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SUMMARY METHODS AND SYSTEMS THAT IDENTIFY 
DIMENSIONS RELATED TO ANOMALIES IN 
SYSTEM COMPONENTS OF DISTRIBUTED 
COMPUTER SYSTEMS USING CLUSTERED 

TRACES , METRICS , AND 
COMPONENT - ASSOCIATED ATTRIBUTE 

VALUES 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] The application is a continuation - in - part of U.S. 
patent application Ser . No. 16 / 833,102 , filed Mar. 27 , 2020 . 

[ 0005 ] The current document is directed to methods and 
systems that employ distributed - computer - system metrics 
collected by one or more distributed - computer - system met 
rics - collection services , call traces collected by one or more 
call - trace services , and attribute values for distributed - com 
puter - system components to identify attribute dimensions 
related to anomalous behavior of distributed - computer - sys 
tem components . In a described implementation , nodes 
correspond to particular types of system components and 
node instances are individual components of the component 
type corresponding to a node . Node instances are associated 
with attribute values and node are associated with attribute 
value spaces defined by attribute dimensions . A set of call 
traces is partitioned , by clustering . Using attribute values 
and call traces , attribute dimensions that are likely related to 
particular anomalous behaviors of distributed - computer - sys 
tem components are determined by decision - tree - related 
analyses for each partition and are reported to one or more 
cor ational entities to facilitate resolution of the anoma 
lous behaviors . 

TECHNICAL FIELD 

[ 0002 ] The current document is directed to distributed 
computer - system and distributed - application administration 
and management and , in particular , to methods and systems 
that identify attribute dimensions relevant to anomalies 
detected in components of distributed applications and dis 
tributed computer systems . 

BACKGROUND 
BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] During the past seven decades , electronic comput 
ing has evolved from primitive , vacuum - tube - based com 
puter systems , initially developed during the 1940s , to 
modern electronic computing systems in which large num 
bers of multi - processor servers , work stations , and other 
individual computing systems are networked together with 
large - capacity data - storage devices and other electronic 
devices to produce geographically distributed computing 
systems with hundreds of thousands , millions , or more 
components that provide enormous computational band 
widths and data - storage capacities . These large , distributed 
computing systems are made possible by advances in com 
puter networking , distributed operating systems and appli 
cations , data - storage appliances , computer hardware , and 
software technologies . However , despite all of these 
advances , the rapid increase in the size and complexity of 
computing systems has been accompanied by numerous 
scaling issues and technical challenges , including technical 
challenges associated with communications overheads 
encountered in parallelizing computational tasks among 
multiple processors , component failures , and distributed 
system management . As new distributed computing tech 
nologies are developed , and as general hardware and soft 
ware technologies continue to advance , the current trend 
towards ever - larger and more complex distributed comput 
ing systems appears likely to continue well into the future . 
[ 0004 ] As the complexity of distributed computing sys 
tems has increased , the management and administration of 
distributed computing systems has , in turn , become increas 
ingly complex , involving greater computational overheads 
and significant inefficiencies and deficiencies . In fact , many 
desired management - and - administration functionalities are 
becoming sufficiently complex to render traditional 
approaches to the design and implementation of automated 
management and administration systems impractical , from a 
time and cost standpoint , and even from a feasibility stand 
point . Therefore , designers and developers of various types 
of automated management - and - administration facilities 
related to distributed computing systems are seeking new 
approaches to implementing automated management - and 
administration facilities and functionalities . 

[ 0006 ] FIG . 1 provides a general architectural diagram for 
various types of computers . 
[ 0007 ] FIG . 2 illustrates an Internet - connected distributed 
computing system . 
[ 0008 ] FIG . 3 illustrates cloud computing . 
[ 0009 ] FIG . 4 illustrates generalized hardware and soft 
ware components of a general - purpose computer system , 
such as a general - purpose computer system having an archi 
tecture similar to that shown in FIG . 1 . 
[ 0010 ] FIGS . 5A - D illustrate two types of virtual machine 
and virtual - machine execution environments . 
[ 0011 ] FIG . 6 illustrates an OVF package . 
[ 0012 ] FIG . 7 illustrates virtual data centers provided as an 
abstraction of underlying physical - data - center hardware 
components . 
[ 0013 ] FIG . 8 illustrates virtual machine components of a 
VI - management - server and physical servers of a physical 
data center above which a virtual - data - center interface is 
provided by the VI - management - server . 
[ 0014 ] FIG . 9 illustrates a cloud - director level of abstrac 
tion . 
[ 0015 ] FIG . 10 illustrates virtual - cloud - connector nodes 
( “ VCC nodes ” ) and a VCC server , components of a distrib 
uted system that provides multi - cloud aggregation and that 
includes a cloud - connector server and cloud - connector 
nodes that cooperate to provide services that are distributed 
across multiple clouds . 
[ 0016 ] FIG . 11 illustrates a distributed service - oriented 
application . 
[ 0017 ] FIGS . 12A - B illustrate a sequence of service calls 
that implement a particular distributed - service - oriented - ap 
plication API call or entrypoint . 
[ 0018 ] FIGS . 13A - B illustrate service components and 
service nodes . 
[ 0019 ] FIGS . 14A - C illustrate the scale of certain distrib 
uted - service - oriented - applications . 
[ 0020 ] FIGS . 15A - B illustrate components of a call - trac 
ing service . 
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traces into a number of subsets of related traces , each subset 
representing a different trace type . 
[ 0043 ] FIG . 38 summarizes the currently disclosed clus 
tering method for partitioning a set of call traces into subsets 
for dimensional analysis . 

