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This disclosure presents systems and methods for run-time 
analysis of streams of log data for abnormalities using a 
statistical structure of meta-data associated with the log data. 
The systems and methods convert a log data stream into 
meta-data and perform statistical analysis in order to reveal a 
dominant statistical pattern within the meta-data. The meta 
data is represented as a graph with nodes that represent each 
of the different event types, which are detected in the stream 
along with event sources associated with the events. The 
systems and methods use real-time analysis to compare a 
portion of a current log data stream collected in an operational 
window with historically collected meta-data represented by 
a graph in order to determine the degree of abnormality of the 
current log data stream collected in the operational window. 
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METHODS AND SYSTEMIS FOR 
ABNORMALITY ANALYSIS OF STREAMED 

LOG DATA 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims the benefit of Provisional Applica 
tion No. 61/684,018, filed Aug. 16, 2012. 

TECHNICAL FIELD 

The present disclosure relates to computational systems 
and methods for analyzing abnormalities in streams of log 
data. 

BACKGROUND 

In recent years, the Volume, complexity, diversity and 
Velocity of data generated by computational systems, such as 
information technology (IT) infrastructures and cloud 
computing, have forced many organizations to reconsider 
their approach to data management and data analytics. One 
approach to managing and analyzing the performance of 
computational systems is to analyze log files generated by the 
computational system. Each log file is a chronological record 
ofevents that take place in the operation of the system and can 
be used to analyze the activity and behavior of event sources 
in order to diagnose problems. An event is any detectable 
action generated by an event source, and an event Source is 
any physical or virtual component of the system, such as a 
server, virtual machine (“VM), a program, a network, a 
database, a process control system, and an operating system. 
An event may be something as simple as a command, warn 
ing, or announcement generated by an event source. Such as a 
command to retrieve data from memory, a warning regarding 
the availability of memory, or announcement that a VM has 
moved. 

Computational system analysts typically search log files to 
identify abnormalities and identify abnormally behaving 
event sources. The abnormalities can be software failures, 
programming bugs, hardware breakdowns, and even human 
errors. Because most IT and cloud-based applications use text 
based logging to record events, the log data is typically ret 
rospectively analyzed for abnormalities which is impractical 
for identification of ran-time abnormalities. Researchers and 
developers of data-processing systems and information-ex 
traction tools as well as a wide variety of different types of 
computer users, computer manufacturers, and computer ven 
dors continue to seek systems and methods for detection of 
abnormalities generated by event Sources. 

SUMMARY 

This disclosure presents systems and methods for run-time 
analysis of streams of log data for abnormalities using a 
statistical structure of meta-data associated with the log data. 
The systems and methods convert a log data stream into 
meta-data and perform statistical analysis in order to reveal a 
dominant statistical pattern within the meta-data. The meta 
data is represented as a graph with nodes that represent each 
of the different event types, which are detected in the stream 
along with event sources associated with the events. The 
systems and methods use real-time analysis to compare a 
portion of a current log data stream collected in an operational 
window with historically collected meta-data represented by 
a graph in order to determine the degree of abnormality of the 
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2 
current log data stream collected in the operational window. 
The resulting meta-data graph also reveals a fundamental 
structure or behavioral footprint of the meta-data beyond the 
Source and processes. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows an example of a generalized computer sys 
tem. 

FIG. 2 shows a flow diagram of a method for identifying 
abnormalities in a stream of log data. 
FIG.3 shows an example stream of log data. 
FIG. 4 shows an example of five event sources represented 

by Squares and four event types represented by circles. 
FIGS. 5A-5B show examples of first and second sets of 

events collected from a stream of log data. 
FIG. 6 shows three separate flow diagrams associated with 

each of the routines of the flow diagram in FIG. 2. 
FIG. 7 shows an example of meta-data represented by 

directional arrows for the event types and event sources 
shown in FIG. 4. 
FIG.8 shows an example of a historical graph of metadata. 
FIG. 9 shows an example of a dynamical normalcy graph 

obtained from the historical graph in FIG. 8. 
FIG. 10 shows a table of example six event types and two 

event SOurces. 

FIGS. 11A-11D demonstrate determination of a dynamic 
normalcy graph for entries 1-36 of the table shown in FIG.10. 

FIGS. 12A-12D demonstrate determination of a dynamic 
normalcy graph for entries 18-36 of the table shown in FIG. 
10. 
FIG.13 shows a dynamical normalcy graph that represents 

a normalcy structure of a stream of log data. 
FIG. 14 shows a table that identifies names of number 

nodes of the graph shown in FIG. 13. 
FIG. 15 shows mismatches along a historical data log for 

the extracted dynamic normalcy graph with an observation 
window of 30 minutes. 

FIG. 16 shows abnormality peaks detected for event types 
represented in the dynamic normalcy graph of FIG. 13. 

FIG. 17 shows a table of abnormally behaving virtual 
machines. 

FIG. 18 shows a plot of estimated historical abnormality 
various observation window durations. 

