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PROCESSES AND SYSTEMS THAT DETECT object . Processes and systems may generate recommenda 
ABNORMAL BEHAVIOR OF OBJECTS OF A tions for correcting the abnormal behavior or execute reme 

DISTRIBUTED COMPUTING SYSTEM dial measures to correct the abnormal behavior . 

TECHNICAL FIELD 5 DESCRIPTION OF THE DRAWINGS 

10 

a 

This disclosure is directed to processes and systems that FIG . 1 shows an architectural diagram for various types of 
detect abnormal performance of objects of a distributed computers . 
computing system . FIG . 2 shows an Internet - connected distributed computer 

system . 
BACKGROUND FIG . 3 shows cloud computing . 

FIG . 4 shows generalized hardware and software compo Electronic computing has evolved from primitive , nents of a general - purpose computer system . vacuum - tube - based computer systems , initially developed FIGS . 5A - 5B show two types of virtual machine ( “ VM ” ) during the 1940s , to modern electronic computing systems 15 and VM execution environments . in which large numbers of multi - processor computer sys FIG . 6 shows an example of an open virtualization format tems , such as server computers , work stations , and other package . individual computing systems are networked together with 
large - capacity data - storage devices and other electronic FIG . 7 shows virtual data centers provided as an abstrac 
devices to produce geographically distributed computing 20 tion of underlying physical - data - center hardware compo 

nents . systems with numerous components that provide enormous 
computational bandwidths and data - storage capacities . FIG . 8 shows virtual - machine components of a virtual 
These large , distributed computing systems are made pos data - center management server and physical servers of a 
sible by advances in computer networking , distributed oper- physical data center . 
ating systems and applications , data - storage appliances , 25 FIG . 9 shows a cloud - director level of abstraction . 
computer hardware , and software technologies . FIG . 10 shows virtual - cloud - connector nodes . 

Because distributed computing systems have an enor- FIG . 11 shows an example server computer used to host 
mous number of computational resources , various manage three containers . 
ment systems have been developed to collect performance FIG . 12 shows an approach to implementing containers 
information about these resources . For example , a typical 30 on a VM . 
management system may collect hundreds of thousands of FIG . 13 shows an example of a virtualization layer located 
streams of metric data , called “ metrics , ” to monitor various above a physical data center . 
computational resources of a data center infrastructure . Each FIG . 14A shows a plot of an example metric represented 
data point of a stream of metric data may represent an as a sequence of time series data associated with a resource 
amount of the resource in use at a point in time . However , 35 of a distributed computing system . 
the enormous number of metric data streams received by a FIGS . 14B - 14C show examples of numerous metrics 
management system makes it very difficult for information transmitted from physical and virtual objects of a distributed 
technology ( “ IT ” ) administrators to manually monitor the computing system transmitted to a monitoring server . 
metrics , detect performance issues , and respond in real time FIGS . 15A - 15B show plots example non - constant and 
to performance issues . Failure to respond in real time to 40 constant metrics over time . 
performance problems can interrupt computer services and FIG . 16A shows example plots of three synchronized 
have enormous cost implications for data center tenants , metrics over the same time interval . 
such as when a tenant's server applications stop running or FIG . 16B shows a plot of metric values synchronized to 
fail to timely respond to client requests . a general set of uniformly spaced time stamps . 

FIG . 17 shows an example metric - data matrix formed 
SUMMARY from metrics . 

FIG . 18 shows an example plot of three metrics in a 
Automated processes and systems for detecting abnormal three - dimensional space . 

behavior of objects of a distributed computing system are FIG . 19 shows an example mean - centered metric - data 
described herein . Processes and systems obtain a metrics 50 matrix formed from mean - centered metrics . 
that are generated in a historical time window and are FIG . 20 shows an example plot of three metrics centered 
associated with an object of the distributed computing at the origin of a three - dimensional space . 
system . The object may be a physical object or a virtual FIG . 21A shows an example transposed mean - centered 
object , including a server computer , data storage device , metric - data matrix for the mean - centered metric - data matrix 
network device , application , virtual machine , virtual net- 55 shown in FIG . 19 . 
work device , or a container for which the metrics can be FIG . 21B shows an example variance matrix . 
collected and recorded . Processes and systems use the FIG . 21C shows an example correlation matrix . 
metrics to compute a time - dependent system indicator for FIG . 22 shows a matrix representation of an eigenvector 
the object over the historical time window . Each value of the eigenvalue problem formed for deviation matrix in FIG . 
system indicator corresponds to a point in time of the 60 21B . 
historical time window when the object was in a normal or FIG . 23 shows matrix representations of the eigenvector 
an abnormal state . Processes and systems use the normal and matrix and eigenvalue matrix of the deviation matrix in FIG . 
abnormal states of the system indicator in the historical time 21B . 
window to train a state classifier that is used to detect FIG . 24 shows column vectors of normalized eigenvec 
run - time abnormal behavior of the object . When the state 65 tors . 
classifier identifies abnormal behavior of the object , an alert FIG . 25 shows three orthogonal normalized eigenvectors 
is generated , identifying the abnormal behavior of the for the three metrics shown FIG . 20 . 
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FIG . 26 shows computation of M principal components cally implemented application programming interfaces 
by matrix multiplication . ( " APIS " ) and other electronically implemented interfaces . 
FIG . 27 shows a plot of example variances for 15 prin- Software is essentially a sequence of encoded symbols , such 

cipal components . as a printout of a computer program or digitally encoded 
FIG . 28 shows a plot of percentage of variance for first 11 5 computer instructions sequentially stored in a file on an 

principal components through first 25 principal components . optical disk or within an electromechanical mass - storage 
FIGS . 29A - 29B show an example of reducing the number device . Software alone can do nothing . It is only when 

of principal components associated with the three metrics . encoded computer instructions are loaded into an electronic 
FIG . 30A shows a plot of an example system indicator of memory within a computer system and executed on a 

principal component average values over a time . 10 physical processor that “ software implemented ” functional 
FIG . 30B shows a plot of an example system indicator ity is provided . The digitally encoded computer instructions 

principal component average - absolute values over time . are a physical control component of processor - controlled 
FIG . 31 shows normal and abnormal system - indicator machines and devices . Multi - cloud aggregations , cloud 

values for an example system indicator . computing services , virtual machine containers and virtual 
FIG . 32A shows an example of labeled system - indicator 15 machines , containers , communications interfaces , and many 

points of a sequence of system indicators . of the other topics discussed below are tangible , physical 
FIG . 32B shows an example of a maximum - margin line components of physical , electro - optical - mechanical com 

that separates normal system indicator points from abnormal puter systems . 
system indicator points identified in FIG . 32A . FIG . 1 shows a general architectural diagram for various 
FIG . 33 shows computation of n principal components by 20 types of computers . Computers that receive , process , and 

matrix multiplication . store event messages may be described by the general 
FIG . 34 is a flow diagram illustrating an example imple architectural diagram shown in FIG . 1 , for example . The 

mentation a method that detects and corrects abnormal computer system contains one or multiple central processing 
behavior of an object of a distributed computing system . units ( “ CPUs ” ) 102-105 , one or more electronic memories 

FIG . 35 is a flow diagram illustrating an example imple- 25 108 interconnected with the CPUs by a CPU / memory 
mentation of the “ apply data preparation to the metrics ” step subsystem bus 110 or multiple busses , a first bridge 112 that 
of FIG . 34 . interconnects the CPU / memory - subsystem bus 110 with 
FIG . 36 is a flow diagram of an example implementation additional busses 114 and 116 , or other types of high - speed 

of the “ apply a PCA technique to obtain principal compo interconnection media , including multiple , high - speed serial 
nents ” step of FIG . 34 . 30 interconnects . These busses or serial interconnections , in 

FIG . 37 is a flow diagram of an example implementation turn , connect the CPUs and memory with specialized pro 
of the determine high - variance principal component " step cessors , such as a graphics processor 118 , and with one or 
referred to in block 3606 of FIG . 36 . more additional bridges 120 , which are interconnected with 
FIG . 38 is a control - flow diagram of the routine “ compute high - speed serial links or with multiple controllers 122-127 , 

state classifier based on system indicator " step of FIG . 43. 35 such as controller 127 , that provide access to various dif 
FIG . 39 is a flow diagram of the “ use state classifier to ferent types of mass - storage devices 128 , electronic dis 

detect abnormal behavior of the object ” step of FIG . 34 . plays , input devices , and other such components , subcom 
ponents , and computational devices . It should be noted that 

DETAILED DESCRIPTION computer - readable data - storage devices include optical and 
40 electromagnetic disks , electronic memories , and other 

This disclosure is directed to automated computational physical data storage devices . Those familiar with modern 
processes and systems to detect abnormal behavior exhibited science and technology appreciate that electromagnetic 
by physical and virtual objects of a distributed computing radiation and propagating signals do not store data for 
system . In a first subsection , computer hardware , complex subsequent retrieval , and can transiently “ store ” only a byte 
computational systems , and virtualization are described . 45 or less of information per mile , far less information than 
Automated processes and systems for detecting and correct- needed to encode even the simplest of routines . 
ing abnormally behaving objects of a distributed computing Of course , there are many different types of computer 
system are described below in a second subsection . system architectures that differ from one another in the 

number of different memories , including different types of 
Computer Hardware , Complex Computational 50 hierarchical cache memories , the number of processors and 

Systems , and Virtualization the connectivity of the processors with other system com 
ponents , the number of internal communications busses and 

The term " abstraction ” is not , in any way , intended to serial links , and in many other ways . However , computer 
mean or suggest an abstract idea or concept . Computational systems generally execute stored programs by fetching 
abstractions are tangible , physical interfaces that are imple- 55 instructions from memory and executing the instructions in 
mented using physical computer hardware , data - storage one or more processors . Computer systems include general 
devices , and communications systems . Instead , the term purpose computer systems , such as personal computers 
“ abstraction ” refers , in the current discussion , to a logical ( “ PCs ” ) , various types of server computers and worksta 
level of functionality encapsulated within one or more tions , and higher - end mainframe computers , but may also 
concrete , tangible , physically - implemented computer sys- 60 include a plethora of various types of special - purpose com 
tems with defined interfaces through which electronically- puting devices , including data - storage systems , communi 
encoded data is exchanged , process execution launched , and cations routers , network nodes , tablet computers , and mobile 
electronic services are provided . Interfaces may include telephones . 
graphical and textual data displayed on physical display FIG . 2 shows an Internet - connected distributed computer 
devices as well as computer programs and routines that 65 system . As communications and networking technologies 
control physical computer processors to carry out various have evolved in capability and accessibility , and as the 
tasks and operations and that are invoked through electroni- computational bandwidths , data - storage capacities , and 

a 



US 11,481,300 B2 
5 6 

other capabilities and capacities of various types of com- and managing physical computer systems , including hiring 
puter systems have steadily and rapidly increased , much of and periodically retraining information - technology special 
modern computing now generally involves large distributed ists and continuously paying for operating - system and data 
systems and computers interconnected by local networks , base - management - system upgrades . Furthermore , cloud 
wide - area networks , wireless communications , and the 5 computing interfaces allow for easy and straightforward 
Internet . FIG . 2 shows a typical distributed system in which configuration of virtual computing facilities , flexibility in 
many PCs 202-205 , a high - end distributed mainframe sys- the types of applications and operating systems that can be 
tem 210 with a large data - storage system 212 , and a large configured , and other functionalities that are useful even for 
computer center 214 with large numbers of rack - mounted owners and administrators of private cloud - computing 
server computers or blade servers all interconnected through 10 facilities used by a single organization . 
various communications and networking systems that FIG . 4 shows generalized hardware and software compo 
together comprise the Internet 216. Such distributed com- nents of a general - purpose computer system , such as a 
puting systems provide diverse arrays of functionalities . For general - purpose computer system having an architecture 
example , a PC user may access hundreds of millions of similar to that shown in FIG . 1. The computer system 400 is 
different web sites provided by hundreds of thousands of 15 often considered to include three fundamental layers : ( 1 ) a 
different web servers throughout the world and may access hardware layer or level 402 ; ( 2 ) an operating system layer or 
high - computational - bandwidth computing services from level 404 ; and ( 3 ) an application - program layer or level 406 . 
remote computer facilities for running complex computa- The hardware layer 402 includes one or more processors 
tional tasks . 408 , system memory 410 , different types of input - output 

