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shall be defined as a source, a metric, a reason or symptom, 
and a time or time interval. The devices, systems, and meth 
ods of this disclosure are concerned with event data wherein 
the time or time interval of a real event is removed, whereby 
the same events (source, metrics, reason/symptom) can be 
analyzed time independently to correlate the occurrence of 
other events. 
As used herein, the term “real-time' shall be defined as the 

instantaneous moment of an event, analysis, or condition, or 
the instantaneous moment of an event or condition plus a 
period of elapsed time used to make relevant measurements, 
computations, transformations, comparisons, recommenda 
tions, or decisions (e.g., to do something useful with the data 
that takes the period of elapsed time), wherein the state of an 
event, analysis, or condition being measured is Substantially 
the same or remains similarly useful as that of the instanta 
neous moment irrespective of the elapsed time necessary to 
make the measurement, computation, transformation, com 
parison, recommendation, or decision. Used in this context 
“substantially the same' shall be understood to mean that the 
data for the event, analysis, or condition remains useful for 
the purpose for which it is being used after the elapsed time 
period. 
As used herein, the term “subgraph shall refer to a subset 

of nodes in a graph where the adjacency relation the Subset of 
nodes is restricted to that subset of nodes. In other words, the 
Subgraph is disconnected from other Subgraphs in the graph 
(i.e., no node from the Subgraph shares an edge with a node 
from any other subgraph in the graph). 

This disclosure addresses determination of potential root 
causes in complex systems, such as information technology 
(IT) infrastructures. The devices, systems, and methods dis 
closed herein are useful for diagnosing causes or problems in 
the complex system, as well as for determining other useful 
information such as bottlenecks, black Swans, critical nodes, 
sectors or paths, roots, and extreme paths in the complex 
system. The systems and methods disclosed herein require no 
contextual knowledge about the system it is applied to. Other 
similar processes rely on heavy utilization of rules and topol 
ogy knowledge of the applications or systems to enable effec 
tive recommendations. The methods of this disclosure require 
no rules to determine the best recommendation to give to 
users, instead determining the relevant recommendations ab 
initio. 

According to embodiments, the methods disclosed herein 
rely on information measures applied on the complex system 
events space. Such as abnormality event spaces, to create a 
historical recommendation list of components (resources) to 
identify/localize root causes of a past behavior or event. Real 
time events are mapped into those historical lists to create 
real-time recommendations. Sets of root cause lists are used 
to create ordered rank lists based on a computed “likelihood 
index' which identifies the most probable root cause event in 
the generated list. 
No knowledge of casual and other relationships in the 

environment is necessary to practice the methods disclosed 
herein. The underlying analysis for the root cause recommen 
dation is performed on the space of historical events produced 
on resources in the complex system that are being monitored, 
for example in an IT infrastructure. 
The devices, systems, and methods disclosed herein are 

applicable to a wide range of complex systems, from infor 
mation technology infrastructures to single machines. They 
are also applicable to a wide range of other applications such 
as financial performances or sports applications. The appli 
cation outside of an information technology infrastructure 
requires only that a user specify a set of events to analyze. 
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4 
According to embodiments, methods are disclosed for 

identifying a list of events (nodes) that are likely to be the 
Source of the root cause of a real event in the complex system. 
According to embodiments, the real event comprises an 
abnormal event, and the root cause identification allows the 
user of the complex system to identify the source or event that 
initiated the abnormal event. According to embodiments, the 
method comprises creating from historical event data a 
directed graph of conditional probabilities between nodes 
(i.e., an event state). The directed graph is reduced to contain 
only relevant information. The resulting directed graph is 
analyzed to determine the events that are most likely to be the 
root cause of a past event and organized so that a user of the 
devices, systems, or methods disclosed herein can make use 
of the information. 

According to embodiments, FIG. 1 illustrates a flow chart 
of the process for obtaining a historical root recommenda 
tions list and applying recommendations in real-time. FIG. 1 
is divided into historical mode 10 and active mode 30. In 
historical mode 10, historical event data is gathered and used 
to determine and correlate root causes. The historical root 
cause data is stored for use in active mode 30, which uses 
real-time data from the complex system and evaluates risks by 
comparing the real-time data to the stored historical root 
cause data. 

According to embodiments illustrated in FIG. 1, historical 
mode 10 comprises the following steps: graph generation 12, 
graph reduction 13, determination of graph adjacency 16, 
computation of impact factors (entropy) 18, creation of his 
torical recommendations 20, and output of the historical root 
cause recommendation list 28. Within the creation of histori 
cal recommendations operation 20 and according to embodi 
ments, recommendations list is initially proposed based on 
entropy in operation 22. Then, for each node a relative rec 
ommendation index (RRI) is created in operation 24, and 
finally a list relative rank (LRR) is determined to quantita 
tively compare subgraphs in operation 26. 