DETAILED DESCRIPTION 

Computational systems and methods for detecting abnor 
malities in streams of log data are disclosed. The current 
systems and methods are based on retrieval of a statistical 
structure from streams of log data. The analysis provided by 
the current systems and methods addresses a rapidly growing 
desire to make run-time decisions based on abnormalities 
generated in computing environments and recorded in 
streams of log data. The current systems and methods 
described below include the concept of dynamic thresholding 
of time series data to any kind of log data composed of a 
stream of records and events. Normalcy of the streams as an 
extracted Statistical structure is disclosed, along with a 
mechanism for abnormality detection in run-time mode. 
The current systems and methods receive a stream of log 

data and convert the log data stream into meta-data repre 
sented as a virtual data graph that reveals the dominant or 
normal statistical patterns within the log data. The graph 
represents different event types as nodes which are detected in 
the stream along with associated event sources. Two nodes in 
the graph are connected by an edge if the corresponding event 
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types occur within the same time window and share a com 
mon event source. The behavior of the sources in terms of 
generating different event types creates probabilistic correla 
tions between nodes computed with application of a proxim 
ity measure. The graph represents the normal or dominant 
common behavioral structure of the log data stream indepen 
dent of the event Sources. Using the graph as a basis to 
determine normal source behavior, the currently disclosed 
method then identifies abnormalities is the upcoming por 
tions of the log data streams in terms of their deviation from 
the graph. This is performed by matching the event types 
collected in an observation window of currently received log 
data entries with the historical meta-data represented in the 
graph and conditionally checking whether the most probable 
event types are realized in the observation window. The cur 
rently disclosed method can quantify deviation of the current 
portion of log data collected in the observation window from 
the typical historical log data patterns. This quantity actually 
measures the degree of abnormality in the current log data 
Stream. 

Because streams of log data are continuously generated, 
the log files may be classified as “big data.” A problem in 
processing “big data is the limited availability of data for 
retrospective analysis. Big data, by its very nature, puts limits 
on storage and input/output and severely restricts other meth 
ods that require the complete log data set to be available. By 
contrast, the methods described below convert the stream of 
log data into meta-data represented by a graph. The useful 
content and the historical statistical structure of the log data 
stream is retained in the graph so that portions of the current 
log data stream can be compared with the graph in order to 
identify abnormalities without having to resort to a retrospec 
tive analysis of the entire log data set. 

It should be noted at the onset that a log data stream of event 
types and corresponding event sources and the associated 
meta-data are not, in any sense, abstractorintangible. Instead, 
the log data and associated meta-data are necessarily digitally 
encoded and stored in a physical data-storage computer-read 
able medium, Such as an electronic memory, mass-storage 
device, or other physical, tangible, data-storage device and 
medium. It should also be noted that the currently described 
data-processing and data-storage methods cannot be carried 
out manually by a human analyst, because of the complexity 
and vast numbers of intermediate results generated for pro 
cessing and analysis of even quite modest amounts of data. 
Instead, the methods described herein are necessarily carried 
out by electronic computing systems on electronically or 
magnetically stored data, with the results of the data process 
ing and data analysis digitally encoded and stored in one or 
more tangible, physical, data-storage devices and media. 

FIG. 1 shows an example of a generalized computer system 
that executes efficient methods for nm-time identification of 
abnormalities in Streams of log data and therefore represents 
a data-processing system. The internal components of many 
Small, mid-sized, and large computer systems as well as spe 
cialized processor-based storage systems can be described 
with respect to this generalized architecture, although each 
particular system may feature many additional components, 
Subsystems, and similar, parallel systems with architectures 
similar to this generalized architecture. The computer system 
contains one or multiple central processing units (“CPUs) 
102-105, one or more electronic memories 108 intercon 
nected with the CPUs by a CPU/memory-subsystem bus 110 
or multiple busses, a first bridge 112 that interconnects the 
CPU/memory-subsystem bus 110 with additional busses 114 
and 116, or other types of high-speed interconnection media, 
including multiple, high-speed serial interconnects. The bus 
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4 
ses or serial interconnections, in turn, connect the CPUs and 
memory with specialized processors. Such as a graphics pro 
cessor 118, and with one or more additional bridges 120, 
which are interconnected with high-speed serial links or with 
multiple controllers 122-127, such as controller 127, that 
provide access to various different types of computer-read 
able media, such as computer-readable medium 128, elec 
tronic displays, input devices, and other such components, 
Subcomponents, and computational resources. The electronic 
displays, including visual display Screen, audio speakers, and 
other output interfaces, and the input devices, including mice, 
keyboards, touch screens, and other Such input interfaces, 
together constitute input and output interfaces that allow the 
computer system to interact with human users. Computer 
readable medium 128 is a data-storage device, including elec 
tronic memory, optical or magnetic disk drive, USB drive, 
flash memory and other Such data-storage device. The com 
puter-readable medium 128 can be used to store machine 
readable instructions that encode the computational methods 
described below and can be used to store encoded data, during 
store operations, and from which encoded data can be 
retrieved, during read operations, by computer systems, data 
storage systems, and peripheral device. 
The systems and methods for analyzing a stream of log data 

for abnormalities can be executed during run-time of a com 
putational system that generates the stream of log data. As a 
result, the system and method can provide an observer of the 
computational system with near real-time results of detected 
abnormalities. The term “near real-time' refers to a time 
delay due to data transmission and data processing that is 
short enough to allow detection and reporting of abnormali 
ties during operation of the computational system. For 
example, the term “near real-time can refer to detection and 
reporting of abnormal events and abnormal event sources 
while the current method is executed at the current time minus 
any time delay due to data transmission and data processing. 
The term “near real-time' also refers to situations where the 
detection and reporting of abnormalities appears instanta 
neous to an observer of the computational system. 