Until recently , computational services were generally 20 ( “ I / O ” ) devices 410 and 412 , and mass - storage devices 414 . 
provided by computer systems and data centers purchased , Of course , the hardware level also includes many other 
configured , managed , and maintained by service - provider components , including power supplies , internal communi 
organizations . For example , an e - commerce retailer gener- cations links and busses , specialized integrated circuits , 
ally purchased , configured , managed , and maintained a data many different types of processor - controlled or micropro 
center including numerous web server computers , back - end 25 cessor - controlled peripheral devices and controllers , and 
computer systems , and data storage systems for serving web many other components . The operating system 404 inter 
pages to remote customers , receiving orders through the faces to the hardware level 402 through a low - level oper 
web - page interface , processing the orders , tracking com- ating system and hardware interface 416 generally compris 
pleted orders , and other myriad different tasks associated ing a set of non - privileged computer instructions 418 , a set 
with an e - commerce enterprise . 30 of privileged computer instructions 420 , a set of non 
FIG . 3 shows cloud computing . In the recently developed privileged registers and memory addresses 422 , and a set of 

cloud - computing paradigm , computing cycles and data- privileged registers and memory addresses 424. In general , 
storage facilities are provided to organizations and individu- the operating system exposes non - privileged instructions , 
als by cloud - computing providers . In addition , larger orga- non - privileged registers , and non - privileged memory 
nizations may elect to establish private cloud - computing 35 addresses 426 and a system - call interface 428 as an oper 
facilities in addition to , or instead of , subscribing to com- ating - system interface 430 to application programs 432-436 
puting services provided by public cloud - computing service that execute within an execution environment provided to 
providers . In FIG . 3 , a system administrator for an organi- the application programs by the operating system . The 
zation , using a PC 302 , accesses the organization's private operating system , alone , accesses the privileged instructions , 
cloud 304 through a local network 306 and private - cloud 40 privileged registers , and privileged memory addresses . By 
interface 308 and accesses , through the Internet 310 , a reserving access to privileged instructions , privileged reg 
public cloud 312 through a public - cloud services interface isters , and privileged memory addresses , the operating sys 
314. The administrator can , in either the case of the private tem can ensure that application programs and other higher 
cloud 304 or public cloud 312 , configure virtual computer level computational entities cannot interfere with one 
systems and even entire virtual data centers and launch 45 another's execution and cannot change the overall state of 
execution of application programs on the virtual computer the computer system in ways that could deleteriously impact 
systems and virtual data centers in order to carry out any of system operation . The operating system includes many 
many different types of computational tasks . As one internal components and modules , including a scheduler 
example , a small organization may configure and run a 442 , memory management 444 , a file system 446 , device 
virtual data center within a public cloud that executes web 50 drivers 448 , and many other components and modules . To a 
servers to provide an e - commerce interface through the certain degree , modern operating systems provide numerous 
public cloud to remote customers of the organization , such levels of abstraction above the hardware level , including 
as a user viewing the organization's e - commerce web pages virtual memory , which provides to each application program 
on a remote user system 316 . and other computational entities a separate , large , linear 

Cloud - computing facilities are intended to provide com- 55 memory - address space that is mapped by the operating 
putational bandwidth and data - storage services much as system to various electronic memories and mass - storage 
utility companies provide electrical power and water to devices . The scheduler orchestrates interleaved execution of 
consumers . Cloud computing provides enormous advan- different application programs and higher - level computa 
tages to small organizations without the devices to purchase , tional entities , providing to each application program a 
manage , and maintain in - house data centers . Such organi- 60 virtual , stand - alone system devoted entirely to the applica 
zations can dynamically add and delete virtual computer tion program . From the application program's standpoint , 
systems from their virtual data centers within public clouds the application program executes continuously without con 
in order to track computational - bandwidth and data - storage cern for the need to share processor devices and other system 
needs , rather than purchasing sufficient computer systems devices with other application programs and higher - level 
within a physical data center to handle peak computational- 65 computational entities . The device drivers abstract details of 
bandwidth and data - storage demands . Moreover , small orga- hardware - component operation , allowing application pro 
nizations can completely avoid the overhead of maintaining grams to employ the system - call interface for transmitting 
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and receiving data to and from communications networks , entities packaged together with an operating system , 
mass - storage devices , and other I / O devices and subsystems . referred to as a “ guest operating system , ” such as application 
The file system 446 facilitates abstraction of mass - storage- 514 and guest operating system 516 packaged together 
device and memory devices as a high - level , easy - to - access , within VM 510. Each VM is thus equivalent to the operat 
file - system interface . Thus , the development and evolution 5 ing - system layer 404 and application - program layer 406 in 
of the operating system has resulted in the generation of a the general - purpose computer system shown in FIG . 4. Each 
type of multi - faceted virtual execution environment for guest operating system within a VM interfaces to the virtu 
application programs and other higher - level computational alization layer interface 504 rather than to the actual hard 
entities . ware interface 506. The virtualization layer 504 partitions 

While the execution environments provided by operating 10 hardware devices into abstract virtual - hardware layers to 
systems have proved to be an enormously successful level of which each guest operating system within a VM interfaces . 
abstraction within computer systems , the operating - system- The guest operating systems within the VMs , in general , are 
provided level of abstraction is nonetheless associated with unaware of the virtualization layer and operate as if they 
difficulties and challenges for developers and users of appli- were directly accessing a true hardware interface . The 
cation programs and other higher - level computational enti- 15 virtualization layer 504 ensures that each of the VMs cur 
ties . One difficulty arises from the fact that there are many rently executing within the virtual environment receive a fair 
different operating systems that run within different types of allocation of underlying hardware devices and that all VMs 
computer hardware . In many cases , popular application receive sufficient devices to progress in execution . The 
programs and computational systems are developed to run virtualization layer 504 may differ for different guest oper 
on only a subset of the available operating systems and can 20 ating systems . For example , the virtualization layer is gen 
therefore be executed within only a subset of the different erally able to provide virtual hardware interfaces for a 
types of computer systems on which the operating systems variety of different types of computer hardware . This allows , 
are designed to run . Often , even when an application pro- as one example , a VM that includes a guest operating system 
gram or other computational system is ported to additional designed for a particular computer architecture to run on 
operating systems , the application program or other com- 25 hardware of a different architecture . The number of VMs 
putational system can nonetheless run more efficiently on need not be equal to the number of physical processors or 
the operating systems for which the application program or even a multiple of the number of processors . 
other computational system was originally targeted . Another The virtualization layer 504 includes a virtual - machine 
difficulty arises from the increasingly distributed nature of monitor module 518 ( “ VMM ” ) that virtualizes physical 
computer systems . Although distributed operating systems 30 processors in the hardware layer to create virtual processors 
are the subject of considerable research and development on which each of the VMs executes . For execution effi 
efforts , many of the popular operating systems are designed ciency , the virtualization layer attempts to allow VMs to 
primarily for execution on a single computer system . In directly execute non - privileged instructions and to directly 
many cases , it is difficult to move application programs , in access non - privileged registers and memory . However , 
real time , between the different computer systems of a 35 when the guest operating system within a VM accesses 
distributed computer system for high - availability , fault - tol- virtual privileged instructions , virtual privileged registers , 
erance , and load balancing purposes . The problems are even and virtual privileged memory through the virtualization 
greater in heterogeneous distributed computer systems layer 504 , the accesses result in execution of virtualization 
which include different types of hardware and devices layer code to simulate or emulate the privileged devices . The 
running different types of operating systems . Operating 40 virtualization layer additionally includes a kernel module 
systems continue to evolve , as a result of which certain older 520 that manages memory , communications , and data - stor 
application programs and other computational entities may age machine devices on behalf of executing VMs ( “ VM 
be incompatible with more recent versions of operating kernel ” ) . The VM kernel , for example , maintains shadow 
systems for which they are targeted , creating compatibility page tables on each VM so that hardware - level virtual 
issues that are particularly difficult to manage in large 45 memory facilities can be used to process memory accesses . 
distributed systems . The VM kernel additionally includes routines that imple 

For the above reasons , a higher level of abstraction , ment virtual communications and data - storage devices as 
referred to as the “ virtual machine , ” ( “ VM ” ) has been well as device drivers that directly control the operation of 
developed and evolved to further abstract computer hard- underlying hardware communications and data - storage 
ware in order to address many difficulties and challenges 50 devices . Similarly , the VM kernel virtualizes various other 
associated with traditional computing systems , including the types of I / O devices , including keyboards , optical - disk 
compatibility issues discussed above . FIGS . 5A - B show two drives , and other such devices . The virtualization layer 504 
types of VM and virtual - machine execution environments . essentially schedules execution of VMs much like an oper 
FIGS . 5A - B use the same illustration conventions as used in ating system schedules execution of application programs , 
FIG . 4. FIG . 5A shows a first type of virtualization . The 55 so that the VMs each execute within a complete and fully 
computer system 500 in FIG . 5A includes the same hardware functional virtual hardware layer . 
layer 502 as the hardware layer 402 shown in FIG . 4 . FIG . 5B shows a second type of virtualization . In FIG . 5B , 
However , rather than providing an operating system layer the computer system 540 includes the same hardware layer 
directly above the hardware layer , as in FIG . 4 , the virtual- 542 and operating system layer 544 as the hardware layer 
ized computing environment shown in FIG . 5A features a 60 402 and the operating system layer 404 shown in FIG . 4 . 
virtualization layer 504 that interfaces through a virtualiza- Several application programs 546 and 548 are shown run 
tion - layer / hardware - layer interface 506 , equivalent to inter- ning in the execution environment provided by the operating 
face 416 in FIG . 4 , to the hardware . The virtualization layer system 544. In addition , a virtualization layer 550 is also 
504 provides a hardware - like interface to VMs , such as VM provided , in computer 540 , but , unlike the virtualization 
510 , in a virtual machine layer 511 executing above the 65 layer 504 discussed with reference to FIG . 5A , virtualization 
virtualization layer 504. Each VM includes one or more layer 550 is layered above the operating system 544 , referred 
application programs or other higher - level computational to as the " host OS , ” and uses the operating system interface 
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to access operating - system - provided functionality as well as operating - system images . A VM or a collection of VMs 
the hardware . The virtualization layer 550 comprises pri- encapsulated together within a virtual application can thus 
marily a VMM and a hardware - like interface 552 , similar to be digitally encoded as one or more files within an OVF 
hardware - like interface 508 in FIG . 5A . The hardware - layer package that can be transmitted , distributed , and loaded 
interface 552 , equivalent to interface 416 in FIG . 4 , provides 5 using well - known tools for transmitting , distributing , and 
an execution environment VMs 556-558 , each including one loading files . A virtual appliance is a software service that is 
or more application programs or other higher - level compu- delivered as a complete software stack installed within one 
tational entities packaged together with a guest operating or more VMs that is encoded within an OVF package . 
system . The advent of VMs and virtual environments has allevi 

In FIGS . 5A - 5B , the layers are somewhat simplified for 10 ated many of the difficulties and challenges associated with 
clarity of illustration . For example , portions of the virtual- traditional general - purpose computing . Machine and oper 
ization layer 550 may reside within the host - operating- ating - system dependencies can be significantly reduced or 
system kernel , such as a specialized driver incorporated into eliminated by packaging applications and operating systems 
the host operating system to facilitate hardware access by together as VMs and virtual appliances that execute within 
the virtualization layer . 15 virtual environments provided by virtualization layers run 

It should be noted that virtual hardware layers , virtual- ning on many different types of computer hardware . A next 
ization layers , and guest operating systems are all physical level of abstraction , referred to as virtual data centers or 
entities that are implemented by computer instructions virtual infrastructure , provide a data - center interface to 
stored in physical data - storage devices , including electronic virtual data centers computationally constructed within 
memories , mass - storage devices , optical disks , magnetic 20 physical data centers . 
disks , and other such devices . The term “ virtual ” does not , FIG . 7 shows virtual data centers provided as an abstrac 
in any way , imply that virtual hardware layers , virtualization tion of underlying physical - data - center hardware compo 
layers , and guest operating systems are abstract or intan- nents . In FIG . 7 , a physical data center 702 is shown below 
gible . Virtual hardware layers , virtualization layers , and a virtual - interface plane 704. The physical data center con 
guest operating systems execute on physical processors of 25 sists of a virtual - data - center management server computer 
physical computer systems and control operation of the 706 and any of different computers , such as PC 708 , on 
physical computer systems , including operations that alter which a virtual - data - center management interface may be 
the physical states of physical devices , including electronic displayed to system administrators and other users . The 
memories and mass - storage devices . They are as physical physical data center additionally includes generally large 
and tangible as any other component of a computer since , 30 numbers of server computers , such as server computer 710 , 
such as power supplies , controllers , processors , busses , and that are coupled together by local area networks , such as 
data - storage devices . local area network 712 that directly interconnects server 
A VM or virtual application , described below , is encap- computer 710 and 714-720 and a mass - storage array 722 . 

