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(57) ABSTRACT

The current document is directed to methods and systems
that employ distributed-computer-system metrics collected
by one or more distributed-computer-system metrics-collec-
tion services, call traces collected by one or more call-trace
services, and attribute values for distributed-computer-sys-
tem components to identify attribute dimensions related to
anomalous behavior of distributed-computer-system com-
ponents. In a described implementation, nodes correspond to
particular types of system components and node instances
are individual components of the component type corre-
sponding to a node. Node instances are associated with
attribute values and node are associated with attribute-value
spaces defined by attribute dimensions. A set of call traces
is partitioned, by clustering. Using attribute values and call
traces, attribute dimensions that are likely related to particu-
lar anomalous behaviors of distributed-computer-system
components are determined by decision-tree-related analy-
ses for each partition and are reported to one or more
computational entities to facilitate resolution of the anoma-
lous behaviors.
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METHODS AND SYSTEMS THAT IDENTIFY
DIMENSIONS RELATED TO ANOMALIES IN
SYSTEM COMPONENTS OF DISTRIBUTED
COMPUTER SYSTEMS USING CLUSTERED
TRACES, METRICS, AND
COMPONENT-ASSOCIATED ATTRIBUTE
VALUES

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The application is a continuation-in-part of U.S.
patent application Ser. No. 16/833,102, filed Mar. 27, 2020.

TECHNICAL FIELD

[0002] The current document is directed to distributed-
computer-system and distributed-application administration
and management and, in particular, to methods and systems
that identify attribute dimensions relevant to anomalies
detected in components of distributed applications and dis-
tributed computer systems.

BACKGROUND

[0003] During the past seven decades, electronic comput-
ing has evolved from primitive, vacuum-tube-based com-
puter systems, initially developed during the 1940s, to
modern electronic computing systems in which large num-
bers of multi-processor servers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands, millions, or more
components that provide enormous computational band-
widths and data-storage capacities. These large, distributed
computing systems are made possible by advances in com-
puter networking, distributed operating systems and appli-
cations, data-storage appliances, computer hardware, and
software technologies. However, despite all of these
advances, the rapid increase in the size and complexity of
computing systems has been accompanied by numerous
scaling issues and technical challenges, including technical
challenges associated with communications overheads
encountered in parallelizing computational tasks among
multiple processors, component failures, and distributed-
system management. As new distributed-computing tech-
nologies are developed, and as general hardware and soft-
ware technologies continue to advance, the current trend
towards ever-larger and more complex distributed comput-
ing systems appears likely to continue well into the future.
[0004] As the complexity of distributed computing sys-
tems has increased, the management and administration of
distributed computing systems has, in turn, become increas-
ingly complex, involving greater computational overheads
and significant inefficiencies and deficiencies. In fact, many
desired management-and-administration functionalities are
becoming sufficiently complex to render traditional
approaches to the design and implementation of automated
management and administration systems impractical, from a
time and cost standpoint, and even from a feasibility stand-
point. Therefore, designers and developers of various types
of automated management-and-administration facilities
related to distributed computing systems are seeking new
approaches to implementing automated management-and-
administration facilities and functionalities.
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SUMMARY

[0005] The current document is directed to methods and
systems that employ distributed-computer-system metrics
collected by one or more distributed-computer-system met-
rics-collection services, call traces collected by one or more
call-trace services, and attribute values for distributed-com-
puter-system components to identify attribute dimensions
related to anomalous behavior of distributed-computer-sys-
tem components. In a described implementation, nodes
correspond to particular types of system components and
node instances are individual components of the component
type corresponding to a node. Node instances are associated
with attribute values and node are associated with attribute-
value spaces defined by attribute dimensions. A set of call
traces is partitioned, by clustering. Using attribute values
and call traces, attribute dimensions that are likely related to
particular anomalous behaviors of distributed-computer-sys-
tem components are determined by decision-tree-related
analyses for each partition and are reported to one or more
computational entities to facilitate resolution of the anoma-
lous behaviors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 provides a general architectural diagram for
various types of computers.

[0007] FIG. 2 illustrates an Internet-connected distributed
computing system.

[0008] FIG. 3 illustrates cloud computing.

[0009] FIG. 4 illustrates generalized hardware and soft-
ware components of a general-purpose computer system,
such as a general-purpose computer system having an archi-
tecture similar to that shown in FIG. 1.

[0010] FIGS. 5A-D illustrate two types of virtual machine
and virtual-machine execution environments.

[0011] FIG. 6 illustrates an OVF package.

[0012] FIG. 7 illustrates virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

[0013] FIG. 8 illustrates virtual-machine components of a
VI-management-server and physical servers of a physical
data center above which a virtual-data-center interface is
provided by the VI-management-server.

[0014] FIG. 9 illustrates a cloud-director level of abstrac-
tion.
[0015] FIG. 10 illustrates virtual-cloud-connector nodes

(“VCC nodes”) and a VCC server, components of a distrib-
uted system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds.

[0016] FIG. 11 illustrates a distributed service-oriented
application.
[0017] FIGS. 12A-B illustrate a sequence of service calls

that implement a particular distributed-service-oriented-ap-
plication API call or entrypoint.

[0018] FIGS. 13A-B illustrate service components and
service nodes.
[0019] FIGS. 14A-C illustrate the scale of certain distrib-

uted-service-oriented-applications.

[0020] FIGS. 15A-B illustrate components of a call-trac-
ing service.



US 2021/0303431 Al

[0021] FIGS.16A-H illustrate and how the tracing service,
discussed with reference to FIGS. 15A-B, collects a call
trace.

[0022] FIG. 17 illustrates distributed-computing-system-
component attributes and attribute values.

[0023] FIG. 18 illustrates a simple example of event-
message logging and analysis.

[0024] FIG. 19 shows a small, 11-entry portion of a log file
from a distributed computer system.

[0025] FIG. 20 illustrates one initial event-message-pro-
cessing approach.

[0026] FIGS. 21A-B illustrate one of many different pos-
sible ways of storing attribute values for system components
and metric values for system components generated from
event messages or event records.

[0027] FIGS. 22A-B illustrates detection of the system-
component operational anomalies using metric data.
[0028] FIGS. 23A-K illustrate one example of the cur-
rently disclosed methods for determining root causes of, and
attributes that are likely to be relevant to, detected anomalies
within distributed heating systems.

[0029] FIGS. 24A-B illustrate a second example of appli-
cation of the currently disclosed methods for determining
root causes of, and attributes that are likely to be relevant to,
detected anomalies within distributed heating systems.
[0030] FIGS. 25A-D provide additional examples of iden-
tifying relevant dimensions with respect to problem-associ-
ated components within a distributed computing system.
[0031] FIGS. 26A-B illustrate data structures and analyti-
cal approaches used in the control-flow diagrams provided
in FIGS. 27A-F to illustrate the decision-tree-based methods
for identifying attribute dimensions relevant to observed
anomalies in the operational behaviors of distributed-com-
puter-system components.

[0032] FIGS. 27A-H provide control-flow diagrams that
illustrate one implementation of the decision-tree-based
analysis used by currently disclosed methods and systems
for determining attribute dimensions of the distributed-
computer-system components relevant to particular anoma-
lous operational behaviors observed for one or more dis-
tributed-computer-system components.

[0033] FIG. 28 illustrates a problem with applying dimen-
sional analysis to very large sets of call traces.

[0034] FIG. 29 illustrates one approach to vectorizing call
traces.
[0035] FIGS. 30A-C illustrate several approaches to gen-

erating a final vector from the expanded-elements vector
2936 shown in FIG. 29.

[0036] FIGS. 31A-D illustrates several different types of
metrics that can be used to determine the distance between
two vectors.

[0037] FIG. 32 illustrates various different distance met-
rics for clusters.

[0038] FIGS. 33A-E illustrate one approach to clustering
vectors within the class of clustering methods referred to as
“agglomerative” or “bottom-up.”

[0039] FIGS. 34A-B show two versions of a dendrogram
generated during the vector clustering illustrated in FIGS.
33A-E.

[0040] FIGS. 35A-C illustrates cluster selection.
[0041] FIG. 36 illustrates the cophenetic correlation.
[0042] FIGS. 37A-D provide control-flow diagrams for a

routine “trace types,” and additional routines called by the
routine “trace types,” that together partition a set of call
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traces into a number of subsets of related traces, each subset
representing a different trace type.

[0043] FIG. 38 summarizes the currently disclosed clus-
tering method for partitioning a set of call traces into subsets
for dimensional analysis.

DETAILED DESCRIPTION

[0044] The current document is directed to methods and
systems that automatically identify attribute dimensions of
component nodes that are likely related to the causes of
component-operation anomalies. In a first subsection, below,
a detailed description of computer hardware, complex com-
putational systems, and virtualization is provided with ref-
erence to FIGS. 1-10. In a second subsection, distributed
service-oriented applications, node attributes, call traces,
and metric data are discussed, with reference to FIGS.
11-22B. A third subsection discloses the dimensional-analy-
sis methods and systems to which the current document is
directed, with reference to FIGS. 23A-27H. A fourth sub-
section discloses call-trace-clustering methods and systems
to which the current document is directed, with reference to
FIGS. 23A-27H.

[0045] Computer Hardware, Complex, Computational
Systems, and Virtualization

[0046] The term “abstraction” is not, in any way, intended
to mean or suggest an abstract idea or concept. Computa-
tional abstractions are tangible, physical interfaces that are
implemented, ultimately, using physical computer hardware,
data-storage devices, and communications systems. Instead,
the term ““abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data is exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
electronically implemented application programming inter-
faces (“APIs”) and other electronically implemented inter-
faces. There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction.” when used to describe certain
aspects of modern computing. For example, one frequently
encounters assertions that, because a computational system
is described in terms of abstractions, functional layers, and
interfaces, the computational system is somehow different
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
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instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shaft control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

[0047] FIG. 1 provides a general architectural diagram for
various types of computers. The computer system contains
one or multiple central processing units (“CPUs”) 102-105,
one or more electronic memories 108 interconnected with
the CPUs by a CPU/memory-subsystem bus 110 or multiple
busses, a first bridge 112 that interconnects the CPU/
memory-subsystem bus 110 with additional busses 114 and
116, or other types of high-speed interconnection media,
including multiple, high-speed serial interconnects. These
busses or serial interconnections, in turn, connect the CPUs
and memory with specialized processors, such as a graphics
processor 118, and with one or more additional bridges 120,
which are interconnected with high-speed serial links or
with multiple controllers 122-127, such as controller 127,
that provide access to various different types of mass-storage
devices 128, electronic displays, input devices, and other
such components, subcomponents, and computational
resources. It should be noted that computer-readable data-
storage devices include optical and electromagnetic disks,
electronic memories, and other physical data-storage
devices. Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval and can
transiently “store” only a byte or less of information per
mile, far less information than needed to encode even the
simplest of routines.

[0048] Of course, there are many different types of com-
puter-system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

[0049] FIG. 2 illustrates an Internet-connected distributed
computing system. As communications and networking
technologies have evolved in capability and accessibility,
and as the computational bandwidths, data-storage capaci-
ties, and other capabilities and capacities of various types of
computer systems have steadily and rapidly increased, much
of modern computing now generally involves large distrib-
uted systems and computers interconnected by local net-
works, wide-area networks, wireless communications, and
the Internet. FIG. 2 shows a typical distributed system in
which a large number of PCs 202-205, a high-end distrib-
uted mainframe system 210 with a large data-storage system
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212, and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user sitting in a home office may access
hundreds of millions of different web sites provided by
hundreds of thousands of different web servers throughout
the world and may access high-computational-bandwidth
computing services from remote computer facilities for
running complex computational tasks.

[0050] Until recently, computational services were gener-
ally provided by computer systems and data centers pur-
chased, configured, managed, and maintained by service-
provider organizations. For example, an e-commerce retailer
generally purchased, configured, managed, and maintained a
data center including numerous web servers, back-end com-
puter systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

[0051] FIG. 3 illustrates cloud computing. In the recently
developed cloud-computing paradigm, computing cycles
and data-storage facilities are provided to organizations and
individuals by cloud-computing providers. In addition,
larger organizations may elect to establish private cloud-
computing facilities in addition to, or instead of, subscribing
to computing services provided by public cloud-computing
service providers. In FIG. 3, a system administrator for an
organization, using a PC 302, accesses the organization’s
private cloud 304 through a local network 306 and private-
cloud interface 308 and also accesses, through the Internet
310, a public cloud 312 through a public-cloud services
interface 314. The administrator can, in either the case of the
private cloud 304 or public cloud 312, configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers in order to carry
out any of many different types of computational tasks. As
one example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

[0052] Cloud-computing facilities are intended to provide
computational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the resources to pur-
chase, manage, and maintain in-house data centers. Such
organizations can dynamically add and delete virtual com-
puter systems from their virtual data centers within public
clouds in order to track computational-bandwidth and data-
storage needs, rather than purchasing sufficient computer
systems within a physical data center to handle peak com-
putational-bandwidth and data-storage demands. Moreover,
small organizations can completely avoid the overhead of
maintaining and managing physical computer systems,
including hiring and periodically retraining information-
technology specialists and continuously paying for operat-
ing-system and database-management-system upgrades.
Furthermore, cloud-computing interfaces allow for easy and
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straightforward configuration of virtual computing facilities,
flexibility in the types of applications and operating systems
that can be configured, and other functionalities that are
useful even for owners and administrators of private cloud-
computing facilities used by a single organization.

[0053] FIG. 4 illustrates generalized hardware and soft-
ware components of a general-purpose computer system,
such as a general-purpose computer system having an archi-
tecture similar to that shown in FIG. 1. The computer system
400 is often considered to include three fundamental layers:
(1) a hardware layer or level 402; (2) an operating-system
layer or level 404; and (3) an application-program layer or
level 406. The hardware layer 402 includes one or more
processors 408, system memory 410, various different types
of input-output (“I/O”) devices 410 and 412, and mass-
storage devices 414. Of course, the hardware level also
includes many other components, including power supplies,
internal communications links and busses, specialized inte-
grated circuits, many different types of processor-controlled
or microprocessor-controlled peripheral devices and con-
trollers, and many other components. The operating system
404 interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor resources and
other system resources with other application programs and
higher-level computational entities. The device drivers
abstract details of hardware-component operation, allowing
application programs to employ the system-call interface for
transmitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
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subsystems. The file system 436 facilitates abstraction of
mass-storage-device and memory resources as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

[0054] While the execution environments provided by
operating systems have proved to be an enormously suc-
cessful level of abstraction within computer systems, the
operating-system-provided level of abstraction is nonethe-
less associated with difficulties and challenges for develop-
ers and users of application programs and other higher-level
computational entities. One difficulty arises from the fact
that there are many different operating systems that run
within various different types of computer hardware. In
many cases, popular application programs and computa-
tional systems are developed to run on only a subset of the
available operating systems and can therefore be executed
within only a subset of the various different types of com-
puter systems on which the operating systems are designed
to run. Often, even when an application program or other
computational system is ported to additional operating sys-
tems, the application program or other computational system
can nonetheless run more efficiently on the operating sys-
tems for which the application program or other computa-
tional system was originally targeted. Another difficulty
arises from the increasingly distributed nature of computer
systems. Although distributed operating systems are the
subject of considerable research and development efforts,
many of the popular operating systems are designed primar-
ily for execution on a single computer system. In many
cases, it is difficult to move application programs, in real
time, between the different computer systems of a distrib-
uted computing system for high-availability, fault-tolerance,
and load-balancing purposes. The problems are even greater
in heterogeneous distributed computing systems which
include different types of hardware and devices running
different types of operating systems. Operating systems
continue to evolve, as a result of which certain older
application programs and other computational entities may
be incompatible with more recent versions of operating
systems for which they are targeted, creating compatibility
issues that are particularly difficult to manage in large
distributed systems.

