
US 20210303431A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0303431 A1

Grigoryan et al . (43) Pub . Date : Sep. 30 , 2021

(52) (54) METHODS AND SYSTEMS THAT IDENTIFY
DIMENSIONS RELATED TO ANOMALIES IN
SYSTEM COMPONENTS OF DISTRIBUTED
COMPUTER SYSTEMS USING CLUSTERED
TRACES , METRICS , AND
COMPONENT - ASSOCIATED ATTRIBUTE
VALUES

U.S. CI .
CPC G06F 11/3006 (2013.01) ; G06F 11/3075

(2013.01) ; G06F 11/3476 (2013.01) ; G06F
11/323 (2013.01)

(57) ABSTRACT

(71) Applicant : VMware , Inc. , Palo Alto , CA (US)

(72) Inventors : Naira Movses Grigoryan , Yerevan
(AM) ; Arnak Poghosyan , Yerevan
(AM) ; Ashot Nshan Harutyunyan ,
Yerevan (AM) ; Clement Pang , Palo
Alto , CA (US) ; Dev Nag , Palo Alto ,
CA (US)

(73) Assignee : VMware , Inc. , Palo Alto , CA (US)
(21) Appl . No .: 17 / 119,462

(22) Filed : Dec. 11 , 2020

The current document is directed to methods and systems
that employ distributed - computer - system metrics collected
by one or more distributed - computer - system metrics - collec
tion services , call traces collected by one or more call - trace
services , and attribute values for distributed - computer - sys
tem components to identify attribute dimensions related to
anomalous behavior of distributed - computer - system com
ponents . In a described implementation , nodes correspond to
particular types of system components and node instances
are individual components of the component type corre
sponding to a node . Node instances are associated with
attribute values and node are associated with attribute - value
spaces defined by attribute dimensions . A set of call traces
is partitioned , by clustering . Using attribute values and call
traces , attribute dimensions that are likely related to particu
lar anomalous behaviors of distributed - computer - system
components are determined by decision - tree - related analy
ses for each partition and are reported to one or more
computational entities to facilitate resolution of the anoma
lous behaviors .

Related U.S. Application Data
(63) Continuation - in - part of application No. 16 / 833,102 ,

filed on Mar. 27 , 2020 .
Publication Classification

(51) Int . Ci .
G06F 11/30 (2006.01)
GO6F 11/32 (2006.01)
G06F 11/34 (2006.01)

102 103

CPU CPU

MEMORY
110

CPU CPU
104 108

105

112
SPECIALIZED
PROCESSOR BRIDGE

114 118 116

120
BRIDGE r

TROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

127 122
123 124 125

126 MASS
STORAGE
DEVICE

128

Patent Application Publication Sep. 30 , 2021 Sheet 1 of 92 US 2021/0303431 A1

102 103

CPU CPU

MEMORY
110

CPU CPU
104

108
105

112
SPECIALIZED
PROCESSOR BRIDGE

114 118 116

120
BRIDGE

CONTROLLER CONTROLLER CONTROLLEA CONTROLLER CONTROLLER CONTROLLER

- 127 122
123 124 125

126 MASS
STORAGE
DEVICE

FIG . 1 128

Patent Application Publication Sep. 30 , 2021 Sheet 2 of 92 US 2021/0303431 A1

212
waa

210

214

216
FIG . 2

{ I II I

?

205 204 203 202

316

Patent Application Publication

Cloud Services Interface

312

314

Internet

TÜL

310

Sep. 30 , 2021 Sheet 3 of 92

Cloud Services Interface

306

302

304

Local Network

308

US 2021/0303431 A1

FIG . 3

432

433

434

435

436

4

Application Programs

406

Patent Application Publication

Operating System

430

426

428

nori - privileged instructions and

System - call interface

memory

and registers

446

OS intervals

OS intervals

Scheduler

Device

Memory Management File System

Task Mgmt

Drivers

non - privileged

privileged

non - frivileged instructions

privileged

instructions [egisterstaddresses registerstaddresses

418

420 422

424

448

404 442

Hardware

416

Sep. 30 , 2021 Sheet 4 of 92

Memory

Processors

10

Mass Storage

402

410

408

410

412

414

US 2021/0303431 A1

400

FIG . 4

510

application
application

application

application

application

514

Patent Application Publication

OS

OS

OS

OS

OS

516

Non - privileged instructions

RX - PNV

instructions

508

520

VM Kernel

VM Kernel

518 504

Virtual Machine Monitor

Sep. 30 , 2021 Sheet 5 of 92

device drivers

device drivers

fion - Divleges

Non - privileged instructions

506

LID

502

US 2021/0303431 A1

1
500

FIG . 5A

556

557

558

I

+

application

application

application

Patent Application Publication

Machines

546 548

OS

OS

552

550

Application Programs

1

Virtualization Layer

Virtualization

000 - ivaged nstructions and 2 addresses and registers

system - call interface

Sep. 30 , 2021 Sheet 6 of 92

544

Operating System 542

Hardware

US 2021/0303431 A1

FIG . 5B

540

566

567

568

app

app

app

app

570

Patent Application Publication

563

app

app

app

564

562

container

container

container

560

OS - level Virtualization

426

428
430

non - privileged instructions
Citati 03:30 y addresses and registers

OS interface

Sep. 30 , 2021 Sheet 7 of 92

system - call interface

OS interface

404

Scheduler Task Momt

Memory Management

Device

File

Drivers

System pon - privileged

privileged
registers / addresses registers / addresses

non - privileged instructions

privileged iristructions

Memory

402

Processors
1/0

Mass Storage

US 2021/0303431 A1

FIG , 5C

1

577

578

576

? 7

app

app

app

app

Patent Application Publication

app

app

app

container

container

container

574

OS - level Virtualization

572

OS

Sep. 30 , 2021 Sheet 8 of 92

508

non - privileged instructions

privileged instructions
non - privileged

privileged
registers addresses registers / addresses

504

VM Kernel

VM Kernel

Virtual Machine Monitor

device drivers privileged instructions

device drivers

non - privileged

privileged
registers / addresses registers / addresses

non - privileged instructions

502

FIG . 5D

US 2021/0303431 A1

622

Open Virtualization Format

620

1

Digest of package Digest of disk image file Digest of disk image file Digest of resource file

Patent Application Publication

}

602

« Envelope
< References >

626

< References > < Disk Section >

628

< / Disk Section >
< Network Section >

630

(Network Section
< Virtual System Collection > < Virtual Hardware Section >

} 628

Digest of resource file

canetwork Sections }

}

604

OVF Descriptor

636

}
1 { j

OVF Manifest

634

682

606

OVF Certificate

« Virtual Hardware Section >
: < Mirtual System Collection >

}
}

608

}

disk image file

Sep. 30 , 2021 Sheet 9 of 92

610

< Envelope ,

disk image file

}

611

623

XML file

certificate mat includes digest of manifest

resource file

en hoe

640

612

resource ne

613

FIG . 6

resource hle

US 2021/0303431 A1

614

OVF Package

732

Virtual Data Center

731
730

736

735

Patent Application Publication

Data Center Interface

Resource Pool

734

708
706

T
?

Sep. 30 , 2021 Sheet 10 of 92

7241 710

702

722

1

714

715

716

717

720

718

719
Physical Data Center

US 2021/0303431 A1

712

FIG . 7

704

810

812

VA Management Interface

Host configuration VM configuration VM provisioning Alarms & events
Statistics collection or logging

Task scheduler Resource management

Distributed Resource Scheduler
High Availability Live VM migration Backup

814

Distributed Services

Patent Application Publication

816

Core Services Host management

818

824

826

825

at

VDC agent

VDC agent

829

810

VDC agent

Vintual Data Center Management Server

Host Agent

Most Agent

Host Agent

Sep. 30 , 2021 Sheet 11 of 92

828

VM

VM

VM

808

Virtualization Layer

Virtualization Layer
Virtualization Layer

Virtualization Layer

- 806

Virtual Data Center database

Hardware

Hardware

Hardware

Hardware

804

802

820

821

US 2021/0303431 A1

822

FIG . 8

932

Management Interface

934

922

912

Cloud Director Services

Virtual Data Center Provisioning Organization Configuration and Organization Virtual Data Center Configuration
Template and Media Catalogs

Network Provisioning from network pool

Patent Application Publication

930

ORG 2

908

926

VDC MS interface

936

cloud director

virtual data centers

920

910

921

904

918

916
917

919

911

917 /

ORG 1

ORG2 , ORG3 , ORG 4

ORG Z , ORGZ , ORG

907

Sep. 30 , 2021 Sheet 12 of 92

cloud director

Cloud director

7

924

925

virtual data centers

of }

}

1

luni
w

virtual data centers 1
}

}

1

}

903

??? A

906

902

US 2021/0303431 A1

FIG . 9

1005

VCC node 1020

1004

3rd party cloud services

Patent Application Publication

1006

VCC Node

}

VCC node

{

WS

virtual data center

1007

1003

1019

1021

VCC node

VCC node

NE

}

virtual data center

1002

Sep. 30 , 2021 Sheet 13 of 92

1022

1018

1 1

1008

1016

{

CB

}

} } 1 }

1023

??

} 1

}

3 }

HS

VCC server

VCC node

1 1

1012

VCC node
1010
1014

}

FIG . 10

US 2021/0303431 A1

1

1026

-

1112

Patent Application Publication

1108

1109

1110

1111

1104

A

front - end service

front - end Service

front - end service

front - end service

front - end service

1102

1106

service registration and Subscription

1114

Sep. 30 , 2021 Sheet 14 of 92

S5

1 : | : 1 : | ???

S2

56

S9

S6

S8

$ 11

$ 12

S74

916

S14

99

S10

US 2021/0303431 A1

S8

S17

S12

$ 35

$ 13

S12

$ 9

S13

S13

FIG . 11

1202

1230

47

1204

front - end service

front - end Service

Patent Application Publication

front - end Service

front - end service

front - end service

E

1210

registration and subscription

1206
2

1216

1212

ta

1208

S1

S3

S5

Sep. 30 , 2021 Sheet 15 of 92

in

S5

S2

S4

1214

S7

S2

1220 1218

1228

1230

Is

1222

S6

58

S9

S1

S12

$ 14

514

$ 16

1229
SB

S17

S13

S12

$ 15

$ 12

S3

US 2021/0303431 A1

S9

S13

S13

1226

1224

FIG . 12A

Patent Application Publication

S3 13

S8

front - end services

55

16

1240

S4

S6

S9

?

www

TA

Is

17

Sep. 30 , 2021 Sheet 16 of 92

S10 8

FIG . 12B

US 2021/0303431 A1

Patent Application Publication Sep. 30 , 2021 Sheet 17 of 92 US 2021/0303431 A1

1312
1324 1325

distributed
1308 service - component executable

trace

guest os 1310
VM

1302 port

1326

1306
virtualization layer

VDC and / or
VCC

metrices
}

1304

1316 IP Address
1314 1320 non IP Address

Port No.
1322

1318

FIG . 13A

}

Sfe S5 S4 - S6

S8 S9 S10

service A

service A

S3

service A

1330

Patent Application Publication

1332

1333

1334

distributed services call tracing service

1342

1

virtualization layer

virtualization layer

virtualization layer

1

SV1

SV2

I

1

SV3

| 1336

3 {

1337

1338

1

} {

1

{ 1 1 1 1

Sep. 30 , 2021 Sheet 18 of 92

3

1

1 1 I 1

1 1

1340

*** ?

service A 300 KB / sec ta

} {

I

2 MB / sec ti 1

1

FIG . 13B

US 2021/0303431 A1

VDC and / or VCC metrices

Patent Application Publication Sep. 30 , 2021 Sheet 19 of 92 US 2021/0303431 A1

10011111111111110 001111111111111111- . 111111011111111111 111111111111111111 10 .

i

111110111111111100 FIG . 14A

+

S28 421 S19

--Odi Gehi B ?