sulated within a data package for transmission , distribution , The physical data center shown in FIG . 7 includes three 
and loading into a virtual - execution environment . One pub- 35 local area networks 712 , 724 , and 726 that each directly 
lic standard for virtual - machine encapsulation is referred to interconnects a bank of eight server computers and a mass 
as the “ open virtualization format " ( " OVF ” ) . The OVF storage array . The individual server computers , such as 
standard specifies a format for digitally encoding a VM server computer 710 , each includes a virtualization layer and 
within one or more data files . FIG . 6 shows an OVF package . runs multiple VMs . Different physical data centers may 
An OVF package 602 includes an OVF descriptor 604 , an 40 include many different types of computers , networks , data 
OVF manifest 606 , an OVF certificate 608 , one or more storage systems and devices connected according to many 
disk - image files 610-611 , and one or more device files different types of connection topologies . The virtual - inter 
612-614 . The OVF package can be encoded and stored as a face plane 704 , a logical abstraction layer shown by a plane 
single file or as a set of files . The OVF descriptor 604 is an in FIG . 7 , abstracts the physical data center to a virtual data 
XML document 620 that includes a hierarchical set of 45 center comprising one or more device pools , such as device 
elements , each demarcated by a beginning tag and an ending pools 730-732 , one or more virtual data stores , such as 
tag . The outermost , or highest - level , element is the envelope virtual data stores 734-736 , and one or more virtual net 
element , demarcated by tags 622 and 623. The next - level works . In certain implementations , the device pools abstract 
element includes a reference element 626 that includes banks of server computers directly interconnected by a local 
references to all files that are part of the OVF package , a disk 50 area network . 
section 628 that contains meta information about all of the The virtual - data - center management interface allows pro 
virtual disks included in the OVF package , a network section visioning and launching of VMs with respect to device 
630 that includes meta information about all of the logical pools , virtual data stores , and virtual networks , so that 
networks included in the OVF package , and a collection of virtual - data - center administrators need not be concerned 
virtual - machine configurations 632 which further includes 55 with the identities of physical - data - center components used 
hardware descriptions of each VM 634. There are many to execute particular VMs . Furthermore , the virtual - data 
additional hierarchical levels and elements within a typical center management server computer 706 includes function 
OVF descriptor . The OVF descriptor is thus a self - describ- ality to migrate running VMs from one server computer to 
ing , XML file that describes the contents of an OVF pack- another in order to optimally or near optimally manage 
age . The OVF manifest 606 is a list of cryptographic - hash- 60 device allocation , provides fault tolerance , and high avail 
function - generated digests 636 of the entire OVF package ability by migrating VMs to most effectively utilize under 
and of the various components of the OVF package . The lying physical hardware devices , to replace VMs disabled by 
OVF certificate 608 is an authentication certificate 640 that physical hardware problems and failures , and to ensure that 
includes a digest of the manifest and that is cryptographi- multiple VMs supporting a high - availability virtual appli 
cally signed . Disk image files , such as disk image file 610 , 65 ance are executing on multiple physical computer systems 
are digital encodings of the contents of virtual disks and so that the services provided by the virtual appliance are 
device files 612 are digitally encoded content , such as continuously accessible , even when one of the multiple 
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virtual appliances becomes compute bound , data - access individual server computer through the infrastructure API . 
bound , suspends execution , or fails . Thus , the virtual data The virtual - data - center agents 824-826 access virtualiza 
center layer of abstraction provides a virtual - data - center tion - layer server information through the host agents . The 
abstraction of physical data centers to simplify provisioning , virtual - data - center agents are primarily responsible for off 
launching , and maintenance of VMs and virtual appliances 5 loading certain of the virtual - data - center management 
as well as to provide high - level , distributed functionalities server functions specific to a particular physical server to 
that involve pooling the devices of individual server com- that physical server computer . The virtual - data - center agents 
puters and migrating VMs among server computers to relay and enforce device allocations made by the VDC 
achieve load balancing , fault tolerance , and high availability . management server VM 810 , relay virtual - machine provi 
FIG . 8 shows virtual - machine components of a virtual- 10 sioning and configuration - change commands to host agents , 

data - center management server computer and physical monitor and collect performance statistics , alerts , and events 
server computers of a physical data center above which a communicated to the virtual - data - center agents by the local 
virtual - data - center interface is provided by the virtual - data- host agents through the interface API , and to carry out other , 
center management server computer . The virtual - data - center similar virtual - data - management tasks . 
management server computer 802 and a virtual - data - center 15 The virtual - data - center abstraction provides a convenient 
database 804 comprise the physical components of the and efficient level of abstraction for exposing the computa 
management component of the virtual data center . The tional devices of a cloud - computing facility to cloud - com 
virtual - data - center management server computer 802 puting - infrastructure users . A cloud - director management 
includes a hardware layer 806 and virtualization layer 808 server exposes virtual devices of a cloud - computing facility 
and runs a virtual - data - center management - server VM 810 20 to cloud - computing - infrastructure users . In addition , the 
above the virtualization layer . Although shown as a single cloud director introduces a multi - tenancy layer of abstrac 
server computer in FIG . 8 , the virtual - data - center manage- tion , which partitions VDCs into tenant - associated VDCs 
ment server computer ( “ VDC management server ” ) may that can each be allocated to a particular individual tenant or 
include two or more physical server computers that support tenant organization , both referred to as a “ tenant . ” A given 
multiple VDC - management - server virtual appliances . The 25 tenant can be provided one or more tenant - associated VDCs 
virtual - data - center management - server VM 810 includes a by a cloud director managing the multi - tenancy layer of 
management - interface component 812 , distributed services abstraction within a cloud - computing facility . The cloud 
814 , core services 816 , and a host - management interface services interface ( 308 in FIG . 3 ) exposes a virtual - data 
818. The host - management interface 818 is accessed from center management interface that abstracts the physical data 
any of various computers , such as the PC 708 shown in FIG . 30 center . 
7. The host - management interface 818 allows the virtual- FIG.9 shows a cloud - director level of abstraction . In FIG . 
data - center administrator to configure a virtual data center , 9 , three different physical data centers 902-904 are shown 
provision VMs , collect statistics and view log files for the below planes representing the cloud - director layer of 
virtual data center , and to carry out other , similar manage- abstraction 906-908 . Above the planes representing the 
ment tasks . The host - management interface 818 interfaces to 35 cloud - director level of abstraction , multi - tenant virtual data 
virtual - data - center agents 824 , 825 , and 826 that execute as centers 910-912 are shown . The devices of these multi 
VMs within each of the server computers of the physical tenant virtual data centers are securely partitioned in order to 
data center that is abstracted to a virtual data center by the provide secure virtual data centers to multiple tenants , or 
VDC management server computer . cloud - services - accessing organizations . For example , a 

The distributed services 814 include a distributed - device 40 cloud - services provider virtual data center 910 is partitioned 
scheduler that assigns VMs to execute within particular into four different tenant - associated virtual - data centers 
physical server computers and that migrates VMs in order to within a multi - tenant virtual data center for four different 
most effectively make use of computational bandwidths , tenants 916-919 . Each multi - tenant virtual data center is 
data - storage capacities , and network capacities of the physi- managed by a cloud director comprising one or more 
cal data center . The distributed services 814 further include 45 cloud - director server computers 920-922 and associated 
a high - availability service that replicates and migrates VMs cloud - director databases 924-926 . Each cloud - director 
in order to ensure that VMs continue to execute despite server computer or server computers runs a cloud - director 
problems and failures experienced by physical hardware virtual appliance 930 that includes a cloud - director manage 
components . The distributed services 814 also include a ment interface 932 , a set of cloud - director services 934 , and 
live - virtual machine migration service that temporarily halts 50 a virtual - data - center management - server interface 936. The 
execution of a VM , encapsulates the VM in an OVF pack- cloud - director services include an interface and tools for 
age , transmits the OVF package to a different physical server provisioning multi - tenant virtual data center virtual data 
computer , and restarts the VM on the different physical centers on behalf of tenants , tools and interfaces for con 
server computer from a virtual - machine state recorded when figuring and managing tenant organizations , tools and ser 
execution of the VM was halted . The distributed services 55 vices for organization of virtual data centers and tenant 
814 also include a distributed backup service that provides associated virtual data centers within the multi - tenant virtual 
centralized virtual - machine backup and restore . data center , services associated with template and media 

The core services 816 provided by the VDC management catalogs , and provisioning of virtualization networks from a 
server VM 810 include host configuration , virtual - machine network pool . Templates are VMs that each contains an OS 
configuration , virtual - machine provisioning , generation of 60 and / or one or more VMs containing applications . A template 
virtual - data - center alerts and events , ongoing event logging may include much of the detailed contents of VMs and 
and statistics collection , a task scheduler , and a device- virtual appliances that are encoded within OVF packages , so 
management module . Each physical server computers 820- that the task of configuring a VM or virtual appliance is 
822 also includes a host - agent VM 828-830 through which significantly simplified , requiring only deployment of one 
the virtualization layer can be accessed via a virtual - infra- 65 OVF package . These templates are stored in catalogs within 
structure application programming interface ( " API " ) . This a tenant's virtual - data center . These catalogs are used for 
interface allows a remote administrator or user to manage an developing and staging new virtual appliances and published 



2 

US 11,481,300 B2 
13 14 

catalogs are used for sharing templates in virtual appliances particular operating system for use by containers . A con 
across organizations . Catalogs may include OS images and tainer is a software package that uses virtual isolation to 
other information relevant to construction , distribution , and deploy and run one or more applications that access a shared 
provisioning of virtual appliances . operating system kernel . Containers isolate components of 

Considering FIGS . 7 and 9 , the VDC - server and cloud- 5 the host used to run the one or more applications . The 
director layers of abstraction can be seen , as discussed components include files , environment variables , dependen 
above , to facilitate employment of the virtual - data - center cies , and libraries . The host OS constrains container access 
concept within private and public clouds . However , this to physical resources , such as CPU , memory and data 
level of abstraction does not fully facilitate aggregation of storage , preventing a single container from using all of a 
single - tenant and multi - tenant virtual data centers into het- 10 host’s physical resources . As one example , OSL virtualiza 
erogeneous or homogeneous aggregations of cloud comput- tion provides a file system to each container , but the file 
ing facilities . system provided to the container is essentially a view of a 

FIG . 10 shows virtual - cloud - connector nodes ( “ VCC partition of the general file system provided by the under 
nodes ” ) and a VCC server , components of a distributed lying operating system of the host . In essence , OSL virtu 
system that provides multi - cloud aggregation and that 15 alization uses operating - system features , such as namespace 
includes a cloud - connector server and cloud - connector isolation , to isolate each container from the other containers 
nodes that cooperate to provide services that are distributed running on the same host . In other words , namespace 
across multiple clouds . VMware vCloudTM VCC servers and isolation ensures that each application is executed within the 
nodes are one example of VCC server and nodes . In FIG . 10 , execution environment provided by a container to be iso 
seven different cloud computing facilities are shown 1002- 20 lated from applications executing within the execution envi 
1008. Cloud computing facility 1002 is a private multi- ronments provided by the other containers . A container 
tenant cloud with a cloud director 1010 that interfaces to a cannot access files not included the container's namespace 
VDC management server 1012 to provide a multi - tenant and cannot interact with applications running in other con 
private cloud comprising multiple tenant - associated virtual tainers . As a result , a container can be booted up much faster 
data centers . The remaining cloud computing facilities 25 than a VM , because the container uses operating - system 
1003-1008 may be either public or private cloud - computing kernel features that are already available and functioning 
facilities and may be single - tenant virtual data centers , such within the host . Furthermore , the containers share compu 
as virtual data centers 1003 and 1006 , multi - tenant virtual tational bandwidth , memory , network bandwidth , and other 
data centers , such as multi - tenant virtual data centers 1004 computational resources provided by the operating system , 
and 1007-1008 , or any of various different kinds of third- 30 without the overhead associated with computational 
party cloud - services facilities , such as third - party cloud- resources allocated to VMs and virtualization layers . Again , 
services facility 1005. An additional component , the VCC however , OSL virtualization does not provide many desir 
server 1014 , acting as a controller is included in the private able features of traditional virtualization . As mentioned 
cloud computing facility 1002 and interfaces to a VCC node above , OSL virtualization does not provide a way to run 
1016 that runs as a virtual appliance within the cloud 35 different types of operating systems for different groups of 
director 1010. A VCC server may also run as a virtual containers within the same host and OSL - virtualization does 
appliance within a VDC management server that manages a not provide for live migration of containers between hosts , 
single - tenant private cloud . The VCC server 1014 addition- high - availability functionality , distributed resource schedul 
ally interfaces , through the Internet , to VCC node virtual ing , and other computational functionality provided by 
appliances executing within remote VDC management serv- 40 traditional virtualization technologies . 
ers , remote cloud directors , or within the third - party cloud FIG . 11 shows an example server computer used to host 
services 1018-1023 . The VCC server provides a VCC server three containers . As discussed above with reference to FIG . 
interface that can be displayed on a local or remote terminal , 4 , an operating system layer 404 runs above the hardware 
PC , or other computer system 1026 to allow a cloud- 402 of the host computer . The operating system provides an 
aggregation administrator or other user to access VCC- 45 interface , for higher - level computational entities , that 
server - provided aggregate - cloud distributed services . In includes a system - call interface 428 and the non - privileged 
general , the cloud computing facilities that together form a instructions , memory addresses , and registers 426 provided 
multiple - cloud - computing aggregation through distributed by the hardware layer 402. However , unlike in FIG . 4 , in 
services provided by the VCC server and VCC nodes are which applications run directly above the operating system 
geographically and operationally distinct . 50 layer 404 , OSL virtualization involves an OSL virtualization 
As mentioned above , while the virtual - machine - based layer 1102 that provides operating - system interfaces 1104 

virtualization layers , described in the previous subsection , 1106 to each of the containers 1108-1110 . The containers , in 
have received widespread adoption and use in a variety of turn , provide an execution environment for an application 
different environments , from personal computers to enor- that runs within the execution environment provided by 
mous distributed computing systems , traditional virtualiza- 55 container 1108. The container can be thought of as a 
tion technologies are associated with computational over- partition of the resources generally available to higher - level 
heads . While these computational overheads have steadily computational entities through the operating system inter 
decreased , over the years , and often represent ten percent or face 430 . 
less of the total computational bandwidth consumed by an FIG . 12 shows an approach to implementing the contain 
application running above a guest operating system in a 60 ers on a VM . FIG . 12 shows a host computer similar to the 
virtualized environment , traditional virtualization technolo- host computer shown in FIG . 5A , discussed above . The host 
gies nonetheless involve computational costs in return for computer includes a hardware layer 502 and a virtualization 
the power and flexibility that they provide . layer 504 that provides a virtual hardware interface 508 to a 