[0055] For all of these reasons, a higher level of abstrac-
tion, referred to as the “virtual machine,” has been devel-
oped and evolved to further abstract computer hardware in
order to address many difficulties and challenges associated
with traditional computing systems, including the compat-
ibility issues discussed above. FIGS. SA-D illustrate several
types of virtual machine and virtual-machine execution
environments. FIGS. SA-B use the same illustration con-
ventions as used in FIG. 4. FIG. 5A shows a first type of
virtualization. The computer system 500 in FIG. 5A includes
the same hardware layer 502 as the hardware layer 402
shown in FIG. 4. However, rather than providing an oper-
ating system layer directly above the hardware layer, as in
FIG. 4, the virtualized computing environment illustrated in
FIG. 5A features a virtualization layer 504 that interfaces
through a virtualization-layer/hardware-layer interface 506,
equivalent to interface 416 in FIG. 4, to the hardware. The
virtualization layer provides a hardware-like interface 508 to
a number of virtual machines, such as virtual machine 510,
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executing above the virtualization layer in a virtual-machine
layer 512. Each virtual machine includes one or more
application programs or other higher-level computational
entities packaged together with an operating system,
referred to as a “guest operating system.” such as application
514 and guest operating system 516 packaged together
within virtual machine 510. Each virtual machine is thus
equivalent to the operating-system layer 404 and applica-
tion-program layer 406 in the general-purpose computer
system shown in FIG. 4. Each guest operating system within
a virtual machine interfaces to the virtualization-layer inter-
face 508 rather than to the actual hardware interface 506.
The virtualization layer partitions hardware resources into
abstract virtual-hardware layers to which each guest oper-
ating system within a virtual machine interfaces. The guest
operating systems within the virtual machines, in general,
are unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer ensures that each of the virtual machines
currently executing within the virtual environment receive a
fair allocation of underlying hardware resources and that all
virtual machines receive sufficient resources to progress in
execution. The virtualization-layer interface 508 may differ
for different guest operating systems. For example, the
virtualization layer is generally able to provide virtual
hardware interfaces for a variety of different types of com-
puter hardware. This allows, as one example, a virtual
machine that includes a guest operating system designed for
a particular computer architecture to run on hardware of a
different architecture. The number of virtual machines need
not be equal to the number of physical processors or even a
multiple of the number of processors.

[0056] The virtualization layer includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the virtual machines executes. For execu-
tion efficiency, the virtualization layer attempts to allow
virtual machines to directly execute non-privileged instruc-
tions and to directly access non-privileged registers and
memory. However, when the guest operating system within
a virtual machine accesses virtual privileged instructions,
virtual privileged registers, and virtual privileged memory
through the virtualization-layer interface 508, the accesses
result in execution of virtualization-layer code to simulate or
emulate the privileged resources. The virtualization layer
additionally includes a kernel module 520 that manages
memory, communications, and data-storage machine
resources on behalf of executing virtual machines (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each virtual machine so that hardware-level
virtual-memory facilities can be used to process memory
accesses. The VM kernel additionally includes routines that
implement virtual communications and data-storage devices
as well as device drivers that directly control the operation
of underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer
essentially schedules execution of virtual machines much
like an operating system schedules execution of application
programs, so that the virtual machines each execute within
a complete and fully functional virtual hardware layer.

[0057] FIG. 5B illustrates a second type of virtualization.
In FIG. 5B, the computer system 540 includes the same
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hardware layer 542 and software layer 544 as the hardware
layer 402 shown in FIG. 4. Several application programs
546 and 548 are shown running in the execution environ-
ment provided by the operating system. In addition, a
virtualization layer 550 is also provided, in computer 540,
but, unlike the virtualization layer 504 discussed with ref-
erence to FIG. 5A, virtualization layer 550 is layered above
the operating system 544, referred to as the “host OS.” and
uses the operating system interface to access operating-
system-provided functionality as well as the hardware. The
virtualization layer 550 comprises primarily a VMM and a
hardware-like interface 552, similar to hardware-like inter-
face 508 in FIG. 5A. The virtualization-layer/hardware-layer
interface 552, equivalent to interface 416 in FIG. 4, provides
an execution environment for a number of virtual machines
556-558, each including one or more application programs
or other higher-level computational entities packaged
together with a guest operating system.

[0058] While the traditional virtual-machine-based virtu-
alization layers, described with reference to FIGS. 5A-B,
have enjoyed widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have been
steadily decreased, over the years, and often represent ten
percent or less of the total computational bandwidth con-
sumed by an application running in a virtualized environ-
ment, traditional virtualization technologies nonetheless
involve computational costs in return for the power and
flexibility that they provide. Another approach to virtualiza-
tion is referred to as operating-system-level virtualization
(“OSL virtualization™). FIG. 5C illustrates the OSL-virtual-
ization approach. In FIG. 5C, as in previously discussed
FIG. 4, an operating system 404 runs above the hardware
402 of a host computer. The operating system provides an
interface for higher-level computational entities, the inter-
face including a system-call interface 428 and exposure to
the non-privileged instructions and memory addresses and
registers 426 of the hardware layer 402. However, unlike in
FIG. 5A, rather than applications running directly above the
operating system, OSL virtualization involves an OS-level
virtualization layer 560 that provides an operating-system
interface 562-564 to each of one or more containers 566-
568. The containers, in turn, provide an execution environ-
ment for one or more applications, such as application 570
running within the execution environment provided by con-
tainer 566. The container can be thought of as a partition of
the resources generally available to higher-level computa-
tional entities through the operating system interface 430.
While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems, OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system. As one example, OSL virtual-
ization provides a file system to each container, but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system. In essence, OSL virtualization uses
operating-system features, such as name space support, to
isolate each container from the remaining containers so that
the applications executing within the execution environment
provided by a container are isolated from applications
executing within the execution environments provided by all
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other containers. As a result, a container can be booted up
much faster than a virtual machine, since the container uses
operating-system-kernel features that are already available
within the host computer. Furthermore, the containers share
computational bandwidth, memory, network bandwidth, and
other computational resources provided by the operating
system, without resource overhead allocated to virtual
machines and virtualization layers. Again, however, OSL
virtualization does not provide many desirable features of
traditional virtualization. As mentioned above, OSL virtu-
alization does not provide a way to run different types of
operating systems for different groups of containers within
the same host system, nor does OSL-virtualization provide
for live migration of containers between host computers, as
does traditional virtualization technologies.

[0059] FIG. 5D illustrates an approach to combining the
power and flexibility of traditional virtualization with the
advantages of OSL virtualization. FIG. 5D shows a host
computer similar to that shown in FIG. 5A, discussed above.
The host computer includes a hardware layer 502 and a
virtualization layer 504 that provides a simulated hardware
interface 508 to an operating system 572. Unlike in FIG. 5A,
the operating system interfaces to an OSL-virtualization
layer 574 that provides container execution environments
576-578 to multiple application programs. Running contain-
ers above a guest operating s stem within a virtualized host
computer provides many of the advantages of traditional
virtualization and OSL virtualization. Containers can be
quickly booted in order to provide additional execution
environments and associated resources to new applications.
The resources available to the guest operating system are
efficiently partitioned among the containers provided by the
OSL-virtualization layer 574. Many of the powerful and
flexible features of the traditional virtualization technology
can be applied to containers running above guest operating
systems including live migration from one host computer to
another, various types of high-availability and distributed
resource sharing, and other such features. Containers pro-
vide share-based allocation of computational resources to
groups of applications with guaranteed isolation of applica-
tions in one container from applications in the remaining
containers executing above a guest operating system. More-
over, resource allocation can be modified at run time
between containers. The traditional virtualization layer pro-
vides flexible and easy scaling and a simple approach to
operating-system upgrades and patches. Thus, the use of
OSL virtualization above traditional virtualization, as illus-
trated in FIG. 5D, provides much of the advantages of both
a traditional virtualization layer and the advantages of OSL
virtualization. Note that, although only a single guest oper-
ating system and OSL virtualization layer as shown in FIG.
5D, a single virtualized host system can run multiple dif-
ferent guest operating systems within multiple virtual
machines, each of which supports one or more containers.

[0060] A virtual machine or virtual application, described
below, is encapsulated within a data package for transmis-
sion, distribution, and loading into a virtual-execution envi-
ronment. One public standard for virtual-machine encapsu-
lation is referred to as the “open virtualization format”
(“OVF”). The OVF standard specifies a format for digitally
encoding a virtual machine within one or more data files.
FIG. 6 illustrates an OVF package. An OVF package 602
includes an OVF descriptor 604, an OVF manifest 606, an
OVF certificate 608, one or more disk-image files 610-611,
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and one or more resource files 612-614. The OVF package
can be encoded and stored as a single file or as a set of files.
The OVF descriptor 604 is an XML document 620 that
includes a hierarchical set of elements, each demarcated by
a beginning tag and an ending tag. The outermost, or
highest-level, element is the envelope element, demarcated
by tags 622 and 623. The next-level element includes a
reference element 626 that includes references to all files
that are part of the OVF package, a disk section 628 that
contains meta information about all of the virtual disks
included in the OVF package, a networks section 630 that
includes meta information about all of the logical networks
included in the OVF package, and a collection of virtual-
machine configurations 632 which further includes hard-
ware descriptions of each virtual machine 634. There are
many additional hierarchical levels and elements within a
typical OVF descriptor. The OVF descriptor is thus a
self-describing XML file that describes the contents of an
OVF package. The OVF manifest 606 is a list of crypto-
graphic-hash-function-generated digests 636 of the entire
OVF package and of the various components of the OVF
package. The OVF certificate 608 is an authentication cer-
tificate 640 that includes a digest of the manifest and that is
cryptographically signed. Disk image files, such as disk
image file 610, are digital encodings of the contents of
virtual disks and resource files 612 are digitally encoded
content, such as operating-system images. A virtual machine
or a collection of virtual machines encapsulated together
within a virtual application can thus be digitally encoded as
one or more files within an OVF package that can be
transmitted, distributed, and loaded using well-known tools
for transmitting, distributing, and loading files. A virtual
appliance is a software service that is delivered as a com-
plete software stack installed within one or more virtual
machines that is encoded within an OVF package.

[0061] The advent of virtual machines and virtual envi-
ronments has alleviated many of the difficulties and chal-
lenges associated with traditional general-purpose comput-
ing. Machine and operating-system dependencies can be
significantly reduced or entirely eliminated by packaging
applications and operating systems together as virtual
machines and virtual appliances that execute within virtual
environments provided by virtualization layers running on
many different types of computer hardware. A next level of
abstraction, referred to as virtual data centers which are one
example of a broader virtual-infrastructure category, provide
a data-center interface to virtual data centers computation-
ally constructed within physical data centers. FIG. 7 illus-
trates virtual data centers provided as an abstraction of
underlying physical-data-center hardware components. In
FIG. 7, a physical data center 702 is shown below a
virtual-interface plane 704. The physical data center consists
of a virtual-infrastructure management server (“VI-manage-
ment-server”) 706 and any of various different computers,
such as PCs 708, on which a virtual-data-center manage-
ment interface may be displayed to system administrators
and other users. The physical data center additionally
includes generally large numbers of server computers, such
as server computer 710, that are coupled together by local
area networks, such as local area network 712 that directly
interconnects server computer 710 and 714-720 and a mass-
storage array 722. The physical data center shown in FIG. 7
includes three local area networks 712, 724, and 726 that
each directly interconnects a bank of eight servers and a
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mass-storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple virtual machines. Different physical data cen-
ters may include many different types of computers, net-
works, data-storage systems and devices connected accord-
ing to many different types of connection topologies. The
virtual-data-center abstraction layer 704, a logical abstrac-
tion layer shown by a plane in FIG. 7, abstracts the physical
data center to a virtual data center comprising one or more
resource pools, such as resource pools 730-732, one or more
virtual data stores, such as virtual data stores 734-736, and
one or more virtual networks. In certain implementations,
the resource pools abstract banks of physical servers directly
interconnected by a local area network.

[0062] The wvirtual-data-center management interface
allows provisioning and launching of virtual machines with
respect to resource pools, virtual data stores, and virtual
networks, so that virtual-data-center administrators need not
be concerned with the identities of physical-data-center
components used to execute particular virtual machines.
Furthermore, the VI-management-server includes function-
ality to migrate running virtual machines from one physical
server to another in order to optimally or near optimally
manage resource allocation, provide fault tolerance, and
high availability by migrating virtual machines to most
effectively utilize underlying physical hardware resources,
to replace virtual machines disabled by physical hardware
problems and failures, and to ensure that multiple virtual
machines supporting a high-availability virtual appliance are
executing on multiple physical computer systems so that the
services provided by the virtual appliance are continuously
accessible, even when one of the multiple virtual appliances
becomes compute bound, data-access bound, suspends
execution, or fails. Thus, the virtual data center layer of
abstraction provides a virtual-data-center abstraction of
physical data centers to simplify provisioning, launching,
and maintenance of virtual machines and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the resources of individual physical
servers and migrating virtual machines among physical
servers to achieve load balancing, fault tolerance, and high
availability.

[0063] FIG. 8 illustrates virtual-machine components of a
VI-management-server and physical servers of a physical
data center above which a virtual-data-center interface is
provided by the VI-management-server. The VI-manage-
ment-server 802 and a virtual-data-center database 804
comprise the physical components of the management com-
ponent of the virtual data center. The VI-management-server
802 includes a hardware layer 806 and virtualization layer
808 and runs a virtual-data-center management-server vir-
tual machine 810 above the virtualization layer. Although
shown as a single server in FIG. 8, the VI-management-
server (“VI management server”) may include two or more
physical server computers that support multiple VI-manage-
ment-server virtual appliances. The virtual machine 810
includes a management-interface component 812, distrib-
uted services 814, core services 816, and a host-management
interface 818. The management interface is accessed from
any of various computers, such as the PC 708 shown in FIG.
7. The management interface allows the virtual-data-center
administrator to configure a virtual data center, provision
virtual machines, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
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ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
virtual machines within each of the physical servers of the
physical data center that is abstracted to a virtual data center
by the VI management server.

[0064] The distributed services 814 include a distributed-
resource scheduler that assigns virtual machines to execute
within particular physical servers and that migrates virtual
machines in order to most effectively make use of compu-
tational bandwidths, data-storage capacities, and network
capacities of the physical data center. The distributed ser-
vices further include a high-availability service that repli-
cates and migrates virtual machines in order to ensure that
virtual machines continue to execute despite problems and
failures experienced by physical hardware components. The
distributed services also include a live-virtual-machine
migration service that temporarily halts execution of a
virtual machine, encapsulates the virtual machine in an OVF
package, transmits the OVF package to a different physical
server, and restarts the virtual machine on the different
physical server from a virtual-machine state recorded when
execution of the virtual machine was halted. The distributed
services also include a distributed backup service that pro-
vides centralized virtual-machine backup and restore.

[0065] The core services provided by the VI management
server include host configuration, virtual-machine configu-
ration, virtual-machine provisioning, generation of virtual-
data-center alarms and events, ongoing event logging and
statistics collection, a task scheduler, and a resource-man-
agement module. Each physical server 820-822 also
includes a host-agent virtual machine 828-830 through
which the virtualization layer can be accessed via a virtual-
infrastructure application programming interface (“API”).
This interface allows a remote administrator or user to
manage an individual server through the infrastructure API.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server information through the host agents. The
virtual-data-center agents are primarily responsible for off-
loading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server. The virtual-data-center agents relay and
enforce resource allocations made by the VI management
server, relay virtual-machine provisioning and configura-
tion-change commands to host agents, monitor and collect
performance statistics, alarms, and events communicated to
the virtual-data-center agents by the local host agents
through the interface APIL, and to carry out other, similar
virtual-data-management tasks.

[0066] The virtual-data-center abstraction provides a con-
venient and efficient level of abstraction for exposing the
computational resources of a cloud-computing facility to
cloud-computing-infrastructure users. A cloud-director man-
agement server exposes virtual resources of a cloud-com-
puting facility to cloud-computing-infrastructure users. In
addition, the cloud director introduces a multi-tenancy layer
of abstraction, which partitions virtual data centers
(“VDCs”) into tenant-associated VDCs that can each be
allocated to a particular individual tenant or tenant organi-
zation, both referred to as a “tenant.” A given tenant can be
provided one or more tenant-associated VDCs by a cloud
director managing the multi-tenancy layer of abstraction
within a cloud-computing facility. The cloud services inter-
face (308 in FIG. 3) exposes a virtual-data-center manage-
ment interface that abstracts the physical data center.
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[0067] FIG. 9 illustrates a cloud-director level of abstrac-
tion. In FIG. 9, three different physical data centers 902-904
are shown below planes representing the cloud-director
layer of abstraction 906-908. Above the planes representing
the cloud-director level of abstraction, multi-tenant virtual
data centers 910-912 are shown. The resources of these
multi-tenant virtual data centers are securely partitioned in
order to provide secure virtual data centers to multiple
tenants, or cloud-services-accessing organizations. For
example, a cloud-services-provider virtual data center 910 is
partitioned into four different tenant-associated virtual-data
centers within a multi-tenant virtual data center for four
different tenants 916-919. Each multi-tenant virtual data
center is managed by a cloud director comprising one or
more cloud-director servers 920-922 and associated cloud-
director databases 924-926. Each cloud-director server or
servers runs a cloud-director virtual appliance 930 that
includes a cloud-director management interface 932, a set of
cloud-director services 934, and a virtual-data-center man-
agement-server interface 936. The cloud-director services
include an interface and tools for provisioning multi-tenant
virtual data center virtual data centers on behalf of tenants,
tools and interfaces for configuring and managing tenant
organizations, tools and services for organization of virtual
data centers and tenant-associated virtual data centers within
the multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
ization networks from a network pool. Templates are virtual
machines that each contains an OS and/or one or more
virtual machines containing applications. A template may
include much of the detailed contents of virtual machines
and virtual appliances that are encoded within OVF pack-
ages, so that the task of configuring a virtual machine or
virtual appliance is significantly simplified, requiring only
deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates in virtual appliances across organizations. Cata-
logs may include OS images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

[0068] Considering FIGS. 7 and 9, the VI management
server and cloud-director layers of abstraction can be seen,
as discussed above, to facilitate employment of the virtual-
data-center concept within private and public clouds. How-
ever, this level of abstraction does not fully facilitate aggre-
gation of single-tenant and multi-tenant virtual data centers
into heterogeneous or homogeneous aggregations of cloud-
computing facilities.