DETAILED DESCRIPTION 

[ 0021 ] FIGS . 16A - H illustrate and how the tracing service , 
discussed with reference to FIGS . 15A - B , collects a call 
trace . 
[ 0022 ] FIG . 17 illustrates distributed - computing - system 
component attributes and attribute values . 
[ 0023 ] FIG . 18 illustrates a simple example of event 
message logging and analysis . 
[ 0024 ] FIG . 19 shows a small , 11 - entry portion of a log file 
from a distributed computer system . 
[ 0025 ] FIG . 20 illustrates one initial event - message - pro cessing approach . 
[ 0026 ] FIGS . 21A - B illustrate one of many different pos 
sible ways of storing attribute values for system components 
and metric values for system components generated from 
event messages or event records . 
[ 0027 ] FIGS . 22A - B illustrates detection of the system 
component operational anomalies using metric data . 
[ 0028 ] FIGS . 23A - K illustrate one example of the cur 
rently disclosed methods for determining root causes of , and 
attributes that are likely to be relevant to , detected anomalies 
within distributed heating systems . 
[ 0029 ] FIGS . 24A - B illustrate a second example of appli 
cation of the currently disclosed methods for determining 
root causes of , and attributes that are likely to be relevant to , 
detected anomalies within distributed heating systems . 
[ 0030 ] FIGS . 25A - D provide additional examples of iden 
tifying relevant dimensions with respect to problem - associ 
ated components within a distributed computing system . 
[ 0031 ] FIGS . 26A - B illustrate data structures and analyti 
cal approaches used in the control - flow diagrams provided 
in FIGS . 27A - F to illustrate the decision - tree - based methods 
for identifying attribute dimensions relevant to observed 
anomalies in the operational behaviors of distributed - com 
puter - system components . 
[ 0032 ] FIGS . 27A - H provide control - flow diagrams that 
illustrate one implementation of the decision - tree - based 
analysis used by currently disclosed methods and systems 
for determining attribute dimensions of the distributed 
computer - system components relevant to particular anoma 
lous operational behaviors observed for one or more dis 
tributed - computer - system components . 
[ 0033 ] FIG . 28 illustrates a problem with applying dimen 
sional analysis to very large sets of call traces . 
[ 0034 ] FIG . 29 illustrates one approach to vectorizing call 
traces . 
[ 0035 ] FIGS . 30A - C illustrate several approaches to gen 
erating a final vector from the expanded - elements vector 
2936 shown in FIG . 29 . 
[ 0036 ] FIGS . 31A - D illustrates several different types of 
metrics that can be used to determine the distance between 
two vectors . 
[ 0037 ] FIG . 32 illustrates various different distance met 
rics for clusters . 
[ 0038 ] FIGS . 33A - E illustrate one approach to clustering 
vectors within the class of clustering methods referred to as 
" agglomerative " or " bottom - up . " 
[ 0039 ] FIGS . 34A - B show two versions of a dendrogram 
generated during the vector clustering illustrated in FIGS . 
33A - E . 
[ 0040 ] FIGS . 35A - C illustrates cluster selection . 
[ 0041 ] FIG . 36 illustrates the cophenetic correlation . 
[ 0042 ] FIGS . 37A - D provide control - flow diagrams for a 
routine “ trace types , ” and additional routines called by the 
routine “ trace types , " that together partition a set of call 

