coefficient for the
selected metric and metrics of the object associated with the
selected metric” procedure performed in step 2302 of FIG.
23. In block 2401, correlation coeflicients for the selected
metric and metrics of the object associated with the selected
metric are calculated. In block 2402, correlation coefficients
for the selected metric and metrics of the objects at the same
level as the object in the object topology are calculated. In
block 2403, correlation coefficients for the selected metric

US 11,184,219 B2

27

and metrics of the objects in different levels of the object
topology are calculated. In decision block 2404, when the
user has selected objects outside the object topology control
flows to block 2305. In block 2405, correlation coefficients
for the selected metric and metrics of user objects outside the
object topology are calculated.

FIG. 25 is a flow diagram illustrating an example imple-
mentation of the “identify unexpected metrics associated
with the object” procedure performed in step 2308 of FIG.
23. A loop beginning with block 2501 repeats the operations
represented by blocks 2502 and 2503 for each metric in the
unexpected metric file. In decision block 2502, when the
metric is a historically correlated metric with the selected
metric as described above with reference to FIG. 18, the
metric is discarded from the unexpected metric file in block
2503. The metrics remaining in the unexpected metric file
are unexpected metric that are correlated with the selected
metric. In decision block 2504, blocks 2502 and 2503 are
repeated for another metric in the unexpected metric file.

FIG. 26 is a flow diagram illustrating an example imple-
mentation of the “rate the unexpected metrics” procedure
performed in step 2310 of FIG. 23. A loop beginning with
block 2501 repeats the operations represented by blocks
2502-2514 for each metric in the unexpected metric file.
Decision blocks 2502-2506 represent a user’s decision to
rate a metric with a user rating ranging from zero stars to five
stars as described above with reference to FIGS. 20A-20B.
Blocks 2507-2512 represent assigning user rating selected in
one of decision blocks 2502-2506 to the metric. In decision
block 2513, when a user rating is below rating cutoff, the
metric is discarded from the unexpected metric file in block
2514 as described above with reference to FIG. 20C. In
decision block 2515, the operations represented by blocks
2502-2514 are repeated for another metric.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be appar-
ent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. A method stored in one or more data-storage devices
and executed using one or more processors of a computer
system for troubleshooting anomalous behavior in a data
center, the method comprising:

providing a graphical user interface that enables a user to

select a selected metric associated with an object of the
data center experiencing a performance problem;

in response to the user selecting the selected metric,

identifying unexpected metrics of an object topology of
the data center that are correlated with the selected
metric in a recent time interval and are uncorrelated
with the selected metric in a historical time interval that
precedes the recent time interval and corresponds to
when the object did not exhibit the performance prob-
lem; and

generating a recommendation to correct the performance

problem based on the unexpected metrics.

2. The method of claim 1 wherein identify unexpected
metrics of the object topology of the data center comprises:

10

15

20

25

30

35

40

45

50

55

60

65

28

computing correlation coefficients for the selected metric
and metrics of objects of the object topology in the
recent time interval;

discarding metrics of objects of the object topology that

are correlated with the selected metric in the historical
time interval; and

for each correlation coefficient

when a correlation coefficient of a metric is greater than
a correlation threshold, identifying the metric as an
unexpected metric and recording the unexpected
metric and associated correlation coefficient in an
unexpected metric file, and

rank ordering the unexpected metrics in the unexpected
metric file.

3. The method of claim 2 wherein computing correlation
coeflicients for the selected metric and metrics of objects of
the object topology in the recent time interval comprises:

calculating correlation coefficients for the selected metric

and metrics of the object associated with the selected
metric;

calculating correlation coefficients for the selected metric

and metrics of the objects at the same level as the object
in the object topology;

calculating correlation coefficients for the selected metric

and metrics of the objects in different levels of the
object topology; and

calculating correlation coefficients for the selected metric

and metrics of user identified objects outside the object
topology.

4. The method of claim 1 further comprising:

providing a graphical user interface that enables the user

to rate each unexpected metric;

assigning a user rating to each unexpected metric;

discarding unexpected metrics with corresponding user

ratings that are less than a user-rating cutoff;

rank ordering the unexpected metrics with user ratings

that are greater than or equal to the user-rating cutoff;
and

annotating the unexpected metrics that the user associates

with the performance problem.

5. The method of claim 1 further comprising:

determining a frequency of occurrence for a set of unex-

pected metrics;
identifying the performance problem associated with the
set of unexpected metrics recording remedial measures
for correcting the performance problem; and

generating a recommendation to execute the remedial
measures for correcting the performance problem when
unexpected metrics matches the set of unexpected
metrics.