[0069] FIG. 10 illustrates virtual-cloud-connector nodes
(“VCC nodes”) and a VCC server, components of a distrib-
uted system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds, VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are illustrated
1002-1008. Cloud-computing facility 1002 is a private
multi-tenant cloud with a cloud director 1010 that interfaces
to a VI management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
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facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VI management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VI management servers,
remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

[0070] Distributed Service-Oriented Applications, Node
Attributes, Call Traces, and Metric Data

[0071] FIG. 11 illustrates a distributed service-oriented
application. In FIG. 11, a number of servers, such as server
1102, are shown within a distributed computer system. The
servers run various different services, such as front-end
service 1104. Services are executables that provide func-
tionality to other computational entities through a service
interface, such as a RESTful application programming inter-
face (“AP”) accessed through network communications
using REST-protocol requests, although many other com-
munications protocols and programming interfaces can be
used. A distributed service-oriented application can be con-
sidered to be a collection of various different services,
running within virtual machines executing within servers of
one or more distributed computer systems, that cooperate to
implement a distributed application, although various dif-
ferent types of implementations are possible. The compo-
nent services of the distributed application are often regis-
tered with a registration-and-subscription service 1106 to
which other services can subscribe in order to receive
updates with regard to the addition, removal, and changes to
the array of available service components. In the example
distributed service-oriented application illustrated in FIG.
11, a set of front-end-service instantiations 1104 and 1108-
1111 communicate with remote clients and users through the
Internet 1112 and communicate, via local-area networks and
wide-area networks within the distributed computer system,
with the many different service instantiations within the
distributed computer system that together comprise the
distributed service-oriented application, such as services
1116 and 1117 running within server 1118.

[0072] FIGS. 12A-B illustrate a sequence of service calls
that implement a particular distributed-service-oriented-ap-
plication API call or entrypoint. In a first step 1202, a remote
user or client sends a request to the distributed service-
oriented application, resulting in a call to one of the front-
end-service instances 1204. The front-end-service instance,
in a second step 1206, calls a component-service instance
1208 in order to launch execution of the distributed-service-
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oriented-application request-handling machinery for the
received request. In FIG. 12A and in subsequent figures and
discussions, the component services are referred to by
alphanumeric labels, such as the label “S5” for the compo-
nent service that includes the component-service instance
1208. In a third step 1210, component-service instance S5
calls component service S3 1212. In a fourth step 1214,
component service S5 calls component-service instance S4
1216 which, in turn, calls component-service instance S6
1218 in a fifth step 1220. Component-service instance S6
then calls the additional component-service instances S8
1222, S9 1224, and S10 1226 in steps 1228 1229 and 1230,
respectively. Each of the various component services carry
out certain tasks and functionalities that contribute to execu-
tion of the user or client request. For example, component-
service instance S5 1208 may receive and queue the request,
call component-service instance S3 1212 to authenticate and
authorize the request, and then call component-service
instance S4 1216 to parse and to carry out the requested task.
Component-service instance S6 1218 may handle a particu-
lar type of task or set of tasks, and may call data-storage-
and-retrieval component-service instance S8 1222, a data-
analysis component-service instance S9 1224, and a linear-
algebra-computation component-service instance S10 1226,
as one example. Each component-service instance call
shown in FIG. 12A is associated with a relative timestamp,
such as relative timestamp 1230 associated with the initial
call to the front-end service 1204.

[0073] FIG. 12B illustrates a directed graph that represents
the service calls, shown in FIG. 12A, that together comprise
implementation of the distributed-service-oriented applica-
tion API call or entrypoint discussed with reference to FIG.
12A. In the case of the directed graph, or call trace, shown
in FIG. 12B, the graph is generalized to represent calls made
to services, rather than particular service instances. A service
instance is a particular service executable running on a
particular hardware device, while a service is the logical
service, which may be implemented by one or more service
instances. The instances that together comprise a particular
service are referred to as a “node.” For example, in FIG. 11,
five different front-end-service instances together implement
the front-end service, or front-end-service node. The root
node of the directed graph 1240 represents the initial call to
the front-end service 1204. Each remaining node in the
directed graph represents a service component called by
another service component of the distributed service-ori-
ented application. Each node contains an indication of the
service component as well as a relative timestamp for the
initial call to the service component. The directed graph
shown in FIG. 12B is a relatively simple directed graph.
However, in more complex distributed-service-oriented
application API-call implementations, the directed graph
may contain cycles and a larger number of nodes. The
relative timestamps indicate the time order of service calls.

[0074] FIGS. 13A-B illustrate service components and
service nodes. FIG. 13A illustrates a service component
within a server of a distributed computing system. The
server 1302 includes a hardware layer 1304, a virtualization
layer 1306, and a virtual machine 1308, executing within the
execution environment provided by the virtualization layer
1306. Of course, a server is a complex device that includes
many thousands of hardware and computer-instruction-
implemented components, not shown in high-level illustra-
tions, such as FIG. 13A. Within the virtual machine, a guest
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operating system 1310 executes and provides an execution
environment for a service-component executable 1312. The
hardware layer 1304 includes one or more communications
interfaces, such as communications interface 1314, through
which the server computer exchanges messages, such as
message 1316, with remote computational entities via one or
more local networks 1318 and, in some cases, wide-area
networks. Network messages, for commonly used commu-
nications hardware and protocols, generally include a target
Internet-protocol address 1320, which routes the messages
to the communications interface 1314, as well as a port
number 1322, which routes the message through the virtu-
alization layer and guest operating system to a particular
application, such as the service-component executable 1312.
The service-component executable can carry out communi-
cations with many different remote computational entities,
including, as further discussed below, a distributed call-trace
service 1324. Dashed arrow 1325 represents an exchange of
messages via the many internal components of the server
and many external components between the server and the
hardware on which the distributed call-trace service
executes. Similarly, the virtualization layer can carry out
communications with many different remote computational
entities, including a VDC or VCC management server and
distributed metrics-collection services 1326.

[0075] FIG. 13B illustrates a service node. A service node
within the distributed computer system is a collection of the
instances of the particular service, including the portions of
the underlying server that support execution of the service
instances. For example, in FIG. 13B, service node 1330
includes three service-component executables 1332-1334
running on servers 1336-1338. The VDC or VCC manage-
ment servers and/or distributed metrics collection service
can collect aggregate metrics 1340 for the service node and
the distributed call-tracing service may collect call traces
1342 for service nodes. A service node is often a dynamic
entity, since service-node instances may be shut down and
removed, for example, under low workload conditions, and
new service-node instances may be launched and initialized,
for example, when workloads increase past a reasonable
aggregate load on the current service-node instances. The
service node is logically like a labeled container that can
hold arbitrary numbers of service-node instances.

[0076] FIGS. 14A-C illustrate the scale of certain distrib-
uted-service-oriented-applications. In the simple example
shown in FIG. 11, there are only a relatively small number
of servers and component-service instances present. How-
ever, consider the more realistic computational environment
inhabited by one or more distributed service-oriented appli-
cations shown in FIG. 14A. In a realistic distributed-com-
puting-system environment, there may be literally hundreds
or thousands of server computers supporting concurrent
execution of tens, hundreds, or more different distributed
service-oriented applications. As shown in FIG. 14B, the
service-component instances for the distributed service-
oriented application discussed with reference to FIG. 11 may
be widely dispersed throughout hundreds or thousands of
servers that include many additional instances of the same
types of service components employed by the distributed
service-oriented application used by other distributed ser-
vice-oriented applications. It is even possible that multiple
distributed service-oriented applications share particular
instances of certain of the service components. The service-
component instances associated with the distributed service-
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oriented application discussed with reference to FIG. 11 are
marked with surrounding ellipses in FIG. 14B. It would be
a challenging task to identify them, among hundreds or
thousands of other instances of the same types of services,
let alone figure out how the cooperate to provide the
distributed-service-oriented-application API.

[0077] FIG. 14C illustrates an example directed graph
representing the topology of a distributed service-oriented
application. Each node in the graph corresponds to a service
node and the arrows indicate calls made by service nodes to
other service nodes. The directed graph may include many
different subgraphs, such as a sub graph corresponding to the
call trace shown in FIG. 12B, for the various different
entrypoints of the distributed-services-oriented-application
API. For example, the subgraph corresponding to the call
trace shown in FIG. 12B consists of nodes 1402-1409. A
different entrypoint might be implemented by the subgraph
comprising nodes 1402 and 1410-1412. The problem
domain to which the current document is directed is the
problem of attempting to determine causes of, or subsets of
the components of a distributed computer system relevant
to, particular operational anomalies detected from metric
data in complex distributed-computing environments,
including distributed-computing environments supporting
large, complex, distributed, service-oriented applications.
Currently available diagnostic methods may be inefficient,
provide unmanageably complex user interfaces, and may
lack sufficiently focused, analytical approaches to providing
productive suggestions for potential causes of anomalous
operational behaviors of distributed-computer systems and
distributed-computer-system components.

[0078] FIGS. 15A-B illustrate components of a call-trac-
ing service. FIG. 15A illustrates, using the same illustration
conventions used in FIG. 13 A, the call-tracing components
included in servers and other computational platforms sup-
porting the execution of distributed-service-oriented-appli-
cation components. Virtual machine 1502 within server
1504 supports execution of two different service instances
1506 and 1508. Each service instance, or service applica-
tion, includes a trace client 1510-1511. The trace clients
communicate with a trace agent 1512 that runs in the
execution environment provided by the virtual machine
1502. The trace clients represent generally minimal instru-
mentation included in service applications to support call
tracing. Many modern service applications are designed and
developed to support call tracing, and include generalized
trace clients that can communicate with a variety of different
types of trace agents provided by different call-tracing
services.

[0079] FIG. 15B illustrates additional components of a
call-tracing service. The trace agents 1520-1522 in multiple
servers 1524-1526 that support execution of a distributed
service-oriented application communicate with a centralized
trace collector 1528 that collects and processes trace data
received from the trace agents and stores the processed data
in a trace database 1530. The trace collector may be a single
executable or may be a distributed application. A query
service 1532 accesses the trace database on behalf of remote
clients 1534 to display traces 1536 corresponding to the
submitted queries. Thus, for example, a system administra-
tor working to understand some type of operational anomaly
detected within a distributed computer system may submit a
query to the query service for particular subsets of the traces
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collected by the tracing service that the system administrator
believes to be relevant to the operational anomaly.

[0080] FIGS. 16A-H illustrate how the tracing service,
discussed above with reference to FIGS. 15A-B, collects a
call trace. FIGS. 16A-H all use the same illustration con-
ventions, next described with respect to FIG. 16A. FIG. 16A
shows four different servers 1602-1605 that each includes a
service instance 1606 containing a trace client 1608 and a
trace agent 1610. As shown in FIG. 16A, a remote client of
a distributed service-oriented application 1612 requests a
service, as represented by curved arrow 614. When the
service instance 1606 receives the request, the service
instance invokes the trace client 1608 to send tracing infor-
mation related to the service request to the trace agent 1610.
The trace agent packages the information into a new-request
message 1616 that is transmitted to the trace collector 1618
of a call-tracing service. The new-request message may
contain an indication that the message is a new-request
message, identifiers for the service application, host server
computer, and the called distributed-service-oriented-appli-
cation entrypoint, a timestamp indicating the time that the
service request was received, and whatever additional infor-
mation is collected by the trace client and trace agent. The
trace collector launches a new call trace, including gener-
ating a unique trace identifier for the new call trace, and
stores information extracted from the new-request message
into a first call-trace frame 1620 stored within memory, a
persistent store, or both memory and a persistent store,
depending on the implementation. As shown in FIG. 16B,
the trace collector returns the trace identifier 1622 to the
trace agent 1610 which, in certain implementations, returns
the trace identifier to the trace client 1608 so that the trace
identifier can be included in subsequent messages relevant to
the trace sent by various trace agents within servers sup-
porting execution of service instances of the distributed
service-oriented application that cooperate to execute the
service request on behalf of the remote client.

[0081] As shown in FIG. 16C, while executing the service
request, service instance 1606 makes an internal service-
request call to service instance 1624. When making this
service request, service instance 1606 invokes the trace
client 1608 to include the trace identifier for the service
request in the request message 1626 sent to service instance
1624. When service instance 1624 receives the request
message, the trace client 1628 within service instance 624
forwards relevant information about the service request to
the trace agent 1630 within the server 1632 that hosts service
instance 1624. The trace agent, in turn, forwards a span
message 1634 to the trace collector 1618. The trace collector
uses the trace identifier within the span message to locate the
stored call trace and to add, to the stored call trace, a second
call-trace frame 1636. As shown in FIG. 16D, when the
service instance 1624 subsequently makes a service request
to service instance 1638 during execution of the service
request 1626 received from service instance 1606, service
instance 1638 invokes the trace client 1642 to transmit
service-request information to trace agent 1642, which, in
turn, forwards a span message 1644 to the trace collector
1618. The trace collector uses information in the span
message to add a third trace-call frame 1646 to the stored
call trace corresponding to the trace identifier received in the
service request 1648. FIG. 16E illustrates a final span
message 1650 transmitted as a result of a service request
1652 made by the service instance 1638 to service instance
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1654. The final span message 1650 is used to add a fourth
call-trace frame 1656 to the stored call trace within the trace
collector 1618.

[0082] As shown in FIG. 16F, when service instance 1654
completes executing the service request, the trace client
1658 is invoked to communicate termination of the request
to the trace agent 1660, which sends a span-terminate
message 1662 to the trace collector 1618. The trace collector
adds a completion or termination timestamp 1664 to the final
call-trace frame 1656, thus completing the final call-trace
frame. As each service instance in the stack of service
instances contributing to execution of the original service
request finishes its internal request, each service instance
invokes its trace client to transmit information to the corre-
sponding trace agent so that the trace agent forwards a
span-terminate message to the trace collector 1618. FIG.
16G illustrates sending of a final message by the first service
instance 1606 in the stack of service instances via the trace
client 1608 and trace agent 1610. In this case, the trace agent
sends an end-request message 1666, rather than a span-
terminate message, to the trace collector 1618, which adds
the final timestamp 1668 to the first call-trace frame 1620.
Then, as shown in FIG. 16H, the trace collector encodes the
completed call trace into an encoded-trace message 1670
which is forwarded to the trace database (1530 in FIG. 15B)
for storage.

[0083] Of course, there are a variety of different ways to
implement a call-tracing service. The above discussion with
reference to FIGS. 15A-16H is intended to describe one of
the many possible approaches.

[0084] FIG. 17 illustrates distributed-computing-system-
component attributes and attribute values. In the example
shown in FIG. 17, attribute values are associated with
service instances. As mentioned above with reference to
FIG. 11, in many modern distributed service-oriented appli-
cations, the service instances register with a service-instance
registration-and-subscription service (1106 in FIG. 11). In
the attribute-value-assignment system illustrated in FIG. 17,
when a service instance registers with the service-instance
registration-and-subscription service, the service instance
includes formatted attribute/attribute-value pairs in the reg-
istration message sent to the service-instance registration-
and-subscription service. The service-instance registration-
and-subscription service 1702 then encodes the attribute/
attribute-value pairs in a formatted text message, such as a
JSON encoding of the attribute/attribute-value pairs 1704,
and transmits the text message to an attribute-value-collector
component 1706 of an attribute service, which stores the
attribute values in an attribute database 1708. The attribute
service also provides an attribute-query service 1710 which
allows system administrators and other privileged personnel
to view the attribute values associated with one or more
service instances. An attribute service may similarly provide
attribute-value storage and query services for other types of
distributed-computer-system components. Many alternate
methods for attribute-value collection, storage, and retrieval
are possible.