[ 0044 ] The current document is directed to methods and 
systems that automatically identify attribute dimensions of 
component nodes that are likely related to the causes of 
component - operation anomalies . In a first subsection , below , 
a detailed description of computer hardware , complex com 
putational systems , and virtualization is provided with ref 
erence to FIGS . 1-10 . In a second subsection , distributed 
service - oriented applications , node attributes , call traces , 
and metric data are discussed , with reference to FIGS . 
11-22B . A third subsection discloses the dimensional - analy 
sis methods and systems to which the current document is 
directed , with reference to FIGS . 23A - 27H . A fourth sub 
section discloses call - trace - clustering methods and systems 
to which the current document is directed , with reference to 
FIGS . 23A - 27H . 
[ 0045 ] Computer Hardware , Complex , Computational 
Systems , and Virtualization 
[ 0046 ] The term “ abstraction ” is not , in any way , intended 
to mean or suggest an abstract idea or concept . Computa 
tional abstractions are tangible , physical interfaces that are 
implemented , ultimately , using physical computer hardware , 
data - storage devices , and communications systems . Instead , 
the term “ abstraction ” refers , in the current discussion , to a 
logical level of functionality encapsulated within one or 
more concrete , tangible , physically - implemented computer 
systems with defined interfaces through which electroni 
cally - encoded data is exchanged , process execution 
launched , and electronic services are provided . Interfaces 
may include graphical and textual data displayed on physical 
display devices as well as computer programs and routines 
that control physical computer processors to carry out vari 
ous tasks and operations and that are invoked through 
electronically implemented application programming inter 
faces ( “ APIs ” ) and other electronically implemented inter 
faces . There is a tendency among those unfamiliar with 
modern technology and science to misinterpret the terms 
" abstract " and " abstraction . ” when used to describe certain 
aspects of modern computing . For example , one frequently 
encounters assertions that , because a computational system 
is described in terms of abstractions , functional layers , and 
interfaces , the computational system is somehow different 
from a physical machine or device . Such allegations are 
unfounded . One only needs to disconnect a computer system 
or group of computer systems from their respective power 
supplies to appreciate the physical , machine nature of com 
plex computer technologies . One also frequently encounters 
statements that characterize a computational technology as 
being " only software , " and thus not a machine or device . 
Software is essentially a sequence of encoded symbols , such 
as a printout of a computer program or digitally encoded 
computer instructions sequentially stored in a file on an 
optical disk or within an electromechanical mass - storage 
device . Software alone can do nothing . It is only when 
encoded computer instructions are loaded into an electronic 
memory within a computer system and executed on a 
physical processor that so - called “ software implemented ” 
functionality is provided . The digitally encoded computer 
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instructions are an essential and physical control component 
of processor - controlled machines and devices , no less essen 
tial and physical than a cam - shaft control system in an 
internal - combustion engine . Multi - cloud aggregations , 
cloud - computing services , virtual - machine containers and 
virtual machines , communications interfaces , and many of 
the other topics discussed below are tangible , physical 
components of physical , electro - optical - mechanical com 
puter systems . 
[ 0047 ] FIG . 1 provides a general architectural diagram for 
various types of computers . The computer system contains 
one or multiple central processing units ( “ CPUs ” ) 102-105 , 
one or more electronic memories 108 interconnected with 
the CPUs by a CPU / memory - subsystem bus 110 or multiple 
busses , a first bridge 112 that interconnects the CPU / 
memory - subsystem bus 110 with additional busses 114 and 
116 , or other types of high - speed interconnection media , 
including multiple , high - speed serial interconnects . These 
busses or serial interconnections , in turn , connect the CPUs 
and memory with specialized processors , such as a graphics 
processor 118 , and with one or more additional bridges 120 , 
which are interconnected with high - speed serial links or 
with multiple controllers 122-127 , such as controller 127 , 
that provide access to various different types of mass - storage 
devices 128 , electronic displays , input devices , and other 
such components , subcomponents , and computational 
resources . It should be noted that computer - readable data 
storage devices include optical and electromagnetic disks , 
electronic memories , and other physical data - storage 
devices . Those familiar with modern science and technology 
appreciate that electromagnetic radiation and propagating 
signals do not store data for subsequent retrieval and can 
transiently “ store ” only a byte or less of information per 
mile , far less information than needed to encode even the 
simplest of routines . 
[ 0048 ] Of course , there are many different types of 
puter - system architectures that differ from one another in the 
number of different memories , including different types of 
hierarchical cache memories , the number of processors and 
the connectivity of the processors with other system com 
ponents , the number of internal communications busses and 
serial links , and in many other ways . However , computer 
systems generally execute stored programs by fetching 
instructions from memory and executing the instructions in 
one or more processors . Computer systems include general 
purpose computer systems , such as personal computers 
( “ PCs ” ) , various types of servers and workstations , and 
higher - end mainframe computers , but may also include a 
plethora of various types of special - purpose computing 
devices , including data - storage systems , communications 
routers , network nodes , tablet computers , and mobile tele 
phones . 
[ 0049 ] FIG . 2 illustrates an Internet - connected distributed 
computing system . As communications and networking 
technologies have evolved in capability and accessibility , 
and as the computational bandwidths , data - storage capaci 
ties , and other capabilities and capacities of various types of 
computer systems have steadily and rapidly increased , much 
of modern computing now generally involves large distrib 
uted systems and computers interconnected by local net 
works , wide - area networks , wireless communications , and 
the Internet . FIG . 2 shows a typical distributed system in 
which a large number of PCs 202-205 , a high - end distrib 
uted mainframe system 210 with a large data - storage system 

212 , and a large computer center 214 with large numbers of 
rack - mounted servers or blade servers all interconnected 
through various communications and networking systems 
that together comprise the Internet 216. Such distributed 
computing systems provide diverse arrays of functionalities . 
For example , a PC user sitting in a home office may access 
hundreds of millions of different web sites provided by 
hundreds of thousands of different web servers throughout 
the world and may access high - computational - bandwidth 
computing services from remote computer facilities for 
running complex computational tasks . 
[ 0050 ] Until recently , computational services were gener 
ally provided by computer systems and data centers pur 
chased , configured , managed , and maintained by service 
provider organizations . For example , an e - commerce retailer 
generally purchased , configured , managed , and maintained a 
data center including numerous web servers , back - end com 
puter systems , and data - storage systems for serving web 
pages to remote customers , receiving orders through the 
web - page interface , processing the orders , tracking com 
pleted orders , and other myriad different tasks associated 
with an e - commerce enterprise . 
[ 0051 ] FIG . 3 illustrates cloud computing . In the recently 
developed cloud - computing paradigm , computing cycles 
and data - storage facilities are provided to organizations and 
individuals by cloud - computing providers . In addition , 
larger organizations may elect to establish private cloud 
computing facilities in addition to , or instead of , subscribing 
to computing services provided by public cloud - computing 
service providers . In FIG . 3 , a system administrator for an 
organization , using a PC 302 , accesses the organization's 
private cloud 304 through a local network 306 and private 
cloud interface 308 and also accesses , through the Internet 
310 , a public cloud 312 through a public - cloud services 
interface 314. The administrator can , in either the case of the 
private cloud 304 or public cloud 312 , configure virtual 
computer systems and even entire virtual data centers and 
launch execution of application programs on the virtual 
computer systems and virtual data centers in order to carry 