Patent Application Publication

121

117

107 109

S32

S7

$ 5

S19 S20 S31

S1 32 S26

$ 2 54 SS

S3 S7

55 . S6

$ 19 $ 18

SB 53

S2 S17 S1

59 $ 17 S16 S1

S2 S3 S6

$ 14 $ 19 S2

S6 $ 18

S3 S4

S19 S7 Sle

S17 S18

SE

Ste

196

206

91

S6

S7

S23 $ 17 $ 12

58 S13

S15 Sle)
$ 14 S39 S22

S23 S24

S25 S8

S13 S26 S29

S30 S7

$ 8 . 59

56 S19 528

$ 30 $ 7

S1) S2

S2

S19 S79 $ 13)

S27 $ 13

Sle

S21

S11

282

284 285

291

294 295

298

Sep. 30 , 2021 Sheet 20 of 92

15

S3

$ 16 518 S28

S3 S4 S6

S1 S2

S5 (Srs

S19 931

S22 S24

$ 14 S6 S8 $ 10

S26 539 $ 13) $
$ 29 S31

S12 514 S7

S16 S22 S24

Ste

$ 3 S2 11

532 S14 Sfe

S8 S9 S11

S12 S28 S29

369 370

371

373

375

377 378

$ 15

$ 15 Sle

S6 S23 S25

$ 8 59

S11 S20

S11 S12 917 S18

S21 S23 S19

$ 17 S18 $ 19 S20

S26 $ 32 $ 27

21.1 S26 S13

S2 S4

S19 S20

S6 S8 $ 12

S5 Sfe

$ 14
$ 16 . $ 22 .

S7 56

S21 S23 S20

S11 S12 (S16

461

470

474 475

US 2021/0303431 A1

FIG . 14B

1402

Srs

S15

1410

Sfe

Patent Application Publication

1412

$ 1

S2

1411

1403

S16

S12

S17

S5

1407

1404

S8

S4

S3

S13

S14

Sep. 30 , 2021 Sheet 21 of 92

1408

1405

S11

6S

S6

1406

1409

S ?

S10

US 2021/0303431 A1

FIG . 14C

Patent Application Publication Sep. 30 , 2021 Sheet 22 of 92 US 2021/0303431 A1

1506
1510

trace client
1502

1508 app

trace - client
1511 app

trace agent 1512

guest os

1504

virtualization layer

hardware

to trace - collector

FIG . 15A

1536

Patent Application Publication

1532

1520

1534

query service

ta

collector

1524

trace database

1528

Sep. 30 , 2021 Sheet 23 of 92

1530

1521

ta

1525

1522

ta

FIG . 15B

US 2021/0303431 A1

1526

Patent Application Publication Sep. 30 , 2021 Sheet 24 of 92 US 2021/0303431 A1

1614 1612
service request

remote client
1606 1608 trace ide o

getNew Trace ()
app

1610
race a

app dihoso new request
app d'host id
entry point_id

1620
start me trace agent

1602
1616 T o ?

collector 1618

trace agent

1603

O
app

trace agent

1604

FIG . 16A
app

frace agent

1605

Patent Application Publication Sep. 30 , 2021 Sheet 25 of 92 US 2021/0303431 A1

remote client
1608 trace_id

app

trace_id

1610 trace agent 1622

app

collector

trace agent

app

trace agent

O FIG . 16B
app

trace agent

Patent Application Publication Sep. 30 , 2021 Sheet 26 of 92 US 2021/0303431 A1

remote client
1606 1608 trace id

app 1626

service request
trace id 1636

trace agent

1624

1628 app span / trace_id
app_id / host_id
entry point id collector 1618

1630 :
trace agent 1634

1632

app

trace agent

FIG . 16C
app

trace agent

Patent Application Publication Sep. 30 , 2021 Sheet 27 of 92 US 2021/0303431 A1

remote client
trace id

LET 1646 trace agent

1624

app . 1648
collector 1618 service request

trace_id

trace agent
momento

1638
1640 app span / trace_id

app_id / host id
entry point_id

1642 T
trace agent 1644

o
app

FIG . 16D

trace agent

Patent Application Publication Sep. 30 , 2021 Sheet 28 of 92 US 2021/0303431 A1

remote client
trace_id

O
app

LIILI trace agent
1656

app
collector 1618

trace agent

1638

app 1652

service request
trace id

trace agent ?? ??

1654

app span / trace id
app_id / host_id
entry_point_id

FIG . 16E
trace agent 1650

Patent Application Publication Sep. 30 , 2021 Sheet 29 of 92 US 2021/0303431 A1

remote client

app

TI
trace agent

1656

end time 1664
app

collector 1618

trace agent

app

trace agent
1658

A 1654

app span terminate
trace_id

app_id / host id
FIG . 16F

trace agent 1660 1662

Patent Application Publication Sep. 30 , 2021 Sheet 30 of 92 US 2021/0303431 A1

1620
remote client

1606 1608

app 1668 end tim

1610 end request
end time

trace agent
t trace id end time For

1666 end time

app
collector 1618

trace agent

appo

trace agent

FIG . 16G

trace agent

Patent Application Publication Sep. 30 , 2021 Sheet 31 of 92 US 2021/0303431 A1

remote client

app 1668

CILII trace agent

app
collector

trace agent 1670 encoded trace

app

trace database

trace agent

FIG . 16H
app

trace agent

1710

Service registration and subscription

" meta "
{

" component_type " : “ micro_service " ,

" attr version " : " 3.75 "

" data center " : " E / NY / Albany / 6.31 "

query service

Patent Application Publication

1706

collector

M

' attributes "
{

" A " : " X DB server " ,

" B " : " 1911.ef7 : 0 : 5551 : 0 : 386 : 2 : 1 " ,

" C " : " 80 " , “ D ” ; “ v6,3 ”

1702

" Z " : " low

Sep. 30 , 2021 Sheet 32 of 92

}

170 €

attribute database

1704

prepro

app_0 host D

2 ?

{ 1 1

3 } }
I

??

FIG . 17

I ??

US 2021/0303431 A1

1802

1803

1804

1805

1806

egegee

Patent Application Publication

?

f

1810

fit

1816

1808

1822

!

1814

inpanding disk failure Server HX1 disk 02 .

BER Failure sector 61998

Sep. 30 , 2021 Sheet 33 of 92

}

1812

1820
} 1 1 } 1

? f

1818

US 2021/0303431 A1

FIG . 18

Patent Application Publication Sep. 30 , 2021 Sheet 34 of 92 US 2021/0303431 A1

1910 1908
1902

2013-10-02110 : 44 : 24.0952 li-emosx.vmware.com Rhttpazoxy :
(29959620 verbose proxy keq 46591'1 connecked to

alhost : 830 ? 1912 1906
2013-12-02T20 : 44 : 24.099 imgenesx5 . vmware.com Entopproxy :
DEFC2830 vectos ' Eroxy Reg 46531 ') new prozy client
Toe bloca . - 127.0.0.1 : 80 , peer - 127.0.0.1 : 50155)

>
2013-12-02T10 : 44 : 24.033 ? 11-9-65x5mware oom Rattusosy

Proxy Red 7068S ! | The client closed the
Stream : not unexpectedly .

2 10:48:29 goratam 2013-12-02119 : 48 : 30,2737
(7FA394488700 info commonvpxl7o ' pie 1947d6f9) VpXLROS
FINISH 003kwriternai - 2363522 vim.SessionManager . 1901. -
2013-12-09T18 : 48 : 52_3962 cm - esx1.999.8 , com ypxa :

2013-10-02110 : 48 : 51.395 % toata ** 821,609 vmware.com Vpxa :
16586AB90 varbosa yoxahatcoxhostagent ' OPIOWFUmed3933334
Waitforur dates Done Stanciog next Wait Forupdates to 1904

2013-12-21 18 : 38 : 51.3956 stratamesx.1 , eng.vmware.com Vpxa :
OSSBA890 Ver OSO " pzavoxaInvivo ? OpID WF ! .00393333
(Vokainvt Vrchangelistener Guest Diskinio Changed
2008-12-03119 : 48 : 51.3953 strata- 3xl eng.vmware.com Vpxa :

2010 F003973337
VoxalalServices cuestDisk harige Event for vm659
2013-12-02119 : 48 : 37.3952 stotinesxi.999 . vmware.ro Voxa :
1653SA390 verkosa nostavm ' opIOWF - e393333 ;
Coxa IVmHost ve 59. Guess Info Chanood
2013-13 - OZTIQ : 48 : 57.3987 stratamesxi.erg , Villivare.com Vpxo :
06535AB90 varbose UpxatalCnxhostagens ID = F - 3933330
(VoxatalCnxHostagent :: Processupdata Applying updates from

2013-12-02T18 : 46 : 51,3992 strata.5x1.eng.vmware.com Vpxa :
16585AB90 verbose " pzahalörxhostagent OpID - 00393333
Wait Forupdatesoone Received callback
2013-12-210 48 : 51.3602 11 - dev - esx6 , eng.vmware.com Hosta :
061 ? C1B90 Bror SoapAdapter_HTTPService HTTP Transaction

FIG . 19

2002

/ 2022 H

Patent Application Publication

2006

2012

2008

2018

2014-5-13 20:31:32 { virtual layer - kemel ! queue Mispin26011 vtex / v1100 quale managementmi
spin_locks / dev / 16 / sync (errar 61132 : threshold exceeded orphan

a12634 2014-5-13 20:31:32

2010

2014

2004

2016

Sep. 30 , 2021 Sheet 35 of 92

2020

US 2021/0303431 A1

FIG . 20

Patent Application Publication Sep. 30 , 2021 Sheet 36 of 92 US 2021/0303431 A1

2102 2103

att_id attribute type att d value valid
1 discrete

3
Android
Macos
Linux

2
1 3

151 ung me 151 traffic rating integral

Attributes

NYC 1672

Discrete Attribute Values
2106

getID (string a_name)
SELECT att id
FROM Attributes
WHERE attribute = a name 2104

att id low high

4 1
99

2108
getType (string a_name)
SELECT type
FROM Attributes
WHERE attribute a name

Integral Attribute Values getNum (string a_name)
id = getID (a name)
type = getType (a name)
if (type ** " discrete ")
SELECT COUNT (*)
FROM Discrete Attribute Value
WHERE att id = id

2110 else
low = SELECT low

FROM Integral_Attribute Values
WHERE att id = id

high SELECT high
FROM Integral_Attribute_Values
WHERE att idid

num - high - low 1

FIG . 21A

Patent Application Publication Sep. 30 , 2021 Sheet 37 of 92 US 2021/0303431 A1

2120 2122

comp_id comp name comp_type comp ... 1 comp 2 relationship
service app 3312 261

1616
front end 3

DC2_server101
4476
3312

contains

containment within Server 4476

| 004 . # 27610 DC4 edge 10 edge router 16 3761 contains

Components Component Relationships

comp_id att.id
2124

Component Attributes

m id metric name 2126

Metrics 2128

comp_id m id timpstamp value

E
Metric Values FIG . 21B

anomaly

2218

2206

Patent Application Publication

2216

w

2204

val

. } 2212

2210

management

yamanan ? Empanangangana
t - 10,010

20

= 10,020

2214

2208

time

2202

2234

Sep. 30 , 2021 Sheet 38 of 92

tien ?