While a traditional virtualization layer can simulate the guest operating system 1102. Unlike in FIG . 5A , the guest 
hardware interface expected by any of many different oper- 65 operating system interfaces to an OSL - virtualization layer 
ating systems , OSL virtualization essentially provides a 1104 that provides container execution environments 1206 
secure partition of the execution environment provided by a 1208 to multiple application programs . 
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Although only a single guest operating system and OSL includes virtual objects , such as VMs , applications , and 
virtualization layer are shown in FIG . 12 , a single virtualized containers , hosted by the server computers in the physical 
host system can run multiple different guest operating sys- data center 1304. The virtualization layer 1302 may also 
tems within multiple VMs , each of which supports one or include a virtual network ( not illustrated ) of virtual switches , 
more OSL - virtualization containers . A virtualized , distrib- 5 routers , load balancers , and network interface cards formed 
uted computing system that uses guest operating systems from the physical switches , routers , and network interface 
running within VMs to support OSL - virtualization layers to cards of the physical data center 1304. Certain server 
provide containers for running applications is referred to , in computers host VMs and containers as described above . For 
the following discussion , as a “ hybrid virtualized distributed example , server computer 1314 hosts two containers 1324 , 
computing system . " 10 server computer 1326 hosts four VMs 1328 , and server 

Running containers above a guest operating system within computer 1330 hosts a VM 1332. Other server computers 
a VM provides advantages of traditional virtualization in may host applications as described above with reference to 
addition to the advantages of OSL virtualization . Containers FIG . 4. For example , server computer 1318 hosts four 
can be quickly booted in order to provide additional execu- applications 1334. The virtual - interface plane 1306 abstracts 
tion environments and associated resources for additional 15 the resources of the physical data center 1304 to one or more 
application instances . The resources available to the guest VDCs comprising the virtual objects and one or more virtual 
operating system are efficiently partitioned among the con- data stores , such as virtual data stores 1338 and 1340. For 
tainers provided by the OSL - virtualization layer 1204 in example , one VDC may comprise VMs 1328 and virtual 
FIG . 12 , because there is almost no additional computational data store 1338 . 
overhead associated with container - based partitioning of 20 In the following discussion , the term “ object ” refers to a 
computational resources . However , many of the powerful physical object or a virtual object , such as a server computer , 
and flexible features of the traditional virtualization tech- network device , application , VM , virtual network device , 
nology can be applied to VMs in which containers run above container , or any other physical or virtual object of a 
guest operating systems , including live migration from one distributed computing system for which metric data can be 
host to another , various types of high - availability and dis- 25 collected to evaluate abnormal or normal behavior of the 
tributed resource scheduling , and other such features . Con- object . The term “ resource ” refers to a physical resource of 
tainers provide share - based allocation of computational a distributed computing system , such as , but are not limited 
resources to groups of applications with guaranteed isolation to , a processor , a core , memory , a network connection , 
of applications in one container from applications in the network interface , data - storage device , a mass - storage 
remaining containers executing above a guest operating 30 device , a switch , a router , and other any other component of 
system . Moreover , resource allocation can be modified at the physical data center 1304. Resources of a server com 
run time between containers . The traditional virtualization puter and clusters of server computers may form a resource 
layer provides for flexible and scaling over large numbers of pool for creating virtual resources of a virtual infrastructure 
hosts within large distributed computing systems and a used to run virtual objects . The term “ resource ” may also 
simple approach to operating - system upgrades and patches . 35 refer to a virtual resource , which may have been formed 
Thus , the use of OSL virtualization above traditional virtu- from physical resources used by a virtual object . For 
alization in a hybrid virtualized distributed computing sys- example , a resource may be a virtual processor formed from 
tem , as shown in FIG . 12 , provides many of the advantages one or more cores of a multicore processor , virtual memory 
of both a traditional virtualization layer and the advantages formed from a portion of physical memory , virtual storage 
of OSL virtualization . 40 formed from a sector or image of a hard disk drive , a virtual 

switch , and a virtual router . 
Automated Processes and Systems for Detecting Processes and systems described herein are implemented 
Abnormally Behaving Objects of a Distributed in a monitoring server that monitors objects of a distributed 

Computing System computing system by collecting numerous streams of time 
45 dependent metric data associated with numerous physical 

FIG . 13 shows an example of a virtualization layer 1302 and virtual resources . Each stream of metric data is time 
located above a physical data center 1304. For the sake of series data that may be generated by a metric source , such 
illustration , the virtualization layer 1302 is separated from as an operating system or an object itself . A stream of metric 
the physical data center 1304 by a virtual - interface plane data associated with a resource comprises a sequence of 
1306. The physical data center 1304 is an example of a 50 time - ordered metric values that are recorded in spaced 
distributed computing system . The physical data center 1304 points in time called “ time stamps . " A stream of metric data 
comprises physical objects , including a management server is simply called a “ metric ” and is denoted by 
computer 1308 , any of various computers , such as PC 1310 , 
on which a virtual - data - center ( “ VDC ” ) management inter v = ( x ; ) ; = / Nv = ( x { t ; ) ) ; = 1 ( 1 ) 

face may be displayed to system administrators and other 55 where 
users , server computers , such as server computers 1312- N , is the number of metric values in the sequence ; 
1319 , data - storage devices , and network devices . The server X ; = x ( t ; ) is a metric value ; 
computers may be networked together to form area networks t ; is a time stamp indicating when the metric value was 
within the data center 1904. The example physical data recorded in a data - storage device ; and 
center 1304 includes three networks that each directly 60 subscript i is a time stamp index i = 1 , ... , N. 
interconnects a bank of eight server computers and a mass- FIG . 14A shows a plot of an example metric associated 
storage array . For example , network 1320 interconnects with a resource . Horizontal axis 1402 represents time . 
server computers 1312-1319 and a mass - storage array 1322 . Vertical axis 1404 represents a range of metric value ampli 
Different physical data centers may include many different tudes . Curve 1406 represents a metric as time series data . In 
types of computers , networks , data - storage systems and 65 practice , a metric comprises a sequence of discrete metric 
devices connected according to many different types of values in which each metric value is recorded in a data 
connection topologies . The virtualization layer 1302 storage device . FIG . 14 includes a magnified view 1408 of 
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three consecutive metric values represented by points . Each Processes and systems identify metrics associated with an 
point represents an amplitude of the metric at a correspond- object . The metrics are denoted using set notation as fol 
ing time stamp . For example , points 1410-1412 represent lows : 
three consecutive metric values ( i.e. , amplitudes ) X : -1 , Xi , 
and X ; +1 recorded in a data - storage device at corresponding 5 { v } } ; = ? ' = { ( x ) , MUX } - 1 ' = { 10 ( t1 ) ) = Nv ) } ; = r ' ( 2 ) 
time stamps t : -1 , ti , and t ; +1 . The example metric may where represent usage of a physical or virtual resource . For j is a metric index for the object j = 1 , ... , J ; example , the metric may represent CPU usage of a core in Ny is the number of the metric values in the j - th metric ; a multicore processor of a server computer over time . The vj 

and metric may represent the amount of virtual memory a VM 10 
uses over time . The metric may represent network through J is an integer number of metrics associated with the 

object . put for a server computer . Network throughput is the number 
of bits of data transmitted to and from a physical or virtual Processes and system prepare the metrics by deleting 

constant and nearly constant metrics , which are not useful in object and is recorded in megabits , kilobits , or bits per identifying abnormal behavior of the object . Constant or second . The metric may represent network traffic for a server 15 nearly constant metrics may be identified by the magnitude computer . Network traffic at a physical or virtual object is a of the standard deviation of each metric over time . The count of the number of data packets received and sent per standard deviation is a measure of the amount of variation or unit of time . 
In FIGS . 14B - 14C , a monitoring server 1414 collects degree of variability associated with a metric . A large 

standard deviation indicates large variability in the metric . A numerous metrics associated with numerous physical and 20 small standard deviation indicates low variability in the virtual resources . The monitoring server 1414 may be imple metric . The standard deviation is compared to a variability mented in a VM to collect and process the metrics , as threshold to determine whether the metric has acceptable described below , to identify abnormally behaving objects of variation for identification of abnormal or normal behavior the distributed computing system and may generate recom of the object . mendations to correct abnormally behaving objects or 25 The standard deviation of a metric may be computed by : execute remedial measures , such as reconfiguring a virtual 
network of a VDC or migrating VMs , containers , or appli 
cations from one server computer to another . For example , ( 3a ) 
remedial measures may include , but are not limited to , 
powering down server computers , replacing VMs disabled 30 ? ( x – ? . ) 
by physical hardware problems and failures , spinning up 
cloned VMs on additional server computers to ensure that 
the services provided by the VMs are accessible to increas- where the mean of the metric is given by 
ing demand for services or when one of the VMs becomes 
compute or data - access bound . As shown in FIGS . 14B - 14C , 35 
directional arrows represent metrics sent from physical and ( 3b ) 
virtual resources to the monitoring server 1414. In FIG . 14B , Hj ? 
PC 1310 , server computers 1308 and 1312-1315 , and mass 
storage array 1346 send metrics to the monitoring server 
1414. Clusters of server computers may also send metrics to 40 When the standard deviation 0 ; > Es , where ægt is a variability 
the monitoring server 1414. For example , a cluster of server threshold ( e.g. , & s = 0.01 ) , the metric v ; is non - constant and is 
computers 1312-1315 sends metrics to the monitoring server retained . Otherwise , when the standard deviation 0 ; SE srº the 
1414. In FIG . 14C , the operating systems , VMs , containers , metric Vi is constant and is omitted from consideration of 
applications , and virtual storage may independently send abnormal and normal behavior of the object . Let M be the 
metrics to the monitoring server 1414 , depending on when 45 number of non - constant metrics ( i.e. , 0 ; > Est ) , where MSJ . 
the metrics are generated . For example , certain objects may FIGS . 15A - 15B show plots of example non - constant and 
send time series data of a metric as the data is generated constant metrics over time . Horizontal axes 1501 and 1502 
while other objects may only send time series data of a represent time . Vertical axis 1503 represents a range of 
metric at certain times or when requested to send by the metric values for a first metric v? . Vertical axis 1504 
monitor server 1414 . 50 represents the same range of metric values for a second 