of many different types of computational tasks . As 
one example , a small organization may configure and run a 
virtual data center within a public cloud that executes web 
servers to provide an e - commerce interface through the 
public cloud to remote customers of the organization , such 
as a user viewing the organization's e - commerce web pages 
on a remote user system 316 . 
[ 0052 ] Cloud - computing facilities are intended to provide 
computational bandwidth and data - storage services much as 
utility companies provide electrical power and water to 
consumers . Cloud computing provides enormous advan 
tages to small organizations without the resources to pur 
chase , manage , and maintain in - house data centers . Such 
organizations can dynamically add and delete virtual com 
puter systems from their virtual data centers within public 
clouds in order to track computational - bandwidth and data 
storage needs , rather than purchasing sufficient computer 
systems within a physical data center to handle peak com 
putational - bandwidth and data - storage demands . Moreover , 
small organizations can completely avoid the overhead of 
maintaining and managing physical computer systems , 
including hiring and periodically retraining information 
technology specialists and continuously paying for operat 
ing - system and database - management - system upgrades . 
Furthermore , cloud - computing interfaces allow for easy and 

com 

out any 



US 2021/0303431 A1 Sep. 30 , 2021 
4 

straightforward configuration of virtual computing facilities , 
flexibility in the types of applications and operating systems 
that can be configured , and other functionalities that are 
useful even for owners and administrators of private cloud 
computing facilities used by a single organization . 
[ 0053 ] FIG . 4 illustrates generalized hardware and soft 
ware components of a general - purpose computer system , 
such as a general - purpose computer system having an archi 
tecture similar to that shown in FIG . 1. The computer system 
400 is often considered to include three fundamental layers : 
( 1 ) a hardware layer or level 402 ; ( 2 ) an operating - system 
layer or level 404 ; and ( 3 ) an application - program layer or 
level 406. The hardware layer 402 includes one or more 
processors 408 , system memory 410 , various different types 
of input - output ( “ I / O ” ) devices 410 and 412 , and mass 
storage devices 414. Of course , the hardware level also 
includes many other components , including power supplies , 
internal communications links and busses , specialized inte 
grated circuits , many different types of processor - controlled 
or microprocessor - controlled peripheral devices and con 
trollers , and many other components . The operating system 
404 interfaces to the hardware level 402 through a low - level 
operating system and hardware interface 416 generally 
comprising a set of non - privileged computer instructions 
418 , a set of privileged computer instructions 420 , a set of 
non - privileged registers and memory addresses 422 , and a 
set of privileged registers and memory addresses 424. In 
general , the operating system exposes non - privileged 
instructions , non - privileged registers , and non - privileged 
memory addresses 426 and a system - call interface 428 as an 
operating - system interface 430 to application programs 432 
436 that execute within an execution environment provided 
to the application programs by the operating system . The 
operating system , alone , accesses the privileged instructions , 
privileged registers , and privileged memory addresses . By 
reserving access to privileged instructions , privileged reg 
isters , and privileged memory addresses , the operating sys 
tem can ensure that application programs and other higher 
level computational entities cannot interfere with one 
another's execution and cannot change the overall state of 
the computer system in ways that could deleteriously impact 
system operation . The operating system includes many 
internal components and modules , including a scheduler 
442 , memory management 444 , a file system 446 , device 
drivers 448 , and many other components and modules . To a 
certain degree , modern operating systems provide numerous 
levels of abstraction above the hardware level , including 
virtual memory , which provides to each application program 
and other computational entities a separate , large , linear 
memory - address space that is mapped by the operating 
system to various electronic memories and mass - storage 
devices . The scheduler orchestrates interleaved execution of 
various different application programs and higher - level 
computational entities , providing to each application pro 
gram a virtual , stand - alone system devoted entirely to the 
application program . From the application program's stand 
point , the application program executes continuously with 
out concern for the need to share processor resources and 
other system resources with other application programs and 
higher - level computational entities . The device drivers 
abstract details of hardware - component operation , allowing 
application programs to employ the system - call interface for 
transmitting and receiving data to and from communications 
networks , mass - storage devices , and other I / O devices and 