[0085] FIG. 18 illustrates a simple example of the gen-
eration and collection of status, informational, and error data
the distributed computing system. In FIG. 18, a number of
computer systems 1802-1806 within a distributed comput-
ing system are linked together by an electronic communi-
cations medium 1808 and additionally linked through a
communications bridge/router 1810 to an administration
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computer system 1812 that includes an administrative con-
sole 1814. As indicated by curved arrows, such as curved
arrow 1816, multiple components within each of the discrete
computer systems 1802 and 1806 as well as the communi-
cations bridge/router 1810 generate various types of status,
informational, and error data that is encoded within event
messages which are ultimately transmitted to the adminis-
tration computer 1812. Event messages are but one type of
vehicle for conveying status, informational, and error data,
generated by data sources within the distributed computer
system, to a data sink, such as the administration computer
system 1812. Data may be alternatively communicated
through various types of hardware signal paths, packaged
within formatted files transferred through local-area com-
munications to the data sink, obtained by intermittent poll-
ing of data sources, or by many other means. The current
example, the status, informational, and error data, however
generated and collected within system subcomponents, is
packaged in event messages that are transferred to the
administration computer system 1812. Event messages may
be relatively directly transmitted from a component within a
discrete computer system to the administration computer or
may be collected at various hierarchical levels within a
discrete computer and then forwarded from an event-mes-
sage-collecting entity within the discrete computer to the
administration computer. The administration computer 1812
may filter and analyze the received event messages, as they
are received, in order to detect various operational anomalies
and impending failure conditions. In addition, the adminis-
tration computer collects and stores the received event
messages in a data-storage device or appliance 1818 as large
event-message log files 1820. Either through real-time
analysis or through analysis of log files, the administration
computer may detect operational anomalies and conditions
for which the administration computer displays warnings
and informational displays, such as the warning 1822 shown
in FIG. 18 displayed on the administration-computer display
device 1814.

[0086] FIG. 19 shows a small, 11-entry portion of a log file
from a distributed computer system. In FIG. 19, each
rectangular cell, such as rectangular cell 1902, of the portion
of'the log file 1904 represents a single stored event message.
In general, event messages are relatively cryptic, including
generally only one or two natural-language sentences or
phrases as well as various types of file names, path names,
and, perhaps most importantly, various alphanumeric
parameters. For example, log entry 1902 includes a short
natural-language phrase 1906, date 1908 and time 1910
parameters, as well as a numeric parameter 1912 which
appears to identify a particular host computer.

[0087] FIG. 20 illustrates one initial event-message-pro-
cessing approach. In FIG. 20, a traditional event log 2002 is
shown as a column of event messages, including the event
message 2004 shown within inset 2006. Automated subsys-
tems may process event messages, as they are received, in
order to transform the received event messages into event
records, such as event record 2008 shown within inset 2010.
The event record 2008 includes a numeric event-type iden-
tifier 2012 as well as the values of parameters included in the
original event message. In the example shown in FIG. 20, a
date parameter 2014 and a time parameter 2015 are included
in the event record 2008. The remaining portions of the
event message, referred to as the “non-parameter portion of
the event message,” is separately stored in an entry in a table
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of non-parameter portions that includes an entry for each
type of event message. For example, entry 2018 in table
2020 may contain an encoding of the non-parameter portion
common to all event messages of type 212634 (2012 in FIG.
20). Thus, automated subsystems may transform traditional
event logs, such as event log 2002, into stored event records,
such as event-record log 2022, and a generally very small
table 2020 with encoded non-parameter portions, or tem-
plates, for each different type of event message.

[0088] FIGS. 21A-B illustrate one of many different pos-
sible ways of storing attribute values for system components
and metric values for system components generated from
event messages or event records. FIG. 21A shows three
simple relational-database tables 2102-2104 that are used to
store attribute values for system components in one imple-
mentation of the attribute database discussed above with
reference to FIG. 17. The table Attributes 2102 stores, for
each attribute, an identifier, and alphanumeric name, and a
type. In this example, attributes may have discrete values or
integral values within a range of values. The table Discrete_
Attribute_Values 2103 stores the possible discrete values for
attributes of the discrete type and the table Integral_Attrib-
ute_Values 2104 stores the numeric range for attributes of
the integral type. These tables may be accessed using
structured query language (“SQL”) queries or via programs
with embedded SQL queries. Pseudocode examples for
various data-access routines are provided in the lower left
portion of FIG. 21A. The routine getID 2106 returns the
identifier for an attribute corresponding to an attribute name
furnished as an argument. The routine getType 2108 returns
the type of an attribute corresponding to an attribute name
furnished as an argument. The routine getNum 2110 returns
a number of possible values for an attribute corresponding to
an attribute name furnished as an argument.

[0089] FIG. 21B shows additional relational-database
tables that can be used to store indications of the attributes
associated with various system components and metric
values collected for various system components within a
distributed computer system. The table Components 2120
stores an identifier, a name, and a type or each of the system
components. The table Component_Relationships 2122
stores relationships between pairs of components, with the
relationships including contains and contained_within. The
table Component_Attributes 2124 stores attribute values for
the attributes of various system components. The table
Metrics 2126 stores an identifier and name for each of the
different metrics collected for system components and the
table Metric_Values 2128 stores timestamped metric values
collected from event messages or event records for system
components. FIGS. 21A-B are intended to illustrate one
possible approach to storing attribute values and metric
values for the components of a distributed computer system,
but many other approaches are possible.

[0090] FIGS. 22A-B illustrates detection of the system-
component operational anomalies using metric data. In the
two-dimensional plot 2202 shown in FIG. 22A, each point,
such as point 2204, represents a metric value collected at a
particular point in time, with the vertical axis 2206 present-
ing metric values and the horizontal axis 2208 representing
time. The metric values in this plot quickly rise from the
origin 2210 to a stable metric-value range 2212 within
which the metric values vary over time. However, at time
point 2214, the value of the collected metric 2216 has risen
above the stable value range and rises again to a series of
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higher values 2218 at subsequent time points. The sudden
departure from a stable value range may be identified as an
anomaly. Anomaly detection can be automatically carried
out by computing various statistical quantities and looking
for values of the statistical quantities that fall above or below
particular threshold values. For example, the metric values
may be normally distributed about a mean, as represented by
the curve plotted in plot 2220 in the lower left portion of
FIG. 22A. The curve 2222 represents the distribution of
values about the mean 2224 and the horizontal axis 2226 is
incremented in standard deviations. The mean is calculated
from accumulated metric values as indicated by expression
2230, the variance is calculated via expression 2232, and the
standard deviation is the square root of the variance, as
indicated by expression 2234. A z-statistic 2236 represents
the distance, in standard deviations, of a metric value from
the mean. One method of detecting anomalies is to compute
the z-statistic for metric values and identify metric values
with absolute z-statistic values greater than or equal to some
threshold value to be potentially anomalous. Of course,
metric values may include a significant amount of noise, and
additional considerations may be employed to separate
likely anomalies from potentially anomalous metric values,
including various computed statistics indicating the prob-
ability of encountering anomalous z-statistic values, the
distributions of potentially anomalous values, co-occur-
rences of potentially anomalous values of one metric with
potentially anomalous values of other metrics, trends in
metric values over time, and many other considerations.
FIG. 22B illustrates a different type of anomaly that may be
automatically detected. Plot 2240 shows metric values plot-
ted with respect to time, as in plot 2202 in FIG. 22A. In this
case, the metric values regularly oscillate up through the
metric value 2242 recorded at time 2244. Thereafter, there is
no apparent regular pattern to the distribution of metric
values respect to time. This type of anomaly may be detected
by determining a prediction function that predicts the next
metric value based on the metric values preceding that
metric value, in time 2246. When the absolute value of the
difference between the observed value and predicted value
for a metric is greater than or equal to a threshold value, a
potential anomaly is indicated 2248. The example shown in
FIGS. 22A-B are meant to provide illustrations of a few of
the many different possible types of metric-value-anomaly
indications and methods for automatically detecting these
indications. There is a very large literature concerning
time-series-data analysis and anomaly detection, with many
sophisticated approaches to detecting many different types
of anomalies are described in this literature.

Dimensional-Analysis Methods and Systems

[0091] In the previous subsection of this document, a
number of components of the currently disclosed methods
and systems have been described. Call-tracing services are
currently commercially available. Event-message collec-
tion, logging, and analysis, and generation of metric data
from collected and processed event messages, are also well
known, with many currently commercially available data
collection and analysis products used for administration and
management of distributed computer systems. Although
systems for associating attribute values with distributed-
system components may not be currently commercially
available, there are many different types of attributes-based
and attribute-value-based systems and technologies used in
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computing, with standard methods of encoding attribute/
attribute-value pairs, such as JSON, well known in modern
technology. The currently disclosed methods and systems
employ metric data, call traces, and attribute values associ-
ated with system components in order to identify likely root
causes or likely relevant attribute dimensions for identified
anomalies in the operational behavior of one or more
components of a distributed computer system and, in par-
ticular, to identify root causes and likely relevant attribute
dimensions for the service-oriented-application components
of distributed service-oriented applications. While analysis
of metric data and call traces have been employed separately
and in combination for attempting to determine the causes of
anomalous operational behaviors of system components of
distributed computer systems, the currently disclosed meth-
ods and systems use metric data, call traces, and component-
associated attributes, along with efficient analytical meth-
ods, to efficiently and reliably identify root causes of, and
likely attribute dimensions relevant to, various types of
anomalies within distributed computer systems.

[0092] FIGS. 23A-K illustrate one example of the cur-
rently disclosed methods for determining root causes of, and
attribute dimensions that are likely to be relevant to, detected
anomalies within distributed heating systems. In this
example, as shown in FIG. 23A, a relatively small, simple
distributed computer system includes four levels of server
computers 2302-2305. The server computers in the first level
2302, such as server computer 2306, each includes a service
instance of a service node A, such as service instance 2307
in server computer 2306. Attribute values for three attributes
are maintained by an attribute service and via call traces for
each of the service-A-node instances. The three attributes
include: (1) version, the version number for the service-
instance implementation; (2) geo, the geographical region
from which service requests are received by the service-A-
node instances; and (3) server, or host, the identity of the
server or host on which the service-A-node instance runs.
Each service-A-node instance is associated with a version-
attribute value, a geo-attribute value, and a server attribute
value. For example, for service-A-node instance 2307 and
server 2306, the version-attribute value is “1.1” 2308, the
label “geo” indicates that the requests received by the
service-A-node instances are associated with geographical-
region values, and the service-A-node instance 2307 runs on
a server “‘s;,” as indicated by the label “s;.” The label “A”
2309 indicates the service-oriented-application type, or
node, to which the service instance 2307 belongs and the
label “s,” is an identifier for server 2306. In this example,
there are five different geographical regions: NW, SW, MW,
NE, and S. Cloud 2310 indicates that server 2306 receives
service requests from the NE and S geographical regions.
The servers in layer 2303 each contains a service instance of
a service-B node and a service instance of a service-C node.
The servers in layer 2304 each contains a service instance of
the service-D node and a service instance of the service-E
node. The servers in layer 2305 each contains a service
instance of the service-F node. Each instance of the services
B, C, D, E, and F is associated with a version attribute, as
described above for the instances of service A, a configu-
ration attribute that has values S, M, and F indicating a
minimal, standard, or full configuration with respect to
allocated memory, networking, and processor-bandwidth
resources, and a server attribute, as discussed above with
reference to instances of service A. Arrows, such as arrow
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2311, indicate networking links or paths that connect remote
service-requesting entities to first-level servers that inter-
nally connect servers of one level to servers of another level.
Although single-headed arrows are used for the links, the
links are all, of course, bi-directional.

[0093] FIG. 23B shows three different call-trace patterns
corresponding to three different types of service requests
that are received and executed by the distributed service-
oriented application comprising instances of nodes A, B, C,
D, E, and F. For the first type of service request, the service
request is received by an instance of node A 2312 which, in
turn, requests an internal service from an instance of node B
2313. When that internal service request completes, the
result is returned to the instance of node A 2312. For the
second type of service request, the service request is
received by an instance of node A 2314 which, in turn,
requests an internal service from an instance of application
service C 2315 which, in turn, requests an internal service
from an instance of application service D 2316. The third
type of service request is received by an instance of node A
and executed by successive internal requests to nodes C
2318, E 2319, and F 2320. In this example, node F is a
persistent-storage service that stores data in a database. In an
initial series of internal requests, among other things, the
data is passed to an instance of node F, which prepares the
database for a commit operation. In a second series of
internal requests, the node F receives a confirmation indi-
cation allowing the commit operation to proceed so that the
data is persistently stored as part of an atomic transaction.

[0094] As shown in FIG. 23C, the attributes associated
with the node instances can be thought of as dimensions of
a three-dimensional attribute-value space associated with
the node. The attribute-value space is represented by a series
of two-dimensional sections. For example, node A com-
prises five node instances 2321 and is represented by a
three-dimensional attribute-value space 2322 comprising
five two-dimensional sections, four of which 2323-2326 are
shown in FIG. 23C, each corresponding to a different
geographical region. Each two-dimensional section, such as
two-dimensional section 2323, includes rows corresponding
to version-attribute values and columns corresponding to
server-attribute values. A similar representation of a three-
dimensional attribute-value space 2327 includes two-dimen-
sional sections, each corresponding to a configuration-attri-
bute value, with each two-dimensional section including
rows corresponding to version-attribute values and columns
corresponding to server-attribute values.

[0095] FIG. 23D illustrates an initial detection of an
operational anomaly within the distributed service-oriented
application and distributed computer system discussed
above with reference to FIGS. 23A-C. As shown in FIG.
23D, the node-F instance running on server s, , has exhibited
anomalous operational behavior as a result of a commit_
time_outs metric value that exceeds a threshold value. This
metric value represents the number of commit timeouts in a
recent time interval due to failures to receive confirmations
from service-A nodes allowing persistent storage of received
data within the database. The darkened cell 2328 in the
representation of the attribute-value space 2329 indicates the
detected anomalous operational behavior of the node-F
instance running on server s;,. Of course, the initial indi-
cation of a problem with a single node-F instance provides
little information about the ultimate cause of the failure. The
failure may represent a hardware problem with server s, -, a
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problem with the database used by node F for storing
transaction data, problems with any of the intermediate
nodes in forwarding confirmation messages from node A to
node F, various types of networking problems, or many other
more complex problems.

[0096] Next, as shown in FIG. 23E, additional anomalous
operational behavior is detected in node-F instances 2330
and 2331. At this point in time, it is clear that a serious
problem may be developing within the distributed service-
oriented application. The problem is not specific to any
single server, since the problem-associated node-F instances
are distributed across the server-attribute dimension. Simi-
larly, because the problem-associated node-F instances are
distributed across the version-attribute dimension, the prob-
lem has not arisen as a result of a single-version implemen-
tation bug. No other anomalous behaviors have been
detected in any of the other nodes, so there is very little
information available to a system administrator or auto-
mated management system with regard to what may be
causing the increasingly serious anomalous operational
behavior within the distributed service-oriented application.

[0097] FIG. 23F illustrates the recent call traces that had
been collected by the call-trace service which include spans
touching one of the three failing node-F instances running
on servers s, S;5, and s,;. As mentioned above, the query
service provided by the call-tracing service allows a system
administrator, other professional, or an automated manage-
ment system to retrieve collected call traces defined by one
or more query parameters. The call traces are abbreviated to
only the initial downward path of service requests and
internal service requests that include nodes A, C, E, and F.
One approach to attempting to analyze the anomalous opera-
tional behavior of the distributed service-oriented applica-
tion is to use the relevant call traces, shown in FIG. 23F, to
annotate the dimensional representations of the other nodes
observed in the call traces. The other nodes that occur in call
traces ending with the three failing node-F instances running
on servers s, -, $;5, and s,; may be, in some way, related to
the observed anomalous operational behaviors of these
failing node-F instances.

[0098] FIG. 23G shows, using crosshatching, the other
node instances of the currently call traces shown in FIG.
23F. The crosshatched cells of the representations of the
three-dimensional attribute-value space associated with the
other nodes correspond to these other node-instances
observed in the call traces. First, consider the three-dimen-
sional attribute-value space 2334 for node E. The node-E
instances that occur in the call traces are clearly distributed
across the server-attribute dimension, the version-attribute
dimension, and the configuration-attribute dimension. There
is no indication, in the pattern of marked cells within the
representation of the three-dimensional attribute-value space
2334 for node E, that any particular subset of the node E
instances might be responsible for the failures observed in
the three failing node-F instances. Similar comments apply
to the crosshatched cells in the three-dimensional attribute-
value space 2335 for node C and even more clearly apply to
the crosshatched cells in the three-dimensional attribute-
value space 2336 for node A. Thus, the subset of recently
collected traces that include spans touching the three failing
node-F instances, shown in FIG. 23F, fail to provide useful
information with respect to the root cause of the anomalous
operational behavior.
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[0099] FIG. 23H shows a representation of the full set of
the most recent collected call traces for the distributed
service-oriented application. The call traces shown in FIG.
23F are a subset of the full set of the most recent collected
call traces. At this point, a decision-tree-like analysis may be
attempted on the set of call traces shown in FIG. 23H in
order to identify attribute dimensions that may explain the
three failing node-F instances. In this approach, each of the
different node dimensions is considered in order to find a
decision-tree-node expression that will partition the full set
of call traces into a set of call traces that includes only the
three failing node-F instances. Consideration of the first
node dimension, which is the host attribute for node A, is
shown in FIG. 231. First, the expression “A.host==1" is used
in the first node 2338 of a decision tree. When the expression
evaluates to TRUE for a call trace, the node-F instance in the
call trace, if there is a node-F instance in the call trace, is
placed in a left-hand set 2339. When the expression evalu-
ates to FALSE for a call trace, if there is a node-F instance
in the call trace, the node-F instance in the call trace is
placed in a right-hand set 2340. As can be seen in FIG. 231,
the expression “A.host==1" in the first node of the decision
tree does not produce the set of servers s, 5,5, and s,, in the
left-hand set. It does produce the set of servers s, and s,g,
which means that the expression “A.host=1" may be, in
part, relevant to the explanation of the failing of the three
node-F instances, but is not the whole story. When the other
single-value expressions for the server attribute of node A
are tried for the expression in the root node of the decision
tree, only the expression “A.host==5" 2341 produces a
left-hand set that includes failing node-F instances, but like
the expression “A.host==1,” the expression “A.host=5"
fails to produce the full set of failing node-F instances. FIG.
23] illustrates first nodes of possible decision trees that
include expressions containing multiple values for the first
attribute dimension. Not surprisingly, only the expression
“Ahost=1 OR A host==5" 2342 leads to the desired left-
hand set 2344. This is an indication that the failure of the
three node-F instances may be related to the node-A
instances running on servers s, and ss.