The millions of metrics collected and recorded by the metric V2 . Curve 1505 represents the metric v , over a time 
monitoring server 1414 contain information that is used to interval between time stamps t , and ty . Curve 1506 repre 
determine , as described below , whether individual objects of sents the metric v2 over the same time interval . FIG . 15A 
the physical data center exhibit abnormal or normal behav- includes a plot an example first distribution 1507 of the first 
ior . Each object may have tens to hundreds of associated 55 metric centered about a mean value un . FIG . 15B includes a 
metrics . A server computer may have numerous metrics that plot an example second distribution 1508 of the second 
represent usage of each core of a multicore core processor , metric centered about a mean value U2 . The distributions 
memory usage , storage usage , network throughput , error 1507 and 1508 reveal that the first metric 1505 has a much 
rates , datastores , disk usage , average response times , peak higher degree of variability than the second metric , which is 
response times , thread counts , and power usage , just to name 60 nearly constant over the time interval . 
a few . A virtual object , such as a VM , may have hundreds of Because resources associated with an object are varied , 
associated metrics that monitor both physical and virtual the time stamps of the corresponding metrics are typically 
resource usage , such as virtual CPU usage , virtual memory not synchronized . For example , metric values of certain 
usage usage , virtual disk usage , virtual storage space , num- metrics may be recorded at periodic intervals , but the 
ber of data stores , average and peak response times for 65 periodic intervals between metric values may not be the 
various physical and virtual resources of the VM , network same for all of the metrics . On the other hand , metric values 
throughput , and power usage , just to name a few . of other metrics may be recorded at nonperiodic intervals 
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and may not be synchronized with respect to the time stamps Processes and systems use the M synchronized and non 
at which metric values of other metrics are recorded . In constant metrics ( i.e. , { u ; } } = 1M ) to detect previous abnormal 
certain cases , the monitoring server 1414 may request metric behavior of the object over the time interval [ t? , ty ] . In other 
data from metric sources at regular intervals while in other words , the time interval [ t? , ty ] is a historical time window 
cases , the metric sources may actively send metric data at 5 for identifying previous abnormal behavior of the object as 

described below . periodic intervals or , alternatively , whenever metric data 
becomes available . As a result , the metrics associated with Processes and systems use a principal - component - analy 
an object are typically not be synchronized . sis ( “ PCA ” ) technique to transform the metrics { u ; } j = 1M over 
FIG . 16A shows example plots of three unsynchronized the historical time window into M sets of parameters called 

metrics for CPU usage 1602 , memory 1603 , and network 10 “ principal components . ” Each principal component has an 
associated variance . The variances are used to rank order the throughput 1606 for an object recorded in the same time principle components with the first ( i.e. , highest ranked ) interval . Horizontal axes , such as horizontal axis 1608 , principal component having the largest variance and each represent the length of the time interval . Vertical axes , such succeeding principal component having a next largest vari as vertical axis 1610 , represent ranges of metric values for 15 ance with the constraint that the principal component is the CPU , memory , and network throughput . Dots represent orthogonal in an M - dimensional space to the higher ranked metric values recorded at different time stamps in the time principal components . The resulting principal components interval . CPU metric values are recorded at different peri are an uncorrelated orthogonal basis in the M - dimensional odic intervals than the memory and network throughput 

metric values . Dashed lines 1612-1614 mark the same time , 20 described below with reference to FIGS . 17-31 . space . The PCA technique applied to the metrics { u ; } j = 1M is 
t ;, in the time interval . A metric value 1616 represents CPU The PCA technique may be regarded as fitting an M - di usage for the object recorded at time stamp t ;. However , the mensional ellipsoid to the metrics { u } = M . Each axis of the memory and network throughput metrics do not have metric ellipsoid contains parameters of a principal component . The values recorded at the same time stamp t ;. In other words , the lengths of the ellipsoid axes correspond to the variances of CPU usage , memory , and network throughput are not syn- 25 the M principal components . For example , a short axis of the 
chronized . ellipsoid indicates a small variance in the direction of the For the types of processing carried out by the currently short axis . By comparison , a long axis of the ellipsoid disclosed processes and systems , it is convenient to ensure indicates a large variance in the direction of the long axis . that the metric values for all metrics used to evaluate normal The dimensionality of the ellipsoid may be reduced by and abnormal behavior of an object are logically emitted in 30 discarding the principal components along the shortest axes , a periodic manner and that the transmission of metric data is leaving higher variance principal components . synchronized among the metrics to a general set of uni The PCA technique subtracts the average of each metric formly spaced time stamps . Metric values may be synchro from the metric values of the metric , which ce ers the M nized by computing a run - time average of metric values in metrics at the origin of an M - dimensional space . The PCA a sliding time window centered at a time stamp of the 35 technique may use a covariance matrix when the metrics general set of uniformly spaced time stamps . In an alterna have similar scales and stable variances or a correlation tive implementation , the metric values with time stamps in matrix when the metrics do not have similar scales and may the sliding time window may be smoothed by computing a have unstable variances . 
running time median of metric values in the sliding time The metrics { u ; } } = 1 are arranged to form a metric - data window centered at a time stamp of the general set of 40 matrix denoted by X in which each column of the metric uniformly spaced time stamps . Processes and systems may 
also synchronize the metrics by deleting time stamps of values of one metrics arranged in time order according to 

time stamps . Each metric has a corresponding coordinate missing metric values or interpolating missing metric data at axis in an M - dimensional space . Each row of the metric - data time stamps of the general set of uniformly spaced time matrix X is an M - tuple represented by a point in the stamps using linear , quadratic , or spline interpolation . 45 M - dimensional space . FIG . 16B shows a plot of metric values synchronized to FIG . 17 shows an example metric - data matrix X 1700 a general set of uniformly spaced time stamps . Horizontal formed from the metrics { u ; } } = 1M . Each column of the axis 1620 represents time . Vertical axis 1622 represents a metric - data matrix X 1700 comprises a time - ordered range of metric values . Solid dots represent metric values sequence of N metric values of one of the M metrics . For recorded at irregularly spaced time stamps . Marks located 50 example , column 1702 comprises the metric uy = ( x , 1 ) ) = 1 along time axis 1620 represent time stamps of a general set and column 1704 comprises the metric uz = ( x ; % ' ) i = 1 ( 2 ) ) ; = 1 " . Each of uniformly spaced time stamps . Note that the metric values row of the metric - data matrix X 1700 comprises metric are not aligned with the time stamps of the general set of values with the same synchronized time stamp and corre uniformly spaced time stamps . Open dots represent metric sponds to an M - tuple represented by a point in an M - di values aligned with the time stamps of the general set of 55 mensional space . For example , metric values x , ( ! ) , x? uniformly spaced time stamps . Bracket 1624 represents a X1 X1 ( M ) 1706 have the same time stamp t? and sliding time window centered at a time stamp tz or the correspond to an M - tuple , ( X1 X1 x , ( M ) ) , a point general set . The metric values X1 , X2 , X3 , X4 , and xs have time in an M - dimensional state . stamps within the sliding time window 1624 and averaged FIG . 18 shows an example plot of three metrics in a 1632 to obtain synchronized metric value 1634 at the time 60 three - dimensional space . Directional arrows 1801-1803 rep stamp tz of the general set of uniformly spaced time stamps . resent three orthogonal coordinate axes , denoted by x ( 1 ) , The resulting M synchronized and non - constant metrics x ( 2 ) , and x3 ) , that correspond to the three metrics and are denoted in set notation by intersect at an origin 1804. Each axis corresponds to one or 
three metrics . Each point represents a three - tuple of metric { ; } ; - . M = { ( x ) -M } ; - . M = { ( ( t ) ) - M } ; - M = ( 4 ) 65 values of the three metrics . The metric values of each 

where N is the number of metric values in each of the M three - tuple have the same time stamp and correspond to a 
synchronized and non - constant metrics . row of a metric - data matrix formed from three metrics . For 
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example , point 1806 represents a three - tuple ( x ;? ) , x ; ( 2 ) , The standard deviations O ; scale the correlation value 
x : { 3 ) ) of metric values of the three different metrics with the between -1 and 1 . 
same time stamp t ; and corresponds to the i - th row of the The covariance matrix Ccov 2102 and the correlation 
metric - data matrix . matrix Ccor 2104 are measures of deviations between the 
The PCA technique translates the metrics { u } } } = 1M to the 5 pairs of mean - centered metrics . In the following discussion 

origin of the M - dimensional space . For each metric , the of the PCA technique , the term “ deviation matrix ” refers to 
mean of the metric values is subtracted from the metric the covariance matrix or the correlation matrix , depending 
values to obtain a mean - centered metric given by : on which of the two matrices is selected to perform the PCA 

technique . When the metrics exhibit stable variances , the 
? = & ; ) ) : - 1 " = ( x , - ; ) 10 deviation matrix , denoted by C , used to perform PCA may ( 5 ) be the covariance matrix Ccov or the correlation matrix Ccor . 

where the overbar denotes mean centered . Alternatively , when the metrics exhibit unstable variances , The mean - centered metrics , { ? ; } } = 1M , are arranged to foil the deviation matrix C used to perform the PCA technique 
a mean - centered metric - data matrix X in which columns of is the correlation matrix ( cor . 
the mean - centered metric - data matrix are the mean - centered 15 The PCA technique computes the eigenvalues and corre 
metrics that corresponds to the metrics in the metric - data sponding mutually orthogonal eigenvectors for the deviation 
matrix X. In other words , the mean of each column of the matrix . The eigenvectors are normalized . Each normalized 
metric - data matrix X 1700 is subtracted from the metric eigenvector corresponds to an axis of an ellipsoid associated 
values in the column to give a corresponding column in with the distribution of the M metrics . The fraction of the 
mean - centered metric - data matrix X 1900 as illustrated in 20 variance that each eigenvector represents may be determined 
FIG . 19. Each column of the mean - centered metric - data by dividing the eigenvalue corresponding to that eigenvector 
matrix X 1900 is a mean - centered metric obtained by by the sum of all eigenvalues . 
subtracting the mean of the metric values from the metric Eigenvalues and eigenvectors are computed for an eigen 
values in the column of the metric - data matrix X 1700 . vector - eigenvalue problem formed for the deviation matrix 
FIG . 20 shows an example plot of the three metrics shown 25 C : 

in FIG . 18 translated to the origin 1804 of the three CE = ; E ( 7 ) dimensional space . Each metric is translated by subtracting 
the mean of each metric from the metric values of the metric where 
according to Equation ( 4 ) . For example , the metric values of E ' represents the j - th eigenvector ; 
point 2002 are obtained by subtracting mean values of the 30 à ; represents the j - th eigenvalue ; and 
three corresponding metrics from the metric values repre- j = 1 , ... , M . 
sented by the point 1806 in FIG . 18 : ; " ) = x ; ( 1 ) -41 , FIG . 22 shows a matrix representation of the eigenvector 
X : ( 2 ) = x , ( 2 ) –M2 , and 7,3 ) = x ; ( ) . eigenvalue problem formed for the deviation matrix C with 

In one implementation , the PCA technique computes a the eigenvector Ei represented by an Mx1 column vector 
covariance matrix of the mean - centered metric - data matrix 35 2202 and the eigenvalue à ; 2204 is a scalar value . Equation 
X 1900 by first transposing the mean - centered metric - data ( 7 ) is equivalent to CE - 2 F? = 0 with the 2 , E = , IE , where I 
matrix X 1900 to obtain transposed mean - centered metric is the MXM identity matrix . Equation ( 7 ) can be rewritten as 
data matrix XT 2100 , shown in FIG . 21A , where superscript ( C - MDE = 0 ( 8 ) T denotes matrix transpose . The transposed mean - centered 
metric - data matrix X 2100 is multiplied by the mean- 40 The M eigenvalues are computed by solving the character 
centered metric - data matrix X 1900 to obtain a covariance istic equation : 
matrix Ccov 2102 shown in FIG . 21B . The covariance matrix det ( C - 2,1 ) = 0 Ccov 2102 is an MXM square symmetric matrix with matrix 
elements given by where " det ” denotes the determinant operator . 

45 After the eigenvalues are computed , corresponding eigen 
vectors are numerically computed from Equation ( 9 ) . In 

( 6a ) other words , each eigenvalue has an associated eigenvector 
cov ( Uj , Uk ) computed from Equation ( 7 ) . An eigenvalue and the asso 

ciated eigenvector are called an eigenpair . Because the 
50 deviation matrix C is symmetric , the deviation matrix C may 

where be diagonalized in terms of the eigenvectors and eigenvalues 
j = 1 , M ; and as follows : 
k = 1 , .. M. C = EAET ( 10 ) In another implementation , the PCA technique computes a 

correlation matrix Ccor 2104 shown in FIG . 21C . The 55 where 
correlation matrix Ccor 2104 is an MXM square symmetric E is the eigenvector matrix formed from the eigenvectors 
matrix with matrix elements given by of the deviation matrix C ; 