(valeu) ?

valt

IM

2222

D

2230

2232

valt -

2226

2236

2220

2224

Iz { threshold anomaly

US 2021/0303431 A1

FIG . 22A

beginning of anamoly

Patent Application Publication

2242

2244

2240

2246

Sep. 30 , 2021 Sheet 39 of 92

Xpp = F (- 1 , Åt - 2 , ...) | Xto - Xial 2 threshold anomaly

2248

FIG . 22B

US 2021/0303431 A1

NE

MW

SW SW

NE

2310 2308

2309

Patent Application Publication

V1.2

V1.2

V2.1

V2

2307

geo

geo

?.

geo

geo
A

2302

S ,

S3

S.

2311

Ss

V3.1

V3.1

IV3.3

V3.1

V3,1

S

B

M

B

2303

V2.7

V3.0

V2.7

V2.4 S

V2.4 S

???

C Sa

C S.

Sg .

Sep. 30 , 2021 Sheet 40 of 92

V3.6

V3.6

V3.8

V3.8

V37

2304

S

S

M

D

D

S

V2.1

V2.0

V2.0

V2.1

V2.2

M

E

S

S

LAH S24

Sis

TI ?

V3.5

V3.6

V4.1

14.1

V3.5

2305

S

F

S

S

S

US 2021/0303431 A1

FIG . 23A

Siel

S181

So

S21

2314

2317

A

A

2312

Patent Application Publication

2313

2318

0

C

2315

Sep. 30 , 2021 Sheet 41 of 92

D

2316

2319

?

2320

US 2021/0303431 A1

FIG . 23B

2326

2322

HA
2325

Patent Application Publication

V1.1

V1.2

V1.2

V2.1

V2.1

geo

geo

A ?

geo
AL

geo

geo

2324

mann)

12.3

026

S1

S2

S3

Se

Ss

1.2 1.1

SS2 S3 SASS

2323

2321

Sep. 30 , 2021 Sheet 42 of 92

2327

F

V3,6

V3,6

V3.8

V3.8

V3.7

S.

M

D

D

$

M

in configuration

13.81

S11

S12

S13

S14

S15

version
}

3.7 3.61

SqSta Spa Spa Sas

US 2021/0303431 A1

host

FIG . 230

Patent Application Publication

lij Tij in

Sep. 30 , 2021 Sheet 43 of 92

2329

4,31 3.63 3.5 $
SSSSS
2328

metric : commit_time outs > threshold

US 2021/0303431 A1

FIG . 23D

Patent Application Publication Sep. 30 , 2021 Sheet 44 of 92 US 2021/0303431 A1

2331
2330 metric : commit_time_outs ? threshold

FIG . 23E

A

C

F

host

geo

Ver

host

conf

Ver

host

conf

ver

host

conf

Patent Application Publication

S

so ä asis is in

NE S NW SW S NE NE

1.1 1.2 2.1 2.1 1.1 2.1

SE S7 S18 Sg . Ss

2.1 2.0 2.2 2.1 2.1 2.2

$ 10

2.4 2.4 2.7 3.0 2.4 2.7 2.4 2.4 2.7 2.4 2.4 2.7

M

2.1

S2 Ss S2 S , Ss SA S1 Si S5 S2

Sa S7 $ 10 S7 Se S10 SA Ss .

1.2 2.7 1.2 1.1 2.1 2.1 1.1 1.1 2.1 1.2

mony o wygodny wory 3 0 0 0 73 77 0

S S NE NW NE NE NE MW S NW NE SW S

S11 S32 S15 S14 Szi Sis Su $ 12 S15 S2 Si Sis S34 Su Su 515 S12 S11 515 SH S14 S12

FSMF ? ff sumi ? ? f s ?

S17 S18 S17 S21 S18 S21 S17 S18 S21 Sja S17 S17 San Sie S17 S21

2.0 2.2 2.0 2.3 2.2 2.1 2.1 2.1 2.2

S

3.5 3.6 3.5 3.5 3.6 3.5 3.5 3.6 3.5 3.6 3.5 3.5 3.5 3.6 3,5 3.5 3.6 3.5 3,5 3,6 3.5 3.6

000000000

Sep. 30 , 2021 Sheet 45 of 92

2.0

2.4 2.4 . 2.7 2.4 2.4 2.7 2.4 3.0 2.4

S18

S10 S7 S6 S10

S17

Ss S SA

2.1 1 : 2 2.1 1.2

S6 Se S7

2.1 2.2 2.1 2.1 2.0

S17 S18 S21 S18

?? ???

go

St

S NE

S6

S

S F

2.4 2.7

S11 S15

en bila

2.1 2.2

S5

2.1

S7 Sz1

3.5 3,5

S10

US 2021/0303431 A1

FIG . 23F

Patent Application Publication Sep. 30 , 2021 Sheet 46 of 92 US 2021/0303431 A1

2334

} Win

2336 FIG . 23G
2335

?

A

B

C

D

F

host

geo

ver

host
conf
ver

host
conf

host

conf

host

conf

Ver

host
conf

S8

3.3

Sy St Sa

SW

S11 $ 13

1.2 2.1 1.2 2 .

S

S Sg

en lim 09 .

2.4 2.7 3,0 2.4 2.4

Patent Application Publication

2.1 2.0

3.5 4.1

S , S20

M

S14

Se

912

NE

S11

3.6

M

2.0

$

3.6

Sg

M

3.1

S

3.6

??????? ????????

S12

? Lothing

24 27

S15

2.2

2.1 1.2 2.1 1.2 2.1 1.2

$ 17

S

S2 Si S4 S2 Ss Sz SA S3 S S2

3.5

S

S

A sis

3.0 2.7 2.4 2.4 2.7

SA S13 Su

Woo Late

2.1 2.0 2.1 2.0 2.2

S24 S18 S18 S18 S21

4.1 3.6 3.6 3.5

1.2 2.1

S12

MW NE NE SW

S10

??

525

Sio Sg

3.1 3.1

S13

NE

2.1 1.2 1.1 2.1 1.2 1.2

Sa Sa S30

S

Sep. 30 , 2021 Sheet 47 of 92

Ss S4 $ 3 St Ss 52 S2 ST

2.7 2.4 2.7

S13

2.1

S17

3.5

Libe

Sas

S

3.7

S

S7

S

3.1

S ,

S

S12

M

2.0

Sta

3.6

S6 Sy

3.1 2.4

S2

542 $ 10

2.0 2.7

F

$ 15

F

2.2

S17

S.

3,5

NW SW S

S8

Ss S3 S4 Sz

3.3

1.2 2.1 1.2 1.1 1.2 2.1

SE

S

2.4

S11

2.1

S7

S

3.1

SW

1

Sg

3.0

S14

2.1

S20

4.1

54

3.0

Sg

NW NE

S

2.1 2.1

S : 4

2.1

3.5

S21

US 2021/0303431 A1

Ss

Sto

S

3.1

FIG . 23H

2338
A.host = 1

A.host - 2

A host = 3

A.host = 4

Patent Application Publication

Y

Y

Y

N

N

S17 , S18 Sia , Szo : S21

$ 17 , S18

S17 , S18 ; Siy , S20 , S21

Sir , S18 , S19 . Szo :

S47 S18 S19 . Szo ,

Sje , S12

S19 : S20

$ 20 , S21

S21

S21

2339

2340

2341
A.host = 5

Sep. 30 , 2021 Sheet 48 of 92

Y
S?r . Sa1

S17 , S181 S19 , 20 , S21

FIG . 231

US 2021/0303431 A1

Patent Application Publication Sep. 30 , 2021 Sheet 49 of 92 US 2021/0303431 A1

A host1
OR

Ahost = 2

A.host
OR

Ahost = 3 s.host

Y Y N

$ 17 , S18 S? ?, Sis ,
S19 . San .

S : 7 . Sig . S7 , S8
S9 , SG

S21 S10
S. , S18 .
Sss Szo S7 , Sta .

Szo Sai 524 S21

2342 A.host = 1
OR

Ahost ?
QR

A.host -3

Ahost = " 2
OR

A.host = 4 A.host5

Y ? N Y N

Siz , Ste : Sy Star
S18 . Sza .

Sys
S78 . Sig

Szo
S : 7 , S.
Sig . Szo S21

Si7 , S8
Sy , S20 , S18 . Sig ,

S20 Sza :
521 S21

2344

A. hast2 Ahosts - 3
OR

Ahostale

A host3
OR

Anos 5 A.host = 25

N Y N N

9 , Ste .
Sys , S21

S77 . Ste
Sa. Sas , S. S20 S2 ?. Sse

S18 , Szo
S21 Szi

S : , Si .
Sa. Sai

$ 37 . $ 18 .
S : 8 , 520 .

$ 21 Sz :

A.hosting
OR

A.host = 5

Y Y

Sy , S S : 7 , S18 .
SS20 , 921 S24

FIG . 23J

2345
geqmNE .

geos - S

geo -- MW

geom - SW

Patent Application Publication

N

Y

N

Y

N

$ 17 , S18 .

S17 , S1B , S19 . S20

S17 , S1B ,

S17 , Sia :
$ 19,520

S18 , S19 .

S17 , S18 $ 13 , Szo .

S18 , S20 .

S17 , 18 , S19 S20 .

Szt

$ 19

S20

S21

S21

Sz1

S21

S21

2346

geo NW /

Sep. 30 , 2021 Sheet 50 of 92

S17 , Szo : Szi

S17 , Sia $ 19 , S20 , S21

FIG . 23K

US 2021/0303431 A1

S

MW

SW SW

NE

Patent Application Publication

V1.1

V1.2

V1.2 .

12.1

12.1

gea
A ?

geo
A

geo
A ?

Si

Ss

V3.1 .

V3.1

V3.3

3.1

V3.1

B

S

B

B

B

S

V2.4

V27

V3.0

12.7

V2.4 S

$

C

C
S :

C S7

SB

Se

S.