subsystems . The file system 436 facilitates abstraction of 
mass - storage - device and memory resources as a high - level , 
easy - to - access , file - system interface . Thus , the development 
and evolution of the operating system has resulted in the 
generation of a type of multi - faceted virtual execution 
environment for application programs and other higher - level 
computational entities . 
[ 0054 ] While the execution environments provided by 
operating systems have proved to be an enormously suc 
cessful level of abstraction within computer systems , the 
operating - system - provided level of abstraction is nonethe 
less associated with difficulties and challenges for develop 
ers and users of application programs and other higher - level 
computational entities . One difficulty arises from the fact 
that there are many different operating systems that run 
within various different types of computer hardware . In 
many cases , popular application programs and computa 
tional systems are developed to run on only a subset of the 
available operating systems and can therefore be executed 
within only a subset of the various different types of com 
puter systems on which the operating systems are designed 
to run . Often , even when an application program or other 
computational system is ported to additional operating sys 
tems , the application program or other computational system 
can nonetheless run more efficiently on the operating sys 
tems for which the application program or other computa 
tional system was originally targeted . Another difficulty 
arises from the increasingly distributed nature of computer 
systems . Although distributed operating systems are the 
subject of considerable research and development efforts , 
many of the popular operating systems are designed primar 
ily for execution on a single computer system . In many 
cases , it is difficult to move application programs , in real 
time , between the different computer systems of a distrib 
uted computing system for high - availability , fault - tolerance , 
and load - balancing purposes . The problems are even greater 
in heterogeneous distributed computing systems which 
include different types of hardware and devices running 
different types of operating systems . Operating systems 
continue to evolve , as a result of which certain older 
application programs and other computational entities may 
be incompatible with more recent versions of operating 
systems for which they are targeted , creating compatibility 
issues that are particularly difficult to manage in large 
distributed systems . 
[ 0055 ] For all of these reasons , a higher level of abstrac 
tion , referred to as the “ virtual machine , ” has been devel 
oped and evolved to further abstract computer hardware in 
order to address many difficulties and challenges associated 
with traditional computing systems , including the compat 
ibility issues discussed above . FIGS . 5A - D illustrate several 
types of virtual machine and virtual - machine execution 
environments . FIGS . 5A - B use the same illustration con 
ventions as used in FIG . 4. FIG . 5A shows a first type of 
virtualization . The computer system 500 in FIG . 5A includes 
the same hardware layer 502 as the hardware layer 402 
shown in FIG . 4. However , rather than providing an oper 
ating system layer directly above the hardware layer , as in 
FIG . 4 , the virtualized computing environment illustrated in 
FIG . 5A features a virtualization layer 504 that interfaces 
through a virtualization - layer / hardware - layer interface 506 , 
equivalent to interface 416 in FIG . 4 , to the hardware . The 
virtualization layer provides a hardware - like interface 508 to 
a number of virtual machines , such as virtual machine 510 , 
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executing above the virtualization layer in a virtual - machine 
layer 512. Each virtual machine includes one or more application programs or other higher - level computational 
entities packaged together with an operating system , 
referred to as a “ guest operating system . ” such as application 
514 and guest operating system 516 packaged together 
within virtual machine 510. Each virtual machine is thus 
equivalent to the operating system layer 404 and applica 
tion - program layer 406 in the general - purpose computer 
system shown in FIG . 4. Each guest operating system within 
a virtual machine interfaces to the virtualization - layer inter 
face 508 rather than to the actual hardware interface 506 . 
The virtualization layer partitions hardware resources into 
abstract virtual - hardware layers to which each guest oper 
ating system within a virtual machine interfaces . The guest 
operating systems within the virtual machines , in general , 
are unaware of the virtualization layer and operate as if they 
were directly accessing a true hardware interface . The 
virtualization layer ensures that each of the virtual machines 
currently executing within the virtual environment receive a 
fair allocation of underlying hardware resources and that all 
virtual machines receive sufficient resources to progress in 
execution . The virtualization - layer interface 508 may differ 
for different guest operating systems . For example , the 
virtualization layer is generally able to provide virtual 
hardware interfaces for a variety of different types of com 
puter hardware . This allows , as one example , a virtual 
machine that includes a guest operating system designed for 
a particular computer architecture to run on hardware of a 
different architecture . The number of virtual machines need 
not be equal to the number of physical processors or even a 
multiple of the number of processors . 
[ 0056 ] The virtualization layer includes a virtual - machine 
monitor module 518 ( “ VMM ” ) that virtualizes physical 
processors in the hardware layer to create virtual processors 
on which each of the virtual machines executes . For execu 
tion efficiency , the virtualization layer attempts to allow 
virtual machines to directly execute non - privileged instruc 
tions and to directly access non - privileged registers and 
memory . However , when the guest operating system within 
a virtual machine accesses virtual privileged instructions , 
virtual privileged registers , and virtual privileged memory 
through the virtualization - layer interface 508 , the accesses 
result in execution of virtualization - layer code to simulate or 
emulate the privileged resources . The virtualization layer 
additionally includes a kernel module 520 that manages 
memory , communications , and data - storage machine 
resources on behalf of executing virtual machines ( “ VM 
kernel ” ) . The VM kernel , for example , maintains shadow 
page tables on each virtual machine so that hardware - level 
virtual - memory facilities can be used to process memory 
accesses . The VM kernel additionally includes routines that 
implement virtual communications and data - storage devices 
as well as device drivers that directly control the operation 
of underlying hardware communications and data - storage 
devices . Similarly , the VM kernel virtualizes various other 
types of I / O devices , including keyboards , optical - disk 
drives , and other such devices . The virtualization layer 
essentially schedules execution of virtual machines much 
like an operating system schedules execution of application 
programs , so that the virtual machines each execute within 
a complete and fully functional virtual hardware layer . 
[ 0057 ] FIG . 5B illustrates a second type of virtualization . 
In FIG . 5B , the computer system 540 includes the same 