FIG. 2 shows a flow diagram of a method for identifying 
abnormal event Sources based on a stream of log data gener 
ated by the event sources. In block 201, numerical values for 
thresholds and time windows may be input by a user. For 
example, the user may input a similarity threshold, 
The and a mismatch threshold. This and may 
input time windows. At and Aw. The thresholds and time 
window are described in greater detail below. The similarity 
threshold is used to determine a degree of similarity between 
a portion of current log data from historical log data, and the 
mismatch threshold is used to separate abnormally behaving 
event sources from normally behaving event Sources. In block 
202, a stream of log data is received. In the following descrip 
tion, the stream of log data is interpreted as a flow of text 
consisting of events with associated event types and event 
Sources that can be detected via a log parsing procedure as 
described in “Pattern detection in unstructured data: An expe 
rience for a virtualized IT infrastructure.” by M. A. Marvasti 
etal, IFIP/IEEE International Symposium on Integrated Net 
work Management 2013, or described in Automated analy 
sis of unstructured data.” US patent 2013/0097.125, filed Mar. 
12, 2012, and owned by VMWare, Inc. A procedure for the 
automatic detection of event attributes is one example of an 
event detection mechanism, which is the basic assumption 
behind the current method for processing a stream of log data 
in terms of extracting fundamental statistical characteristics. 

FIG.3 shows an example stream of log data with columns 
listing date, time, event type, and event source. The log data 
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stream contains I different event types denoted by T, and K 
different event sources S. In the example of FIG. 3, event 
Source Ss generates an event type T, event source S gener 
ates an event type T and so on. 
An event type may be generated by more than one source 

and a source may generate more than one event type. FIG. 4 
shows an example representation of five event sources S. S. 
S. S. and Ss represented by Squares and four event types T. 
T. T. and T represented by circles. Dashed lines indicate 
which event types are generated by an event Source. For 
example, dashed lines 401–403 indicate that event type T 
may be generated by event sources S. S., and Sa respec 
tively, and dashed lines 404 and 405 indicate that the two 
event types T and T may be generated by a single event 
Source S. 

Returning to FIG. 2, the stream of log data 202 is input to 
three separate routines identified as “detect change in log data 
stream 203, “maintain log data history’ 204, and “identify 
abnormalities' 205. The routines 203-205 operate in parallel 
on a different portions of the stream of log data. FIG. 5A 
shows examples of relative number of event types used in 
routines 203 and 204. In FIG. 5A, a directional arrow 502 
represents increasing time and each dot 504 in a series of dots 
represents an event type that occurs at Some point in time and 
is recorded in a stream of log data. The events are not regu 
larly spaced in time as indicated by variations in the time 
spacing between dots. Directional arrow 506 represents 
events that are generated as time increases. The routine 
“maintain log data history’ 204 receives a first set composed 
of L508 of the most recent event types, and the routine “detect 
change in log data stream 203 receives a second set of L'510 
of the most recent event types, where L is less than L. After 
the L and L' events have been processed separately by the 
routines 204 and 203, respectively, a wait time is allowed to 
pass to allow more events to be generated. In certain embodi 
ments, the waiting time is not constant in order to allow a fixed 
number X of events to be generated each time the routines 203 
and 204 are called. As a result, the number of events L and L' 
input each time the routines 204 and 203, respectively, are 
called are constant. In other words, the wait time corresponds 
to an amount of time in which X events are allowed to be 
generated so that the first set of L events input to the routine 
204 is updated to include the X most recent events and 
exclude the earliest X events, and the second set of Levents 
input to the routine 203 is updated to include the X most 
recent events and exclude the earliest X events. As shown in 
FIG. 5B, a wait time 512 enables six additional event types 
514 to be generated. The first set of L event types 516 input to 
the routine 204 is updated to include the six most recent 
events and exclude the earliest six events, and the second set 
of L' event types 518 input to the routine 203 is updated to 
include the six most recent events but to exclude the earliest 
six events. Alternatively, the wait time can be constant in 
which case L and L' may vary each time the routines 204 and 
203 are called. 

Returning to FIG. 2, the routines 203-205 share data as 
indicated by directional arrows 206-209. In particular, direc 
tional arrows 206 and 207 represent data that is exchanged 
between the routine “detect change in log stream 203 and the 
routine “maintain log data history’ 204 and directional arrow 
208 represents data output from the routine “maintain log 
data history’ 204 and input to the routine “identify abnor 
malities 205. 

FIG. 6 shows three separate expanded flow diagrams asso 
ciated with the routines “detect change in the log data stream” 
203, “maintain log data history’ 204, and “identify abnormal 
sources' 205. The stream of log data 202 is input to blocks 
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6 
601, 604, and 608 and the routines 203, 204, and 205 may be 
executed in parallel. The following description begins with 
the routine “maintain log data stream 204. In block 601, L 
events of the stream of log data is converted into meta-data 
using a time windows At. The meta-data represents a relation 
ship between two different event types T, and T, where the 
events T, and T, originate from the same event source S, and 
within the time window At. For example, returning to the 
example of FIG. 4, the two event types T, and T may be 
considered related to each other because they originate from 
the same event source S provided the event types occur 
within the time window At. The meta-data in block 601 is 
calculated for the L event types received as a conditional 
probability of the event type T, occurring when another event 
type T, is observed, both associated with the same event 
source S and in the same time window At, as follows: 

K (3) 
X N(Ti, T. S., At) 

where 
N(T.T,ISAt) represents the number ofjoint occurrence of 

the event type pair (TT) originating from the source S, in 
the time window At; and 
N(T) represents the number of occurrences of the event 

type T, in the L events input to the routine 204. 
The conditional probabilities between two event types 
P(T,ITAt) can be represented by concise notations P(ii) and 
P. 

FIG. 7 shows an example of meta-data represented by 
directional arrows for the event types and event sources 
shown in FIG. 4. For example, directional arrow 702 repre 
sents a conditional probability P(TITAt)=P of event type 
T occurring when event type T is observed. Directional 
arrow 704 represents a conditional probability 
P(TITAt)=P of event type T occurring when event type 
T is observed. Both event types originate from event sources 
S and S in the same time interval At. Zero conditional 
probabilities are not represented. 