Active mode 30, as illustrated in FIG. 1, comprises map 
ping of real-time or non-real-time active events to the histori 
cal events lists in operation 32, according to embodiments. 
Real-time or non-real-time recommendations are then output 
to a user in operation 34 and, optionally, impacted resources 
are also output to the user in operation36. Each of the opera 
tions for both historic mode 10 and active mode 30 are 
described in greater detail below. 

According to embodiments, a device or system can be used 
for performance of the operations disclosed herein. Accord 
ing to embodiments, such as system or device would be in 
data communication with the complex system whereby event 
data is collected by the device or system and the operations 
executed by the device or system. According to embodiments, 
historic data may be delivered to the device or system in 
database form (e.g., SQL or Oracle database), as log files, or 
other commonly accepted protocols for storing event data for 
complex systems including manual data entry. Delivery of 
Such historical data, according to embodiments, can be via 
network or via other forms of machine readable media con 
nected directly to the machine or system. For active mode, 
real-time or non-real-time data is delivered as is done for 
historic mode, both informat and delivery method, according 
to embodiments. One way to deliver real-time data for active 
mode is via network or direct monitoring of the metrics of the 
complex system that provide the event data. 
Historical Mode 
Creation of a Directed Graph and Probability Space 

Based on the available probability distributions, a graph of 
complex system events is created in operation 12. FIG. 2 
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illustrates a complete undirected graph of pair-wise events 
(nodes 110) with the edges 120 being the joint probability 
P, P(E.E.) that the events occur simultaneously. The undi 
rected graph is used reduced to remove event and probability 
data that is irrelevant or not useful. According to embodi 
ments, novel probability theories are useful, provided they 
describe the probability of two nodes or events occurring 
within the same time interval (i.e., occurring within the same 
At). 

According to embodiments, after the events and the prob 
abilities are determined for the complex system, the undi 
rected graph can be constructed as illustrated by exemplary 
graph 100 shown in FIG. 2. The graph comprises nodes no 
and edges 120. As previously disclosed, each node no repre 
sents an event and each edge 120 shows the probability of the 
two events represented by nodes 110 occurring simulta 
neously. 

Conditional probabilities P(E,TE) are used for the edges 
120 of another directed graph. According to embodiments, 
the construction of the directed graph is based upon events 
and probabilities between event pairs. The nodes of the 
graphs represent an event state and the connections between 
two nodes represent the conditional probability that if one 
event occurs, the other will Subsequently occur. The actual 
method used to compute the conditional probability of two 
events includes Bayes theorem or derivatives of Bayes Theo 
rem, for example. 

According to embodiments, the conditional probability of 
events (E.E.) (e.g., the probabilities used to build the directed 
graph) can be computed by dividing the joint probability of 
the two events by the marginal probability of event E: 

P(Ei, Eila, At) 
P(E. E., a, At) = PEI) 

where 
E=Event i: 
E Event j: 
C=a function of the event lifetimes; and 
At the span of time where events i and are considered to be 
coincident. 

According to embodiments, information theory is used to 
derivatize Bayes Theorem. For example, in an IT infrastruc 
ture, an alert (i.e., an event) lifetime has approximately a log 
normal distribution. Based on this model of an alert's life 
time, the log normal distribution was derivatized into Bayes 
Theorem. 

Accordingly, the function a can be computed by an 
approximate modeling of event lifetimes. This is accom 
plished by representing a typical event lifetime as a log 
normal distribution (other choices are also possible, though 
an approximation is sufficient in this case): 

1 
i) f(t) tort V2 
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6 
where t is the time from the start to the end of the event. This 
is the standard definition of the log-normal distribution. 
Using a different convention: 

t = ln(i) 

k = 
Of 

1 1, 2 
f(t) = e2k 

O' W27t 

Now the variable C. can be defined as: 

which can be interpreted as the probability of the logarithm of 
time to be less than t'. In other words, rather than using the 
entire area under of the log normal distribution as the basis of 
the probabilities, only the area up to a certain time period t', 
is used, according to embodiments. 

Rewriting the integral yields: 

1 ka (k’)? 
C 

According to embodiments, t, is obtained as: 

FIGS. 3A and 3B illustrate the effectiveness of the assump 
tion of log-normal behavior for the alert (event) lifetime dis 
tribution as defined in the equations above for an exemplary 
set of data in the context of an IT infrastructure. FIGS. 3A and 
3B show the cumulative distribution of the actual alert life 
times versus the log-normal distribution for two typical IT 
infrastructure events. FIGS. 3A and 3B are representative of 
the various observed events in real IT infrastructure environ 
ments. Artisans will readily recognize that other models can 
be used depending on the data and the analysis being sought, 
as well as the distribution curve for their particular complex 
system. 

According to embodiments, other methods of determining 
the conditional probability of two events are expressly con 
templated, including other derivatives of Bayes Theorem, or 
other standard statistical methods for determination of con 
ditional probability from which a directed graph can be con 
structed. 