Sep. 30 , 2021 Sheet 51 of 92

V3.6

13.6

V3.8

V3.8

1V3.7

S

S

D

D

M

S

V2.1

V2,0

V2.0

V2.1

V2.2

M

S

E

E $ 15

S12

S

V3.6

V4.1

V4.1

V3.5 .
S

V3.5 S

F

S

F

S

F

US 2021/0303431 A1

FIG . 24A

$ 32

Sigl

S18

S20

521

Patent Application Publication Sep. 30 , 2021 Sheet 52 of 92 US 2021/0303431 A1

2406

2402 2403 2404

Libre

NE
FIG . 24B

2502

2504

2506

load balancer

Patent Application Publication

api server

2508

L

redis cache

dbserver
2510

D

Sep. 30 , 2021 Sheet 53 of 92

2512

third party DBMS

2514

LA -
R

**** A. La

T

2516

L - AR mind A >

on D im AL

US 2021/0303431 A1

FIG . 25A

Patent Application Publication Sep. 30 , 2021 Sheet 54 of 92 US 2021/0303431 A1

2520
2522 Server

2508
S :

R

D 2524
FIG . 25B

?

and

Patent Application Publication Sep. 30 , 2021 Sheet 55 of 92 US 2021/0303431 A1

2532

2530 1
R

2536

FIG . 25C
3.1 miles version

2534

ho

Patent Application Publication

A

R

2536

of

2540 2541 2542

Sep. 30 , 2021 Sheet 56 of 92

2550

2544

2545
2246

host

T T

DIf S2
2548

US 2021/0303431 A1

FIG . 25D

Patent Application Publication Sep. 30 , 2021 Sheet 57 of 92 US 2021/0303431 A1

2630 - 2632
current node 2606 target node 2608

2620 2607 1 L 2610
R node 1 node 2 T - map noden

alla2 a3

2602

E
HEH

2612 2613 2614 2615
fraces 2604
current traces

2618 T - rap
T

2616
T ITTIITI to the 9
E mm maz ? current traces

traces 2624 2622

my mando TM
relevant
traces other tracas

T T

current_traces

relevant targeta
node instances

non - relevant
target - node
instances

2626 2628
FIG . 26A

Patent Application Publication Sep. 30 , 2021 Sheet 58 of 92 US 2021/0303431 A1

current node
current traces

at a2 23 24
2648 2646 2642

exp a2)

T . F

2647 2646 2649
exp { a }

2645 EHT
.

relevant
target - node
instances

2640
2644

2650
exp (a) a OR a OR ... OR a more

expro NOT expi)

2652

exp20)
exp . AND NOT expa ?

exp () AND expa)

2656
exp :)

find decision tree that generates
relevant target - node instances with
minimal cost

2660
expal) return ;

costinum attributes / exp ; / exp / esp .

2654 2658
relevant

target - node
instances

cost cost [espit 3) costiespa () 1
numberORs (exp () + 1 + numberons / expx)) * 1
number attributes and ANDs in full expression

H.

FIG . 26B

Patent Application Publication Sep. 30 , 2021 Sheet 59 of 92 US 2021/0303431 A1

find node relevant
dimensions

2701 receive ;
traces data structure ,

including traces , R , T - map .
current node , and target node

result

2702 elevant instances ;
remaining instances = 0 ;
Current vates ;
attributes = 0 ;
result.cost = 0

2703 for each attribu a in
* current noda

2704
attribute to a

2706
2705

@next
attribute

inore a
in attributes

7

2707
for each call - trace
index tin traces

2708 2709

T - mapit) ? current_traces + = t

2710
i instance (t , target_node)

2715
2711 get next t remaining instances + = i

? 2713 2712
Y

A more ? RU ? relevant instances + = 1
2714

FIG . 27A

Patent Application Publication Sep. 30 , 2021 Sheet 60 of 92 US 2021/0303431 A1

A

2716
Y

attbutes ? return

N
2717

current_traces
threshold - 17

2718
Y

relevant instances

2719 build partial D tree
(traces data structure ,
result ,
relevant instances ,
remaining traces ,
current traces
attributes ,
depth = 1 , cost = 0)

return

FIG . 27B

Patent Application Publication Sep. 30 , 2021 Sheet 61 of 92 US 2021/0303431 A1

build partial D tree

2720 receive
traces data structure , result ,
relevant instances ,
remaining instances ,
current traces , attributes ,
depth , cost

2721 best max Int ;
best_
best to max Int ;
best nxt espa
best remaining = 0 ;

KA

2722
for a in attributes

2723
return

partition on attribute
{ traces data structure ,

relevant instances ,
remaining instances ,
current traces , a , cost)

returns , ct , nxt exp ;
remaining

2725
result.cost = ct + cost * 1 :
result.num attibutes = depth ;
result.expressions [depth - 1) =

oxt_exp 2724
remaining Y

2726 2727
remaining =
remaining
instances ?

nxt - act in
remaining | bo

{ remaining Instances
*

2729
2728

Oxt best ?

best = nxt ;
best_a = a ;
best.cct ;
best oxt_exp - nxt_exp ;
best remaining = remaining

2731
Y

next a more @ ? Z 2730 N

FIG . 27C

Patent Application Publication Sep. 30 , 2021 Sheet 62 of 92 US 2021/0303431 A1

2732
Y best

max Int ? return

2733
attributes besta

2734
attributes

N

2735
depth

threshold_2 ?

2736 build partial D tree
(traces data structura ,

resum .
relevant instances ,
best_remaining ,
current traces ,
attributes , depth + 1 ,
cost + best t + 1

2737
Y ?

result.cost = 0 ?

N
2738

result espression [depth - 11
best_nxt_depth

FIG . 27D

Patent Application Publication Sep. 30 , 2021 Sheet 63 of 92 US 2021/0303431 A1

partition_on_attribute

2739 receive :
traces data structure ,
relevant instances ,

remaining instances ,
current traces , a

2740
val

2741
for t in current traces

2742
val + = traces { t) .current_node.a

2744
Y 2743

get next t anothert ?

N

2745 best value
(traces data structure ,

relevant instances ,
remaining instances ,
current traces , a , val)

returns : remaining , v
2747 2746

Y Y remaining ct 1
nxt_exp return

2748 Y
return

remaining *
remaining instances

: ?

FIG . 27E

Patent Application Publication Sep. 30 , 2021 Sheet 64 of 92 US 2021/0303431 A1

2749 valval - v ;
vtmp = V ;

tmp = remaining

2750 best value
(tracas data structure ,

relevant instances ,
remaining ,
current traces , a , val }

returns : remaining , v

2751 2752
N rtmp

remaining ?
Ct2 ;
nxt exp = " a == rtmp
OR VS

return

2753
Ct 1 ;
nxt_exp * " tmp

FIG . 27F

Patent Application Publication Sep. 30 , 2021 Sheet 65 of 92 US 2021/0303431 A1

best value

2754 receive
traces data structure .
relevant instances ,
remaining , current_traces , a ,

2755
remaining remaining stances

2756 for iv in val

2757 rem ? J
2758

for t in current traces

2759 2778 Traces [ti.current
node.am V ?

get next 1

2760
? instance?t , target_node) 2777

more IV in val ? return
2761

N
remaining instances

?
2766 2762 remaining rem

rem to

2763 2765 Y get next more ? frem
remaining ?

2764

FIG . 27G

Patent Application Publication Sep. 30 , 2021 Sheet 66 of 92 US 2021/0303431 A1

find_relevant
dimensions

2779 use metric data to
identify problem

nodes and instances

return

2780
access data to

generate traces data
structure

2794
sort results by

cost and transmit
to one or more

recipients 2781
allocate results

2782 for each pin problem
nodes

2793

2783 set R to traces that
include problem nodes

and instances

2792
2784 get next to set T - map - traces that

include problem node Y

2791
N

2785 more p ? for each node n in
Current traces

2786
2790 find node

relevant dimension
(current_node = n ;
target_node -pl get next

Y 2787 2788
Y N

result , cost > 0 ? results result more in ?

2789 N

FIG . 27H

Patent Application Publication Sep. 30 , 2021 Sheet 67 of 92 US 2021/0303431 A1

2810
FIG.28 2814

2812
2808 2 ??? ? 2804 2806 2818

2802 2816

2906

2902

Patent Application Publication

??

adoo .

call depth

2928

2916
2917

2918

2926

2914

2920 2924

2922

Ala ,

Clancial Flan M @ haall

Jan24

Raaranaa Glau.32.a) Ika.87.a.) .

Blan.az

t

2930

2908

2904

2912

2910

te

?

-)

Ih

????? ????

C

B

F

Sep. 30 , 2021 Sheet 68 of 92

2932

G

K

j

C

C

K

A

0000

2934

2936

FIG . 29

US 2021/0303431 A1

2938

Patent Application Publication Sep. 30 , 2021 Sheet 69 of 92 US 2021/0303431 A1

3008
1

3006
0 bits corresponding to span B

B

Ala11
Ala12
Ala13
Ala14
Ala15
Ala16
Ala17
Blat
Blauz
B / a3
Bla4
Bla15
Blag
Bla17
Blazi
Blazz
Bla23
Bla24
Bla31
Bla32
Blazi
Bla34
Bla35

- Bla36
B / a37
Bia38
Clan
Cla12
Class
Cla14
Cla15
Cla16
Cla17
Da11
Dla 12
Dla 13

3009
3004

an
224

3010

0

Zlags

3002

FIG . 30A

AIO

a

ar

Bu

A / 2

a 211 211

331 aza 231 232 a33 azt

A / NA - 1
B / 0 B / 1 B / 2

01234557880

Patent Application Publication

bits corresponding to span B

azi azz azs 223 az1 222 23 ars 223 21

237

@ 12 @ 12 212 ?? 12 a år

ag
@ 24 ass

@ 32 234 238

3028

> B / NQ -

31
B / Na -

20
B / Ng - 1
C / O C / 1 C / 2

213

a31

3024

3026

235

» 8 / Ng - 3

? NB - 3
NB - 2 No 1

224 . 224 228

CN : 3 0/0 D / 1 DI2

237

D / No - 1

3022

Sep. 30 , 2021 Sheet 70 of 92

E ?
E / Ne - 1 FIO F / 1 F12 F / Ne - 1

G / O G / 1 G12

FIG . 30B

GING - 1 Limited

US 2021/0303431 A1

ZIO 211 ZI2
Cul

3020

Z / N212

Patent Application Publication Sep. 30 , 2021 Sheet 71 of 92 US 2021/0303431 A1

0

0.1

A
a X 0.1

8
a y : a2 g ; azn

C

0.2
C

a Z

F
az egy , am 0.1

??? as y , a mi 23 n

@ Z ; also
K

@ 12 , a ?
0.1

ay ; ay

aay ; as = 0 ; armp ; agai 0.1

0.1

FI
0

3030 0.1

FIG . 300

3106

3104

Patent Application Publication

2

3108
de

}

3105

3110

Sep. 30 , 2021 Sheet 72 of 92

3

7

d? = 7 (7-3) 2 + (6-4) 2 + (2-6) 2

W

16 + 4 + 6

6

4

6

6

2 b

3102

3103

FIG . 31A

US 2021/0303431 A1

3102

3104

3110

3112

0

J (V1 , V2) when V , O AND V2 = 0

0

1

1

0

3114

Patent Application Publication

0

0

O

0

J (V1 , V2)

V , NV2

when VOOR V70
VA U V2

1

1

0

1

3116

0

0

0

count (V1 AND V2) count (V AND V2) * count (V , XOR V2)

0

0

0

0

2 2 + 4

- 274

3

3118

0

1

1

1

0

1

d . (V1.V) = 1 - J (V1 , V2)) 2 ?

0

O

0

{
w / n

1

1

1

3120

Sep. 30 , 2021 Sheet 73 of 92

V

V2

bitwise VA XOR V2

bitwise V ; AND V2

count (V +) = 4

count (V2) = 4

3106

3107

(V1 , V2) € [0,1]

US 2021/0303431 A1

FIG . 31B

0

o

1

3132

Patent Application Publication

0

0

1

1

?

? () V2)
(V) (2)

0

0

deos

V , V2 IV | Mall

Savor - | { { Vah

0 0

1

2

2 2 + 2

1

0

} }

}

2

/ ?

0

0

Sep. 30 , 2021 Sheet 74 of 92

1

1

VA

V2

3130

3131

FIG . 310

US 2021/0303431 A1

3146

2

3140

3152

de 1 2 3 5 6 7 8

1011 11 2012 2 102 21 1 132 3 1 120 121 12
1 2 2013

5121 11/30 12121 6 213 1.120 121 7 23 11 2112101 8 8/32 2 2 1

0

3160

Patent Application Publication

3150

3154

7

3

12

3147

1/3

2/3

3 .