Returning to FIG. 6, the meta-data computed in block 601 
also includes calculation of prior probabilities for each event 
type in the L events input to the routine 204. The prior prob 
abilities are calculated according to the following frequency: 

1 (4) 
P(T) =N(T) 

where i=1,..., I. 
Note that the above mentioned frequencies can be updated 
cumulatively and the corresponding meta-data in the form of 
the virtual graph can be updated with the expansion of the 
Stream. 

The event types collected in the time window At form a set 
T={T, ..., T} 

and the associated non-Zero conditional probabilities calcu 
lated according to Equation (3) form a set 

P={P} 
where i=1,..., I, and 
the symbol '-' represents a set. 

Each pair of elements in T, (TT), is mathematically related 
to one of the elements P of P. This mathematical relation 
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ship may be represented by a graph that consists of the two 
sets T and P and is denoted by (T.P). The elements of T are 
called vertices or nodes, and the elements of P are called 
edges that connect two vertices (i.e., pair of metrics). In block 
602, a graph (TP) called a “historical graph” is constructed 
for the mathematically related sets of event types and stored 
in a computer-readable medium. The historical graph (T.P) 
produced in block 602 hides the event sources. 

FIG.8 shows an example of a historical graph composed of 
seven event types represented by circles and associated non 
Zero conditional probabilities represented by directional 
arrows. Note that event sources are not represented in the 
historical graph shown in FIG. 8. The only information 
retained in the historical graph data sets are the event types 
and the associated non-Zero conditional probabilities calcu 
lated according to Equation (3). 
The normalcy structure of the stream is defined by its 

meta-data and in terms of the dominating statistical relations 
in the historical graph (TP). Returning to FIG. 6, in block 
603, small conditional probabilities are considered outliers 
and are discarded from the set of conditional probabilities Pto 
produce a dynamic normalcy graph ("DNG”), (TP),xg. The 
small conditional probabilities may be discarded based on a 
user defined dynamic normalcy threshold, Th, as follows: 

for each Pe. P 
f (P. < ThDNG) { 

P = P - P. ii 

As a result, the operation in block 603 reduces the historical 
graph (TP) to a sub-graph (TP), composed of dominating 
conditional probabilities. The DNG is the log data streams 
historical footprint of common probabilistic behavior of 
event types that result from all possible event sources. 

FIG.9 shows an example of a DNG. The DNG results from 
discarding edges 802 and 804 in FIG.8. In this example, the 
conditional probabilities P and P.s associated with the 
edges 802 and 804 are less than a user defined threshold 
The and are discarded from the set of conditional prob 
abilities to give the DNG shown in FIG. 9. 

In block 604, a wait time is allowed to elapse in which more 
events are generated as described above with reference to 
FIG.S. 

Global changes in the stream which may skew the abnor 
mality analysis and may be detected with a procedure that 
compares two meta-data portions representing the stream in 
terms of mismatch between the graph representations. In FIG. 
2, the routine “detect change in log data stream 203 deter 
mines whether the stream of log data has substantially 
changed during its development. This is accomplished with 
the meta-data structure represented in the DNG. In block 605, 
the stream of log data 202 is converted to meta-data using 
Equation (3) for the first L'entries in the stream of log data. In 
other words, Equation (3) described above is used to calculate 
conditional probabilities for the event types first L' entries in 
the stream of log data as described above with reference to 
FIG. 5. The number of event types L' is large enough to 
provide sufficient statistics. In other words, no other statistic 
that can be calculated from the same sample of L'event types 
provides any additional information with regard to detecting 
change in the log data stream. As soon as the Sufficient num 
ber of statistics (i.e., number of event types) are available, in 
block 606, the L' event types are converted into meta-data 
according to Equation (3). A graph (T.P") called a “moving 
historical graph” is constructed, where T is the set of L'event 
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8 
types and P' is the associated set of conditional probabilities 
calculated according to Equation (3). In other words, the 
graph (T.P") is generated in block 606 in parallel to the graph 
(T.P) generated in block 602. For example, a historical mov 
ing graph (T.P) may be obtained with L'-L/2 event types, 
provided L' produces sufficient statistics. In block 607, a 
DNG (T.P"), for the graph (T.P") is calculated as 
described above with reference to block 603. In block 608, a 
similarity measure between the DNG (T.P) constructed in 
block 603 and the moving (T.P), constructed in block 607 
is calculated as follows: 

5 X IP (G)-P (G) 

is the cardinality of the set. 
The similarity Sim value lies in the range 0,1 where a Sim 
value of “0” corresponds to no similarity (i.e., no vertices or 
edges in common) and a Sim Value of “1” corresponds to 
identical graphs (i.e., same vertices and edges). In the above 
expression, the left-hand fraction is the geometric similarity 
of the DNGs and the right-hand expression is the probabilistic 
closeness for the conditional probabilities on jointly present 
edges. Where the DNGs have no edges in common, PnP=0, 
Sim is defined as “O. 

In block 609, the Sim value is used to determine whether 
the stream of log data has Substantially changed over time. 
The degree of similarity can be determined by the threshold 
The input in block 201. When Sim is greater than 
This the historical DNG (T.P), wo, and the moving his 
torical DNG (T/P"), are considered similar. In other 
words, the changes in the stream of log data are acceptable. 
However, when Sim is less than or equal to That the 
historical DNG (T.P) and the moving historical DNG 
(T.P"),xc, are considered dissimilar and the method declares 
a change point to replace the historic DNG (TP), with the 
meta-data of the moving historical DNG (T.P"). In block 
610, the wait time is allowed to elapse in which more events 
are generated as described above with reference to FIG. 5. 