According to embodiments, the graphs are stored in a 
database table. According to embodiments, each node is rep 
resented at a row in the database table. For each row, columns 
will exist with various data, for example a list of the nodes in 
which edges are shared for the undirected graph, and a Sub 
table of nodes and conditional probabilities in the directed 
graph. Another column may list a node's prior probability, 
which is the probability that the event will occur on its own. 
According to other embodiments, each node pair can be rep 
resented in the table, together with prior probability, and 
conditional probability as the data fields. Many permutations 
of database storage of graphs are possible, and are well known 
and understood by artisans. 
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Graph Reduction 
According to embodiments, after the undirected graph is 

created, it is reduced in operation 14. Reduction of the graph 
eliminates edges that are irrelevant or for which too little 
information is available to provide confidence in the calcu 
lated probability. Accordingly, it is possible that graph reduc 
tion will result in Subgraphs. According to embodiments, 
reduction of the graph is an optional step that need not be 
performed. 

Reduction is an optional step that reduces the amount of 
information in a graph to a more manageable level. When the 
undirected graph is created, it will typically be very large. In 
principle, reduction uses information theory to discard infor 
mation in the graph that is irrelevant or statistically insignifi 
cant while still having confidence that the node (event) rep 
resenting the root cause, or a critical path, black Swan, etc. 
remains in the graph. Generally, graph reductions are impre 
cise; if too much information is removed from the graph, it is 
possible to remove the root cause event (node) or data neces 
sary for determination of critical paths, bottlenecks, or black 
Swans, for example. Conversely, if too much data is left in the 
graph, the time to execute the processes described herein can 
be greatly increased to the point where the system cannot 
process the information quickly enough or the list of potential 
root causes output to the user is too big to be meaningful. 
According to embodiments, a user can specify the amount of 
desired reduction with a sensitivity parameter setting. 
Accordingly, the user may need to undergo trial and error to 
determine a suitable sensitivity setting on a case by case basis. 

According to embodiments, graph reduction is accom 
plished by computing the mutual information contained in the 
correlation between two different events: 

I(E, E) = XPE, 
i.in 

Ei)l P(E. E.) 
in 99p E.P.E.): 

or its “point-wise' version (where each of the events has a 
unique realization denoted by the same letter): 

I(E, E) = leep EPE) 

In the latter form it is a measure of independence for the 
random realizations E, and E, (note that I(EE)-I(EE)). 
A user defined sensitivity parameter ee0.1 regulates the 

sensitivity of graph reduction, according to embodiments. 
The sensitivity parameter allows the user to introduce a con 
trol on tradeoff between the complexity and accuracy of the 
analysis, as described above. 

According to embodiments, reduction is performed by 
computing the mutual information for each pair (i,j) and 
classifying those values according to their signs. For 
example, let Qos" and Qozs" be the 0.25 and 0.75-quartiles 
of a positive data set, with similar notations for a negative data 
Set. 

Graph reduction eliminates nonessential correlation edges, 
for example by applying the whiskers model, where the inter 
quartile range (Qozs-Qods") is an important criterion. 
Namely, if 
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8 
then the edge connecting the node i to j is eliminated, where 
A" and A are defined by: 

The values for Q" and Q do not need to be the 0.25 and 0.75 
quartiles, according to embodiments, but can be set to any 
statistically significant range that discards edges in a mean 
ingful way during the reduction of the graph. Note that in each 
of the computations presented above, the sensitivity param 
eter allows a user to adjust for when an edge is retained or 
discarded. 

For example, FIG. 4 illustrates the undirected graph of 
FIG. 2 after reduction. Edges 120 that have been removed are 
denoted with dashed lines. Likewise, FIG. 5 illustrates the 
same exemplary graph that, after reduction, results in two 
subgraphs. The first subgraph is the set of nodes E1, E3, E4, 
E5}. The second subgraph is the set of nodes E2, E6}. Note 
that the set of nodes for each Subgraph does not share any 
edges with a node from the other Subgraph. 
Determine Graph Adjacency 

According to embodiments, where the graph reduction 
operation 14 has been performed, the system determines 
whether subgraphs exist in the reduced or nonreduced sub 
graph. This determination is performed in the graph adja 
cency operation 16 of FIG. 1. 

According to embodiments, to determine whether Sub 
graphs exist, an adjacency matrix A(i,j) of the graph (A(i,j)-1 
ifi" and j" nodes are connected, otherwise A(i,j)=0) is cre 
ated. According to embodiments, a bit-wise OR-ing algo 
rithm is applied to the rows of this matrix (Narsingh Deo, 
“Graph Theory with Applications to Engineering and Com 
puter Science'. Prentice Flail 1974, hereby incorporated by 
reference) to detect the connectivity of the graph. If the graph 
is connected, graph adjacency operation 14 ends. 