6. A computer system for troubleshooting anomalous
behavior in a data center, the system comprising:

one or more processors;

one or more data-storage devices; and

machine-readable instructions stored in the one or more

data-storage devices that when executed using the one

or more processors controls the system to perform the

operations comprising:

providing a graphical user interface that enables a user
to select a selected metric associated with an object
of the data center experiencing a performance prob-
lem;

in response to the user selecting the selected metric,
identifying unexpected metrics of an object topology
of the data center that are correlated with the selected
metric in a recent time interval and are uncorrelated
with the selected metric in a historical time interval

US 11,184,219 B2

29

that precedes the recent time interval and corre-
sponds to when the object did not exhibit the per-
formance problem; and

generating a recommendation to correct the perfor-
mance problem based on the unexpected metrics.

7. The system of claim 6 wherein identify unexpected
metrics of the object topology of the data center comprises:

computing correlation coefficients for the selected metric

and metrics of objects of the object topology in the
recent time interval;

discarding metrics of objects of the object topology that

are correlated with the selected metric in the historical
time interval; and

for each correlation coeflicient

when a correlation coeflicient of a metric is greater than
a correlation threshold, identifying the metric as an
unexpected metric and recording the unexpected
metric and associated correlation coefficient in an
unexpected metric file, and

rank ordering the unexpected metrics in the unexpected
metric file.

8. The system of claim 7 wherein computing correlation
coeflicients for the selected metric and metrics of objects of
the object topology in the recent time interval comprises:

calculating correlation coefficients for the selected metric

and metrics of the object associated with the selected
metric;

calculating correlation coefficients for the selected metric

and metrics of the objects at the same level as the object
in the object topology;

calculating correlation coefficients for the selected metric

and metrics of the objects in different levels of the
object topology; and

calculating correlation coefficients for the selected metric

and metrics of user identified objects outside the object
topology.

9. The system of claim 6 further comprising:

providing a graphical user interface that enables the user

to rate each unexpected metric;

assigning a user rating to each unexpected metric;

discarding unexpected metrics with corresponding user

ratings that are less than a user-rating cutoff;

rank ordering the unexpected metrics with user ratings

that are greater than or equal to the user-rating cutoff;
and

annotating the unexpected metrics that user has associated

with the performance problem.

10. The system of claim 6 further comprising:

determining a frequency of occurrence for a set of unex-

pected metrics;
identifying the performance problem associated with the
set of unexpected metrics recording remedial measures
for correcting the performance problem; and

generating a recommendation to execute the remedial
measures for correcting the performance problem when
unexpected metrics matches the set of unexpected
metrics.

11. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations comprising:

providing a graphical user interface that enables a user to

select a selected metric associated with an object of the
data center experiencing a performance problem;

20

30

40

45

50

55

30

in response to the user selecting the selected metric,
identifying unexpected metrics of an object topology of
the data center that are correlated with the selected
metric in a recent time interval and are uncorrelated
with the selected metric in a historical time interval that
precedes the recent time interval and corresponds to
when the object did not exhibit the performance prob-
lem; and

generating a recommendation to correct the performance

problem based on the unexpected metrics.

12. The medium of claim 11 wherein identify unexpected
metrics of the object topology of the data center comprises:

computing correlation coefficients for the selected metric

and metrics of objects of the object topology in the
recent time interval;

discarding metrics of objects of the object topology that

are correlated with the selected metric in the historical
time interval; and

for each correlation coefficient

when a correlation coefficient of a metric is greater than
a correlation threshold, identifying the metric as an
unexpected metric and recording the unexpected
metric and associated correlation coefficient in an
unexpected metric file, and

rank ordering the unexpected metrics in the unexpected
metric file.

13. The medium of claim 12 wherein computing corre-
lation coeflicients for the selected metric and metrics of
objects of the object topology in the recent time interval
comprises:

calculating correlation coefficients for the selected metric

and metrics of the object associated with the selected
metric;

calculating correlation coefficients for the selected metric

and metrics of the objects at the same level as the object
in the object topology;

calculating correlation coefficients for the selected metric

and metrics of the objects in different levels of the
object topology; and

calculating correlation coefficients for the selected metric

and metrics of user identified objects outside the object
topology.

14. The medium of claim 11 further comprising:

providing a graphical user interface that enables the user

to rate each unexpected metric;

assigning a user rating to each unexpected metric;

discarding unexpected metrics with corresponding user

ratings that are less than a user-rating cutoff;

rank ordering the unexpected metrics with user ratings

that are greater than or equal to the user-rating cutoff;
and

annotating the unexpected metrics that user has associated

with the performance problem.

15. The medium of claim 11 further comprising:

determining a frequency of occurrence for a set of unex-

pected metrics;
identifying the performance problem associated with the
set of unexpected metrics recording remedial measures
for correcting the performance problem; and

generating a recommendation to execute the remedial
measures for correcting the performance problem when
unexpected metrics matches the set of unexpected
metrics.