FIGS. 10-12 provide a simple numerical demonstration of 
the operations performed in blocks 601-603 and blocks 605 
607 for an example portion of a hypothetical stream of log 
data with six event types To T, T, TT, and Ts and two 
event sources S and S. Column 1001 represents times when 
events occur, column 1002 is a list of indices for the event 
types To, T, T, TT, and Ts, and column 1002 is a list of 
indices for the two event sources S and S. Column 1004 is a 
list of integers used to identify entries in the stream of events. 
In FIGS. 11A-11D, the events 1-36 (i.e., L=36) are processed 
according to blocks 601-603 for a time window of At=15 
minutes. FIG. 11A shows a table of event types T, and a 
number of times N(T) each event type occurs for the 36 
events. FIG. 11B shows a table event types pairs (ii), number 
of joint occurrences N(T.T,ISAt), number of times N (T,) 
for event type T, and conditional probabilities P(ii) for the 
event type pairs calculated according to Equation (3). The 
number of joint occurrences N(T.T,ISAt) are determined 
for At=15 minutes. For example, table entry N(T.T. 
SAt)=4.0 is produced by pairs of event types To and T that 
originate from the same event source S and occur within the 
time 
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window of 15 minutes are 1,3; 16, 17; 23.24; and 32.33. Note 
that entries 8 and 9 are also To and T, events that occur within 
the time window, but they originate from different event 
sources. FIG. 11C shows a historical graph (T.P) for the five 
event types and conditional probabilities. FIG. 11D shows a 
DNG (TP), obtained from using Throw 0.7. In FIGS. 
12A-12D, the events 18-36 (i.e., L=18) are processed accord 
ing to blocks 605-607 for the time window of At=15 minutes. 
FIG. 12A shows a table of event types T, and a number of 
times N(T) each event type occurs for the 18 events. Note that 
only the four event types To T, T, and T occur in the 18 
events. FIG. 12B shows a table of event types pairs (ilj). 
number of joint occurrences N(T.T,ISAt), number of times 
N(T) for event type T, and conditional probabilities P(ii) for 
the event type entries 18-36. FIG. 12C shows a historical 
graph (T.P) for the four event types and conditional probabili 
ties. FIG. 12D shows a DNG (TP), obtained from using 
Th, 0.7. The similarity between the DNG shown in FIG. 
11D and the DNG shown in FIG. 12D calculated according to 
Equation (5) is given by 

7 (1 - 0.8) + (0.8 - 0.75) + (0.8 - 0.8) Sinn = - x(l d-orus-ystos-os) 8 3 

= 0.802 

where a 
|Provo? Proval F3, 
|ProvoUProval F4. 
Tovo? Toyol-4, and 
ToyouToyol-4. 

When Sim is greater than Thuria (e.g., Thai-O.50). 
the historical DNG (TP), is assumed to have not changed. 

In the routine “identify abnormalities' 205, the event types 
in the observation window Aw of the stream of log data are 
mapped to the DNG to compare the mismatch between run 
time scenarios to those in the log data history. The degree of 
mismatch represents the degree of abnormality of the near 
real-time data. In block 611,j(Aw) most recent event types T. 
T. ..., T.A. of the stream of log data are collected in the 
observation window Aw. A subset TT, ..., T.A. of the 
event types T.T. ..., T.A. are pair-wise in proximity for 
event source S, and the following condition holds: 

(6) 

where k=1,..., k(Aw). 
The event types collected in the observation window Aw can 
be matched on the DNG with the edges having matched nodes 
highlighted. 

In block 612, a probabilistic mismatch (i.e. the degree of 
abnormality) between this matched sub-graph and the DNG 
is computed according to 

(7) 

where M(SAW) is a source mismatch assigned to event 
Source S and is calculated according to 
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10 

it (Aw) miti) (8) 
X X PG|j) 
i=l i=1,i-Fi 

M(Si, Aw) = x 100 f(Aw) int! 

X X P(ii) 

where it is assumed in the DNG that nodes adjacent to nodes 
(i.e., event types) are enumerated from 1 to m(). Absent 
nodes (i.e., event types) in Aware enumerated from 1 to m(j). 
Note that the summations 

in(i) 

X P(iii) 
i=1,i-Fi 

and 

m(i) 

X P(iii) 

are performed over the conditional probabilities on the 
directed edges arising from the nodejin the DNG. The value 
of the mismatch M(Aw) lies in the interval 0.100 percent. 

Measuring the mismatch between a run-time flow of events 
types and the historical normalcy graph allows for control of 
unacceptable deviations and to generate alarms. In block 613, 
historic abnormalities are calculated and estimates of their 
normal level are determined using whiskers method, which 
recognizes the concentration of data points from out-of-range 
values or applying a high quantile cut of data. Consider a set 
of h mismatches: 

each calculated according to Equation (7) for a different set of 
event types collected ath previous different times increments 
for the observation window Aw. Consider the Qth quantile of 
M denoted by Q(M). An estimate of the historical abnormal 
ity is calculated according to the method of whiskers as fol 
lows: 

where 
0.75(M) is the third quartile or 75" percentile of the set M: 

and 
iqr(M) is the interquartile range (the difference between 

0.75 and 0.25 quantiles) of M. 
Alternatively, in block 613, Do (Aw) can be calculated as a 