According to embodiments, in the case where the graph is 
not connected (i.e., Subgraphs exist), each subgraph is iden 
tified. Use of a flood fill coloring algorithm (S. S. Skiena, 
“The Algorithm Design Manual.” Springer 2008, hereby 
incorporated by reference) can be used to identify subgraphs, 
according to embodiments. The coloring algorithm requires 
three parameters: a start node, a target color, and a replace 
ment color. The algorithm looks for all nodes in the array 
which are connected to the start node by a path of the target 
color. The nodes in the path are changed to the replacement 
color. At the end of each iteration with a given start node, all 
nodes that exist along a path from the start node will be 
colored by the replacement color. Nodes that are not colored 
with the replacement color belong to another Subgraph. 
According to embodiments, after each iteration, a node that is 
not colored with the replacement color is designated as a new 
start node and the process is repeated until every node is the 
replacement color, which means that all nodes in the graph are 
represented in a subgraph. 

Other algorithms for determining graph connectivity are 
also expressly contemplated according to embodiments and 
can be used in place of the flood fill algorithm described 
above, and include, for example: depth-first search, breadth 
first search, Warshall's, Naive Union Find, or Union Find 
with Path Compression algorithms. 
Compute Entropy 

Turning again to FIG. 1, after determining graph adja 
cency, entropies (impact factors) are determined in operation 
18. For determination of entropy and those operations that 
follow in FIG. 1, the directed graph is used. As discussed 
above, the directed graph is created for all nodes and edges 
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that were not reduced for each subgraph. As the undirected 
graph is reduced, the corresponding nodes and edges are 
removed from the directed graph. 

According to embodiments, for each node E, (in the 
directed graph) an “impact factor” or entropy F(E) is calcu 
lated (for simplicity denoting it as F(i)), where E.(1), 
E,(2). . . . , E,(N) are its neighbor nodes, such that all the 
conditional probabilities P(E,(n)|E), n=1...Nexist. 
To weigh the impact of an event E, on a set of correlated 

events, which describes how likely relative to the other events 
the event is to be a root cause, E,(1), E,(2). . . . , E,(N) 
represented by: 

W 

E =UE(n) 

a conditional entropy measure can be applied: 

H(EE) = - 
E; (1).E;(2), ... 

P(E. E. (1), E, (2), ... 
E;(N) 

, E, (N)) 

logP(E: (1), E(2), ... , E, (N) E), 

where P(E. E.(1), E,(2), ..., E(N)) and P(E,(1), E, (2). . . . . 
E,(N)|E) are the corresponding joint and conditional prob 
ability distributions, respectively. In the general ease of root 
cause events, nodes are arranged according to decreasing 
order of the entropies. 

According to embodiments, the following impact formula 
weighs the risk of an event E, together with its influence on a 
set of correlated events: 

where 

can be interpreted as a “probability flow” from E. Probability 
flow is a measurement of the sum of all entropy. It takes into 
account the amount of information for a particular node. The 
more information, the more likely the node is the root cause 
event. 

It is noteworthy to point out that entropy as used herein 
utilizes the principles of Shannon's entropy (C. E. Shannon, 
A Mathematical Theory of Communication, 27 THE BELL SYS 
TEMTECHNICAL JOURNAL 379-423 (July, October 1948), which 
is incorporated by reference herein). Generally, entropy mea 
Sures the amount of information contained in a node. 
Historical List(s) of Recommendations 

Turning again to FIG. 1, once entropies are determined, 
one or more historical recommendation lists can be created in 
operation 20. According to embodiments, once entropies are 
determined for each event, the nodes are then sorted accord 
ing to entropy value (X) in operation 22. FIG. 6 illustrates an 
example of the recommendation list of events, Sorted in 
decreasing entropy value, for the connected graph of FIG. 4. 
Based on the historical data, the user should be advised to 
consider Xa as the most likely root cause, and then X, Xs, and 
finally X, in that order, according to the exemplary embodi 
ment shown. 
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10 
Where Subgraphs exist, the nodes in each Subgraph are 

sorted in decreasing order relative to the other nodes in the 
same subgraph. FIG. 7 illustrates and ordering of the sub 
graphs of FIG. 5 into to disparate ordered recommendations 
lists for the historic data. 

According to embodiments, each list can be prioritized 
according to one or more criteria. The prioritization process 
resolves how to order events from multiple subgraphs into a 
general list. For example, the Subgraph with maximum num 
ber of nodes (the most wide-penetrable area for a root cause) 
is recommended in the first position in the general recom 
mendation list as the event with the lowest entropy in that list 
is most likely to be a root because its effect in causing the 
largest number of other events. According to embodiments, 
equal-size subgraphs are prioritized according to their 
“weights.” namely, the sum of prior probabilities of the nodes 
comprising the Subgraphs. According to embodiments, for 
final display of historical recommendations, in each Sub-list a 
further filtering is applied to remove the nodes which are left 
without descendants, i.e., those nodes that have no condi 
tional probability to cause another event. Moreover, a user 
defined parameter is provided to control the number of dis 
playable recommendation Sub-lists Subject to cardinality cri 
terion, according to embodiments. 
Relative Recommendation Index (RRI) Computation 

According to embodiments, a relative recommendation 
index (RRI) is computed in operation 24. The RRI shows the 
relative “strength' of a recommendation relative to the top 
element of the recommendation list (with highest index being 
100), to eachi" node underneath an index is assigned a value 
according to the formula: 