hardware layer 542 and software layer 544 as the hardware 
layer 402 shown in FIG . 4. Several application programs 
546 and 548 are shown running in the execution environ 
ment provided by the operating system . In addition , a 
virtualization layer 550 is also provided , in computer 540 , 
but , unlike the virtualization layer 504 discussed with ref 
erence to FIG . 5A , virtualization layer 550 is layered above 
the operating system 544 , referred to as the “ host OS . ” and 
uses the operating system interface to access operating 
system - provided functionality as well as the hardware . The 
virtualization layer 550 comprises primarily a VMM and a 
hardware - like interface 552 , similar to hardware - like inter 
face 508 in FIG . 5A . The virtualization - layer / hardware - layer 
interface 552 , equivalent to interface 416 in FIG . 4 , provides 
an execution environment for a number of virtual machines 
556-558 , each including one or more application programs 
or other higher - level computational entities packaged 
together with a guest operating system . 
[ 0058 ] While the traditional virtual - machine - based virtu 
alization layers , described with reference to FIGS . 5A - B , 
have enjoyed widespread adoption and use in a variety of 
different environments , from personal computers to enor 
mous distributed computing systems , traditional virtualiza 
tion technologies are associated with computational over 
heads . While these computational overheads have been 
steadily decreased , over the years , and often represent ten 
percent or less of the total computational bandwidth con 
sumed by an application running in a virtualized environ 
ment , traditional virtualization technologies nonetheless 
involve computational costs in return for the power and 
flexibility that they provide . Another approach to virtualiza 
tion is referred to as operating - system - level virtualization 
( " OSL virtualization ” ) . FIG . 5C illustrates the OSL - virtual 
ization approach . In FIG . 5C , as in previously discussed 
FIG . 4 , an operating system 404 runs above the hardware 
402 of a host computer . The operating system provides an 
interface for higher - level computational entities , the inter 
face including a system - call interface 428 and exposure to 
the non - privileged instructions and memory addresses and 
registers 426 of the hardware layer 402. However , unlike in 
FIG . 5A , rather than applications running directly above the 
operating system , OSL virtualization involves an OS - level 
virtualization layer 560 that provides an operating - system 
interface 562-564 to each of one or more containers 566 
568. The containers , in turn , provide an execution environ 
ment for one or more applications , such as application 570 
running within the execution environment provided by con 
tainer 566. The container can be thought of as a partition of 
the resources generally available to higher - level computa 
tional entities through the operating system interface 430 . 
While a traditional virtualization layer can simulate the 
hardware interface expected by any of many different oper 
ating systems , OSL virtualization essentially provides a 
secure partition of the execution environment provided by a 
particular operating system . As one example , OSL virtual 
ization provides a file system to each container , but the file 
system provided to the container is essentially a view of a 
partition of the general file system provided by the under 
lying operating system . In essence , OSL virtualization uses 
operating system features , such as name space support , to 
isolate each container from the remaining containers so that 
the applications executing within the execution environment 
provided by a container are isolated from applications 
executing within the execution environments provided by all 
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other containers . As a result , a container can be booted up 
much faster than a virtual machine , since the container uses 
operating - system - kernel features that are already available 
within the host computer . Furthermore , the containers share 
computational bandwidth , memory , network bandwidth , and 
other computational resources provided by the operating 
system , without resource overhead allocated to virtual 
machines and virtualization layers . Again , however , OSL 
virtualization does not provide many desirable features of 
traditional virtualization . As mentioned above , OSL virtu 
alization does not provide a way to run different types of 
operating systems for different groups of containers within 
the same host system , nor does OSL - virtualization provide 
for live migration of containers between host computers , as 
does traditional virtualization technologies . 
[ 0059 ] FIG . 5D illustrates an approach to combining the 
power and flexibility of traditional virtualization with the 
advantages of OSL virtualization . FIG . 5D shows a host 
computer similar to that shown in FIG . 5A , discussed above . 
The host computer includes a hardware layer 502 and a 
virtualization layer 504 that provides a simulated hardware 
interface 508 to an operating system 572. Unlike in FIG . 5A , 
the operating system interfaces to an OSL - virtualization 
layer 574 that provides container execution environments 
576-578 to multiple application programs . Running contain 
ers above a guest operating s stem within a virtualized host 
computer provides many of the advantages of traditional 
virtualization and OSL virtualization . Containers can be 
quickly booted in order to provide additional execution 
environments and associated resources to new applications . 
The resources available to the guest operating system are 
efficiently partitioned among the containers provided by the 
OSL - virtualization layer 574. Many of the powerful and 
flexible features of the traditional virtualization technology 
can be applied to containers running above guest operating 
systems including live migration from one host computer to 
another , various types of high - availability and distributed 
resource sharing , and other such features . Containers pro 
vide share - based allocation of computational resources to 
groups of applications with guaranteed isolation of applica 
tions in one container from applications in the remaining 
containers executing above a guest operating system . More 
over , resource allocation can be modified at run time 
between containers . The traditional virtualization layer pro 
vides flexible and easy scaling and a simple approach to 
operating - system upgrades and patches . Thus , the use of 
OSL virtualization above traditional virtualization , as illus 
trated in FIG . 5D , provides much of the advantages of both 
a traditional virtualization layer and the advantages of OSL 
virtualization . Note that , although only a single guest oper 
ating system and OSL virtualization layer as shown in FIG . 
5D , a single virtualized host system can run multiple dif 
ferent guest operating systems within multiple virtual 
machines , each of which supports one or more containers . 
[ 0060 ] virtual machine or virtual application , described 
below , is encapsulated within a data package for transmis 
sion , distribution , and loading into a virtual - execution envi 
ronment . One public standard for virtual - machine encapsu 
lation is referred to as the “ open virtualization format " 
( " OVF ” ) . The OVF standard specifies a format for digitally 
encoding a virtual machine within one or more data files . 
FIG . 6 illustrates an OVF package . An OVF package 602 
includes an OVF descriptor 604 , an OVF manifest 606 , an 
OVF certificate 608 , one or more disk - image files 610-611 , 