0.9 or higher quantile of M regulated by a sensitivity param 
eter se(0,1), where s=1 corresponds to 0.9M (i.e., 90" per 
centile of the set M) and s=0 is the maximum of M. The 
deduced historical abnormality Do (Aw) is an estimate of the 
run-time historical abnormality. As a result, only the abnor 
malities with their mismatch M(Aw) above Do (Aw) are 
reported. In block 614, a relative abnormality degree D(Aw) 
is calculated at run time as follows: 

(10) 

When the relative abnormality degree D(Aw) is greater than 
“0” the mismatch M(Aw) for the current observation window 
Aw is greater than the historical abnormality Do (Aw) and an 
alarm is generated. Otherwise, the relative abnormality 
degree D (Aw) is less than or equal to “0” in which case the 
mismatch M(Aw) for the current observation window Aw is 
less than the historical abnormality Do (Aw) and no alarm is 
generated. 
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Alternatively, in block 613, instead of calculating Do(Aw). 
a dynamic time-dependent historical abnormality Do (Aw) 
can be calculated for greater abnormality control as described 
in U.S. patent application "Data agnostic anomaly detection.” 
application Ser. No. 13/853,321 owned by VMWare, Inc. 

During abnormality detection by the mismatch calculation 
in block 612, the event types that contribute to the mismatch 
can be identified and stored in a computer-readable medium. 
The event types can be checked in terms of the event sources 
associated to the event types. In block 615, an ordered list of 
recommendations indicating the most likely event Sources of 
abnormalities are generated. In order to generate the recom 
mendations and indicate the event sources most likely respon 
sible for the abnormalities, let S, S. ..., S.A., be the event 
sources for the event types T.T. . . . . T.A. in run-time 
mode. For each event source S, the corresponding source 
mismatches are collected in a list: 

M(Si,Aw).M.(S,Aw),....M.(SAAw) (12) 
The sources are then ordered according to their correspond 
ing mismatch values and displayed for a final recommenda 
tion as indications of abnormal event sources. In order to 
shorten the series in Equation (9), values below the user 
specific mismatch threshold The may be removed from 
the list. In block 614, the time window Aw is incrementally 
moved to collect the latest event types as described above 
with reference to Equation (2). 

The following is an example calculation of mismatches for 
a historical abnormality Do. The historical abnormality Do is 
calculated as a quantile with sensitivity s=1, and therefore the 
quantile 0.9, of the following series of fourteen mismatch 
values: {32.61, 0, 0, 51.6, 0, 0, 0, 0, 0, 0, 0, 67.39, 65.21, 0} 
for the data displayed in the table of FIG. 10. The fourteen 
mismatch values correspond to probabilistic mismatches 
M (Aw). M(Aw). . . . , M.(Aw), respectively. In particular, 
the first four probabilistic mismatches M (Aw), M.(Aw). 
M(Aw), and M(Aw) are calculated as follows. With refer 
ence to FIG. 10, for a first observation window Aw-15 min 
utes, the event entries 1-3 are corresponding event types 0, 1, 
and 2 originate from event source 2 (i.e., S) are realized, and 
expected are event types 2.3, and 4, respectively. However the 
event type 4 is missing for event source 2. Therefore, the 
Source mismatch for the event source 2 is given by 

X 40 x 100% 
92 O 

= 32.61% 

4 
5 
6 
8 

And the probabilistic mismatch is given by 
M(Aw)=M(SAw)=32.61% 

In the second 15 minute observation window fall the entries 
4-6. Here the event types 3 (from source 2), 4 (from source 1), 
and 3 (from source 1) are realized and there are no expected 
event types. Therefore, the source and probabilistic mis 
matches are Zero for all sources: 
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12 
In other words, when there is no expectation, the source 
mismatches are zero. There is only one entry 7 for the third 
observation window. The event type 5 is realized from source 
1 and the DNG has no expectation value from this. Therefore, 
the source and probabilistic mismatches are given by: 

M(SAw)=0, and 

In the fourth 15 minute observation window, the event types 
0 (from source 2), 4 (from source 1), and 2 (from source 1) are 
realized. According to the DNG, the missing event types are 
2 (for source 2) and 3 (for source 1). Therefore, in order to 
calculate the corresponding Source and probabilistic mis 
matches, the missing conditionals in the numerators and the 
overall expectations in the DNG are given by: 

x 100% 

and 

M4 (Aw) = M4 (S1, Aw) + M4 (S2, Aw) 
= 51.6% 

In the following description, the abnormality degree above 
Do is shown for new event entries 37-40 1006 in FIG. 10. New 
entries 37-40 fall into a 15 minute observation window Aw, 
and correspond to of event types 4 (from source 2), 2 (from 
source 1), 3 (from source 1), and 0 (from source 2). However 
event types 3 (for source 2), 4 (for source 1), and 2 (for source 
2) are missing. As a result, the source and probabilistic mis 
matches are given by: 

8 4 
10 5 

4 8 6 6 
5 + 0 + 8 + 8 
64 

= 0, x 100% T 124 
40 

Mactive (S1, AW) = 

64 100% = 2 x 100% 
= 51.6% 



US 9,298,538 B2 
13 

-continued 

and 

Mactive (Aw) = Mactive (S1, AW) + Mactive (S2, Aw) + 
= 75.9% 

The following table summarizes the mismatch results for 
entries 37-40. 