F(1) - F(i) 
RRI (i) = 100- F(1) 100, is 1, 

where F(i) is the impact factor for the i' node, i1, where 
RRI(i)e(0,100. To reduce the ultimate displayable recom 
mendation list, a user defined parameter is set to a value 
between 0 and 100. It indicates the set of nodes which have 
RRI above that value, 
Lists Arrangement Subject to List Relative Rank (LRR) 

According to embodiments, a list relative rank (LRR) is 
computed in operation 26, which resolves the recommenda 
tions for Subgraphs into a single recommendation list. 
According to embodiments, the LRR rank is defined by the 
“probabilistic weight of the corresponding subgraph that is 
defined as the sum of prior probabilities of subgraph’s nodes 
(events). Because the list shows a relative rank, the scale for 
the list is arbitrary. For example, the list can be one to one 
hundred, or one to one thousand. 

According to embodiments, let V be the set of nodes (here 
denoted by V) of the k" subgraph. The weight of V is mea 
sured as follows: 

veV. 
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Assuming that events are already indexed in their decreasing 
order, and W(V) is the maximum then: 

W(V) - W(v) LRR(W) = 100, LRR(W) = 100- W(V) OO, 

k = 2, ..., K. 

where K is the total number of subgraphs. Note that this 
exemplary example uses a 100 point scale to show the list 
relative rank recommendation. 
Active Mode 
Active Events Mapping and Displaying the Recommenda 
tions 

According to embodiments, the historical lists are com 
pared to active events in real-time or non-real-time events in 
operation 32. In each historical list, those recommendations 
that correspond to the current active events are indicated 
(denoted by a for the k" list doubly indexed with S-1,..., 
S). According to embodiments, the RRI computation opera 
tion as for the historical mode for each list is applied and the 
result as a final recommendation list for the active mode root 
cause check is displayed. The positions for active resources 
are recomputed according to the “probability flow” and listed 
in decreasing order. 

According to embodiments, entropy in the active mode is 
calculated thus: 

Nks 

F(a) =X Pa...(n) aka) 
=l 

for each active node from each list, where a(n) denotes the 
n" neighbor of as among N. Let for each k the numbers 
F(a) be already indexed (by S) in their decreasing order. 
Now we get: 

RRI (ak.) 100, 

F(a) - F(as RRica.) = 100-ft) loo, F(ak.) 
S = 2, ... , Sk, k = 1, ... , K. 

According to embodiments, active mode recommenda 
tions are output to a user in operation 34. Active mode rec 
ommendations allow a user to be notified of potential events 
before the event actually occurs. For example, in the context 
of an IT infrastructure, problems can be detected prior to their 
occurrence based on the recommendations being provided in 
the active mode, allowing for the potential problems to be 
addressed prior to the actual occurrence of the problem in the 
IT infrastructure. 
Impacted Resources Display 

According to embodiments, for each recommendation a 
Sub-list of impacted resources is optionally provided in 
operation 36 of FIG. 1. Providing such a list allows a user to 
further aggregate useful information for user review. For 
example, a single resource may have multiple metrics moni 
tored. If the resource is having a problem, many or all of the 
metrics may be impacted, which would show multiple root 
causes for the same resource. But outputting the impacted 
resource, a user need only focus on the resource itself rather 
than received information for each and every metric. 
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12 
For each recommendation node, those neighbors that are 

end points of the arrows coming from that node are separated 
and listed in decreasing order of corresponding conditional 
probabilities. Then apply the technique of step 6 on those 
conditional probabilities to further organize the list of 
impacted resources. 

EXAMPLES 

The methods, devices, and systems disclosed herein can be 
used for special interests for the user. In particular, the fol 
lowing examples represent embodiments of useful analyses 
that can be performed using the graphs created according to 
this disclosure. 

Example 1 

Roots, Critical Node, Critical Paths 

The methods, devices, and systems of this disclosure can 
be used to revealing or categorize critical sectors, nodes, and 
connections in a complex system. 
Use to determine the critical sectors, nodes, and connec 

tions consist of use of both the historic and active nodes. Each 
of these provided data about the complex system regarding 
Sources of event cascades, or event paths once a single event 
occurs. The historical analysis produces categorizations for 
the past events data. In the active mode, a mapping of current 
events is built into the historical analysis to better understand 
the critical sectors, nodes, and connections. According to 
embodiments and based on the directed graph created as 
described above, the following categories of criticality are 
defined: 
A critical node is a node that has prior probability that is 

equal to or greater than the value of an upper threshold. 
The upper threshold is user definable. For example, if the 
upper threshold=0.9, FIG. 8 nodes B, G, Kand P would 
be considered critical nodes. 

A root is a node that is historically an impacting only 
resource (i.e., no other event predicts or causes this 
event). In other words, the root has no “incoming 
arrows. An example of a root note is node D in FIG. 8. 