Cmax ,

3141

dj
23 567 8
0 13 1/31/32/3 2/3/2/31 1

{

4 .

5

2 1/30 2/3/2/3/1/3/1/31 1 2/3

3161

213

3 1/3 2/3 0 23/1/31 11/3 2/3

2/3

4 1/32/3 213 011/31/32/3)

3148

2

5 2/3/13/1/31 10 2/3 2/3 1/3

23

3164

Sep.30 , 2021 Sheet 75 of 92

ava Va ?

6 2 / 3 / 13 / 11/32/3 0 123 1/3

143

216

7 2/3) 11/31/3 2/3 213 0 113

3142

UV1 , V5 + V2 . ¥ 3) ViVi ?

8

12/3/2/3/2/31/3/1/3113 0

3166

doos

5

3

d () = deos { } + d ()

3170

VS

3162

dcos 1 2 3 4 5 6 7 8 093636
1

2 % 0 %%%%% 3 % ?1 %% 4 %% ? 0 15 %
5 : 0
61 % ? 7 71 %%% 0 15 : 27617617633

? ? ?

dmin 0
deak 15

dimax dmex .836 57

3168

=

, 707

US 2021/0303431 A1

3

0

2/3

333

15

FIG . 31D

doos

687
? , 816

B

?

: 577

: 707

3202

Patent Application Publication

3204

clustert

cluster2

3206

3208

3212
dmax

drain

3210

NA

1 }

}

Sep. 30 , 2021 Sheet 76 of 92

3214

d (cluster1 , cluster2) =

de che dmax dmin de
dm3x + dmsy .
2

+

US 2021/0303431 A1

FIG . 32

Patent Application Publication Sep. 30 , 2021 Sheet 77 of 92 US 2021/0303431 A1

3304

3302
X

}

{

{

}

FIG . 33A

3306
b
? ,

* d

d .

E
th

O

u

q

Patent Application Publication Sep. 30 , 2021 Sheet 78 of 92 US 2021/0303431 A1

3318
> 8.5

6 3310 7.5 9.5
7 S

3320 8.5 3317 3316 13.5 3314
14

11

3308
FIG . 33B

b

de

E

x

Patent Application Publication Sep. 30 , 2021 Sheet 79 of 92 US 2021/0303431 A1

3328
3326

3322 13 3310 12

3324 14
11

FIG . 33C

.

d . 6

>

M
X

Patent Application Publication Sep. 30 , 2021 Sheet 80 of 92 US 2021/0303431 A1

0417

FIG . 33D

*
* C

of d .

Patent Application Publication Sep. 30 , 2021 Sheet 81 of 92 US 2021 / 0303431A1

3336

C

52 .

C
FIG . 33E

b

.

" m

C
k

3410

3422

72 70

Patent Application Publication

60 - 50 40

3420

Sep. 30 , 2021 Sheet 82 of 92

30

3413

3418

20 18

3417 3412

3402

3415

14 12 2 10 8

3414 3416
3408

3406

3404

2 2

[3404
T

a

US 2021/0303431 A1

C

? 2

g

FIG . 34A

Patent Application Publication Sep. 30 , 2021 Sheet 83 of 92 US 2021/0303431 A1

b

X

? FIG . 34B
p

F

N

d

1

n_

70 40 20 10

3502

Patent Application Publication Sep. 30 , 2021 Sheet 84 of 92

.

20

3512

3508
3510

3

6

?

10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25

3506

3504

US 2021/0303431 A1

FIG . 35A

Patent Application Publication Sep. 30 , 2021 Sheet 85 of 92 US 2021/0303431 A1

1

3524
0

I D

?

A

3523
?

3522 FIG . 35B
B

???? g

3521
1

3 .

word

3516 3520
A

70 8 40 8 20 10

Patent Application Publication Sep. 30 , 2021 Sheet 86 of 92 US 2021/0303431 A1

3534 E
wat 3531 a

3530 3533 3532 ;

FIG . 35C

b

6 d . .

W

o

a

Patent Application Publication Sep. 30 , 2021 Sheet 87 of 92 US 2021/0303431 A1

3602 IITTTTIIIT.DE ? ? TIITIT IN TIIIIITON TI TIID AEO
H ?

TA Ts To T7 TN - 1

3606 3604 dd (V1 , V2) dendrogram distance dd
T : dd

od = dd (T ;, T)
T Ta

Ta Winni

3610 (N + 1
2 ((Net

d (T1 , T2) - metric distance ,
such as de , ds . dcos

d - d (TT) 3608 ? (d (T1 , T2) -d) (dd (T1 , T2) - dd) CAV11 i € { 0.4-21 ,
10.N - 1) .

2

Eld (T1 , T2) -c) ? Edd (T1 , T2) - dd) ?
3612 1 € 0 , N - 23

E [8.4-1 .
1 € 10.N - 21 .

FIG . 36

Patent Application Publication Sep. 30 , 2021 Sheet 88 of 92 US 2021/0303431 A1

cluster traces

3702 receive :
reference to traces T ;
set of metrics M ;
set of vectorization
methods V ;

sets U , C , D

3703
for each v in V

3704
vectorize

(in : T , v
out : U)

3705
for each min M

? 3706
cluster

(in : U , C , D , m ;
}

3707
verify

(in : C , D , U , m , V ;
out :)

3708 3709

r TRUE ? return
TRUE

N

3711 3710
Y

get next m in M anotherm to FIG . 37A try ?

3713 3712 3714
N

get next v in v another v to return
FALSE try ?

Patent Application Publication Sep. 30 , 2021 Sheet 89 of 92 US 2021/0303431 A1

cluster

3715
receive

U. C , D , m

I 3716
clear C and D

3717
for each vector u in u

3718
create new cluster ,
mark cas unclustered ,
and a toc , add cto

and update D

3720 3719
y

next vector in another win
?

N
3721

while any unclustered
clusters remain in C

3722 find closest pair p of
unclustered clusters

using m

3723
mark each cluster in o
as clustered and add

them to a new clusterc

3724 3725

all clusters in
C clustered]

mark new cluster as
clustered and as

top cluster

3726
mark new cluster as

unclustered
3728

3727
return

an
unclustered
clusters in C

?

update D to include
information about

new cluster FIG . 37B

Patent Application Publication Sep. 30 , 2021 Sheet 90 of 92 US 2021/0303431 A1

Verity

3730
receive :
CD , U. m . V

3732 compute cophenetic
correlation coefficient c

OFC

3733

threshold 1
?

retum
FALSE

Y

3734 determine , using the
dd / cluster additiona

graph - based method , a a . provisional clustering

3735 S = sparsity of V ;
R = 0 ;

I 3736
for each cinp

3737 revectorize c ;
num ++ ;

R * sparsity of
revectorization

3738
Y ? c = next cluster in p another c in

?

3739
N 3740

R = Rinum

3741 3742
R

< threshold 2
?

return
FALSE

A FIG . 37C

Patent Application Publication Sep. 30 , 2021 Sheet 91 of 92 US 2021/0303431 A1

A

3746 numiter
lowQU = 0 ;
low) =
lq = 0 ; lv = 0

3747
for each cin P

3748
n = sizeof (c) ;

r = relevant (c)

3749 3750

threshold 3 lowV [lv = c ;
?

N

3751
3752

Y threshold 4
OR

> threshold 5
lowQ [lq)

1944

N

3754 3753
3760 Cnext cluster

in P another c in P
? numiterman

N 3759
3755 3758

lv + lq > O ? numlter
threshold 6 ?

adjust clustering
to increase low
volume cluster

size and improve
distributions

N
3756

return .
TRUE return

FALSE FIG . 37D

FIG . 38

3811

US 2021/0303431 A1

3810

or ?

3809

Sep. 30 , 2021 Sheet 92 of 92

3806

nt : 5 * 121

********** ******************* 1143
* : *

43 : 31 : 11.91 " ***** # 14

737 - ******************
** 17 : 17 : 12 : ************

***** 11 * 1 * 1 : 22 :

*********************** : *** **************************** 7477430 ***************
** 4745464 (HLCD30 : 12 + 1 ***********************************

************** reat !

+ * + - + * 13077114424 * :: * + 244i .

: :

***** ??? : M17437712011 ***
*** 1 : 07 : 51 : 1 : 1 : " 17974145443 ***

448 : 14X7 ******** 01 # 371481111 ! : "

Noise
***** 143 # 11 : 17 ****** 77 ? 11 ****** 71941015 * 44 : ****

Patent Application Publication

** 3 : 17
*********** # : 146 : " ??? **********

**** 41.415154 # * 73342 ******** ********** : * * titt * 30 * 35 * 11 ***** 97100 ?? # : 1-97
* ? 172 ## *******

3804

97833147111511614 :
46 * 14 *

* : 4 : 1

4 * + - ***** 246
.

777777 ? 1024 ****** txiett **************** * 1947 : 01

3802

3805

US 2021/0303431 A1 Sep. 30 , 2021
1

SUMMARY METHODS AND SYSTEMS THAT IDENTIFY
DIMENSIONS RELATED TO ANOMALIES IN
SYSTEM COMPONENTS OF DISTRIBUTED
COMPUTER SYSTEMS USING CLUSTERED

TRACES , METRICS , AND
COMPONENT - ASSOCIATED ATTRIBUTE

VALUES

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] The application is a continuation - in - part of U.S.
patent application Ser . No. 16 / 833,102 , filed Mar. 27 , 2020 .

[0005] The current document is directed to methods and
systems that employ distributed - computer - system metrics
collected by one or more distributed - computer - system met
rics - collection services , call traces collected by one or more
call - trace services , and attribute values for distributed - com
puter - system components to identify attribute dimensions
related to anomalous behavior of distributed - computer - sys
tem components . In a described implementation , nodes
correspond to particular types of system components and
node instances are individual components of the component
type corresponding to a node . Node instances are associated
with attribute values and node are associated with attribute
value spaces defined by attribute dimensions . A set of call
traces is partitioned , by clustering . Using attribute values
and call traces , attribute dimensions that are likely related to
particular anomalous behaviors of distributed - computer - sys
tem components are determined by decision - tree - related
analyses for each partition and are reported to one or more
cor ational entities to facilitate resolution of the anoma
lous behaviors .

TECHNICAL FIELD

[0002] The current document is directed to distributed
computer - system and distributed - application administration
and management and , in particular , to methods and systems
that identify attribute dimensions relevant to anomalies
detected in components of distributed applications and dis
tributed computer systems .

BACKGROUND
BRIEF DESCRIPTION OF THE DRAWINGS

[0003] During the past seven decades , electronic comput
ing has evolved from primitive , vacuum - tube - based com
puter systems , initially developed during the 1940s , to
modern electronic computing systems in which large num
bers of multi - processor servers , work stations , and other
individual computing systems are networked together with
large - capacity data - storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands , millions , or more
components that provide enormous computational band
widths and data - storage capacities . These large , distributed
computing systems are made possible by advances in com
puter networking , distributed operating systems and appli
cations , data - storage appliances , computer hardware , and
software technologies . However , despite all of these
advances , the rapid increase in the size and complexity of
computing systems has been accompanied by numerous
scaling issues and technical challenges , including technical
challenges associated with communications overheads
encountered in parallelizing computational tasks among
multiple processors , component failures , and distributed
system management . As new distributed computing tech
nologies are developed , and as general hardware and soft
ware technologies continue to advance , the current trend
towards ever - larger and more complex distributed comput
ing systems appears likely to continue well into the future .
[0004] As the complexity of distributed computing sys
tems has increased , the management and administration of
distributed computing systems has , in turn , become increas
ingly complex , involving greater computational overheads
and significant inefficiencies and deficiencies . In fact , many
desired management - and - administration functionalities are
becoming sufficiently complex to render traditional
approaches to the design and implementation of automated
management and administration systems impractical , from a
time and cost standpoint , and even from a feasibility stand
point . Therefore , designers and developers of various types
of automated management - and - administration facilities
related to distributed computing systems are seeking new
approaches to implementing automated management - and
administration facilities and functionalities .