[0100] FIG. 23K illustrates the decision-tree-like analysis
using the second node dimension geo. A decision tree 2345
with a first node including the expression “geo=—=NE” pro-
duces the desired set of node-F instances 2346. The expres-
sion “geo==NE” is simpler than the expression “A.host—
AND A host==5," and thus may constitute more relevant
information with regard to the cause of the observed node
F-instance failures. The analysis carried out by the currently
disclosed methods and systems seeks simple and powerful
dimensional explanations of the observed pattern of opera-
tional-behavior anomalies. In the current example, the
expression “geo=NE” it is, in fact, the best clue, or indica-
tion, of the root cause of the three failing node F nodes,
which is correlated with the geo dimension.

[0101] In this example, the underlying cause of the com-
mit failures in the three node F-instances running on servers
S17s S;g, and s, is a problem with network transmissions
from the region NE. 10% of the messages sent from remote
clients in the NE region to the node-A instances running on
servers s; and s5 are lost or dropped. These are the only
servers that receive messages from the NE region. Messages
that are lost and dropped during back-end-fourth communi-
cations within transactions are handled by the node-A
instances resending messages for which responses were
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expected. Since 90% of these resent messages receive
responses, only 1% of the response messages fail repeatedly.
Because only repeatedly failing response messages result in
commit timeouts, only the node-F instance running on
server s, , initially experienced a sufficient number of com-
mit timeouts to exceed the warning-level metric, as shown
in FIG. 23D. This is because roughly half of the internal
service requests received by the node-F instance running on
server s, , are made as a result of remote-client requests from
region NE arriving at the node-A instances running on
servers s; and ss. Eventually, the node-F instances running
on servers s, and s,,;, for each of which roughly a quarter
of the received internal service requests are made as a result
of remote-client requests from region NE, experienced a
sufficient number of commit timeouts to exceed the warn-
ing-level metric, as shown in FIG. 23E. Since the failing
node-F instances running on servers s;,, S;g, and s,, all
receive internal requests made as a result of remote-client
requests from regions other than region NE, there was no
discernible pattern in the attribute dimensions of the node-A
instances, as shown in FIG. 230. Of course, had the attribute
dimensions for the node-A instances included a message-
retry-above-threshold attribute collected by the call-tracing
service, an indicative pattern in that dimension may have
been observed, as a result of which a likely relevant dimen-
sion would have been identified from the call-trace subset
shown in FIG. 23F. However, because there was no such
attribute dimension for the node-A instances, the likely
relevant geo dimension was only identified from the full set
of call traces, shown in FIG. 23H, and the decision-tree-
based analysis discussed with reference to FIGS. 23I-K.
This example shows that dimensional patterns may emerge
in nodes that are not adjacent to nodes identified as exhib-
iting anomalous operational behavior in the collected call
traces, and even quite far removed from the problem nodes.
In this example, no anomalous operational behaviors were
identified in intermediate nodes C and E, and no dimensional
patterns were evident in these nodes.

[0102] FIGS. 24A-B illustrate a second example of appli-
cation of the currently disclosed methods for determining
root causes of, and attributes that are likely to be relevant to,
detected anomalies within distributed heating systems. The
distributed service-oriented application shown in FIG. 24A
is similar to that shown in FIG. 23 A, with the exception that
the servers at each level are more densely connected with
servers at adjacent levels. As shown in FIG. 24B, commit_
time_outs warnings are observed for the node-F instances
running on servers s;q, S,o, and s,;, as indicated by the
shaded cells 2402-2404 in the representation of the attribute-
value space 2406 for node F. Using only the recent collected
call traces that include the node-F instances running on
Servers S;g, S;g, and s,,, as shown for the first example in
FIG. 23F, crosshatching is used to mark the instances of
nodes E, C, and A observed in the recent collected call traces
that include the node-F instances running on servers s, o, S,o,
and s,,. As can be seen in FIG. 24B, the marked instances
of' node A are distributed across the geo-attribute dimension,
but are relatively spatially confined in the version-attribute
and server-attribute dimensions. This pattern would suggest
that the node-A instances running on servers s, and s, may
be related to the failures of the node-F instances running on
Servers s, g, Sqo, and s,;. There is only one marked instance
of' node C, which strongly indicates that the node C instance
running on server so may be correlated with the failures of
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the node-F instances running on servers s, g, $;4, and s,,. The
marked node E instances are clustered across two different
servers and two different versions, again showing indica-
tions that the node E instances running on servers s, ; and s, ,
may be related to the failures of the node-F instances
running on Servers s; g, $;4, and s,q. In this case, the highly
localized marked subspace in the attribute-value space for
node C, in fact, is consistent with the actual source of the
errors—a failing hardware network-interface controller in
server sg. Thus, when call-trace analysis reveals a subspace
of the attribute-value space corresponding to a single node
instance, the analysis strongly points to a single-server root
cause. In more complex, but similar cases, relevant nodes
and node instances are revealed by a decision-tree-like
analysis which seeks the simplest explanation for partition-
ing a set of call traces into a first set of call traces that include
the problematic node instances and a second set of call traces
that either includes only non-problematic node instances or
includes both the problematic node instances as well as
additional node instances.

[0103] FIGS. 25A-D provide additional examples of iden-
tifying relevant dimensions with respect to problem-associ-
ated components within a distributed computing system. As
shown in FIG. 25A, a simple distributed service-oriented
application 2502 includes five types of service nodes: (1) a
load-balancer node 2504; (2) an API-server node 2506; (3)
a redis-cache node 2508; (4) a dbserver node 2510; and (5)
a third-party DBMS node 2512. As with the previous
examples, each of these service nodes includes multiple
instances, and the service-node instances are associated with
attribute values. There are two different types of call traces
produced by service-request calls to the distributed service-
oriented application as indicated by arrows in the distrib-
uted-service-oriented-application diagram 2502 and indi-
cated by the call trace representations 2514 and 2516. Note
that the different service nodes are represented by single-
character abbreviations, or labels, shown below the disk-
shaped representations of the nodes in the distributed-
service-oriented-application diagram 2502.

[0104] FIG. 25B illustrates a first example of a dimen-
sional analysis of a detected problems in the distributed
service-oriented application discussed above with reference
to FIG. 25A. In FIG. 25B, as with FIGS. 25C-D, discussed
below, a portion of the attribute-value space associated with
each service node is represented by a two-dimensional
section, such as two-dimensional section 2520 shown asso-
ciated with the redis-cache node 2508. In the two-dimen-
sional section 2522 associated with the third-party-DBMS
node 2524, all of the cells corresponding to a particular
server are marked to indicate that the third-party-DBMS
node instances associated with the particular server are have
been determined, by metric analysis, to be exhibiting some
type of problem or failure. The remaining service nodes are
all associated with two-dimensional sections of the attribute-
value space in which the marked attribute values that occur
in the call traces that include the problem instances of the
third-party-DBMS node are distributed across both of the
dimensions, revealing no particularly relevant pattern with
respect to the problem-associated third-party-DBMS node
instances. In this case, the relevant server-attribute dimen-
sion associated with the problem-associated third-party-
DBMS node instances is indicative of a problem, such as an
overloaded CPU, on a particular server.
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[0105] FIG. 25C illustrates a second example of a dimen-
sional analysis of a detected problems in the distributed
service-oriented application discussed above with reference
to FIG. 25A. In this example, numerous instances of the
third-party-DBMS node have been determined to be exhib-
iting anomalous operational behavior via metric analysis.
However, the shaded cells, such as cell 2530, in the two-
dimensional section of the attribute-value space 2532 asso-
ciated with the third-party-DBMS node are distributed
across both dimensions, revealing no particular pattern or
locality within the attribute-value space. When the recently
collected call traces that include the problem-associated
instances of the third-party-DBMS node are analyzed, and
the attribute values of the other service-node instances that
appear in these call traces are marked by crosshatching in the
remaining two-dimensional sections associated with the
other service nodes, the two-dimensional section 2534 asso-
ciated with the dbserver service node 2536 indicates that
only version 3.1 dbserver instances occur in the call traces.
This is a strong indication that there is a problem with
version 3.1 dbserver instances that is the root cause of the
observed third-party-DBMS-node instance failures. No such
pattern is evident in the two-dimensional sections associated
with the remaining service nodes. In this case, the root cause
arises from generation of malformed SQL queries by the
version 3.1 dbserver instances.

[0106] FIG. 25D illustrates a third example of a dimen-
sional analysis of a detected problems in the distributed
service-oriented application discussed above with reference
to FIG. 25A. In this example, a portion of the dbserver
service-node instances associated with a particular server
have been identified as exhibiting anomalous operational
behavior, as indicated by shading of cells 2548-2542. When
the attribute values associated with other service-node
instances that appear in the call traces that include the
dbserver service-node instances exhibiting anomalous
operational behavior, instances of the third-party-DBMS
node associated with a particular server, as indicated by the
crosshatched cells 2544-2546 along a single server-attribute
dimension, are observed. In this case, the observed pattern
of relevant attribute values along the two server-attribute
dimensions for instances of the dbserver and for instances of
the third-party-DBMS node indicate a problem involving the
two servers corresponding to the two relevant server-attri-
bute dimensions. In fact, in this case, the problem arises
from a failing network connection between these two serv-
ers. Not all of the cells in each of the two relevant dimen-
sions are marked, indicating that dbserver service-node
instances associated with the relevant server-attribute
dimension are able to communicate with other third-party-
DBMS-node instances and third-party-DBMS-node
instances associated with the relevant server-attribute
dimension in the two-dimensional section 2548 receive
internal service requests from dbserver service-node
instances associated with servers other than the server
corresponding to the relevant dimension in the two-dimen-
sional section 2550.

[0107] In order to analyze metric-data, attribute-value
data, and call-trace data, decision-tree-based analyses are
used, as mentioned above. It is not necessary, in general, to
construct an entire decision tree, nor is it necessary to even
construct partial tree-like data structures. Instead, all of the
relevant dimensions associated with all of the relevant
service nodes may be considered, in turn, to determine
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whether or not a small number of logical decision-tree nodes
could be used to partition relevant call traces into call traces
associated with some localized subregion of the attribute-
value space associated with one or more service nodes of a
distributed service-oriented application. This same tech-
nique can be extended to analyze other types of distributed-
computing-system components, in addition to distributed
service nodes. However, the current examples are based on
distributed service nodes as examples of distributed-com-
puter-system components because call-tracing services have
been developed to trace service requests through a distrib-
uted service-oriented applications. Similar types of tracing
services may be developed for other types of distributed-
computer-system components, in which case the currently
disclosed methods would be applicable to dimensional
analysis with respect to the other types of distributed-
computer-system components. A decision-tree-based analy-
sis can be employed in order to determine whether a
localized region of the attribute-value space of service nodes
that appear in call traces that include problem-associated
service-node instances can be found, such as the case
discussed with reference to FIG. 25C, in which all of the
version 3.1 instances of the dbserver node, and only the
version 3.1 instances of the dbserver node, appear in the call
traces that include the problem-associated third-party-
DBMS-node instances. A decision-tree-based analysis can
also be employed in the example discussed above with
reference to FIGS. 23A-K, where an attribute-value-based
partitioning was found for partitioning all of the recently
collected call traces into call traces that include only the
problematic service-node instances. The two types of deci-
sion-tree-based analyses are slightly different, and dimen-
sion-based analysis of collected data to find attribute dimen-
sions related to detected problems may use both types of
decision-tree based analyses as well as additional types of
decision-tree based analyses. In all cases, the currently
disclosed methods seek relatively simple explanations cor-
responding to locality of relevant-node-instance attributes
within the attribute-value space associated with the service
nodes and corresponding to only a few decision-tree nodes
with relatively simple partitioning expressions, as further
discussed below.

[0108] FIGS. 26A-B illustrate data structures and analyti-
cal approaches used in the control-flow diagrams provided
in FIGS. 27A-F, discussed below, to illustrate decision-tree-
based methods for identifying attribute dimensions relevant
to observed anomalies in the operational behaviors of dis-
tributed-computer-system components. FIG. 26A shows a
data structure that stores call traces combined with attribute
values, including attribute values obtained directly from call
traces as well as attribute values maintained by an attribute
service, as discussed above. The traces data structure 2602
includes a full set of recently received call traces 2604, with
each call trace represented by a row in the tabular data
structure. The service nodes in each call trace are repre-
sented by higher-level columns 2606-2610, each of which
contains multiple lower-level columns, each lower-level
column representing the value for an attribute maintained for
the service node. For example, higher-level column 2606
represents a first service node and the lower-level columns
2612 2613 and 2614 store values for attributes al, a2, and a3
for the first service-oriented-application. FIG. 23H provides
an example of a tabular data structure storing recently
collected call traces. The column T-map 2615 contains
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Boolean values indicating whether or not each call trace of
the recently received call traces 2604 is to be considered
during the current decision-tree-based analysis. Thus, this
column is used to select the set of call traces to be used for
a particular analysis. In the above-discussed examples, one
such subset that is commonly used is the subset of call traces
that include problem-associated service-node instances.
Thus, as shown in diagram 2616 in FIG. 26A, the T-map
column is used to select the current traces 2618, or current
subset of the full set of traces, for an analysis. The column
R 2620 is used to identify the relevant call traces for a
decision-tree-based partitioning of the current call traces.
For example, the relevant call traces may be call traces that
include particular service-node instances identified as exhib-
iting anomalous operational behaviors. The decision-tree-
based partitioning seeks to find several decision-tree nodes
containing relatively simple partitioning expressions that
will partition the current nodes into a set containing the
relevant traces, and only the relevant traces, and another set
that, depending on the particular type of decision-tree analy-
sis, may contain only the non-relevant traces or may contain
both relevant and non-relevant traces. As indicated by dia-
gram 2622, the Boolean values in the column R select a
subset of the current traces 2624, and a function is applied
to those selected traces to produce a set of relevant target-
node instances 2626, such as the particular service-node
instances identified as exhibiting anomalous operational
behaviors. Thus, decision-tree-based partitioning attempts to
partition all of the service-node instances associated with
current traces into the set of relevant target-node instances
2626 and another set 2628 that includes non-relevant target-
node instances as well as, in some cases, relevant target-
node instances. Finally, the data structure includes a current_
node pointer 2630 and a target_node pointer 2632. The
target_node pointer points to the service node that contains
instances considered to be target instances for partition 2626
and the current_node pointer points to the service node
associated with the attribute dimensions that are to be used
in the decision-tree-based analysis in an attempt to partition
the target-node instances. In certain cases, the current_node
pointer and the target_node pointer may point to the same
service node.