E is the transpose of the eigenvector matrix ; and 
A is the eigenvalue matrix formed from eigenvalues 

xK ) ( 6b ) 60 { ̂ ; } ; = 1M of the deviation matrix C. 
cor ( ? ;, Ux ) FIG . 23 shows matrix representations of the eigenvector 

matrix and eigenvalue matrix of Equation ( 10 ) . The eigen 
vector matrix E is an MXM matrix in which the columns of 

where the eigenvector matrix are the eigenvectors of the deviation 
O ; is the standard deviation of mean - centered metric ? ;; 65 matrix C. The eigenvector matrix A is an MXM diagonal 

and matrix with the eigenvalues of the deviation matrix C 
Ok is the standard deviation of mean - centered metric ?k . located along the diagonal . The eigenvectors of the eigen 
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vector matrix E and the corresponding eigenvalues of the values located along a corresponding principal component 
eigenvalue matrix A are eigenpairs . For example , as shown axis . For example , the first principal component PC , is 
in FIG . 23 , the first eigenvector E 2302 corresponds to the represented by column 2606 and comprises principal com 
first eigenvalue 2304. The eigenvectors of the eigenvector ponent values pc ( t1 ) , pc , ( t2 ) , ... , pc , ( ty ) located along the 
matrix E are orthogonal ( i.e. , E''Ek = 0 for j7k , j = 1 , ... , M , 5 principal - component axis PC . The second principal com 
and k = 1 , ... , M ) . ponent PC2 is represented by column 2608 and comprises 

principal component values pcz ( t ) , pcz ( t ) , . . . , pc ( ty ) Each eigenvector corresponds to an axis of an ellipsoid located along the principal - component axis PC2 . The M - th 
characterization of the mean - centered metrics { u ; } ; = 1M in the principal component PCM is represented by column 
M - dimensional space . Each eigenvalue is proportional to the 2610 and comprises principal component values peut ) , 
magnitude of the variance in the direction of the correspond- pom ( t ) , ... pom ( ty ) located along the principal - component 
ing eigenvector . A large eigenvalue corresponds to a larger axis PC Principal component values with the same time 
variation in the spread of the mean - centered metrics { stamp form an M - tuple that may be represented by a point 

in the direction of the corresponding eigenvector in an M - dimensional space . 
than in the direction of an eigenvector with a smaller The PCA technique retains principal components with the corresponding eigenvalue . The eigenvalues are rank ordered 15 largest variance and discards principal components with the 
from largest to smallest . Let 21 " , am ” denote the rank smallest variance . The variance of the principal components 
ordered eigenvalues of the eigenvalues { 2 ; } j = 1M , where along each of the M principal - component axes is computed 
^ , ro > 2 " 0 > ... > m " , and the superscript “ ro ” identifies the by : 
eigenvalues as rank ordered with 9 , " and à m'o correspond 
ing to the largest and smallest of the eigenvalues { ̂ ; } ; = 1 
Let Ero ' , ... , EMM denote the corresponding eigenvectors ( 12 ) 
of the rank ordered eigenvalues à j ' .. , am " . The large Var ( PC ; ) ( pc ; ( ti ) – ( PC ; ) 
eigenvalue 2 , " o corresponds to the largest variation in the 
spread of the mean - centered metrics { u ; } ; in the direction where { j = 1 of the corresponding eigenvector Ero " . By contrast , the j = 1 , ... , M ; and 
smallest eigenvalue amo corresponds to the smallest varia 
tion in the spread of the mean - centered metrics { u ; } j = 1M in the direction of the corresponding eigenvector EM . Each U ( PC ; ) = pc ; ( ti ) . 
eigenvector may be normalized to obtain normalized eigen 
vectors as follows : The variances of the principal components correspond to the 

rank ordered eigenvalues of the deviation matrix . In other 
( 11 ) words , the variances of the principal components decrease el 

|| E12 || are used to rank order the principal components as follows : 
35 Var ( PC , ) > Var ( PC2 ) > Var ( PCM ) . The first principal 

component has the largest variance , the second principal 
where In || is the Euclidean noun or length of the eigen- component has the second large variance , and so on with the 

vector . M - th principal component having the smallest variance . 
FIG . 24 shows column vectors of M normalized eigen- FIG . 27 shows a plot of example rank ordered variances 

vectors . Normalized eigenvector el corresponds to the larg- 40 for the first 15 principal components . Each mark located 
est rank order eigenvalue , " , normalized eigenvector e ? along horizontal axis 2702 corresponds to one of the 15 
corresponds to the second largest rank order eigenvalue 2 " , principal components . Vertical axis 2704 represents a vari 
normalized eigenvector e corresponds to the third largest ance range . Points are variances of the principal compo 
rank order eigenvalue 13 " , and normalized eigenvector em nents . For example , point 2706 is the variance of the first 
corresponds to the smallest rank order eigenvalue am " . 45 principal component PC ,. In the example of FIG . 27 , the 
FIG . 25 shows three orthogonal normalized eigenvectors variances decrease exponentially . 

e ' , e ?, and e3 for the three metrics shown FIG . 20. Ellipse Subset of principal components are formed from the 
2502 represents a three - dimensional elliptical region of principal components in which each subset of principal 
space that is centered at the origin 1804 and represents the component comprises the first n principal components with 
general shape of the space occupied by the three metrics . 50 the n largest corresponding variances . In other words , each 
The normalized eigenvectors e ' , e ?, and es correspond to subset of principal components comprises the n principal 
directions of the greatest variance , medium variance , and components with the n largest variances . For example , a first 
smallest variance of the three metrics and correspond to the three ( i.e. , n = 3 ) principal components comprises the princi 
largest , medium , and smallest eigenvalues of the three pal components with the three largest corresponding vari 
metrics . For example , normalized vector e points in the 55 ances , and a first four ( i.e. , n = 4 ) principal components 
direction of the longest axis of the ellipsoid 2502 . comprises the principal components with the four largest 

The mean - centered metrics { U } } } = 1M are projected onto M corresponding variances . A percentage of variance com 
principal - component axes , denoted by PC1 , PC2 , ... , PCM , puted for the first n principal components ( i.e. , n < M ) by 
that are aligned with the directions of the normalized eigen 
vectors to obtain M principal components . FIG . 26 shows 60 
computation of the M - principal components based on the ( 13 ) ŽVPC ; ) mean - centered metrics { U ; } ; = 1M . The mean - centered metric data matrix X 1900 is multiplied by a normalized eigenvec Percent - Var ( n ) 
tor matrix 2602 formed from the normalized eigenvectors , VPC ; ) shown in FIG . 24 , to obtain a principal - component matrix 65 
2604. Each column of a principal - component matrix 2604 is 
a principal component comprising N principal component 
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A threshold may be used to determine the first n principal A system indicator is computed from the high - variance 
components . For example , the first n principal components principal components over the historical time window . The 
contain a most of the variation , when the following condi- system indicator is a time dependent sequence used to 
tion is satisfied distinguish normal and abnormal behavior of the object over 

5 the historical time window . In one implementation , for each Percent - Var ( n ) Thperc_var ( 14 ) time stamp in the historical time window , the system indi 
where Tho is a percentage of variance threshold cator comprises a principal - component average value com 

( e.g. , Thperc Iperc_var may be set to any value between 85 % and puted as follows : 
98 % ) . 
The smallest percentage of variance that satisfies the con- 10 
dition given by Equation ( 14 ) gives the smallest number of ( 15a ) 
principal components that contain most of the variation of pc ; ( ti ) 
the metrics . The smallest subset of first n principal compo 
nents with the corresponding smallest percentage of vari 
ance that satisfies the condition given by Equation ( 14 ) are 15 In another implementation , for each time stamp in the 
called " high - variance principal components . " The remaining historical time window , a system indicator comprises a 
M - n principal components do not have sufficient variance principal - component average - absolute value computed as 
and may be discarded , reducing the dimensionality of the follows : 
principal - component space from M dimensions to n dimen 
sions . 
FIG . 28 shows a plot of example percentage of variance ( 15b ) 

\ pc ; lt ; ) ] for first 11 principal components through first 25 principal 
components . Each mark along horizontal axis 2802 corre 
sponds to a first fixed number of principal components , 
where n ranges from 11 to 25. Vertical axis 2804 corre- 25 where Inl represents the absolute value operator . 
sponds to a range of percentage of variances . Points repre In another implementation , for each time stamp in the 
sent the percentage of variance for different numbers of historical time window , a system indicator comprises a 
principal components . For example , point 2806 represents a principal - component distance computed as a distance from 
percentage of variance for the first 11 principal components principal - component values with the same time stamp to the 
and point 2808 represents a percentage of variance for the 30 origin of a principal - component space : 
first 25 principal components . Dashed line 2810 represents 
a percentage of variance threshold of 90 % . The plot of ( 150 ) percentage of variances indicates that the first 24 principal 
components identified by point 2812 contain about 90 % of PC distancelt :) = ( pez ( t ; ) ) ? 
the variation of the mean - centered metrics { u } } } = 1M . In other 35 
words , because the percentage of variance threshold is set to 
90 % , only the first 24 principal components may be used to FIG . 30A shows a plot of an example system indicator of 
characterize variance of the mean - centered metrics { ? ; } j = 1 principal - component average values over time . Horizontal 
In other words , if the first 24 principal components charac- axis 3002 represents a historical time window . Vertical axis 
terize 90 % of the variation in the metrics , the remaining 40 3004 represents a range of principal component averages . 
M – 24 principal components may be discarded for lack of Each point represents an average of principal - component 
sufficient variation , thereby reducing the dimensionality of values at a time stamp computed according to Equation 
the principal - component space from the M - dimensional ( 15a ) . For example , point 3006 represents the average of the 
principal - component space to a 24 - dimensional principal- principal - component values at the time stamp t? . Note that 
component space . 45 average principal - component values may be negative or 
FIGS . 29A - 29B show an example of reducing the number positive . 

of hypothetical principal components associated with the FIG . 30B shows a plot of an example system indicator of 
three metrics plotted in FIG . 25. In FIG . 29A , dashed lines principal - component average - absolute values over time . 
2901-2903 represent principal - component axes PC1 , PC2 Horizontal axis 3008 represents a historical time window . 
and PC3 , respectively . Points represent three tuples of three 50 Vertical axis 3010 represents a range of average - absolute 
principal components values of the three principal compo- values of the principal components . Points represent aver 
nents PC1 , PC2 and PC3 with the same time stamp . For age - absolute values of principal components at the same 
example , point 2904 comprises the principal component time stamp computed according to Equation ( 15b ) . For 
values pc , ( t ; ) , pcz ( t ; ) and pcz ( t ; ) of the corresponding prin- example , point 3012 represents the average - absolute value 
cipal components PC1 , PC2 and PC3 . Suppose that Percent , 55 of the principal components at the time stamp t ;. 
Var ( 2 ) satisfies the condition given by Equation ( 12 ) . The System - indicator values are labeled as normal or outliers 
principal components PC , and PC2 are identified as high- based on whether the system - indicator values violate upper 
variance principal components that may be used to charac- or lower normal bounds . An abnormal system - indictor value 
terize variation of the object associated with the three is an indication of abnormal behavior of the object . Normal 
metrics . Because the principal components PC , and PC2 60 system - indicator values signify normal behavior by the 
contain most of the variation of the three metrics , the object . A system - indicator value is labeled as normal if the 
principal component PC3 is discarded , which reduces the following condition is satisfied : 
dimensionality of the principal - component space from three ( 16 ) ux - Zox < pcxít , Sux + ZJx to two , as shown in FIG . 29B . For example , point 2904 in 
FIG . 29A is reduced from the three principal component 65 where 
values pc , ( t ; ) , pcz ( t ; ) and pcz ( t :) to a point 2906 in FIG . 29B X denotes PC average , PC average - absolute value , or PC 
with the two principal component values pc ( t ; ) and pcz ( t ; ) . distance ; 
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tor point is a minimum . In general , the parametric equation 
for a linear boundary may be written as 

a 

a 

[ pcx { 1 ; ) 1 ; ] * W - b = 0 ( 17 ) N 

Ux = - pcz ( ti ) 5 where 
i = 1 

x = ? ( pey ( ti ) – ux ) ? [ ] pex ( ti ) 
ti 

10 

a 

15 

a 

35 

Ux + Zox is an upper normal bound ; and is a column vector representation of a system - indicator 
Ux - Zox is a lower normal bound . point ; 

Otherwise , if a system - indicator value does not satisfy the W is the normal vector to the maximum - margin line ; and 
condition given by Equation ( 16 ) ( i.e. , violates the upper or b is a constant . 
lower normal bound ) , the system - indicator value is labeled The SVM determines the maximum - margin boundary that 
as an abnormal system - indicator value . lies midway between two parallel outer linear boundaries 
FIG . 31 shows normal and abnormal system - indicator that separate the two classes of outlier and normal system 

values for an example system indicator . Horizontal axis indicator points such that the distance between the two 

3102 represents a historical time window . Vertical axis 3104 20 bounded by the outer boundary is called the margin , and the parallel linear boundaries is a maximum . The region 
represents a range of system - indicator values . The system maximum - margin boundary lies midway between the outer indicator may be principal - component average , principal boundaries . In order to handle system - indicator points that component average - absolute value , or principal - component are not fully linearly separable by a linear boundary , a slack distance . Dashed line 3106 represents the average ug of the variable may be introduced with the constraint system - indicator values over the time interval . Dotted line 25 
3108 represents an upper normal bound ux + Zoy . Dotted line y / ( [ pcz ( ti ) 1 ; ] ? W + b ) –1 + 5,20 ( 18 ) 
3110 represents a lower normal bound ux - Zoy . System- where 
indicator values that are greater than the upper normal bound Si is the slack variable ; and 
3108 or are less than the lower normal bound 3110 are for every 5 : > 0 . 
outliers and are labeled as abnormal system - indicator val- 30 Support vectors are system - indicator points that lie along the 
ues , as represented by open dots . For example , open dots , margins . The maximum - margin boundary is determined by 
such as open dot 3112 and 3114 , are outliers that are labeled the support vectors . 
as abnormal system - indicator values . System - indicator val- FIG . 32B shows an example of a maximum - margin line 
ues that are located between the upper normal bound 3104 3210 that separates normal system - indicator points from 
and the lower normal bound 3106 are labeled as normal abnormal system - indicator points identified in FIG . 32A . 
system - indicator values , as represented by solid points , such Directional arrow 3212 is the normal vector w with respect 
as point 3116 . to the line 3210. Dotted line 3214 denotes a first outer line . 