Gen.-ted Missing 
Event Source Event ID Event ID Score 96 

Source 1 2, 3 4 S1.6 
Source 2 4, O 3, 2 24.2 

Results for Virtual Center Events 

Results from applying the above described systems and 
methods applied to a stream of log data are now described. 
Using the information on event types and on fleeting virtual 
machines (“VMs) or hosts as sources of the event types, the 
statistical normalcy structure of the stream is determined. 
Comparison of near real-time data to this graph allows deter 
mination of abnormality patterns. Through that comparison, 
the degree of abnormality can be used by an alerting engine 
within an infrastructure management system. Note that the 
method was applied to normalcy analysis of a virtual center at 
different hierarchical levels (VM, host, cluster, etc.). 
The application of the abnormality detection method to 

parsed log data of virtual center consisted of 200,000 events 
(a time period spanning one month) is discussed next. In this 
case, the event sources are VM's or hosts and the event types 
are the corresponding types from the log. Such as VmEmi 
gratingEvent or VmStoppingEvent with additional categories 
they are attributed to in the stream, for example, “info' or 
"error.’ So for the analysis the combinations such as 
“VmEmigratingEvent+info' and “VmEmigrating Event+er 
ror' are interpreted as basic event types. 

FIG. 13 shows a DNG that represents a normalcy structure 
of the stream of log data processed on the above mentioned 
log data. FIG. 14 shows a table 1 that identifies the names of 
the nodes of the graph in FIG. 13. The DNG shown in FIG.13 
represents the pure event type correlations where the outlier 
relations are filtered out. Additionally, to compress the struc 
ture only strong correlations (higher 0.8) are illustrated. Simi 
lar graphs are obtained for a series of experiments that con 
firm that the virtual center has its inherent statistical and 
fundamental structure of event type behaviors independent of 
the applications that run on the VM's. Those experiments 
were performed for different portions of the virtual center 
stream of log data containing more than 1,000,000 event type 
records as well as for the whole data set. In all cases, it was 
possible to derive a DNG with high probabilistic connections 
between a subset of defined event types. 

Several observations from the obtained DNG can be made: 
I. DNG contains an unconnected fragment (nodes 32 and 

33), i.e. a sub-graph, which means that the virtual center 
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14 
imprints isolatable event types. In case of the nodes 32 and 33. 
one may conclude that most of the time (94%) “VmBeingRe 
locatedEvent+info' results in “VmRelocatedEvent+info'' 
with 6% failure that would result in an abnormal situation. 

II. There are event types with only outgoing connections 
(like node 29) and event types with only incoming connec 
tions (node 4). In other words, the composite event type 
“VmRegisteredEvent+info' inevitably leads a collection of 
event types (23, 51, 49, etc.), meanwhile a series of event 
types (2, 5, 16, etc.) ultimately lead to “VmResourceReallo 
catedEvent+info.” 

III. An important class of correlations is related to deter 
ministic connections. For example, "VmInstanceUuid-Con 
flictEvent+error (49) generates “VmInstanceUuid 
ChangedEvent+info' (51) without any alternative. The same 
happens with “VmRenamedEvent+warning (35) and 
“VmReconfiguredEvent+info'' (11), however these event 
types have no impact on other types and are of no influence to 
the rest of the system. 
The extracted DNG shown in FIG. 13 is the “behavioral 

footprint of the virtual center in terms of the behavior of the 
VMs. In other words, the lifecycle of any VM should follow 
the structure that the DNG dictates. Any deviation introduced 
by VMs in the current stream becomes the abnormalities. It 
can be either an evolving critical abnormality or an out-of 
normal state that can also be inherent to the stream of log data 
in terms of its historical behavior. That is why typical out-of 
normalcy (i.e., historical abnormality) of the stream is evalu 
ated in order to differentiate it from the abnormality that 
becomes an alert. 

For the example of FIG. 13, the historical abnormality 
estimate Do (Aw) is computed and shown in the plot of FIG. 
15. FIG. 15 shows the mismatches M(Aw) along the historical 
log for the extracted DNG with an observation window 
Aw-30 minute sliding by 5 minute intervals. Here the com 
puted value for Do (Aw) is 25.55% (for sensitivity s=0.7) as 
represented by line 1502. As a result, abnormalities are indi 
cated at ran-time for values above this level. FIG. 16 shows 
abnormality jumps in run-time mode detected for the same 
log after its DNG extraction. For the two abnormality peaks 
1504 and 1506 in FIG. 16, a list is generated indicating the 
highly probable misbehaving VMs in the table of FIG. 17. 
The first abnormality process occurred on May 24, 2010 at 
04:17 PM (point A in FIG.16) and the second one on May 24, 
2010 at 05:18 PM (point B in FIG.16). OneVM was detected 
in each case that generated events, however, failed to generate 
the highly correlated events associated with them. The table 
in FIG. 17 shows these highly culpable VMs with mismatch 
scores of 40.9% and 100%, respectively, with columns of 
generated event ID and missing event ID. These results dem 
onstrate that breakage of expected correlations become 
abnormality events that can indicate when it’s appropriate to 
look into the log data. This can be a powerful tool in real-time 
analysis of streaming log data. 
To show the robustness of the analysis according to the 

methods describes above against the online abnormality 
observation window size Aw, FIG. 18 shows a plot of the 
estimated historical abnormality Do (w) vs. Aw. Note the near 
constant behavior indicating a very Small degree of methodic 
sensitivity to window size. 

Embodiments described above are not intended to be lim 
ited to the descriptions above. For example, any number of 
different computational-processing-method implementa 
tions that carry out the methods for identifying anomalies in 
data may be designed and developed using various different 
programming languages and computer platforms and by 
varying different implementation parameters, including con 
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trol structures, variables, data structures, modular organiza 
tion, and other Such parameters. Alternatively, thresholds, 
Such as threshold Thovo. Thinitia, and This, may be 
learned from the stream of log data by maintaining a record of 
similarity and mismatch measures and applying dynamic 
thresholding to the data. 