A critical path is a sequence of impacting nodes with 
extremely high conditional probabilities on the connec 
tions. For example the path BRSTU in FIG. 8 comprises 
a critical path, denoted by the squared line. Accordingly, 
each of the conditional probabilities on the path is 
greater than or equal to 0.9. A critical path denotes a 
cascade of events that nearly always happen together or 
in a sequence together. 

An extreme path is a critical path with nodes that have prior 
probability that is equal to or greater than the value of an 
upper threshold. For example, path HBAO in FIG. 8 
(denoted by the dashed line), where the upper threshold 
is equal to 0.5, comprises an extreme path. Note that in 
active mode the critical and extreme paths are an appro 
priate source of predictions. 

A critical sector of some magnitude M(defined by its nodes 
Volume) is a connected Subgraph with the joint probabil 
ity connections all higher than some value. 

Example 2 

Bottlenecks 

A bottleneck is a resource (e.g., a component in an IT 
infrastructure) or group of resources with significant impact 
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on the complex system. Bottlenecks are resources with per 
sisting presence in events of the complex system, highly 
recommendable in a historic recommendation list, largely 
deviating from the rest of resources in their relative recom 
mendation index (RRI). The methods, devices, and systems 
of this disclosure can be used to optimize users’ efforts in 
bottlenecks localization or identification, and where neces 
sary removal. A guide inform of a recommendation list (RL) 
is produced for the user to decide on the most probable 
resources of bottleneck origin. If the bottleneck is not unique, 
then it recognizes separable origins resulting in several RLS. 
The methods, devices, and systems disclosed herein are con 
figurable to give recommendations on resource and tier lev 
els, coming from the basic level analysis. Each recommenda 
tion in an RL is positioned according to its likelihood, or RRI. 
RRI shows how much the recommendation deviates from the 
top one in its confidence. In case of multiple bottlenecks, the 
respective parallel RL's are prioritized according to their 
“weight” or list relative rank (LRR). 

According to embodiments, FIG. 9 illustrates a flow chart 
similar to the flow chart illustrated in FIG. 71, but specifically 
adapted for bottleneck analysis. In operation 910, the user 
sets user configurable parameters for the analysis. In opera 
tion 912, a graph is created as disclosed herein based on 
probability distributions. In operation 914, graph reduction is 
performed as disclosed herein. Graph adjacency is deter 
mined in operation 916. In operation 928, root cause recom 
mendation lists are generated as disclosed herein. In opera 
tion 940, large deviations from the top recommendations are 
flagged. 

For example, Table 1 shows a typical historical root cause 
recommendation lists. Detected bottlenecks are shown under 
lined. Their RRI's deviate largely from the rest of resources in 
the same list. In the third sub-list the absence of the bottleneck 
is due to the closeness of the RRIs. In the fourth sub-list the 
absence of the bottleneck is due to the shortness of the list, 
which illustrates limitations to the instant bottleneck analysis. 

TABLE 1. 

Sub-List N List Relative Rank Resource ID RRI 

1 100 27 100 
26 99 
17 98. 
18 2O 
8 18 

11 18 
2 90.2 14 100 

24 56 
15 55 
10 40 
32 40 
33 39 

3 40.7 12 100 
29 99 
23 98 
9 98 

4 21.9 28 100 
19 50 

In operation 942, an RL of potential bottlenecks are output 
to a user. The RL will detail the resources that appear to cause 
bottlenecks. 

Example 3 

Black Swans 

Black Swan events are events that have very low prior 
probability, but extremely high impacting ability on a large 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
set of neighbors. FIG. 10 illustrates a black Swan event with 
nodes J and D. Node Jhas a prior probability of 0.1, but when 
it occurs, events L, K, M, N, O, and Q are nearly always 
observed. Moreover, when Q is triggered, nodes TEPFG are 
often triggered as well. So although node J has a low prior 
probability, if it occurs, it tends to impact the complex system 
and trigger of other events. As illustrated in FIG. 10, nodes J 
and D impact nearly three quarters of the nodes shown in the 
graph. 

FIG. 11 is an embodiment of a black Swan analyzer 1100. 
Black Swan analyzer 1100 detects black Swan events in his 
toric data in an historic mode 1110 and applies historic black 
Swan event data with active mode data in an active mode 
1130. In operation 1111, a user is able to set user definable 
parameters such as the maximum prior probability, minimum 
edge probability, or a percentage of nearby nodes that the 
node in question affects that are required for a node to be a 
black Swan. 

In operation 1112, a graph is generated as disclosed herein. 
Based on the parameters set, black Swan nodes are deter 
mined in operation 1150. From the black Swan nodes, the 
black Swan events are determined in operation 1152 and the 
resulting data is stored in operation 1154 for use in active 
mode 1130. 