and one or more resource files 612-614 . The OVF package 
can be encoded and stored as a single file or as a set of files . 
The OVF descriptor 604 is an XML document 620 that 
includes a hierarchical set of elements , each demarcated by 
a beginning tag and an ending tag . The outermost , or 
highest - level , element is the envelope element , demarcated 
by tags 622 and 623. The next - level element includes a 
reference element 626 that includes references to all files 
that are part of the OVF package , a disk section 628 that 
contains meta information about all of the virtual disks 
included in the OVF package , a networks section 630 that 
includes meta information about all of the logical networks 
included in the OVF package , and a collection of virtual 
machine configurations 632 which further includes hard 
ware descriptions of each virtual machine 634. There are 
many additional hierarchical levels and elements within a 
typical OVF descriptor . The OVF descriptor is thus a 
self - describing XML file that describes the contents of an 
OVF package . The OVF manifest 606 is a list of crypto 
graphic - hash - function - generated digests 636 of the entire 
OVF package and of the various components of the OVF 
package . The OVF certificate 608 is an authentication cer 
tificate 640 that includes a digest of the manifest and that is 
cryptographically signed . Disk image files , such as disk 
image file 610 , are digital encodings of the contents of 
virtual disks and resource files 612 are digitally encoded 
content , such as operating - system images . A virtual machine 
or a collection of virtual machines encapsulated together 
within a virtual application can thus be digitally encoded as 
one or more files within an OVF package that can be 
transmitted , distributed , and loaded using well - known tools 
for transmitting , distributing , and loading files . A virtual 
appliance is a software service that is delivered as a com 
plete software stack installed within one or more virtual 
machines that is encoded within an OVF package . 
[ 0061 ] The advent of virtual machines and virtual envi 
ronments has alleviated many of the difficulties and chal 
lenges associated with traditional general - purpose comput 
ing . Machine and operating - system dependencies can be 
significantly reduced or entirely eliminated by packaging 
applications and operating systems together as virtual 
machines and virtual appliances that execute within virtual 
environments provided by virtualization layers running on 
many different types of computer hardware . A next level of 
abstraction , referred to as virtual data centers which are one 
example of a broader virtual - infrastructure category , provide 
a data - center interface to virtual data centers computation 
ally constructed within physical data centers . FIG . 7 illus 
trates virtual data centers provided as an abstraction of 
underlying physical - data - center hardware components . In 
FIG . 7 , a physical data center 702 is shown below a 
virtual - interface plane 704. The physical data center consists 
of a virtual - infrastructure management server ( “ VI - manage 
ment - server ” ) 706 and any of various different computers , 
such as PCs 708 , on which a virtual - data - center manage 
ment interface may be displayed to system administrators 
and other users . The physical data center additionally 
includes generally large numbers of server computers , such 
as server computer 710 , that are coupled together by local 
area networks , such as local area network 712 that directly 
interconnects server computer 710 and 714-720 and a mass 
storage array 722. The physical data center shown in FIG . 7 
includes three local area networks 712 , 724 , and 726 that 
each directly interconnects a bank of eight servers and a 
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mass - storage array . The individual server computers , such as 
server computer 710 , each includes a virtualization layer and 
runs multiple virtual machines . Different physical data cen 
ters may include many different types of computers , net 
works , data - storage systems and devices connected accord 
ing to many different types of connection topologies . The 
virtual - data - center abstraction layer 704 , a logical abstrac 
tion layer shown by a plane in FIG . 7 , abstracts the physical 
data center to a virtual data center comprising one or more 
resource pools , such as resource pools 730-732 , one or more 
virtual data stores , such as virtual data stores 734-736 , and 
one or more virtual networks . In certain implementations , 
the resource pools abstract banks of physical servers directly 
interconnected by a local area network . 
[ 0062 ] The virtual - data - center management interface 
allows provisioning and launching of virtual machines with 
respect to resource pools , virtual data stores , and virtual 
networks , so that virtual - data - center administrators need not 
be concerned with the identities of physical - data - center 
components used to execute particular virtual machines . 
Furthermore , the VI - management - server includes function ality to migrate running virtual machines from one physical 
server to another in order to optimally or near optimally 
manage resource allocation , provide fault tolerance , and 
high availability by migrating virtual machines to most 
effectively utilize underlying physical hardware resources , 
to replace virtual machines disabled by physical hardware 
problems and failures , and to ensure that multiple virtual 
machines supporting a high - availability virtual appliance are 
executing on multiple physical computer systems so that the 
services provided by the virtual appliance are continuously 
accessible , even when one of the multiple virtual appliances 
becomes compute bound , data - access bound , suspends 
execution , or fails . Thus , the virtual data center layer of 
abstraction provides a virtual - data - center abstraction of 
physical data centers to simplify provisioning , launching , 
and maintenance of virtual machines and virtual appliances 
as well as to provide high - level , distributed functionalities 
that involve pooling the resources of individual physical 
servers and migrating virtual machines among physical 
servers to achieve load balancing , fault tolerance , and high 
availability . 
[ 0063 ] FIG . 8 illustrates virtual machine components of a 
VI - management - server and physical servers of a physical 
data center above which a virtual - data - center interface is 
provided by the VI - management - server . The VI - manage 
ment - server 802 and a virtual - data - center database 804 
comprise the physical components of the management com 
ponent of the virtual data center . The VI - management - server 
802 includes a hardware layer 806 and virtualization layer 
808 and runs a virtual - data - center management - server vir 
tual machine 810 above the virtualization layer . Although 
shown as a single server in FIG . 8 , the Vl - management 
server ( “ VI management server ” ) may include two or more 
physical server computers that support multiple VI - manage 
ment - server virtual appliances . The virtual machine 810 
includes a management - interface component 812 , distrib 
uted services 814 , core services 816 , and a host - management 
interface 818. The management interface is accessed from 
any of various computers , such as the PC 708 shown in FIG . 
7. The management interface allows the virtual - data - center 
administrator to configure a virtual data center , provision 
virtual machines , collect statistics and view log files for the 
virtual data center , and to carry out other , similar manage 