The labeled normal and abnormal system - indicator values Dotted line 3216 denotes a second outer line . The region 
are used to train a state classifier that is , in turn , used to 3218 between the outer lines 3214 and 3216 is the margin . 
classify run - time system - indicator values as an outlier or System - indicator points , such as points 3220 and 3222 , that 
normal . Processes and systems use a support vector machine are located along the outer lines 3214 and 3216 are support 
( " SVM ” ) to train a state classifier that dist hes between vectors . 
abnormal and normal run - time system - indicator values . The For system - indicator points separated by a maximum 
state classifier is trained using the system - indicator points 45 margin line , the SVM technique computes elements of a 
denoted by a { ( ti , pcx { t ; ) ) , y ; } , where i = 1 , ... , N , and y ; € square SVM matrix H as follows : 
{ -1 , 1 } . A system - indicator point ( ti , pcx { t :) ) comprises a 
time stamp t ; and system - indicator value pcx ( t ; ) . The value 
of y ; is a class label that identifies which of the two normal ( ti ) ( t ; ) ( 19 ) 

; 
or abnormal classes the system - indicator point ( ti , pex ( t ; ) ) 50 
belongs to . For example , a class label y = -1 may identify 
system - indicator points ( ti , pcx ( t ; ) ) that have been labeled as where 
abnormal and a class label y = 1 may identify system- i = 1 , . . . , N ; 
indicator points ( t ; pcx ( t ; ) ) that have been labeled as normal . j = 1 , ... , N ; and 
FIG . 32A shows an example of labeled system - indicator 55 Inn ) denotes the scalar product . 

points of a sequence of system indicators . Horizontal axis Using quadratic programming , a misclassification parameter 
3202 represents time . Vertical axis 3204 represents a range C is selected and parameters of a vector ã T = [ Q ,, ... , ax ] 
of system - indicator values . Solid points represent system are computed by maximizing 
indicators points labeled as normal . For example , point 3206 
is a normal system - indicator point with class label y = 1 and 60 
point 3208 is an abnormal system - indicator point with class ( 20 ) 

L? ) = max Hã 
The objective of the SVM is to determine a maximum 

margin boundary that separates system - indicator points with 
a class label y = 1 from system - indicator points with a class 65 ( 20 ) 
label y = -1 and is defined so that the distance between the subject to the constraints that C2020 , for every i = 1 , ... , N , 
maximum - margin boundary and the nearest system - indica- and Si = 1 ̂  « ; y ; = 0 . The misclassification parameter C is a 

40 
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constant that controls a trade - off between the slack variable ary , as described above with reference to FIG . 31B . The 
and the size of the margin . Equation ( 20 ) is solved for the parameters in vector à are computed as described above 
parameter vector d using Quadratic programming . The with reference to Equation ( 21 ) . The normal vector is 

computed by 
parameter vector d is used to compute the normal vector of 5 
maximum - margin line that separates the abnormal system 
indicator points from the normal system - indicator points : Cx ti ) ( 25 ) 

- > 

- > 

K 

-- a : viol [ perc ) W = 
= 1 

N ( 21 ) 10 - 6:10 Ža [ W = ????? pox ( ti ) The constant b is computed by ti 
i = 1 

pc ( 26 ) 1- ?? ( 41 b = 
Ns SES 

y's - Om Ym 
meS 

Cx ( im ) 
Im D ) ; [ pox.com ) ( ) 

Is 15 The non - zero parameters as of the parameter vector a 
correspond to the support vectors ( i.e. , system - indicator 
points that lie along the outer lines of the margin ) , where the 
subscript s denotes the non - zero Ag . In other words , the 
support vectors are the system - indicator points ( ts , pcx ( t ) ) , 
where 0,70 . The constant bin Equation ( 17 ) is given by : 

A state classifier for system - indicator points separate by a 
non - linear maximum - margin boundary is computed by ? 

20 

( 27 ) = sen?o?11 pex ( im ) . ? = sgn = • W tb 
pcx ( tm ) pcx ( ts ) ( 22 ) Im b bo ( : - { amsvall ] [ ] ) y's Ym Ns Im SES MES 
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The state classifier obtained in either Equation ( 23 ) or 
where Equation ( 27 ) is used to identify run - time abnormal behavior 
S is the set of non - zero a , indices ; and of the object . The run - time metrics associated with the 
N , is the number of indices in S. object are collected or retrieved from memory . Constant and 

nearly constant metrics are discarded as described above The normal vector w and the constant b are used to form 30 with reference to FIGS . 15A - 15B . The non - constant metrics a state classifier given by : are synchronized , as described above with reference to FIG . 
? = sgn ( [ pcx ( tr ) t , ] + w + b ) ( 23 ) 16B , to obtain the run - time synchronized and non - constant 

where metrics denoted in set notation by 
" sgn ” is the sign function ; 
t , is a run - time time stamp ; and { u , " } ; - M = { ( x , i n + N + ) , " ( 28 ) 

pcx ( ty ) is a run - time systemic indicator value . where 
Each run - time system indicator point , ( t , pcx ( t ) ) , is clas- Q is an integer number of time stamps in a run - time 
sified using the state classifier in Equation ( 23 ) as abnormal interval ; and 
or normal . For example , using the convention describe superscript " rt ” denotes run time . 
above with reference to FIG . 31A , if ý = 1 , the object is in a 40 Note that although the time stamps of Equation ( 28 ) begin 
normal state . On the other hand , if ý = -1 , the object is in an with the time stamp tv + 1 , which occurs immediately after 
abnormal state , which triggers generation of an alert dis- time stamp ty of the historical time window , collection of 
played on the system administration console . run - time metric values may be begin at some time later . In 

In another implementation , for system - indicator points other words , ty + 1 may not represent a point in time imme 
separated by nonlinear boundary , the SVM computes ele- 45 diately following the time stamp ty or may represent a much 
ments of a square matrix H as follows : later point in time . The run - time metrics { u , " } ; = 1 

translated to the origin of the M - dimensional space by 
subtracting the mean of the metric values from the metric 

( ti ) pex t ; ) ( 24 ) values of each metric to obtain run - time mean - centered 
50 metrics denoted in set notation by : 

2 

M are 

Hij = v.v.la [ peacos ) , [ pc2 , c2D ) = Yiyi 
ti 

M 
= 

M 
j = 1 

' 

on 

{ ? ; " ) ; = 1M = { ( 4 % ) : EN + IN + Q3 ; = 1 ( 29 ) 
where 
( 0 * ) , ( o ) ) is scalar product and is identified as the The run - time mean - centered metrics { ? ; " } ;- are projected 

kernel ; and onto n principal - component axes , PC1 , PC2 , ... , PCn , using 
( ) is a polynomial mapping . 55 the n eigenvectors associated with the high - variance prin 

An example of a quadratic polynomial mapping is given by cipal components to obtain n run - time principal compo 
nents . 
FIG . 33 shows computation of the n - principal compo 

nents based the run - time mean - centered metrics 

of pexlay ) = V2 • pey ( 4 ) ti ) ti .ti 60 { ? ; " } ; = 1M . The run - time mean - centered metric - data matrix 
3302 is multiplied by normalized eigenvector matrix 3304 
formed from the n normalized eigenvectors associated with 
the high - variance principal components . Each column of a 

The polynomial kernel maps the normal and abnormal run - time principal - component matrix 3306 is a principal 
system - indicator points to a space in which the normal 65 component comprising Q principal - component values . For 
system - indicator points and the abnormal system - indicator example , the first run - time principal component PC ; r " is 
points can be separated by a linear maximum - margin bound- represented by column 3308 and comprises principal com 

pey ( t ; ) 2 
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ponent values pc ( tx + 1 ) , pc ( tx + 2 ) , ... , pc ( tx + o ) located block 3402 , an “ apply data preparation to the metrics ” 
along the principal - component axis PC ) . The second run- procedure is performed . In block 3403 , an " apply a PCA 
time principal component PC is represented by column technique to obtain principal components ” procedure is 
3310 and comprises principal component values pc2 ( tx + 1 ) , performed on the metrics output by the procedure repre 
pc ( t1 + 2 ) , pcz ( tx + o ) located along the principal- 5 sented by block 3402. In block 3404 , a system indicator is 
component axis PC2 . The n - th run - time principal component computed from the principal components as described above 
PC " is represented by column 3312 and comprises princi- with reference to Equations ( 15a ) - ( 150 ) and FIGS . 30A 
pal component values pc , ( tx + 1 ) , pon ( tv + 2 ) , pc , ( tv + Q ) 30B . In block 3405 , a “ compute state classifier based on 
located along the principal - component axis PC system indicator ” procedure is performed . In block 3406 , a 
A run - time sequence of system indicators is computed 10 " use state classifier to detect abnormal behavior of the 

from the n run - time principal components . The run - time object " procedure is performed . 
sequence of system indicators is denoted by ( pcx FIG . 35 is a flow diagram illustrating an example imple 

N + 2 . The state classifier given by Equation ( 23 ) is mentation of the “ apply data preparation to the metrics ” step 
used to classify each run - time system indicator as an outlier referred to in block 3402 of FIG . 34. A loop beginning with 
or normal . For example , when sgn ( [ pcz ( t . ) ty ] * w + b ) = - 1 , 15 block 3501 repeats the operations represented by blocks 
the run - time system indicator indicates abnormal behavior 3502-3506 for each metric associated with the object . In 
of the object at time stamp ty . Alternatively , when sgn ( [ pcx block 3502 , a mean is computed for the metric . In block 
( t , ) t , ] w + b ) = 1 , the run - time system indicator indicates 3503 , a standard deviation is computed based on the metric 
normal behavior of the object . In other implementations , the and the mean computed in block 3502. In block 3504 , when 
state classifier given by Equation ( 27 ) may be used to 20 the standard deviation is less than a standard deviation 
identify abnormal and normal run - time system indicators . threshold , control flows to block 3505. In block 3505 , the 

In certain cases , when a run - time system - indicator value metric is deleted from the metrics and not used below . In 
indicates abnormal behavior or of the object , an alert may be block 3506 , the operations represented by blocks 3502-3505 
triggered , indicating that the object is in an abnormal state . are repeated for another metric . In block 3507 , each metric 
In another case , when a subsequence of run - time system- 25 is synchronized to a general set of uniformly spaced time 
indicator values are abnormal ( e.g. , a subsequence of five or stamps , as described above with reference to FIG . 16B . 
more system - indicator values are abnormal ) , the object is in FIG . 36 is a flow diagram of an example implementation 
an abnormal state . When an object enters an abnormal state , of the " apply a PCA technique to obtain principal compo 
the alert may be displayed in a graphical user interface of a nents ” step referenced in block 3403 of FIG . 34. In block 
system administration console . The alert may identify the 30 3601 , compute a mean of each synchronized and non 
object and state that the object performance is critical or constant metric as described above with reference to Equa 
generate a warning , depending on the number of run - time tion ( 3b ) . In block 3602 , subtract the means from corre 
system indicator values that are abnormal . For example , if sponding synchronized and non - constant metrics to obtain 
5 % of the run - time system indicators are abnormal , a general mean - centered metrics as described above with reference 
warning may be displayed . But , if more than 5 % of the 35 Equation ( 5 ) . In block 3603 , a deviation matrix is computed 
run - time system indicators are abnormal , a critical warning from the mean - centered metrics as described above with 
may be displayed indicating that immediate action should be reference to FIGS . 21A - 21B and Equation ( 6 ) . In block 
taken . 3604 , eigenvalues and corresponding eigenvectors are com 

Given the many different types of abnormal states of an puted as described above with reference to FIG . 22 and 
object , system administrators may have developed different 40 Equations ( 8 ) and ( 9 ) . In block 3605 , principal components 
remedial measures for correcting the various different abnor- of the deviation matrix are computed based on the eigen 
mal object states . When abnormal run - time system - indicator vectors as described above with reference to Equation ( 11 ) 
values are detected , processes and systems may also gener- and FIGS . 24 and 26. In block 3606 , a “ determine high 
ate instructions for correcting the abnormality or execute variance principal component ” procedure is performed on 
preprogrammed computer instructions that correct the 45 the principal components obtained in block 3605 . 
abnormality . For example , if an object is a VM and an alert FIG . 37 is a flow diagram of an example implementation 
is triggered based on associated abnormal run - time system- of the " determine high - variance principal component " step 
indicator values , the VM may be torn down , resources , such referred to in block 3606 of FIG . 36. A loop beginning with 
CPU and memory , may be increased , or the VM may be block 3701 repeats the computational operation represented 
migrated to a different server computer with more available 50 by block 2702 for each principal component . In block 3702 , 
memory and processing capacity . As another example , if the a variance of the principal component is computed as 
object is a computer server , remedial measures may include described above with reference to Equation ( 12 ) . In decision 
restarting the server computer or migrating virtual objects block 3703 , when the variance of each principal component 
running on the server computer to other server computers in has been computed , control flows to block 3704. In block 
order to reduce the workload at the server computer , or the 55 3704 , the principal components are rank order from the 
server computer may be taken off line or shut down . largest variance to the smallest variance as described above 
The processes described below with reference to FIGS . with reference FIG . 27. A loop beginning with block 3705 