Inactive mode 1130, historic black Swan data is mapped to 
active mode data 1132. The results of that analysis allow for 
quantification of a risk of a black Swan event in process 1160. 
According to embodiments, the quantification of the black 
Swan risk (BSR) varying from 0 to 100 is performed as 
follows. The black Swan event is determined by the black 
Swan nodes that cover C 96 (a threshold) of the graph. In 
on-line mode, if at the time T the black Swan nodes impact/ 
cover R 96 of those (C9%) nodes, then the BSR as a function 
of Tis BSR(T)=R. Because the black Swan events are difficult 
to detect due to their low prior probabilities and because the 
methods, systems, devices of this disclosure cannot abso 
lutely predict black Swan events, but rather can only Suggest 
the most probably events that were the black Swan event, 
process 1160 accounts for the uncertainty inherent in the 
processes described herein and provides output in the form of 
a quantification metric to a user in process 1170. According to 
embodiments, as real-time events begin to resemble graphs or 
paths known or believed to be triggered by a black Swan event, 
the risk quantification can be adjusted in real-time to reflect 
the greater certainty that a black Swan event occurred. Know 
ing the black Swan event occurred allows users to take appro 
priate action ahead of events that occur downstream from the 
black Swan event. 

FIG. 12 is a block diagram of a representative computing 
environment 1200 that may be used to host the processes, 
methods, and analyzers discussed above. Of course, many 
other computing configurations may be employed. 
Computing environment 1200 includes computer system 

1202. Computer system 1202 comprises a bus 1204, with 
CPUs 1206, main memory 1208, non-transitory persistent 
storage media 1210, data and storage network interfaces 
1212, and other I/O 1214. Note that bus 1204 will typically be 
implemented as an interconnection fabric comprising a vari 
ety or bus and point-to-point interconnects. 
Code implementing the processes, methods, and analyzers 

discussed above may exist and be present in various forms in 
non-transitory persistent storage media 1210, main memory 
121018, and cache memories of CPUs 1206. 

Data and storage network interfaces 1212 couple computer 
system 1202 to other data and storage networks, which are not 
shown in FIG. 12. Other I/O 1214 represents all other forms 
of I/O, and in FIG. 12, other I/O 1214 is shown as being 
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coupled to USB, Firewire, and Bluetooth devices 1218, dis 
play 1216, and keyboard and mouse/touch interface 1220. Of 
course, many other forms of I/O are known in the art. Block 
1222 represents a user interacting with the I/O devices rep 
resented by blocks 1216, 1218, and 1220. 

Finally, block 1224 represents historical event data enter 
ing computer system 1202. The historical event data may 
enter via data and storage network interfaces 1212, blocks 
1218 or 1220, or any other method known in the art. 

In one aspect, the devices and systems of this disclosure 
include at least one central processing unit (CPU) or proces 
sor. The CPU can be coupled to a memory, ROM or machine 
readable media containing the compute-executable instruc 
tions for generating and using fingerprints for integrity man 
agement. Machine readable media can be any available media 
that can be accessed by the system and includes both volatile 
and nonvolatile media, removable and non-removable media 
implemented in any method or technology for storage of 
information Such as computer readable instructions, data 
structures, program modules or other data. Machine readable 
media includes, but is not limited to, RAM, ROM, EEPROM, 
flash memory, portable memory or other memory technology, 
CD-ROM, digital versatile disks (DVD) or other optical disk 
storage, magnetic cassettes, magnetic tape, magnetic disk 
storage or other magnetic storage devices, or any other 
medium which can be used to store the desired information 
and which can be accessed by the systems and devices dis 
closed herein. Combinations of any of the above should also 
be included within the scope of machine readable media. The 
machine readable media may store instructions or data which 
implement all or part of the system described herein. 

Communication media typically embodies computer read 
able instructions, data structures, program modules or other 
data in a modulated data signal Such as a carrier wave or other 
transport mechanism and includes any information delivery 
media. By way of example, and not limitation, communica 
tion media includes wired media such as a wired network or 
direct-wired connection, and wireless media Such as acoustic, 
RF, infrared and other wireless media. 

In various embodiments, the methods disclosed herein, as 
well as the systems and devices discloses, are operational in 
an information technology infrastructure or with numerous 
other general purpose or special purpose computing system 
environments or configurations. Examples of well known 
computing systems, environments, or configurations that 
may be suitable for use with the invention include, but are not 
limited to, personal computers, server computers, hand-held 
or laptop devices, multiprocessor Systems, microprocessor 
based systems, set top boxes, programmable consumer elec 
tronics, network PCs, minicomputers, mainframe computers, 
telephony Systems, distributed computing environments that 
include any of the above systems or devices, and the like. 
The methods disclosed herein may be described in the 

general context of computer-executable instructions, such as 
program modules, being executed by a computer. Generally, 
program modules include routines, programs, objects, com 
ponents, data structures, etc. that perform particular tasks or 
implement particular abstract data types. The system may 
also be practiced in distributed computing environments 
where tasks are performed by remote processing devices that 
are linked through a communications network. In a distrib 
uted computing environment, program modules may be 
located in both local and remote computer storage media 
including memory storage devices. The computer programs 
are stored in a memory medium or storage medium or they 
may be provided to a processing unit through a network or I/O 
bus. 
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While the apparatus and methods have been described in 

terms of what are presently considered to be the most practi 
cal and preferred embodiments, it is to be understood that the 
disclosure need not be limited to the disclosed embodiments. 
It is intended to cover various modifications and similar 
arrangements included within the spirit and scope of the 
claims, the scope of which should be accorded the broadest 
interpretation so as to encompass all such modifications and 
similar structures. The present disclosure includes any and all 
embodiments of the following claims. 