[0109] FIG. 26B illustrates the decision-tree-based analy-
sis used in currently disclosed methods. The analysis con-
siders the attribute values associated with instances of the
service node referenced by the current_node pointer 2640.
The analysis attempts to build a small decision tree 2642 that
can be used to partition the current traces into a set of
relevant target-node instances 2644 and other sets 2645-
2646 containing non-relevant target-node instances. In the
case of an analysis where the current_node pointer and the
target, node pointer point to the same service node, the
relevant target-node instances may often occur in all of the
current call traces and the non-relevant target-node-instance
sets would be empty at the lowest level of the decision tree.
Each node of the decision tree includes a Boolean expres-
sion, such as expressions 2646-2647 in decision-tree nodes
2648 and 2649, respectively. A Boolean expression 2650
includes one or more terms, with multiple terms separated
by Boolean OR operators. Each term indicates that a par-
ticular attribute a, of the current node has a particular value,
such as the attribute value a,,,. The traces input to the node
are partitioned by the node into traces for which the expres-
sion returns a TRUE result and traces for which the expres-
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sion returns a FALSE result, as indicated by diagram 2652.
When the decision-tree-based analysis succeeds, the left-
most leaf set of the decision tree 2654 contains all of the
relevant target-node instances and only the relevant target-
node instances. The goal of the analysis 2656 is to find a
portion of a decision tree that generates the relevant target-
node instances with minimal cost, where the cost 2658 is
equal to the number of attribute values in all of the expres-
sions along a path of nodes leading to the relevant target-
node instances summed with the depth of the decision tree
minus one. In other words, the analysis secks the simplest
explanation that partitions the current traces into a set of
traces corresponding to the relevant target-node instances.
The product result produced by the analysis 2660 is one or
more decision-tree synopses indicating the cost of the deci-
sion tree, the number of attributes or nodes in the path of the
relevant target-node instances, and the expressions in each
of those nodes. These decision-tree synopses can be sorted
by cost to produce an ordered set of likely relevant attribute
dimensions related to a set of target service-node instances.
There are many well-known decision-tree methods, includ-
ing 1D3 and J48/C4.5. Many specific approaches to deci-
sion-tree analysis may be employed in the currently dis-
closed methods.

[0110] FIGS. 27A-H provide control-flow diagrams that
illustrate one implementation of the decision-tree-based
analysis used by currently disclosed methods and systems
for determining attribute dimensions of the distributed-
computer-system components relevant to particular anoma-
lous operational behaviors observed for one or more dis-
tributed-computer-system components. FIGS. 27A-B
provides a control-flow diagram for a routine find_node_
relative_dimensions that processes call traces in the logical
traces data structure 2602 described above with reference to
FIG. 26A to find a best decision tree, or portion of a decision
tree, to partition target-node instances based on attribute
values for the node referenced by current_node. In step
2701, the routine find_node_relative_dimensions receives
the traces data structure and a reference to a memory
location for storing a result. In step 2702, the local set
variables relevant_instances, remaining_instances, current_
traces, and attributes are initialized to contain no entries. Set
variables operate like mathematical sets, and contain only a
single entry for any particular value. In addition, the cost
field of the result referenced by the reference result is set to
0, a value indicating that the dimensional analysis has failed.
In the for-loop of steps 2703-2706, the attributes associated
with the node referenced by current_node are placed into the
set attributes. In the for-loop of steps 2707-2715, each trace
in the traces data structure is considered, with t representing
the index of a trace. Those traces indicated to be members
of the current traces by the T-map are placed into the set
variable current_traces in step 2709. In step 2710, a function
instance is used to obtain an identifier for the target-node
instance corresponding to the currently considered trace.
The function returns a non-instance-identifying value when
the target-node instance does not appear in the current trace.
The determined target-node-instance identifier, if it has a
target-node instance-identifying value, is placed in the set
variable remaining instances and, when the instance is
indicated in the R column of the traces data structure to be
a relevant target-node instance, as determined in step 2712,
the determined target-node-instance identifier is placed into
the set variable relevant_instances in step 2713. Moving to
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FIG. 27B, in a series of conditional steps 2716-2718, the
routine find_node_relative_dimensions determines whether
or not there is sufficient data in the traces data structure for
dimensional analysis. For example, when there are no attri-
butes associated with the current node, when the number of
current traces is below a threshold value, or when the set
variable relevant_instances is empty, indicating that there
am no relevant target nodes for the analysis, routine find_
node_relative_dimensions returns. Otherwise, in step 2719,
routine find node_relative_dimensions calls the routine
build_partial_D_tree to attempt to logically generate a por-
tion of the left-hand edge of a decision tree that would select
the relevant target nodes and only the relevant target nodes
from the current call traces.

[0111] FIGS. 27C-D provide control-flow diagrams for the
routine build_partial D_tree, called in step 2719 of FIG.
27B. In step 2720, the routine build_partial_D_tree receives
the trace data structure 2602 along with the reference result,
the set variables relevant_instances, remaining_instances,
current_traces and attributes, a variable depth containing the
currently considered level of the decision tree, a variable
cost containing the current cost of the decision tree. In step
2721, local variable best is initialized to a large integer
value, local variable best_a is initialized to contain no
attribute, local variable best_ct is initialized to contain a
large integer value, local variable best_nxt_exp is initialized
to contain the empty string, and the local set variable
best_remaining is initialized to the empty set. In the for-loop
of steps 2722-2731, each attribute a in the set attributes is
considered for being the attribute in a next node of the partial
decision tree. In step 2723, a routine partition_on_attribute
is called to logically create a node corresponding to the
currently considered attribute a, returning the cost of the
expression in the node ct, the expression for the node
nxt_exp, and the set of target-node instances remaining that
remain after the expression in the node and in any higher-
level nodes are applied to the current traces. When the
routine partition_on_attribute returns an empty set remain-
ing, as determined in step 2724, the partial decision trees
complete, and the dimensional analysis has identified a set
of relevant dimensions to explain the relevant target nodes.
In this case, in step 2725, values are entered into the cost and
num_attributes fields of the result and the current node
expression is entered into the subfield of the expressions
field corresponding to the depth of the node generated by the
routine partition_on_attribute. When the set remaining
returned by the routine partition_on_attribute is equal to the
set remaining_instances, as determined in step 2726, the
routine partition_on_attribute failed to find an attribute that
would further decrease the number of target-node instances,
as a result of which control flows to step 2730, where the
routine build_partial D_tree determines whether to continue
iterating the for-loop of steps 2722-2731. Otherwise, in step
2727, a total cost function is used to determine a cost metric
for the node that would be associated with the currently
considered attribute a and, when this cost metric is lower
than the contents of the local variable best, as determines in
step 2728, the parameters for the node that would be
associated with the currently considered attribute are stored
in the local variables in step 2729. Continuing in FIG. 27D,
in a series of conditionals, the routine build_partial D_tree
determines whether or not to continue the dimensional
analysis. When no attribute was found for association with
a new node by the routine partition_on_attribute, as deter-
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mined in in step 2732, the analysis has failed and the routine
build_partial D_tree returns. In step 2733, the attribute best
a is removed from the set attributes. When the set attributes
is not empty, as determined in in step 2734, there is no point
continuing the dimensional analysis and so the routine
build_partial D_tree returns. When the current depth of the
decision tree is equal to a threshold value, as determined in
step 2735, the partial decision tree is already too complex
and costly to represent a valid relevant-dimension determi-
nation, and therefore the routine build_partial D_tree
returns. In other words, as the depth of the tree grows, the
complexity of the decision-tree-analysis-generated explana-
tion for the partitioning of the current traces into a set of
traces corresponding to the relevant target-node instances
increases, and a point may be reached where the explanation
has no relevance to the higher-level dimensional analysis of
observed anomalies. A more comprehensive determination
that considers the entropy of the remaining partitioning task
may be undertaken to determine when to short-circuit the
dimensional analysis, in alternative implementations. Oth-
erwise, in step 2736, the routine build_partial D_tree is
recursively called to attempt to generate an additional node
along the left edge of the partial decision tree. When that call
fails, as determined in step 2737, the routine build_partial
D_tree returns. Otherwise, in step 2738, the expression for
the node created by the build_partial D_tree is entered into
the proper position within the subfield of the expressions
field of the result.

[0112] FIGS. 27E-F provides a control-flow diagram for
the routine partition_on_attribute, called in step 2723 of
FIG. 27C. In step 2739, the routine partition_on_attribute
receives the traces data structure, the set variables relevant
instances, remaining_instances, and current_traces, and the
attribute a. In step 2740, a local set variable val it is
initialized to the empty set. In the for-loop of steps 2741-
2744, all of the current traces are considered in order to
determine the set of different values for attribute a, which are
stored in set variable val. In step 2745, the routine best_
value is called to further partition the target-node instances
in the set variable remaining_instances, returning the left-
hand resultant partition, remaining, for a decision-tree node
based on a value v selected from the value stored in the set
variable vals. When the set remaining empty, as determined
in step 2746, the node containing an expression including
the attribute value v is sufficient for a partitioning that
generates the relevant target-node instances, and therefore
the routine partition_on_attribute returns, in step 2747, an
expression for the node as well as a cost of 1 in the return
value ct, when the set remaining is equal to the set remaining
instances, as determined in step 2748, the routine best_value
failed to find a value that provided additional partitioning of
the target-node instances in the set remaining_instances. In
this case, the routine partition_on_attribute returns, with the
failure detected in the calling routine build_partial D_tree.
Continuing in FIG. 27F, since the set remaining still includes
target-node instances that need to be filtered, the value v is
removed from the set val in step 2749 and the routine
best_value is again called in step 2750. If another attribute
value is found by the routine best_value, and if this attribute
value further partitions the target-node instances of the set
remaining, as determined in step 2751, then, in step 2752,
the routine partition_on_attribute returns a note expression
that includes both the previously identified attribute value in
the attribute value determined in step 2750 as well as a cost
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of 2. Otherwise, when the second call to the routine best
value did not provide a value that further partitioned the
target-node instances, as determined in step 2751, an expres-
sion containing only the initial identified value, identified in
step 2745, and a cost of 1 is returned in step 2753. In the
implementation shown in FIGS. 27A-G, node expressions
with more than two attribute values are not considered, since
once more than two attribute values are needed to produce
a partitioning, the likelihood that the attribute is a significant
and relevant dimension is considered to be below a threshold
probability. In other words, in the illustrated and described
implementation, the dimensional analysis is looking for
attribute dimensions with highly localized value subsets that
might explain the observed problem-associated, or relevant
target-node instances.

[0113] FIG. 27G provides a control-flow diagram for the
routine best_value, called in step 2745 in FIG. 27E and in
step 2750 in FIG. 27F. The routine best_value attempts to
select a best attribute value from the attribute values in the
set val for partitioning the target-node instances in the set
remaining_instances to produce a resultant set as close as
possible to the relevant target-node instances. In step 2754,
the routine best value receives the traces data structure, the
sets relevant_instances, remaining_instances, current_
traces, and val, and the currently considered attribute a. In
step 2755, local variable v is set to a non-attribute-value
value and local set remaining is set to contain the same
target-node instances is contained in the set remaining
instances. In the outer for-loop of steps 2756-2778, each
attribute value iv in the set val is considered. For each
considered attribute value iv, the local set rem set to the
empty set, in step 2757 and, in the for-loop of steps
2758-2764, a partitioning of the target-node instances in the
set remaining is carried out based on currently considered
attribute value iv. In the for-loop of steps 2758-2764, each
trace in the current traces is considered. When the currently
considered trace has a value for attribute a equal to the
currently considered attribute value iv, as determined in step
2759, the instance i for the target-node instance contained in
the currently considered trace is determined by a call to a
function instance, in step 2760. The function instance
returns a node identifier in the case that the target node does
not appear in the currently considered trace. When the
instance i is not contained in the set remaining_instances, as
determined in step 2761, the for-loop of steps 2759-2764 is
terminated, because the partitioning carried out by the
for-loop of steps 2759-2064 should not add any non-relevant
target-node instances to the left-hand partition produced by
the decision-tree node that includes an expression containing
the currently considered attribute value. Otherwise, the
instance 1 is added to the set rem, in step 2762. Upon
completion of the for-loop of steps 2759-2064, the routine
best_value determines, in step 2065, whether the number of
target-node instances in the set rem is less than the number
of target-node instances in the set remaining. If so, the local
variable v is set to the currently considered attribute value iv
and the set remaining is set to contain the contents of the set
rem, in step 2766, since the partitioning produced by the
currently considered attribute value iv is better than that
produced by any previously considered attribute values
during execution of the for-loop of steps 2758-2064. At the
completion of the for-loop of steps 2756-2778, all of the
attribute values in the set val have been considered, and the
routine best_value returns.
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[0114] FIG. 27H provides an indication of how the above-
described decision-tree-based dimensional analysis is incor-
porated into an overall dimensional analysis based on metric
values, attribute values, and call traces. FIG. 27 H provides
a control-flow diagram for a routine find_relevant_dimen-
sions, which illustrates a family of approaches to the dimen-
sional analysis disclosed in the current document. In step
2779, metric data is used to identify problem nodes and
problem-node instances, as discussed above with reference
to FIGS. 22A-B. In step 2780, attribute-value data and
call-trace data are used, together, to generate collected
call-trace-and-attribute-value data, such as the data stored in
the traces data structure discussed above with reference to
FIG. 26A. In step 2781, an array of results is allocated to
hold results such as the result 2660 discussed above with
reference to FIG. 26B. In the for-loop of steps 2782-2792,
each identified problem node p it is considered. In step 2783,
the column R of the traces data structure is set to identify
traces that include problem-associated instances of the cur-
rently considered problem node p. In step 2784, the T-map
column of the traces data structure is set to identify call
traces that include the currently considered problem node p.
In the inner for-loop of steps 2785-2790, each of the
different nodes n in the current traces identified by the T-map
column are considered. In step 2786, the currently consid-
ered node n and currently considered target node p are input
to the routine find_node_relevant_dimensions, discussed
above with reference to FIGS. 27A-F. When the routine
find_node_relevant_dimensions produces a result with a
cost greater than 0, as determined in step 2787, the result is
added to the set results in step 2788. Thus, for each identified
problem node, relevant attribute dimensions for the nodes in
the call traces that include the problem node are identified in
the nested for-loops of steps 2782-2792. As indicated by
ellipses 2793, many other dimensional analyses may be
carried out, by including considerations of larger sets of call
traces, and by varying other parameters provided to the
routine find_node_relevant_dimensions. Furthermore, other
approaches to identifying relevant attribute dimensions, in
addition to those embodied in the routine find_node rel-
evant_dimensions, may be employed in additional dimen-
sional analyses. Finally, all of the results collected in the set
results may be sorted by cost and then encoded for trans-
mission to one or more recipients, in step 2794.

Currently Disclosed Clustering Methods and
Systems

[0115] FIG. 28 illustrates a problem with applying the
above-discuss dimensional analysis to very large sets of call
traces. In many cases, and often at early stages of anomalous
operational behaviors within distributed computer systems,
only a small percentage of the collected call traces are
relevant to, or contain information useful for identifying, an
emerging anomalous operational behavior. As an emerging
problem cascades within a distributed computer system, a
generally larger, increasing percentage of the call traces
becomes relevant, but even in the latter stages, only a
fraction of the total collected call traces contain information
relevant to the cascading anomalous operational behaviors.
In FIG. 28, a large circular area 2802 represents the total
collected call traces and smaller circular areas 2804 and
2806 represent increasingly smaller subsets of the total
collected call traces. When the above-discussed decision-
tree-based dimensional analysis is applied to the total col-
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lected call traces, as represented by curved arrow 2808, the
resulting decision tree 2810 may be large and complex, since
complex logic may be needed to differentiate the small
fraction of relevant call traces from the much larger fraction
of non-relevant call traces in the total set of collected call
traces. It may even be possible, in certain cases, that the
above-discussed decision-tree-based dimensional analysis
may fail to provide a decision tree that fully partitions the
relevant call traces from the total set of call traces. When the
above-discussed decision-tree-based dimensional analysis is
applied to the smaller subset 2804 of the collected call
traces, as represented by curved arrow 2812, it is often the
case that the resulting decision tree 2814 may be more
compact and less complex, since fewer non-relevant call
traces may need to be filtered out during dimensional
analysis. When the above-discussed decision-tree-based
dimensional analysis is applied to the smallest subset 2806
of the collected call traces, as represented by curved arrow
2816, the resulting decision tree 2818 may be even more
compact and less complex. The complexity and size of the
decision tree produced by dimensional analysis is often
inversely proportional to the utility of the decision tree for
identifying attribute dimensions relevant to anomalous
operational behavior within the distributed computer sys-
tem. However, simply selecting a small subset of the call
traces to which to apply the above-discussed dimensional
analysis does not provide a workable solution to this prob-
lem, since, as discussed above, call traces that initially
appear to be non-relevant may, in fact, be necessary for
identifying root causes of anomalous operational behaviors.
A full set of call traces therefore generally needs to be
analyzed, since it cannot be predicted, in advance of deter-
mining a root cause for an anomalous operational behavior
or error condition, which subset of the collected call traces
is relevant to identifying the root cause.

[0116] One approach to addressing the problem discussed
in the preceding paragraph is to use a clustering method to
partition the total set of collected call traces into smaller
subsets of related call traces, each subset of related traces
representing a particular trace type. The disclosed approach
involves vectorization of call traces, selection of a first
distance metric for call-trace vectors and a second distance
metric for call-trace-vector clusters, clustering call-trace
vectors using the selected distance metrics, and application
of the above-discussed decision-tree-based dimensional
analysis to each cluster of call traces. Each of these steps are
next discussed with reference to illustrations.