[0006] FIG . 1 provides a general architectural diagram for
various types of computers .
[0007] FIG . 2 illustrates an Internet - connected distributed
computing system .
[0008] FIG . 3 illustrates cloud computing .
[0009] FIG . 4 illustrates generalized hardware and soft
ware components of a general - purpose computer system ,
such as a general - purpose computer system having an archi
tecture similar to that shown in FIG . 1 .
[0010] FIGS . 5A - D illustrate two types of virtual machine
and virtual - machine execution environments .
[0011] FIG . 6 illustrates an OVF package .
[0012] FIG . 7 illustrates virtual data centers provided as an
abstraction of underlying physical - data - center hardware
components .
[0013] FIG . 8 illustrates virtual machine components of a
VI - management - server and physical servers of a physical
data center above which a virtual - data - center interface is
provided by the VI - management - server .
[0014] FIG . 9 illustrates a cloud - director level of abstrac
tion .
[0015] FIG . 10 illustrates virtual - cloud - connector nodes
(“ VCC nodes ”) and a VCC server , components of a distrib
uted system that provides multi - cloud aggregation and that
includes a cloud - connector server and cloud - connector
nodes that cooperate to provide services that are distributed
across multiple clouds .
[0016] FIG . 11 illustrates a distributed service - oriented
application .
[0017] FIGS . 12A - B illustrate a sequence of service calls
that implement a particular distributed - service - oriented - ap
plication API call or entrypoint .
[0018] FIGS . 13A - B illustrate service components and
service nodes .
[0019] FIGS . 14A - C illustrate the scale of certain distrib
uted - service - oriented - applications .
[0020] FIGS . 15A - B illustrate components of a call - trac
ing service .

US 2021/0303431 A1 Sep. 30 , 2021
2

traces into a number of subsets of related traces , each subset
representing a different trace type .
[0043] FIG . 38 summarizes the currently disclosed clus
tering method for partitioning a set of call traces into subsets
for dimensional analysis .

DETAILED DESCRIPTION

[0021] FIGS . 16A - H illustrate and how the tracing service ,
discussed with reference to FIGS . 15A - B , collects a call
trace .
[0022] FIG . 17 illustrates distributed - computing - system
component attributes and attribute values .
[0023] FIG . 18 illustrates a simple example of event
message logging and analysis .
[0024] FIG . 19 shows a small , 11 - entry portion of a log file
from a distributed computer system .
[0025] FIG . 20 illustrates one initial event - message - pro cessing approach .
[0026] FIGS . 21A - B illustrate one of many different pos
sible ways of storing attribute values for system components
and metric values for system components generated from
event messages or event records .
[0027] FIGS . 22A - B illustrates detection of the system
component operational anomalies using metric data .
[0028] FIGS . 23A - K illustrate one example of the cur
rently disclosed methods for determining root causes of , and
attributes that are likely to be relevant to , detected anomalies
within distributed heating systems .
[0029] FIGS . 24A - B illustrate a second example of appli
cation of the currently disclosed methods for determining
root causes of , and attributes that are likely to be relevant to ,
detected anomalies within distributed heating systems .
[0030] FIGS . 25A - D provide additional examples of iden
tifying relevant dimensions with respect to problem - associ
ated components within a distributed computing system .
[0031] FIGS . 26A - B illustrate data structures and analyti
cal approaches used in the control - flow diagrams provided
in FIGS . 27A - F to illustrate the decision - tree - based methods
for identifying attribute dimensions relevant to observed
anomalies in the operational behaviors of distributed - com
puter - system components .
[0032] FIGS . 27A - H provide control - flow diagrams that
illustrate one implementation of the decision - tree - based
analysis used by currently disclosed methods and systems
for determining attribute dimensions of the distributed
computer - system components relevant to particular anoma
lous operational behaviors observed for one or more dis
tributed - computer - system components .
[0033] FIG . 28 illustrates a problem with applying dimen
sional analysis to very large sets of call traces .
[0034] FIG . 29 illustrates one approach to vectorizing call
traces .
[0035] FIGS . 30A - C illustrate several approaches to gen
erating a final vector from the expanded - elements vector
2936 shown in FIG . 29 .
[0036] FIGS . 31A - D illustrates several different types of
metrics that can be used to determine the distance between
two vectors .
[0037] FIG . 32 illustrates various different distance met
rics for clusters .
[0038] FIGS . 33A - E illustrate one approach to clustering
vectors within the class of clustering methods referred to as
" agglomerative " or " bottom - up . "
[0039] FIGS . 34A - B show two versions of a dendrogram
generated during the vector clustering illustrated in FIGS .
33A - E .
[0040] FIGS . 35A - C illustrates cluster selection .
[0041] FIG . 36 illustrates the cophenetic correlation .
[0042] FIGS . 37A - D provide control - flow diagrams for a
routine “ trace types , ” and additional routines called by the
routine “ trace types , " that together partition a set of call

[0044] The current document is directed to methods and
systems that automatically identify attribute dimensions of
component nodes that are likely related to the causes of
component - operation anomalies . In a first subsection , below ,
a detailed description of computer hardware , complex com
putational systems , and virtualization is provided with ref
erence to FIGS . 1-10 . In a second subsection , distributed
service - oriented applications , node attributes , call traces ,
and metric data are discussed , with reference to FIGS .
11-22B . A third subsection discloses the dimensional - analy
sis methods and systems to which the current document is
directed , with reference to FIGS . 23A - 27H . A fourth sub
section discloses call - trace - clustering methods and systems
to which the current document is directed , with reference to
FIGS . 23A - 27H .
[0045] Computer Hardware , Complex , Computational
Systems , and Virtualization
[0046] The term “ abstraction ” is not , in any way , intended
to mean or suggest an abstract idea or concept . Computa
tional abstractions are tangible , physical interfaces that are
implemented , ultimately , using physical computer hardware ,
data - storage devices , and communications systems . Instead ,
the term “ abstraction ” refers , in the current discussion , to a
logical level of functionality encapsulated within one or
more concrete , tangible , physically - implemented computer
systems with defined interfaces through which electroni
cally - encoded data is exchanged , process execution
launched , and electronic services are provided . Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari
ous tasks and operations and that are invoked through
electronically implemented application programming inter
faces (“ APIs ”) and other electronically implemented inter
faces . There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
" abstract " and " abstraction . ” when used to describe certain
aspects of modern computing . For example , one frequently
encounters assertions that , because a computational system
is described in terms of abstractions , functional layers , and
interfaces , the computational system is somehow different
from a physical machine or device . Such allegations are
unfounded . One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical , machine nature of com
plex computer technologies . One also frequently encounters
statements that characterize a computational technology as
being " only software , " and thus not a machine or device .
Software is essentially a sequence of encoded symbols , such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass - storage
device . Software alone can do nothing . It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so - called “ software implemented ”
functionality is provided . The digitally encoded computer

US 2021/0303431 A1 Sep. 30 , 2021
3

instructions are an essential and physical control component
of processor - controlled machines and devices , no less essen
tial and physical than a cam - shaft control system in an
internal - combustion engine . Multi - cloud aggregations ,
cloud - computing services , virtual - machine containers and
virtual machines , communications interfaces , and many of
the other topics discussed below are tangible , physical
components of physical , electro - optical - mechanical com
puter systems .
[0047] FIG . 1 provides a general architectural diagram for
various types of computers . The computer system contains
one or multiple central processing units (“ CPUs ”) 102-105 ,
one or more electronic memories 108 interconnected with
the CPUs by a CPU / memory - subsystem bus 110 or multiple
busses , a first bridge 112 that interconnects the CPU /
memory - subsystem bus 110 with additional busses 114 and
116 , or other types of high - speed interconnection media ,
including multiple , high - speed serial interconnects . These
busses or serial interconnections , in turn , connect the CPUs
and memory with specialized processors , such as a graphics
processor 118 , and with one or more additional bridges 120 ,
which are interconnected with high - speed serial links or
with multiple controllers 122-127 , such as controller 127 ,
that provide access to various different types of mass - storage
devices 128 , electronic displays , input devices , and other
such components , subcomponents , and computational
resources . It should be noted that computer - readable data
storage devices include optical and electromagnetic disks ,
electronic memories , and other physical data - storage
devices . Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval and can
transiently “ store ” only a byte or less of information per
mile , far less information than needed to encode even the
simplest of routines .
[0048] Of course , there are many different types of
puter - system architectures that differ from one another in the
number of different memories , including different types of
hierarchical cache memories , the number of processors and
the connectivity of the processors with other system com
ponents , the number of internal communications busses and
serial links , and in many other ways . However , computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors . Computer systems include general
purpose computer systems , such as personal computers
(“ PCs ”) , various types of servers and workstations , and
higher - end mainframe computers , but may also include a
plethora of various types of special - purpose computing
devices , including data - storage systems , communications
routers , network nodes , tablet computers , and mobile tele
phones .
[0049] FIG . 2 illustrates an Internet - connected distributed
computing system . As communications and networking
technologies have evolved in capability and accessibility ,
and as the computational bandwidths , data - storage capaci
ties , and other capabilities and capacities of various types of
computer systems have steadily and rapidly increased , much
of modern computing now generally involves large distrib
uted systems and computers interconnected by local net
works , wide - area networks , wireless communications , and
the Internet . FIG . 2 shows a typical distributed system in
which a large number of PCs 202-205 , a high - end distrib
uted mainframe system 210 with a large data - storage system