ment tasks . The host - management interface 818 interfaces to 
virtual - data - center agents 824 , 825 , and 826 that execute as 
virtual machines within each of the physical servers of the 
physical data center that is abstracted to a virtual data center 
by the VI management server . 
[ 0064 ] The distributed services 814 include a distributed 
resource scheduler that assigns virtual machines to execute 
within particular physical servers and that migrates virtual 
machines in order to most effectively make use of compu 
tational bandwidths , data - storage capacities , and network 
capacities of the physical data center . The distributed ser 
vices further include a high - availability service that repli 
cates and migrates virtual machines in order to ensure that 
virtual machines continue to execute despite problems and 
failures experienced by physical hardware components . The 
distributed services also include a live - virtual - machine 
migration service that temporarily halts execution of a 
virtual machine , encapsulates the virtual machine in an OVF 
package , transmits the OVF package to a different physical 
server , and restarts the virtual machine on the different 
physical server from a virtual machine state recorded when 
execution of the virtual machine was halted . The distributed 
services also include a distributed backup service that pro 
vides centralized virtual machine backup and restore . 
[ 0065 ] The core services provided by the VI management 
server include host configuration , virtual - machine configu 
ration , virtual - machine provisioning , generation of virtual 
data - center alarms and events , ongoing event logging and 
statistics collection , a task scheduler , and a resource - man 
agement module . Each physical server 820-822 also 
includes a host - agent virtual machine 828-830 through 
which the virtualization layer can be accessed via a virtual 
infrastructure application programming interface ( " API " ) . 
This interface allows a remote administrator or user to 
manage an individual server through the infrastructure API . 
The virtual - data - center agents 824-826 access virtualiza 
tion - layer server information through the host agents . The 
virtual - data - center agents are primarily responsible for off 
loading certain of the virtual - data - center management 
server functions specific to a particular physical server to 
that physical server . The virtual - data - center agents relay and 
enforce resource allocations made by the VI management 
server , relay virtual - machine provisioning and configura 
tion - change commands to host agents , monitor and collect 
performance statistics , alarms , and events communicated to 
the virtual - data - center agents by the local host agents 
through the interface API , and to carry out other , similar 
virtual - data - management tasks . 
[ 0066 ] The virtual - data - center abstraction provides a con 
venient and efficient level of abstraction for exposing the 
computational resources of a cloud - computing facility to 
cloud - computing - infrastructure users . A cloud - director man 
agement server exposes virtual resources of a cloud - com 
puting facility to cloud - computing - infrastructure users . In 
addition , the cloud director introduces a multi - tenancy layer 
of abstraction , which partitions virtual data centers 
( “ VDCs ” ) into tenant - associated VDCs that can each be 
allocated to a particular individual tenant or tenant organi 
zation , both referred to as a “ tenant . ” A given tenant can be 
provided one or more tenant - associated VDCs by a cloud 
director managing the multi - tenancy layer of abstraction 
within a cloud - computing facility . The cloud services inter 
face ( 308 in FIG . 3 ) exposes a virtual - data - center manage 
ment interface that abstracts the physical data center . 








