[0117] FIG. 29 illustrates one approach to vectorizing call
traces. Plot 2902 illustrates the time sequence of service
calls that together implement a distributed-application entry-
point, with a horizontal time axis 2904 and a vertical
call-depth axis 2906. A call to the distributed-application
entrypoint begins with execution of the first service call B
2908. This service call, in an example distributed applica-
tion, is active from time t, 2910, when the entrypoint call is
received by the distributed application, to time t, 2912, when
the call to the distributed-application entrypoint finishes.
Service B first calls service J 2914, which twice calls service
C 2916-2917. Service B then calls service R 2918, which
calls service F 2920. Service B next calls service G 2922,
which then calls service M 2924, which, in turn, calls service
A 2926. Finally, service B calls service K 2928. The attri-
butes associated with each service instance that executes in
order to carry out the entrypoint call are shown in the plot
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in parentheses, such as attributes a,, a,, and a; 2930 asso-
ciated with an instance of service B. A call trace is collected
for the sequence of service calls, as discussed above, and can
be represented as graph 2932. The call trace, in one vector-
ization approach, is vectorized by generating a vector with
elements corresponding to the unique service calls in the call
trace and ordered according to a service-ordering method
2934. Attribute values for the service calls are then included
within expanded elements of an expanded-elements vector
2936. In many implementations, a final binary vector 2938
corresponding to vector 2936 is generated. In alternative
approaches, a final vector with real-valued or integer-valued
elements may be instead generated. A binary final vector is
assumed in much of the following discussion.

[0118] FIGS. 30A-C illustrate several approaches to gen-
erating a final vector from the expanded-elements vector
2936 shown in FIG. 29. In a first approach, shown in FIG.
30A, the final bit vector 3002 includes a bit for each possible
service-call/attribute-value pair observed in a set of col-
lected call traces. In FIG. 30A, the three attribute values
3004 recorded for the call to an instance of service B 3006
are shown, with each attribute value including a first index
indicating the attribute and a second index indicating a
particular value of the indicated attribute. The three
observed attribute values 3004 are mapped to the particular
bits 3008-3010 corresponding to the service-call/attribute-
value pairs, and those bitts are set to 1 while the remaining
bits associated with the service B are set to 0. In this
approach, had there been multiple calls to service B with
different attribute values, then all of the attribute values
observed in the multiple calls would have corresponding bits
set to 1. Similar mappings of service-call/attribute-value
pairs for the other called services produce a final binary
vector for the call trace.

[0119] FIG. 30B illustrates an alternative approach to
generating a final vector from the expanded-elements vector
2936 shown in FIG. 29. In this approach, an index is
assigned to each possible combination of attribute values for
each service, and the final bit vector 3020 includes a separate
bit for each index. A table 3022 is shown in FIG. 30B that
contains all possible attribute-value combinations for ser-
vice B. Each row in the table represents a different possible
combination of attribute values. The index of a row serves
as a single-integer representation of a particular combination
of attribute values. In this case, the set of attribute values for
the instances of service B 3024 in call trace 2932 shown in
FIG. 29 is mapped to row 3026 and table 3022, and the index
of that row is used to identify the bit 3028 in the final bit
vector 3020 corresponding to the set of attribute values
3024. That bit is set to 1 and all the other bits associated with
service B are set to 0, when generating the final bit vector for
call trace 2932. Here again, had multiple calls been made to
a particular service in a call trace, the bits in the final bit
vector corresponding to the cumulative set of attribute
values for the multiple calls would be set to 1.

[0120] FIG. 30C illustrates a third approach to generating
a final vector from the expanded-elements vector 2936
shown in FIG. 29. In this approach, similar to the approach
discussed with reference to FIG. 30B, each service-call/
attribute-value-set pair is mapped to a particular element in
the final vector 3030. However, the final vector contains real
values, rather than bit values. The real values represent a
fraction of service calls in the call trace corresponding to a
particular service-call/attribute-value-set pair. There are, of
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course, many alternative possibilities for vectorizing call
traces. In all cases, the vectorization process is designed to
produce different vectors for different types of call traces so
that, as discussed below, a metric can be devised to produce
distances from pairs of vectors that reflect the degree of
dissimilarity between the call traces represented by the
vectors.

[0121] FIGS. 31A-D illustrates several different types of
metrics that can be used to determine the distance between
two vectors. FIG. 31A illustrates the Euclidean distance
metric. Two three-dimensional vectors a and b 3102-3103
are plotted as points 3104 and 3105, respectively, in a
three-dimensional plot 3106. The FEuclidean distance dj
3108 between the two vectors is equal to the magnitude of
the vector obtained by subtracting one vector from the other,
which can be computed 3110 as the square root of the
squared sums of the differences between the coordinates of
the two vectors. The Euclidean distance d is the common
physical distance associated with a three-dimensional real-
world spaces. The Euclidean distance dj is generally real
valued and can be computed for vectors with real-valued,
integer-valued, and bit-valued elements. The Euclidean dis-
tance between vectors 3102 and 3103 is 6.

[0122] FIG. 31B illustrates the Jaccard distance metric.
The Jaccard distance metric d, is a set-based distance metric
that produces a real value in the range [0, 1]. A bit vector can
be considered to represent a set by considering the elements
of the vector as possible members of the set and considering
those elements with value 1 as the members of the set. Two
bit vectors v, 3102 and v, 3104 are shown on the left-hand
side of FIG. 31B. The function count( ) computes the
number of [-valued elements in a bit vector supplied as an
argument to the function 3106-3107. The bitwise exclusive-
OR operator generates vector 3110 from vectors v, 3102 and
v, 3104. Each element in the resultant vector 3110 is the
value of a binary XOR operation applied to the correspond-
ing elements of the two vector operands. The bitwise AND
operator generates vector 3112 from vectors v, 3102 and v,
3104. Each element in the resultant vector 3112 is the value
of a binary AND operation applied to the corresponding
elements of the two vector operands. When both vectors are
0, the Jaccard coefficient J is 0 (3114 in FIG. 31B). Other-
wise, the coefficient J is equal to the number of elements in
the intersection of the two sets represented by vectors v,
3102 and v, 3104 divided by the number of elements in the
union 3116 of the two sets represented by vectors v, and v,,
which can be calculated 3118, from bit vectors, using the
above-described count function and bitwise logical opera-
tors. The Jaccard distance metric d, is computed as 1-J
(3120 in FIG. 31B). When both vectors are identical, the
Jaccard distance metric d, is 0. When both vectors represent
two sets without any common elements, the Jaccard distance
metric d; is 1. The Jaccard distance d, between bit vectors
v, 3102 and v, 3104 is 2/3.

[0123] FIG. 31C illustrates the cosine-similarity distance
metric d_,,. FIG. 31C shows the same two vectors 3130-
3131 shown as bit vectors v, 3102 and v, 3104 in FIG. 31B.
The cosine of the angle between two vectors is equal to the
dot product of the two vectors divided by the product of the
length of the two vectors 3132. The cosine-similarity dis-
tance metric d_.,, is the cosine of the angle between two input

cos

vectors and is a real number in the range [0, 1].

[0124] FIG. 31D illustrates the three different distance
metrics discussed above with reference to FIGS. 31A-C. On
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the left-hand side of FIG. 31D, the different metric distances
between a diagonal vector and the other vectors with inte-
gral-valued elements in a unit cube are shown for unit cubes
3140-3142. Each vertex in the unit cube corresponds to a
different vector with integer-valued elements. The diagonal
body vector 3144 has coordinates (1, 1, 1). The distance
between this vector and itself is 0, as indicated by numeric
labels 0 3146-3148. The distance between each of the other
vectors and the diagonal body vector are shown next to the
point corresponding to the other vectors. For example, the
Euclidean distance d between the vector (0, 0, 0) and the
vector (1, 1, 1) is V3. The value V3 appears next to the point
3150 corresponding to vector (0, 0, 0).

[0125] A unit cube 3152 is shown in the center of FIG.
31D, with each vertex assigned a numeric label, such as the
numeric label “7” assigned to vertex 3154. The three matri-
ces 3160-3162 show the distances between each pair of
vertices in the unit cube. Matrix 3160 shows the Euclidean
distances, matrix 3161 shows the Jaccard distances, and
matrix 3162 shows the cosine-similarity distances. Com-
parison of the matrices reveals that they all have the same
general form. There are only four different distances
between vectors in the unit-cube example: (1) 0, or d,,,;,,, the
minimum distance which is the distance between a vector
and itself; (2) d,,,,, the distance between vectors corre-
sponding to vertices connected by a body diagonal; (3) d|,
the distance between vectors corresponding to vectors con-
nected by a face diagonal; and (4) ds, the distance between
vectors connected by an edge. Were the numeric values in
the three matrices replaced by d,,,;,,, d,,...» d;, and ds, they
would be identical. The requirement for a distance metric is
that the distance between a vector and itself is 0, as
expressed by the equation 3164, and that the triangle
inequality hold for all pairs of vectors, as expressed by
equation 3166. As can be seen in table 3168, the numerical
values and ratios between the numerical values for the
unit-cube distances vary among the three different distance
metrics. It is possible to define additional distance metrics as
linear combinations of the laccard distance and one of the
other metrics, as expressed by equation 3170. The above-
discussed distance metrics, and other types of distance
metrics, can be used during the clustering of call traces,
discussed below.

[0126] FIG. 32 illustrates various different distance met-
rics for clusters. The three-dimensional plot 3202 in FIG. 32
shows two different clusters 3204 and 3206, each containing
points, such as point 3208, corresponding to vectors. The
two different clusters represent a partitioning of the entire set
of points into two groups based on distance. Each point in
a cluster is closer to the other points of the cluster than to any
point in the external, different cluster. Clustering of vectors
representing call traces represent a partitioning of the call
traces into sets of related call traces. Clustering involves use
of distance metrics that represent distances between clusters,
and these cluster-distance metrics are based on vector-
distance metrics, such as the vector-distance metrics dis-
cussed above with reference to FIGS. 31A-D. One cluster-
distance metric, d,,,,,, is the minimum distance between a
pair of points, one point in the pair selected from the first
cluster and the other point in the pair selected from the
second cluster. Double-headed arrow 3210 represents the
d,,;, distance between the two clusters shown in FIG. 32.
Another cluster-distance metric, d is the maximum dis-

naxs

tance between any two points selected from the two clusters.
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Double-headed arrow 3212 shows the d,,, . distance between
clusters 3204 and 3206. Yet another cluster-distance metric,
d,, is the distance between the centers of the two clusters,
represented by double-headed arrow 3214. Any of these
three distance metrics can be used for clustering. Various

other cluster-distance metrics can also be used.

[0127] FIGS. 33A-E illustrate one approach to clustering
vectors within the class of clustering methods referred to as
“agglomerative” or “bottom-up.” FIGS. 34A-B show two
versions of a dendrogram generated during the vector clus-
tering illustrated in FIGS. 33A-E. FIGS. 33A-E show a
two-dimensional clustering example and these figures are
discussed, below, in parallel with FIG. 34A.

[0128] A two-dimensional set of vectors, each vector
represented by a point in a two-dimensional space or sur-
face, is shown in rectangle 3302 in FIG. 33A. Each point,
such as point 3304, represents a two-dimensional vector that
can be alternatively represented by a set of coordinates (x,
y). The same set of vectors is shown in rectangle 3306, with
each vector-representing point associated with a lower-case-
letter label. Two-dimensional vectors are used in this
example because they are easy to incorporate in illustrations.
Call-trace vectors normally are of much larger dimension,
from tens to hundreds of elements. Clustering involves
assigning each vector to its own, initial single-vector cluster
and then iteratively merging the two closest-in-distance
clusters to produce a merged cluster with a greater number
of members than either of the two clusters from which the
merged cluster is produced. In FIG. 33B, distances between
various different vector-representing points are shown. The
single-vector clusters corresponding to vectors a and w are
first two single-vector clusters to be merged. This initial
merger is indicated by the small enclosing ellipse 3308. The
distance between these two vectors is 2.5, as shown by the
numeric label associated with the line segment connecting
them. Turning to FIG. 34A, a first point representing the first
cluster merger 3402 is placed at a vertical distance of 2.5
above the horizontal axis 3404 with curves drawn from this
point to positions on the horizontal axis corresponding to
vector a 3406 and vector w 3408. Each of the vectors in the
set of vectors is represented by a unique position along the
horizontal axis of the dendrogram. The vertical axis 3410 of
the dendrogram represents distances between clusters. Any
of the cluster-distance metrics, discussed above, based on
any of the vector-distance metrics, also discussed above, can
be used for clustering.

[0129] As also shown in FIG. 33B, the initial merger in the
sequence of mergers carried out during clustering includes
the merger of single-vector clusters containing vectors v and
j, represented by ellipsis 3310, vectors k and t, represented
by ellipse 3312, vectors a and X, represented by ellipse 3314,
vectors i and z, represented by ellipse 3316, vectors b and s,
represented by ellipse 3317, and vectors y and q, represented
by ellipse 3318. In addition, the two-vector cluster repre-
sented by ellipse 3308 is merged with the single-vector
cluster containing vector u, as represented by ellipse 3320.
The 8 mergers represented by ellipses in FIG. 33B are
represented by points 3402 and 3412-3418 in the dendro-
gram shown in FIG. 34A. As shown in FIG. 33C, a next
merger, represented by ellipse 3322, mergers the two-vector
cluster inscribed within ellipse 3310 with the single-vector
cluster containing vector 1. This merger is represented by
point 3420 in the dendrogram shown in FIG. 34A. Because
the mergers are carried out in ascending distance order, the
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points corresponding to the mergers occur further and fur-
ther above the horizontal axis in the dendrogram. Additional
mergers are represented in FIG. 33C by ellipses 3324 3326
and 3328. The clustering process continues to create larger
and larger clusters, as shown in FIGS. 33 D-E. The final
point 3422 in the dendrogram shown in FIG. 34 A represents
the merger of the cluster represented by ellipse 3336 and the
cluster represented by ellipse 3338 in FIG. 33E. FIG. 34B
shows an alternative representation of the dendrogram
shown in FIG. 34 A, produced by rearranging the order of the
vector positions along the horizontal axis. This is a classical
representation of a dendrogram and clearly shows the
sequence of cluster mergers illustrated in FIGS. 33B-E.

[0130] FIGS. 35A-C illustrates cluster selection. Follow-
ing the clustering of the vectors in the example of FIGS.
33A-E and generation of the dendrogram shown in FIG.
34B, a group of clusters needs to be selected. The clustering
process results in one single cluster represented by the
highest point in the dendrogram, but that single cluster, of
course, has no analytical value since it does not represent a
partitioning of the vectors into related groups. Similarly, the
single-vector clusters that represent the initial starting point
for clustering have no analytical value, since they also fail
to represent a partitioning of vectors into related groups.
Instead, a set of clusters at some intermediate height above
the horizontal axis in the dendrogram need to be selected as
an optimal or near-optimal clustering of the vectors into
related groups.

[0131] One approach to selecting an optimal clustering
involves analysis of a cluster-distance-versus-clustering-
sequence graph. This graph can be generated from the
dendrogram. FIG. 35A shows the cluster-distance-versus-
clustering-sequence graph for the dendrogram shown in
FIG. 34B. The vertical axis 3502 represents cluster distance
and the horizontal axis 3504 represents the sequence of
cluster mergers generated during the clustering process. The
graph starts at the origin 3506. A first point on the graft 3508
corresponds to the initial merger of single-vector clusters
containing vectors a and w, which were closest of all
single-vector clusters, at a distance of 2.5. The next point
3510 represents merging of the single-vector clusters con-
taining vectors v and J, at a distance of 4.5. These points are
connected by straight-line segments to give the impression
of a continuous curve, but the curve is, in fact, discrete. The
slope of the curve is relatively shallow up to the point 3512
representing the 21° cluster merger. The slope then greatly
steepens. Point 3512 is thus the most prominent knee or
elbow of the curve. In one approach to finding an optimal
clustering, a clustering distance just above the prominent
knee point, in the example of FIGS. 33A-35A at a height of
20 above the horizontal axis, is chosen as the cutoff cluster
distance. Then, as shown in FIG. 35B, a horizontal line at the
cutoff distance from the horizontal axis 3516 is drawn across
the dendrogram. Any vertical lines passing through this
horizontal line are followed back to the closest merger point,
and the clusters represented by these merger points are
selected as an optimal clustering. In the current case, the
merger points 3520-3524 are associated with upper-case-
letter symbols A-E corresponding to the vector clusters A-E
3530-3534, respectively, shown in FIG. 35C.