212 , and a large computer center 214 with large numbers of
rack - mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities .
For example , a PC user sitting in a home office may access
hundreds of millions of different web sites provided by
hundreds of thousands of different web servers throughout
the world and may access high - computational - bandwidth
computing services from remote computer facilities for
running complex computational tasks .
[0050] Until recently , computational services were gener
ally provided by computer systems and data centers pur
chased , configured , managed , and maintained by service
provider organizations . For example , an e - commerce retailer
generally purchased , configured , managed , and maintained a
data center including numerous web servers , back - end com
puter systems , and data - storage systems for serving web
pages to remote customers , receiving orders through the
web - page interface , processing the orders , tracking com
pleted orders , and other myriad different tasks associated
with an e - commerce enterprise .
[0051] FIG . 3 illustrates cloud computing . In the recently
developed cloud - computing paradigm , computing cycles
and data - storage facilities are provided to organizations and
individuals by cloud - computing providers . In addition ,
larger organizations may elect to establish private cloud
computing facilities in addition to , or instead of , subscribing
to computing services provided by public cloud - computing
service providers . In FIG . 3 , a system administrator for an
organization , using a PC 302 , accesses the organization's
private cloud 304 through a local network 306 and private
cloud interface 308 and also accesses , through the Internet
310 , a public cloud 312 through a public - cloud services
interface 314. The administrator can , in either the case of the
private cloud 304 or public cloud 312 , configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers in order to carry

of many different types of computational tasks . As
one example , a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e - commerce interface through the
public cloud to remote customers of the organization , such
as a user viewing the organization's e - commerce web pages
on a remote user system 316 .
[0052] Cloud - computing facilities are intended to provide
computational bandwidth and data - storage services much as
utility companies provide electrical power and water to
consumers . Cloud computing provides enormous advan
tages to small organizations without the resources to pur
chase , manage , and maintain in - house data centers . Such
organizations can dynamically add and delete virtual com
puter systems from their virtual data centers within public
clouds in order to track computational - bandwidth and data
storage needs , rather than purchasing sufficient computer
systems within a physical data center to handle peak com
putational - bandwidth and data - storage demands . Moreover ,
small organizations can completely avoid the overhead of
maintaining and managing physical computer systems ,
including hiring and periodically retraining information
technology specialists and continuously paying for operat
ing - system and database - management - system upgrades .
Furthermore , cloud - computing interfaces allow for easy and

com

out any

US 2021/0303431 A1 Sep. 30 , 2021
4

straightforward configuration of virtual computing facilities ,
flexibility in the types of applications and operating systems
that can be configured , and other functionalities that are
useful even for owners and administrators of private cloud
computing facilities used by a single organization .
[0053] FIG . 4 illustrates generalized hardware and soft
ware components of a general - purpose computer system ,
such as a general - purpose computer system having an archi
tecture similar to that shown in FIG . 1. The computer system
400 is often considered to include three fundamental layers :
(1) a hardware layer or level 402 ; (2) an operating - system
layer or level 404 ; and (3) an application - program layer or
level 406. The hardware layer 402 includes one or more
processors 408 , system memory 410 , various different types
of input - output (“ I / O ”) devices 410 and 412 , and mass
storage devices 414. Of course , the hardware level also
includes many other components , including power supplies ,
internal communications links and busses , specialized inte
grated circuits , many different types of processor - controlled
or microprocessor - controlled peripheral devices and con
trollers , and many other components . The operating system
404 interfaces to the hardware level 402 through a low - level
operating system and hardware interface 416 generally
comprising a set of non - privileged computer instructions
418 , a set of privileged computer instructions 420 , a set of
non - privileged registers and memory addresses 422 , and a
set of privileged registers and memory addresses 424. In
general , the operating system exposes non - privileged
instructions , non - privileged registers , and non - privileged
memory addresses 426 and a system - call interface 428 as an
operating - system interface 430 to application programs 432
436 that execute within an execution environment provided
to the application programs by the operating system . The
operating system , alone , accesses the privileged instructions ,
privileged registers , and privileged memory addresses . By
reserving access to privileged instructions , privileged reg
isters , and privileged memory addresses , the operating sys
tem can ensure that application programs and other higher
level computational entities cannot interfere with one
another's execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation . The operating system includes many
internal components and modules , including a scheduler
442 , memory management 444 , a file system 446 , device
drivers 448 , and many other components and modules . To a
certain degree , modern operating systems provide numerous
levels of abstraction above the hardware level , including
virtual memory , which provides to each application program
and other computational entities a separate , large , linear
memory - address space that is mapped by the operating
system to various electronic memories and mass - storage
devices . The scheduler orchestrates interleaved execution of
various different application programs and higher - level
computational entities , providing to each application pro
gram a virtual , stand - alone system devoted entirely to the
application program . From the application program's stand
point , the application program executes continuously with
out concern for the need to share processor resources and
other system resources with other application programs and
higher - level computational entities . The device drivers
abstract details of hardware - component operation , allowing
application programs to employ the system - call interface for
transmitting and receiving data to and from communications
networks , mass - storage devices , and other I / O devices and

subsystems . The file system 436 facilitates abstraction of
mass - storage - device and memory resources as a high - level ,
easy - to - access , file - system interface . Thus , the development
and evolution of the operating system has resulted in the
generation of a type of multi - faceted virtual execution
environment for application programs and other higher - level
computational entities .
[0054] While the execution environments provided by
operating systems have proved to be an enormously suc
cessful level of abstraction within computer systems , the
operating - system - provided level of abstraction is nonethe
less associated with difficulties and challenges for develop
ers and users of application programs and other higher - level
computational entities . One difficulty arises from the fact
that there are many different operating systems that run
within various different types of computer hardware . In
many cases , popular application programs and computa
tional systems are developed to run on only a subset of the
available operating systems and can therefore be executed
within only a subset of the various different types of com
puter systems on which the operating systems are designed
to run . Often , even when an application program or other
computational system is ported to additional operating sys
tems , the application program or other computational system
can nonetheless run more efficiently on the operating sys
tems for which the application program or other computa
tional system was originally targeted . Another difficulty
arises from the increasingly distributed nature of computer
systems . Although distributed operating systems are the
subject of considerable research and development efforts ,
many of the popular operating systems are designed primar
ily for execution on a single computer system . In many
cases , it is difficult to move application programs , in real
time , between the different computer systems of a distrib
uted computing system for high - availability , fault - tolerance ,
and load - balancing purposes . The problems are even greater
in heterogeneous distributed computing systems which
include different types of hardware and devices running
different types of operating systems . Operating systems
continue to evolve , as a result of which certain older
application programs and other computational entities may
be incompatible with more recent versions of operating
systems for which they are targeted , creating compatibility
issues that are particularly difficult to manage in large
distributed systems .
[0055] For all of these reasons , a higher level of abstrac
tion , referred to as the “ virtual machine , ” has been devel
oped and evolved to further abstract computer hardware in
order to address many difficulties and challenges associated
with traditional computing systems , including the compat
ibility issues discussed above . FIGS . 5A - D illustrate several
types of virtual machine and virtual - machine execution
environments . FIGS . 5A - B use the same illustration con
ventions as used in FIG . 4. FIG . 5A shows a first type of
virtualization . The computer system 500 in FIG . 5A includes
the same hardware layer 502 as the hardware layer 402
shown in FIG . 4. However , rather than providing an oper
ating system layer directly above the hardware layer , as in
FIG . 4 , the virtualized computing environment illustrated in
FIG . 5A features a virtualization layer 504 that interfaces
through a virtualization - layer / hardware - layer interface 506 ,
equivalent to interface 416 in FIG . 4 , to the hardware . The
virtualization layer provides a hardware - like interface 508 to
a number of virtual machines , such as virtual machine 510 ,

US 2021/0303431 A1 Sep. 30 , 2021
5

executing above the virtualization layer in a virtual - machine
layer 512. Each virtual machine includes one or more application programs or other higher - level computational
entities packaged together with an operating system ,
referred to as a “ guest operating system . ” such as application
514 and guest operating system 516 packaged together
within virtual machine 510. Each virtual machine is thus
equivalent to the operating system layer 404 and applica
tion - program layer 406 in the general - purpose computer
system shown in FIG . 4. Each guest operating system within
a virtual machine interfaces to the virtualization - layer inter
face 508 rather than to the actual hardware interface 506 .
The virtualization layer partitions hardware resources into
abstract virtual - hardware layers to which each guest oper
ating system within a virtual machine interfaces . The guest
operating systems within the virtual machines , in general ,
are unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface . The
virtualization layer ensures that each of the virtual machines
currently executing within the virtual environment receive a
fair allocation of underlying hardware resources and that all
virtual machines receive sufficient resources to progress in
execution . The virtualization - layer interface 508 may differ
for different guest operating systems . For example , the
virtualization layer is generally able to provide virtual
hardware interfaces for a variety of different types of com
puter hardware . This allows , as one example , a virtual
machine that includes a guest operating system designed for
a particular computer architecture to run on hardware of a
different architecture . The number of virtual machines need
not be equal to the number of physical processors or even a
multiple of the number of processors .
[0056] The virtualization layer includes a virtual - machine
monitor module 518 (“ VMM ”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the virtual machines executes . For execu
tion efficiency , the virtualization layer attempts to allow
virtual machines to directly execute non - privileged instruc
tions and to directly access non - privileged registers and
memory . However , when the guest operating system within
a virtual machine accesses virtual privileged instructions ,
virtual privileged registers , and virtual privileged memory
through the virtualization - layer interface 508 , the accesses
result in execution of virtualization - layer code to simulate or
emulate the privileged resources . The virtualization layer
additionally includes a kernel module 520 that manages
memory , communications , and data - storage machine
resources on behalf of executing virtual machines (“ VM
kernel ”) . The VM kernel , for example , maintains shadow
page tables on each virtual machine so that hardware - level
virtual - memory facilities can be used to process memory
accesses . The VM kernel additionally includes routines that
implement virtual communications and data - storage devices
as well as device drivers that directly control the operation
of underlying hardware communications and data - storage
devices . Similarly , the VM kernel virtualizes various other
types of I / O devices , including keyboards , optical - disk
drives , and other such devices . The virtualization layer
essentially schedules execution of virtual machines much
like an operating system schedules execution of application
programs , so that the virtual machines each execute within
a complete and fully functional virtual hardware layer .
[0057] FIG . 5B illustrates a second type of virtualization .
In FIG . 5B , the computer system 540 includes the same

hardware layer 542 and software layer 544 as the hardware
layer 402 shown in FIG . 4. Several application programs
546 and 548 are shown running in the execution environ
ment provided by the operating system . In addition , a
virtualization layer 550 is also provided , in computer 540 ,
but , unlike the virtualization layer 504 discussed with ref
erence to FIG . 5A , virtualization layer 550 is layered above
the operating system 544 , referred to as the “ host OS . ” and
uses the operating system interface to access operating
system - provided functionality as well as the hardware . The
virtualization layer 550 comprises primarily a VMM and a
hardware - like interface 552 , similar to hardware - like inter
face 508 in FIG . 5A . The virtualization - layer / hardware - layer
interface 552 , equivalent to interface 416 in FIG . 4 , provides
an execution environment for a number of virtual machines
556-558 , each including one or more application programs
or other higher - level computational entities packaged
together with a guest operating system .
[0058] While the traditional virtual - machine - based virtu
alization layers , described with reference to FIGS . 5A - B ,
have enjoyed widespread adoption and use in a variety of
different environments , from personal computers to enor
mous distributed computing systems , traditional virtualiza
tion technologies are associated with computational over
heads . While these computational overheads have been
steadily decreased , over the years , and often represent ten
percent or less of the total computational bandwidth con
sumed by an application running in a virtualized environ
ment , traditional virtualization technologies nonetheless
involve computational costs in return for the power and
flexibility that they provide . Another approach to virtualiza
tion is referred to as operating - system - level virtualization
(" OSL virtualization ”) . FIG . 5C illustrates the OSL - virtual
ization approach . In FIG . 5C , as in previously discussed
FIG . 4 , an operating system 404 runs above the hardware
402 of a host computer . The operating system provides an
interface for higher - level computational entities , the inter
face including a system - call interface 428 and exposure to
the non - privileged instructions and memory addresses and
registers 426 of the hardware layer 402. However , unlike in
FIG . 5A , rather than applications running directly above the
operating system , OSL virtualization involves an OS - level
virtualization layer 560 that provides an operating - system
interface 562-564 to each of one or more containers 566
568. The containers , in turn , provide an execution environ
ment for one or more applications , such as application 570
running within the execution environment provided by con
tainer 566. The container can be thought of as a partition of
the resources generally available to higher - level computa
tional entities through the operating system interface 430 .
While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper
ating systems , OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system . As one example , OSL virtual
ization provides a file system to each container , but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under
lying operating system . In essence , OSL virtualization uses
operating system features , such as name space support , to
isolate each container from the remaining containers so that
the applications executing within the execution environment
provided by a container are isolated from applications
executing within the execution environments provided by all