The invention claimed is: 
1. A method for determining a causative event in an infor 

mation technology infrastructure comprising: 
collecting historical event data with a computer; 
generating an undirected graph, each node being an event 

and each edge being a joint probability of two events 
historically occurring simultaneously; 

generating a directed graph, each node being the event and 
each edge being a conditional probability of a second 
event occurring if a first event occurs; 

reducing the undirected graph by discarding edges based 
on mutual information calculated for each edge; 

reducing the directed graph by discarding edges that cor 
respond to discarded edges of the undirected graph; and 

from the directed graph, creating and outputting an histori 
callist of recommendations to a user, the historical list of 
recommendations comprising an at least one event 
deemed to be the most likely causative event. 

2. The method of claim 1, further comprising 
comparing active events against the historical events of the 

directed graph; 
identifying current active events that correspond to events 

in the historical list of recommendations; and 
from the identified active events, creating and outputting a 

list of active mode recommendations comprising an at 
least one event deemed to be potentially a causative 
event. 

3. The method of claim 1, wherein the creating and output 
ting of the historical list of recommendations comprises 
determining entropy for the nodes of the directed graph. 

4. The method of claim 3, wherein the at least one event 
deemed to be the most likely causative event are the events 
having the lowest entropy. 

5. The method of claim3, wherein the creating and output 
ting of the historical list of recommendations further com 
prises determining a relative recommendation index. 

6. The method of claim 5, wherein the at least one event 
deemed to be the most likely causative event are the events 
having the highest relative recommendation index. 

7. The method of claim 5, wherein the creating and output 
ting of the historical list of recommendations further com 
prises: 

determining a list relative rank; 
wherein the at least one event deemed to be the most likely 

causative event are the events having the highest list 
relative ranks. 

8. The method of claim 1, further comprising determining 
at least one of root nodes, critical nodes, critical paths, 
extreme paths, and critical sectors from at least one of the 
historical list of recommendations and the directed graph. 

9. The method of claim 1, further comprising determining 
bottlenecks from at least one of the historical list of recom 
mendations and the directed graph. 

10. The method of claim 1, further comprising determining 
black Swan events from at least one of the historical list of 
recommendations and the directed graph. 
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11. A non-transitory machine readable medium with 
instructions stored thereon for determining a causative event 
in an information technology infrastructure comprising: 

collecting historical event data with a computer; 
generating an undirected graph, each node being an event 

and each edge being a joint probability of two events 
historically occurring simultaneously; 

generating a directed graph, each node being the event and 
each edge being a conditional probability of a second 
event occurring if a first event occurs; 

reducing the undirected graph by discarding edges based 
on mutual information calculated for each each edge; 

reducing the directed graph by discarding edges that cor 
respond to discarded edges of the undirected graph; and 

from the directed graph, creating and outputting an histori 
callist of recommendations to a user, the historical list of 
recommendations comprising an at least one event 
deemed to be the most likely causative event. 

12. The machine readable medium of claim 11, further 
comprising 

comparing active events against the historical events of the 
directed graph; 

identifying current active events that correspond to events 
in the historical list of recommendations; and 

from the identified active events, creating and outputting a 
list of active mode recommendations comprising an at 
least one event deemed to be potentially a causative 
event. 

13. The machine readable medium of claim 11, wherein the 
creating and outputting of the historical of recommendations 
comprises determining entropy for the nodes of the directed 
graph. 
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14. The machine readable medium of claim 13, wherein the 

at least one event deemed to be the most likely causative event 
are the events having the lowest entropy. 

15. The machine readable medium of claim 13, wherein the 
creating and outputting of the historical list of recommenda 
tions further comprises determining a relative recommenda 
tion index. 

16. The machine readable medium of claim 15, wherein the 
at least one event deemed to be the most likely causative event 
are the events having the highest relative recommendation 
index. 

17. The machine readable medium of claim 15, wherein the 
creating and outputting of the historical list of recommenda 
tions further comprises: 

determining a list relative rank; 
wherein the at least one event deemed to be the most likely 

causative event are the events having the highest list 
relative ranks. 

18. The machine readable medium of claim 11, further 
comprising determining at least one of root nodes, critical 
nodes, critical paths, extreme paths, and critical sectors from 
at least one of the historical list of recommendations and the 
directed graph. 

19. The machine readable medium of claim 11, further 
comprising determining bottlenecks from at least one of the 
historical list of recommendations and the directed graph. 

20. The machine readable medium of claim 11, further 
comprising determining black Swan events from at least one 
of the historical list of recommendations and the directed 
graph. 