34-39 are stored in one or more data - storage devices as repeats the computational operation represented by block 
machine - readable instructions that when executed by one or 3706 for each subset of principal components comprising a 
more processors of the computer system shown in FIG . 1 60 different number n of principal components with the n 
automatically detect abnormally behaving objects of a dis- largest variances ( e.g. , discussion of FIG . 28 ) . In block 3706 , 
tributed computing system . a percentage of variance is computed for each subset of 

FIG . 34 is a flow diagram illustrating an example imple- principal components as described above with reference to 
mentation a method that detects and corrects abnormal Equation ( 13 ) . In decision block 3707 , when the smallest 
behavior of an object of a distributed computing system . In 65 percentage of variance satisfies the condition given by 
block 3401 , metrics associated with the object of the dis- Equation ( 14 ) , control flows to block 3708. In block 3708 , 
tributed computing system is retrieved from data storage . In the principal components with a percentage of variance that 
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satisfies the condition in decision block 3707 are identified computing a state classifier for the object based on the 
as high - variance principal components . system - indicator values and corresponding time stamps 
FIG . 38 is a flow diagram of " compute state classifier in the historical time window ; 

based on system indicator " step referenced in block 3405 of using the state classifier to detect abnormal behavior of 
FIG . 43. In block 3801 , upper and / or lower bounds are the object based on run - time metrics associated with 
computed for the system - indicator values as described above the object ; and 
with reference to Equation ( 16 ) . In block 3802 , system generating an alert that identifies abnormal behavior of indicator values are labeled as outlier and normal system the object in response to detection of abnormal behav indicator values as described above with reference to Equa ior of the object by the state classifier , thereby enabling tion ( 16 ) and FIG . 31. In block 3803 , an SVM matrix H is 10 identification of the abnormal behavior of the object . computed as described above with reference to Equation 
( 19 ) or Equation ( 24 ) . In block 3804 , a normal vector w is 2. The process of claim 1 further comprising : 
computed as described above with reference to Equation deleting constant and nearly constant metrics from the 
( 21 ) or Equation ( 25 ) . In block 3805 , a constant b is metrics ; and 
computed as described above with reference to Equation 15 synchronizing the metrics to a general sequence of time 
( 22 ) of Equation ( 26 ) . In block 3806 , a state classifier is stamps . 
formed form the normal vector and the constant bas 3. The process of claim 2 wherein deleting the constant 
described above with reference to Equation ( 23 ) or Equation and nearly constant metrics in the metrics comprises : 
( 27 ) . computing a standard deviation for each metric in the 
FIG . 39 is a flow diagram of the " use state classifier to 20 metric data ; and 

detect abnormal behavior of the object ” step block 3406 of deleting each metric with a standard deviation less than a 
FIG . 34. In block 3901 , a run - time metrics is retrieved from standard deviation threshold . 
memory or received . In block 3902 , the procedure of “ apply 4. The process of claim 1 wherein applying the principa 
data preparation to the metrics ” in FIG . 35 is performed to component analysis technique to the metrics comprises : 
obtain run - time synchronized and non - constant metrics . In 25 for each metric of the metrics 
block 3903 , run - time mean - centered metrics is computed as computing a mean of metric values of the metric , and 
described above with reference to Equation ( 29 ) . In block subtracting the mean from each metric value of the 3904 , run - time principal components are computed using metric to obtain a mean - centered metric ; the eigenvectors of the high - variance principal components computing a deviation matrix based on the mean - centered as described above with reference to FIG . 33. In block 3905 , metrics ; a run - time system indicator is computed based on the computing eigenvalues and eigenvectors for the deviation run - time principal components using one of the system matrix ; indicator described above with reference Equations ( 15a ) 
( 150 ) . In block 3906 , the state classifier is applied to the computing the principal components of the deviation 
run - time sequence of system indicators to detect if any 35 matrix based on the eigenvalues and eigenvectors ; and 
abnormal system - indicator values indicative of an abnormal identifying high - variance principal components of the 
state for the object . In decision block 3907 , when an principal components . 
abnormal state is detected , control flows to block 3908. In 5. The process of claim 4 wherein identifying the high 
block 3908 , an alert may be generated and / or remedial variance principal components of the principal components 
measures may be executed to correct the abnormal behavior 40 comprises : 
of the object . computing a variance for each principal component ; 

It is appreciated that the previous description of the computing a percentage of variance for each subset of 
disclosed embodiments is provided to enable any person principal components , each subset comprising a differ 
skilled in the art to make or use the present disclosure . ent number of principal components with the largest 
Various modifications to these embodiments will be appar- 45 corresponding variances ; 
ent to those skilled in the art , and the generic principles determining a smallest percentage of variances that is 
defined herein may be applied to other embodiments without greater than a percentage of variance threshold ; and 
departing from the spirit or scope of the disclosure . Thus , the identifying the principal components that correspond to 
present disclosure is not intended to be limited to the the smallest percentage of variances as the high - vari 
embodiments shown herein but is to be accorded the widest 50 ance principal components . 
scope consistent with the principles and novel features 6. The process of claim 1 wherein computing the state 
disclosed herein . classifier for the object comprises : 

computing a bound for the system - indicator values ; 
The invention claimed is : labeling system - indicator values that violate the bound as 
1. In a process that detects abnormal behavior of an object 55 abnormal system - indicator values ; 

of a distributed computing system using metrics associated labeling system - indicator values that do not violate the 
with the object and recorded in a historical time window , the bound as normal system - indicator values ; 
improvement comprising : computing a support vector machine matrix based on the 

applying a principal component analysis technique to the normal system - indicator values ; 
metrics to determine principal components of the met- 60 computing the state classifier based on the support vector 
rics in the historical time window ; machine matrix . 

for each time stamp in the historical time window , com- 7. The process of claim 1 wherein using the state classifier 
puting a system - indicator value for the object based on to detect abnormal behavior of the object comprises : 
principal component values of the principal compo- deleting constant and nearly constant metrics from the 
nents at the time stamp , each system - indicator value 65 run - time metrics ; 
identifying an abnormal or normal state of the object at synchronizing the run - time metrics to a general sequence 
a time stamp in the historical time window ; of time stamps ; 
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computing run - time mean - centered metrics based on the 12. The computer system of claim 11 wherein identifying 
synchronized and non - constant sets of metrics : the high - variance principal components of the principal 

computing run - time principal components of the run - time components comprises : 
mean - centered metrics ; computing a variance for each principal component ; 

computing a run - time system indicator based on the 5 computing a percentage of variance for each subset of 
run - time principal components ; and principal components , each subset comprising a differ 

applying the state classifier to the run - time system - indi ent number of principal components with the largest 
cator values to detect abnormal behavior of the object . corresponding variances ; 

8. A computer system to detect abnormal behavior of an determining a smallest percentage of variances that is 
object of a distributed computing system , the system com greater than a percentage of variance threshold ; and 
prising : identifying the principal components that correspond to 

the smallest percentage of variances as the high - vari one or more processors ; ance principal components . one or more data - storage devices ; and 13. The computer system of claim 8 wherein computing machine - readable instructions stored in the one or more 15 the state classifier for the object comprises : data - storage devices that when executed using the one computing a bound for the system - indicator values ; or more processors controls the system performs opera labeling system - indicator values that violate the bound as tions comprising : abnormal system - indicator values ; 
retrieving metrics associated with the object and labeling system - indicator values that do not violate the 

recorded in a historical time window from the one or 20 bound as normal system - indicator values ; 
more data - storage devices ; computing a support vector machine matrix based on the 

applying a principal component analysis technique on normal system - indicator values ; 
the metrics to determine principal components of the computing the state classifier based on the support vector 
metrics in the historical time window ; machine matrix . 

for each time stamp in the historical time window , 25 14. The computer system of claim 8 wherein using the 
computing a system - indicator value for the object state classifier to detect abnormal behavior of the object 
based on principal component values of the principal comprises : 
components at the time stamp , each system - indicator deleting constant and nearly constant metrics from the 
value identifying an abnormal or normal state of the run - time metrics ; 
object at a time stamp in the historical time window ; synchronizing the run - time metrics to a general sequence 

of time stamps ; computing a state classifier for the object based on the computing a run - time mean - centered metrics based on the system - indicator values and corresponding time synchronized and non - constant sets of metrics ; stamps in the historical time window ; computing run - time principal components of the run - time using the state classifier to detect abnormal behavior of mean - centered metrics ; the object based on run - time metrics associated with computing a run - time system indicator based on the the object ; and run - time principal components ; and 
generating an alert that identifies abnormal behavior of applying the state classifier to the run - time system - indi 

the object in response to detection of abnormal cator values to detect abnormal behavior of the object . 
behavior of the object by the state classifier . 15. A non - transitory computer - readable medium encoded 

9. The computer system of claim 8 further comprising : with machine - readable instructions that implement a method 
deleting constant and nearly constant metrics from the carried out by one or more processors of a computer system 

metrics ; and that performs operations comprising : 
synchronizing the metrics to a general sequence of time retrieving a metrics associated with the object and 

stamps . recorded in a historical time window from the one or 
10. The computer system of claim 9 wherein deleting the more data - storage devices ; 

constant and nearly constant metrics in the metrics com- applying a principal component analysis technique on the 
prises : metrics to determine principal components of the met 

computing a standard deviation for each metric in the rics in the historical time window ; 
metric data ; and for each time stamp in the historical time window , com 

deleting each metric with a standard deviation less than a puting a system - indicator value for the object based on 
standard deviation threshold . principal component values of the principal compo 

11. The computer system of claim 8 wherein applying the nents at the time stamp , each system - indicator value 
principal component analysis technique to the metrics com identifying an abnormal or normal state of the object at 
prises : a time stamp in the historical time window ; 

for each metric of the metrics computing a state classifier for the object based on the 
computing a mean of metric values of the metric , and system - indicator values and corresponding time stamps 
subtracting the mean from each metric value of the in the historical time window ; 

metric to obtain a mean - centered metric ; using the state classifier to detect abnormal behavior of 
computing a deviation matrix based on the mean - centered 60 the object based on run - time metrics associated with 

metrics : the object ; and 
computing eigenvalues and eigenvectors for the deviation generating an alert that identifies abnormal behavior of 

matrix ; the object in response to detection of abnormal behav 
computing the principal components of the deviation ior of the object by the state classifier . 

matrix based on the eigenvalues and eigenvectors ; and 65 16. The medium of claim 15 further comprising : 
identifying high - variance principal components of the deleting constant and nearly constant metrics from the 

principal components . metrics ; and 
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synchronizing the metrics to a general sequence of time determining a smallest percentage of variances that is 
stamps . greater than a percentage of variance threshold ; and 

17. The medium of claim 16 wherein deleting the constant identifying the principal components that correspond to 
and nearly constant metrics in the metrics comprises : the smallest percentage of variances as the high - vari 

ance principal components . computing a standard deviation for each metric in the 5 20. The medium of claim 15 wherein computing the state metric data ; and classifier for the object comprises : deleting each metric with a standard deviation less than a computing a bound for the system - indicator values ; standard deviation threshold . labeling system - indicator values that violate the bound as 
18. The medium of claim 15 wherein applying the prin abnormal system - indicator values ; 

cipal component analysis technique to the metrics com labeling system - indicator values that do not violate the 
prises : bound as normal system - indicator values ; 

for each metric of the metrics computing a support vector machine matrix based on the 
computing a mean of metric values of the metric , and normal system - indicator values ; 
subtracting the mean from each metric value of the computing the state classifier based on the support vector 

metric to obtain a mean - centered metric ; machine matrix . 
computing a deviation matrix based on the mean - centered 21. The medium of claim 15 wherein using the state 

metrics ; classifier to detect abnormal behavior of the object com 
computing eigenvalues and eigenvectors for the deviation prises : 

matrix ; deleting constant and nearly constant metrics from the 
run - time metrics ; computing the principal components of the deviation 

matrix based on the eigenvalues and eigenvectors ; and synchronizing the run - time metrics to a general sequence 
of time stamps ; identifying high - variance principal components of the 

principal components . computing run - time mean - centered metrics based on the 
19. The medium of claim 18 wherein identifying the synchronized and non - constant sets of metrics ; 

high - variance principal components of the principal com computing run - time principal components of the run - time 
ponents comprises : mean - centered metrics ; 

computing a variance for each principal component ; computing a run - time system indicator based on the 
run - time principal components ; and computing a percentage of variance for each subset of applying the state classifier to the run - time system - indi principal components , each subset comprising a differ- 30 

ent number of principal components with the largest cator values to detect abnormal behavior of the object . 
corresponding variances ; 
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