US 2021/0303431 A1 Sep. 30 , 2021
6

other containers . As a result , a container can be booted up
much faster than a virtual machine , since the container uses
operating - system - kernel features that are already available
within the host computer . Furthermore , the containers share
computational bandwidth , memory , network bandwidth , and
other computational resources provided by the operating
system , without resource overhead allocated to virtual
machines and virtualization layers . Again , however , OSL
virtualization does not provide many desirable features of
traditional virtualization . As mentioned above , OSL virtu
alization does not provide a way to run different types of
operating systems for different groups of containers within
the same host system , nor does OSL - virtualization provide
for live migration of containers between host computers , as
does traditional virtualization technologies .
[0059] FIG . 5D illustrates an approach to combining the
power and flexibility of traditional virtualization with the
advantages of OSL virtualization . FIG . 5D shows a host
computer similar to that shown in FIG . 5A , discussed above .
The host computer includes a hardware layer 502 and a
virtualization layer 504 that provides a simulated hardware
interface 508 to an operating system 572. Unlike in FIG . 5A ,
the operating system interfaces to an OSL - virtualization
layer 574 that provides container execution environments
576-578 to multiple application programs . Running contain
ers above a guest operating s stem within a virtualized host
computer provides many of the advantages of traditional
virtualization and OSL virtualization . Containers can be
quickly booted in order to provide additional execution
environments and associated resources to new applications .
The resources available to the guest operating system are
efficiently partitioned among the containers provided by the
OSL - virtualization layer 574. Many of the powerful and
flexible features of the traditional virtualization technology
can be applied to containers running above guest operating
systems including live migration from one host computer to
another , various types of high - availability and distributed
resource sharing , and other such features . Containers pro
vide share - based allocation of computational resources to
groups of applications with guaranteed isolation of applica
tions in one container from applications in the remaining
containers executing above a guest operating system . More
over , resource allocation can be modified at run time
between containers . The traditional virtualization layer pro
vides flexible and easy scaling and a simple approach to
operating - system upgrades and patches . Thus , the use of
OSL virtualization above traditional virtualization , as illus
trated in FIG . 5D , provides much of the advantages of both
a traditional virtualization layer and the advantages of OSL
virtualization . Note that , although only a single guest oper
ating system and OSL virtualization layer as shown in FIG .
5D , a single virtualized host system can run multiple dif
ferent guest operating systems within multiple virtual
machines , each of which supports one or more containers .
[0060] virtual machine or virtual application , described
below , is encapsulated within a data package for transmis
sion , distribution , and loading into a virtual - execution envi
ronment . One public standard for virtual - machine encapsu
lation is referred to as the “ open virtualization format "
(" OVF ”) . The OVF standard specifies a format for digitally
encoding a virtual machine within one or more data files .
FIG . 6 illustrates an OVF package . An OVF package 602
includes an OVF descriptor 604 , an OVF manifest 606 , an
OVF certificate 608 , one or more disk - image files 610-611 ,

and one or more resource files 612-614 . The OVF package
can be encoded and stored as a single file or as a set of files .
The OVF descriptor 604 is an XML document 620 that
includes a hierarchical set of elements , each demarcated by
a beginning tag and an ending tag . The outermost , or
highest - level , element is the envelope element , demarcated
by tags 622 and 623. The next - level element includes a
reference element 626 that includes references to all files
that are part of the OVF package , a disk section 628 that
contains meta information about all of the virtual disks
included in the OVF package , a networks section 630 that
includes meta information about all of the logical networks
included in the OVF package , and a collection of virtual
machine configurations 632 which further includes hard
ware descriptions of each virtual machine 634. There are
many additional hierarchical levels and elements within a
typical OVF descriptor . The OVF descriptor is thus a
self - describing XML file that describes the contents of an
OVF package . The OVF manifest 606 is a list of crypto
graphic - hash - function - generated digests 636 of the entire
OVF package and of the various components of the OVF
package . The OVF certificate 608 is an authentication cer
tificate 640 that includes a digest of the manifest and that is
cryptographically signed . Disk image files , such as disk
image file 610 , are digital encodings of the contents of
virtual disks and resource files 612 are digitally encoded
content , such as operating - system images . A virtual machine
or a collection of virtual machines encapsulated together
within a virtual application can thus be digitally encoded as
one or more files within an OVF package that can be
transmitted , distributed , and loaded using well - known tools
for transmitting , distributing , and loading files . A virtual
appliance is a software service that is delivered as a com
plete software stack installed within one or more virtual
machines that is encoded within an OVF package .
[0061] The advent of virtual machines and virtual envi
ronments has alleviated many of the difficulties and chal
lenges associated with traditional general - purpose comput
ing . Machine and operating - system dependencies can be
significantly reduced or entirely eliminated by packaging
applications and operating systems together as virtual
machines and virtual appliances that execute within virtual
environments provided by virtualization layers running on
many different types of computer hardware . A next level of
abstraction , referred to as virtual data centers which are one
example of a broader virtual - infrastructure category , provide
a data - center interface to virtual data centers computation
ally constructed within physical data centers . FIG . 7 illus
trates virtual data centers provided as an abstraction of
underlying physical - data - center hardware components . In
FIG . 7 , a physical data center 702 is shown below a
virtual - interface plane 704. The physical data center consists
of a virtual - infrastructure management server (“ VI - manage
ment - server ”) 706 and any of various different computers ,
such as PCs 708 , on which a virtual - data - center manage
ment interface may be displayed to system administrators
and other users . The physical data center additionally
includes generally large numbers of server computers , such
as server computer 710 , that are coupled together by local
area networks , such as local area network 712 that directly
interconnects server computer 710 and 714-720 and a mass
storage array 722. The physical data center shown in FIG . 7
includes three local area networks 712 , 724 , and 726 that
each directly interconnects a bank of eight servers and a

US 2021/0303431 A1 Sep. 30 , 2021
7

mass - storage array . The individual server computers , such as
server computer 710 , each includes a virtualization layer and
runs multiple virtual machines . Different physical data cen
ters may include many different types of computers , net
works , data - storage systems and devices connected accord
ing to many different types of connection topologies . The
virtual - data - center abstraction layer 704 , a logical abstrac
tion layer shown by a plane in FIG . 7 , abstracts the physical
data center to a virtual data center comprising one or more
resource pools , such as resource pools 730-732 , one or more
virtual data stores , such as virtual data stores 734-736 , and
one or more virtual networks . In certain implementations ,
the resource pools abstract banks of physical servers directly
interconnected by a local area network .
[0062] The virtual - data - center management interface
allows provisioning and launching of virtual machines with
respect to resource pools , virtual data stores , and virtual
networks , so that virtual - data - center administrators need not
be concerned with the identities of physical - data - center
components used to execute particular virtual machines .
Furthermore , the VI - management - server includes function ality to migrate running virtual machines from one physical
server to another in order to optimally or near optimally
manage resource allocation , provide fault tolerance , and
high availability by migrating virtual machines to most
effectively utilize underlying physical hardware resources ,
to replace virtual machines disabled by physical hardware
problems and failures , and to ensure that multiple virtual
machines supporting a high - availability virtual appliance are
executing on multiple physical computer systems so that the
services provided by the virtual appliance are continuously
accessible , even when one of the multiple virtual appliances
becomes compute bound , data - access bound , suspends
execution , or fails . Thus , the virtual data center layer of
abstraction provides a virtual - data - center abstraction of
physical data centers to simplify provisioning , launching ,
and maintenance of virtual machines and virtual appliances
as well as to provide high - level , distributed functionalities
that involve pooling the resources of individual physical
servers and migrating virtual machines among physical
servers to achieve load balancing , fault tolerance , and high
availability .
[0063] FIG . 8 illustrates virtual machine components of a
VI - management - server and physical servers of a physical
data center above which a virtual - data - center interface is
provided by the VI - management - server . The VI - manage
ment - server 802 and a virtual - data - center database 804
comprise the physical components of the management com
ponent of the virtual data center . The VI - management - server
802 includes a hardware layer 806 and virtualization layer
808 and runs a virtual - data - center management - server vir
tual machine 810 above the virtualization layer . Although
shown as a single server in FIG . 8 , the Vl - management
server (“ VI management server ”) may include two or more
physical server computers that support multiple VI - manage
ment - server virtual appliances . The virtual machine 810
includes a management - interface component 812 , distrib
uted services 814 , core services 816 , and a host - management
interface 818. The management interface is accessed from
any of various computers , such as the PC 708 shown in FIG .
7. The management interface allows the virtual - data - center
administrator to configure a virtual data center , provision
virtual machines , collect statistics and view log files for the
virtual data center , and to carry out other , similar manage

ment tasks . The host - management interface 818 interfaces to
virtual - data - center agents 824 , 825 , and 826 that execute as
virtual machines within each of the physical servers of the
physical data center that is abstracted to a virtual data center
by the VI management server .
[0064] The distributed services 814 include a distributed
resource scheduler that assigns virtual machines to execute
within particular physical servers and that migrates virtual
machines in order to most effectively make use of compu
tational bandwidths , data - storage capacities , and network
capacities of the physical data center . The distributed ser
vices further include a high - availability service that repli
cates and migrates virtual machines in order to ensure that
virtual machines continue to execute despite problems and
failures experienced by physical hardware components . The
distributed services also include a live - virtual - machine
migration service that temporarily halts execution of a
virtual machine , encapsulates the virtual machine in an OVF
package , transmits the OVF package to a different physical
server , and restarts the virtual machine on the different
physical server from a virtual machine state recorded when
execution of the virtual machine was halted . The distributed
services also include a distributed backup service that pro
vides centralized virtual machine backup and restore .
[0065] The core services provided by the VI management
server include host configuration , virtual - machine configu
ration , virtual - machine provisioning , generation of virtual
data - center alarms and events , ongoing event logging and
statistics collection , a task scheduler , and a resource - man
agement module . Each physical server 820-822 also
includes a host - agent virtual machine 828-830 through
which the virtualization layer can be accessed via a virtual
infrastructure application programming interface (" API ") .
This interface allows a remote administrator or user to
manage an individual server through the infrastructure API .
The virtual - data - center agents 824-826 access virtualiza
tion - layer server information through the host agents . The
virtual - data - center agents are primarily responsible for off
loading certain of the virtual - data - center management
server functions specific to a particular physical server to
that physical server . The virtual - data - center agents relay and
enforce resource allocations made by the VI management
server , relay virtual - machine provisioning and configura
tion - change commands to host agents , monitor and collect
performance statistics , alarms , and events communicated to
the virtual - data - center agents by the local host agents
through the interface API , and to carry out other , similar
virtual - data - management tasks .
[0066] The virtual - data - center abstraction provides a con
venient and efficient level of abstraction for exposing the
computational resources of a cloud - computing facility to
cloud - computing - infrastructure users . A cloud - director man
agement server exposes virtual resources of a cloud - com
puting facility to cloud - computing - infrastructure users . In
addition , the cloud director introduces a multi - tenancy layer
of abstraction , which partitions virtual data centers
(“ VDCs ”) into tenant - associated VDCs that can each be
allocated to a particular individual tenant or tenant organi
zation , both referred to as a “ tenant . ” A given tenant can be
provided one or more tenant - associated VDCs by a cloud
director managing the multi - tenancy layer of abstraction
within a cloud - computing facility . The cloud services inter
face (308 in FIG . 3) exposes a virtual - data - center manage
ment interface that abstracts the physical data center .