[0132] FIG. 36 illustrates the cophenetic correlation. The
cophenetic correlation provides a numerical indication of
how well the clustering distances produced during a clus-
tering of vectors correspond to the distances between the
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vectors. A set of N vectors 3602 is shown at the top of FIG.
36. The distance d between a pair of the vectors 3604 is one
of the above-discussed metric distances. The clustering
distance between the two vectors, or dendrogram distance
dd, is the distance 3606 between the highest level, in the
dendrogram, of a merger path that connects the two vectors.
An average distance d and an average dendrogram differ-
ence dd can be computed from the distances and dendro-
gram distances for all pairs of vectors, as indicated by
expressions 3608 and 3610, respectively. Finally, the cophe-
netic coefficient ¢ is computed as indicated by expression
3612. It is the ratio of the sum of the products of distance-
displacements and dendrogram-distance displacements for
all possible vector pairs to the product of the sums of the
squared distance displacements and dendrogram-distance
displacements for all possible vector pairs. The cophenetic
coeflicient is a real value in the range [0, 1]. The closer the
cophenetic coefficient to 1, the closer the vector distances
are to the dendrogram distances for the vector pairs. Thus,
when the cophenetic coefficient has a value greater than a
threshold value, the clustering can be considered to be a
faithful clustering based on underlying vector differences.

[0133] FIGS. 37A-D provide control-flow diagrams for a
routine “trace types.” and additional routines called by the
routine “trace types,” that together partition a set of call
traces into a number of subsets of related traces, each subset
representing a different trace type. FIG. 37A provides a
control-flow diagram for the routine “trace types.” In step
3702, the routine “trace types” receives a references to a set
of call traces T, a set of cluster-distance metrics M, a set of
vectorization methods V, and references to memory loca-
tions for storing a set of vectors U, a set of clusters C, and
a dendrogram D. In an outer for-loop of steps 3703-3713,
each vectorization method v in the set of vectorization
methods V is considered. In an inner for-loop of steps
3705-3711, each cluster-distance metric m in the set of
cluster-distance metrics M is considered. In step 3704, the
call traces in the set of call traces T are vectorized to produce
a set of call-trace vectors U using the currently considered
vectorization method v. In step 3706, the call-trace vectors
U are clustered using the currently considered cluster-
distance metric m from the set of cluster-distance metrics M
to produce a set of clusters stored in memory location C and
a corresponding dendrogram stored in memory location D.
In step 3707, a routine “verify” is called to determine
whether or not the current clustering meets various cluster-
ing requirements, discussed below. If so, the routine “verify”
returns the Boolean value TRUE along with a final cluster-
ing in memory location C and, otherwise, the routine
“verify” returns the Boolean value FALSE. When the rou-
tine “verify” returns the Boolean value TRUE, as deter-
mined in step 3708, the routine “trace types” returns, in step
3709, the value TRUE, with the clustering stored in the
memory location C. Otherwise, when there is another clus-
tering-distance metric in the set of clustering-distance met-
rics M to try, as determined in step 3710, a next clustering-
distance metric m is retrieved from the set M and control
returns to step 3706, for a next iteration of the inner for-loop
of steps 3705-3711. Otherwise, when there is another vec-
torization method v in the set of vectorization methods V to
try, as determined in step 3712, a next vectorization method
v is retrieved from the set V and control returns to step 3704
for a next iteration of the outer for-loop of steps 3703-3711.
When all possible vectorization methods and cluster-dis-
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tance metrics have been tried in an attempt to produce a
satisfactory clustering, but no satisfactory clustering is
obtained, the routine “trace types” returns the value FALSE
in step 3714.

[0134] FIG. 37B provides a control-flow diagram for the
routine “cluster,” called in step 3706 of FIG. 37A. In step
3715, the routine “cluster” receives references to the set of
vectors U, memory locations C and D, and a cluster-distance
metric m. In step 3716, the routine “cluster” clears the
memory buffers referenced by C and D. In the for-loop of
steps 3717-3720, a new cluster is created for each vector u
in the set of vectors U and added to the set of clusters stored
in the memory referenced by C. Each new single-vector
cluster ¢ is marked as “unclustered” and the dendrogram
stored in the memory location referenced by D is updated to
include a point corresponding to each single-vector cluster c.
Then, in each iteration of the while-loop of steps 3721-3728,
the closest pair of unclustered clusters is merged into a new
cluster, in steps 3722-3723, and each cluster of the pair is
marked as “clustered.”. When all of the current clusters are
marked as “clustered,” as determined in step 3724, the new
cluster is marked as “clustered.” in step 3725. Otherwise, the
new cluster is marked as “unclustered,” in step 3726. The
dendrogram is updated to include information about the new
cluster in step 3727. The while-loop of steps 3721-3728
continues until there are no more unclustered clusters in C.

[0135] FIG. 37C-D provide control-floor diagrams for the
routine “verify,” called in step 3707 of FIG. 37A. In step
3730, the routine “verify” receives references to memory
locations C and D, the set of vectors U, and the cluster-
distance metric m and the vectorization-method v. In step
3732, the routine “verify” computes the cophenetic coeffi-
cient for the clustering, as discussed above with reference to
FIG. 36. When the computed cophenetic coefficient has a
value less than a first threshold value, as determined in step
3733, the routine “verify” returns the Boolean value FALSE
to indicate that the clustering in the memory location C does
not adequately reflect the pairwise call-trace-vector dis-
tances. In step 3734, the routine “verify” determines a
provisional optimal clustering P using the cluster-distance-
versus-clustering-sequence-graph-based method discussed
above with reference to FIGS. 35A-C.

[0136] The sparsity of a bit vector is the percentage of bits
with the value O in the vector. Because the bit vectors
representing call traces include bits for each possible attri-
bute value or combination of attribute values for all of the
service calls related to a distributed application, the call-
trace bit vectors tend to be quite sparse. Following parti-
tioning of the set of call traces into subsets of related call
traces, via clustering, a re-vectorization of the call traces in
each subset should produce vectors that are significantly less
sparse than the original call-trace vectors, since the related
call traces would be expected to have fewer different attri-
bute values and/or attribute-value combinations. In step
3735, the routine “verify” determines an average sparsity S
for the original call-trace vectors in the set U. In addition,
local variables R and num are set to 0. In the for-loop of
steps 3736-3739, the vectors in each cluster in the provi-
sional clustering P are re-vectorized and the sparsities of the
groups of re-vectorized vectors are accumulated in local
variable R. Local variable num his incremented to count the
number of clusters in the provisional clustering. Following
the completion of the for-loop of steps 3736-3739, local
variable R is divided by local variable num to produce an
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average sparsity for the re-vectorized call traces, in step
3740. When the ratio of R to S is greater than or equal to a
second threshold, as determined in step 3741, the routine
“verify” returns the Boolean value FALSE, in step 3742,
because the clustering has not substantially reduced sparsity
of the call-trace vectors and is therefore judged to be
ineffective.

[0137] Turning to FIG. 37D, in step 3746, the routine
“verify” sets a local variable numlter to 0, sets local set
variables lowQ and lowV to the empty set, and sets local
variables 1q and 1v to 0. In the for-loop of steps 3747-3754,
each cluster ¢ in the provisional clustering P is considered.
In step 3748, local variable n is set to the size of the currently
considered cluster and local variable r is set to the percent of
the call traces in the currently considered cluster that are
considered relevant to an error or other anomalous opera-
tional behavior that is being analyzed. When n is less than
a third threshold, as determined in step 3749, the currently
considered cluster is deemed to be too small for statistical
purposes and is therefore entered into the set low V, in step
3750. Otherwise, when the percentage of relevant call traces
in the currently considered cluster is less than a fourth
threshold or greater than a fifth threshold, the currently
considered cluster is considered to have low quality, and is
therefore placed in the set lowQ, in step 3752. When the
for-loop of steps 3747-3754 completes, and when no clusters
were found to be too small or of low-quality, as determined
in step 3755, the current provisional clustering is stored in
the memory location referenced by C, in step 3756, and the
routine “verify” returns the value TRUE. Otherwise, when
the number of iterations stored in local variable numlter is
greater than or equal to a sixth threshold, as determined in
step 3758, the routine “verify” returns the value FALSE,
since the clustering is considered to be ineffective. Other-
wise, in step 3759, the provisional clustering is adjusted to
increase the size of low-volume clusters and to improve the
distributions of relevant and non-relevant call traces in the
clusters. The adjustments may involve merging clusters,
redistributing call traces between clusters, and other such
adjustments.

[0138] FIG. 38 summarizes the currently disclosed clus-
tering method for partitioning a set of call traces into subsets
for dimensional analysis. The large disk representing the full
set of call traces 3802 is partitioned by clustering into three
subsets 3804-3806. Dimensional analysis is applied to each
subset of call traces to produce relatively concise decision
trees 3809-3811. Each decision tree can then be analyzed in
order to ascertain the attribute dimensions relevant to a
particular type of error in, or anomalous operational behav-
ior of a distributed computer system. This approach solves
the problem associated with applying dimensional analysis
to a large set of collected call traces, discussed above with
reference to FIG. 28, while nonetheless analyzing all of the
original call traces. The small, relatively simple decision
trees generally produced by this method provide greater
explanatory power than an overly complex and large deci-
sion tree that may instead be produced by applying dimen-
sional analysis to the full set of call traces. Moreover, in
those cases in which dimensional analysis of the full set of
call traces does not produce a usable decision tree, the
currently disclosed clustering method may provide decision
trees that can be used to identify relevant attribute dimen-
sions.
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[0139] The present invention has been described in terms
of particular embodiments, it is not intended that the inven-
tion be limited to these embodiments. Modifications within
the spirit of the invention will be apparent to those skilled in
the art. For example, any of many different implementations
can be obtained by varying various design and implemen-
tation parameters, including modular organization, control
structures, data structures, hardware, operating system, and
virtualization layers, and other such design and implemen-
tation parameters. As discussed above, there are many
different types of cluster-distance and vector-distance met-
rics that can be employed during clustering. There are, in
addition, a variety of different approaches to verifying
clustering integrity, in addition to the cophenetic correlation
coeflicient. Clustering methods other than the above-de-
scribed agglomerative method may also be used. Vectoriza-
tion methods other than the above-described methods can
also be employed.

1. A system that determines attribute dimensions corre-
lated with anomalous operational behaviors of components
of a distributed computer system, the system comprising:

one Or mMore processors;

one or more memories; and

computer instruction, stored in one or more of the memo-

ries that, when executed by one or more of the proces-

sors, control the system to

collect metric data,

identify components of the distributed computer sys-
tem which exhibit anomalous operational behaviors
using the collected metric data,

access recently collected call traces from a call-tracing
service,

access attribute values for components of the distrib-
uted computer system,

cluster the collected call traces into multiple subsets of
related call traces, each representing a different trace
type,

apply decision-tree-based analysis to each trace type to
determine attribute dimensions of component types
correlated with the identified components which
exhibit anomalous operational behaviors, and

transmit the determined attribute dimensions to a com-
putational entity to facilitate amelioration of the
detected anomalous operational behaviors.

2. The system of claim 1 wherein components of the
distributed computer system are selected from among:

a distributed service-oriented application;

service nodes of the distributed service-oriented applica-

tion;

service instances of the service nodes of the distributed

service-oriented application;

servers;

mass-storage devices and appliances; and

networking components.

3. The system of claim 1 wherein the metric data com-
prises a series of timestamped metric values associated with
each of multiple metrics, each metric associated with a
component or component type of the distributed computer
system.

4. The system of claim 1 wherein the call traces each
encodes a series of component types related to execution of
a requested task or service.

5. The system of claim 4 wherein the call traces each
encodes a series of service calls to service nodes within a



US 2021/0303431 Al

distributed service-oriented application related to a service
call made by a remote client to the distributed service-
oriented application.

6. The system of claim 1 wherein attribute values for
components of the distributed computer system are points
within an attribute-value space, for which attributes are
dimensions, that is associated with the component type of
the components.

7. The system of claim 6 wherein component attribute
values are collected from one or more of an attribute-value
store and call traces that include component types of the
components of the distributed computer system which
exhibit anomalous operational behaviors.

8. The system of claim 7 wherein the decision-tree-based
analyses identify attribute dimensions of component types in
which component attribute values are localized, rather than
distributed across the dimensions.

9. The system of claim 8 wherein the decision-tree-based
analyses determine attributes and attributes values that par-
tition the collected call traces into a subset that contains call
traces that include components of the distributed computer
system, and only call traces that include components of the
distributed computer system which exhibit anomalous
operational behaviors, and one or more additional subsets.

10. The system of claim 1 wherein the collected call traces
are clustered into multiple trace types by:

vectorizing the call traces to generate an initial set of

call-trace vectors;

clustering the call-trace vectors;

choosing a provisional set of clusters; and

verifying the provisional set of clusters.

11. The system of claim 10 a call trace is vectorized by:

identifying the unique service calls in the call trace;

sorting the identified service calls to produce an ordered
set of call traces;

for each service call in the ordered set of call traces,

collecting the attribute values for the service-call
instances invoked during execution of the service
entrypoint represented by the call trace; and
mapping the ordered set of call traces and collected
attributes to a call-trace vector.

12. The system of claim 11 wherein the call-trace vector
is a bit vector; and

a unique bit in the call-trace vector corresponds to each

different collected attribute-value/service-call pair.

13. The system of claim 11

wherein the call-trace vector is a bit vector; and

a unique bit in the call-trace vector corresponds to each

different attribute-value-combination/service-call pair.

14. The system of claim 10 wherein the set of call-trace
vectors is clustered by:

initially assigning each call-trace vector to a unique

single-vector cluster; and

iteratively merging a closest pair of clusters into a new

cluster, where the distance between pairs of clusters is
determined using a cluster-distance metric.

15. The system of claim 10 wherein a provisional set of
clusters is chosen by:

selecting a cut-off clustering distance at a clustering

distance greater than the clustering distance of the
prominent knee of a cluster-distance-versus-clustering-
sequence graph; and

selecting, as the provisional set of clusters, clusters

formed from pairs of clusters closer than the cut-off
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clustering distance that were subsequently merged
from pairs of clusters further from one another than the
cut-off clustering distance.

16. The system of claim 10 wherein the provisional set of
clusters is verified by:

calculating a cophenetic correlation coefficient for the

clustering of call-trace vectors and determining that the
cophenetic correlation coefficient is greater than a first
threshold value;

determining that a ratio of the average sparsity of the

call-trace vectors produced by re-vectorizing the call
traces in each cluster of the provisional set of clusters
to the sparsity of the initial set of call-trace vectors is
less than a second threshold;

determining the number of call-trace vectors in each

cluster of the provisional set of clusters;

determining the percentage of relevant call-trace vectors

specified to be relevant in each cluster of the provi-
sional set of clusters;

when the number of call-trace vectors in any of the

clusters of the provisional set of clusters is less than a
third threshold value or the percentage of relevant call
traces in any of the clusters of the provisional set of
clusters is less than a fourth threshold or greater than a
fifth threshold, determining that the provisional set of
clusters can be adjusted to produce an adjusted set of
clusters that does not include any clusters with a
percentage of relevant call traces less than the fourth
threshold or greater than the fifth threshold and that
does not include any clusters with a number of call-
trace vectors less than the third threshold value.

17. A method that identifies attribute dimensions corre-
lated with anomalous operational behaviors of components
of a distributed computer system, the method comprising:

collecting metric data comprising a series of timestamped

metric values associated with each of multiple metrics,
each metric associated with a component or component
type of the distributed computer system;

identifying components of the distributed computer sys-

tem which exhibit anomalous operational behaviors
using the collected metric data;

accessing recently collected call traces from a call-tracing

service;

accessing attribute values for components of the distrib-

uted computer system;

clustering the collected call traces into multiple subsets of

related call traces, each representing a different trace
t}/peS

applying decision-tree-based analyses to each trace type

to determine attribute dimensions of component types
correlated with the identified components which
exhibit anomalous operational behaviors.

18. The method of claim 17 wherein the collected call
traces are clustered into multiple trace types by:

vectorizing the call traces to generate an initial set of

call-trace vectors;

clustering the call-trace vectors;

choosing a provisional set of clusters; and

verifying the provisional set of clusters.

19. A physical data-storage device that stores computer
instructions that, when executed by one or more processors
of a system that includes one or more memories and one or
more mass-storage devices, controls the system to identify
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attribute dimensions correlated with anomalous operational
behaviors of components of a distributed computer system
by:
collecting metric data comprising a series of timestamped
metric values associated with each of multiple metrics,
each metric associated with a component or component
type of the distributed computer system;
identifying components of the distributed computer sys-
tem which exhibit anomalous operational behaviors
using the collected metric data;
accessing recently collected call traces from a call-tracing
service;
accessing attribute values for components of the distrib-
uted computer system;
clustering the collected call traces into multiple subsets of
related call traces,
applying decision-tree-based analyses to each subset of
related call traces to determine attribute dimensions of
component types correlated with the identified compo-
nents which exhibit anomalous operational behaviors.
20. The physical data-storage device of claim 19 wherein
a subset of the collected call traces are clustered into
multiple subsets of related call traces by:
vectorizing the call traces to generate an initial set of
call-trace vectors;
clustering the call-trace vectors;
choosing a provisional set of clusters; and
verifying the provisional set of clusters.
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