It is appreciated that the previous description of the dis 
closed embodiments is provided to enable any person skilled 
in the art to make or use the present disclosure. Various 
modifications to these embodiments will be readily apparent 
to those skilled in the art, and the generic principles defined 
herein may be applied to other embodiments without depart 
ing from the spirit or scope of the disclosure. Thus, the present 
disclosure is not intended to be limited to the embodiments 
shown herein but is to be accorded the widest scope consistent 
with the principles and novel features disclosed herein. 

The invention claimed is: 
1. A data-processing system comprising: 
one or more processors; 
one or more computer-readable media; and 
a routine that executes on the one or more processors to 

analyze a stream of digitally encoded log data output 
from a computational system and stored in the com 
puter-readable media by 
maintaining a historical dynamic normalcy graph of 

meta-data that represents statistical patterns within 
the stream of log databased on a first set of event types 
from the stream of log data; 

detecting changes within the stream of log databased on 
similarities between the historical dynamic normalcy 
graph and a moving historical graph constructed from 
a second set of event types from the steam of log data; 
and 

identifying abnormalities in the stream of log databased 
on the statistical patterns and on detected changes 
within the stream of log data. 

2. The system of claim 1, wherein maintaining the histori 
cal dynamic normalcy graph of meta-data further comprises: 

collecting the first set of event types from the stream of log 
data; 

calculating conditional probabilities for each pair of event 
types in the first set of event types: 

constructing a graph of meta-data with the event types in 
the first set of event types as nodes and the conditional 
probabilities as edges; and 

extracting the historical dynamic normalcy graph from the 
graph of meta-data. 

3. The system of claim 2, wherein extracting the dynamic 
normalcy graph further comprises discarding conditional 
probabilities that are less than a dynamic normalcy threshold. 

4. The system of claim 1, wherein detecting changes within 
the stream of log data further comprises: 

collecting the second set of event types from the stream of 
log data; 

calculating conditional probabilities for each pair of event 
types in the second set of event types; 

constructing the moving historical graph of meta-data with 
the event types in the second set of event types as nodes 
and the conditional probabilities as edges; 

calculating a similarity measure between the historical 
dynamic normalcy graph and the moving historical 
graph; and 

replacing the historical dynamic normalcy graph with the 
moving historical graph when the similarity measure is 
less than a similarity threshold. 

16 
5. The system of claim 1, wherein identify abnormalities in 

the stream of log data further comprises: 
collecting event types from the stream of log data within an 

observation time window; 
5 calculating a mismatch between the event types collected 

within the observation window and the event types rep 
resented in the historical dynamic normalcy graph; 

calculating a relative abnormality degree based on the mis 
match and a historical abnormality; 

generating an alert when the relative abnormality degree is 
greater than Zero; and 

identifying sources of event based on associated mis 
matches greater than a mismatch threshold. 

6. The system of claim 5, wherein calculating a relative 
abnormality degree based on the mismatch and a historical 
abnormality further comprise: 

collecting a set of mismatches for pervious time incre 
ments of the observation window; and 

calculating the historical abnormality for the set of mis 
matches based on method of whiskers or dynamic 
thresholding. 

7. A method carried out within a computer system having 
one or more processors and an electronic memory, the method 
comprising: 

collecting first and second sets of event types from a stream 
of log data, the second set of event types a Subset of the 
first set of event types: 

maintaining a historical dynamic normalcy graph of meta 
data that represents statistical patterns based on the first 
set of event types; 

detecting changes within the stream of log databased on 
the second set of event types; and 

identifying abnormalities in the stream of log databased on 
the statistical patterns and the detected changes and the 
event types collected within an observation window of 
the stream of log data. 

8. The method of claim 7, wherein maintaining the histori 
cal dynamic normalcy graph of meta-data further comprises: 

calculating conditional probabilities for each pair of event 
types in the first set; 

constructing a graph of meta-data with the event types in 
the first set of event types as nodes and the conditional 
probabilities as edges; and 

extracting the historical dynamic normalcy graph from the 
graph of meta-data. 

9. The method of claim 8, wherein extracting the dynamic 
normalcy graph further comprises discarding conditional 
probabilities that are less than a dynamic normalcy threshold. 

10. The method of claim 7, wherein detecting changes 
50 within the stream of log data further comprises: 

calculating conditional probabilities for each pair of event 
types in the second set of event types; 

constructing a moving historical graph of meta-data with 
the event types in the second set of event types as nodes 
and the conditional probabilities as edges; 

calculating a similarity measure between the historical 
dynamic normalcy graph and the moving historical 
graph; and 

replacing the historical dynamic normalcy graph with the 
moving historical graph when the similarity measure is 
less than a similarity threshold. 

11. The method of claim 7, wherein identify abnormalities 
in the stream of log data further comprises: 

calculating a mismatch between the event types in the first 
and second sets; 

calculating a relative abnormality degree based on the mis 
match and a historical abnormality; 
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generating an alert when the relative abnormality degree is 
greater than Zero; and 

identifying sources of event based on associated mis 
matches greater than a mismatch threshold. 

12. The method of claim 11, wherein calculating a relative 
abnormality degree based on the mismatch and a historical 
abnormality further comprise: 

collecting a set of mismatches for pervious time incre 
ments of the observation window; and 

calculating the historical abnormality for the set of mis 
matches based on method of whiskers or dynamic 
thresholding. 

13. The method of claim 7, wherein the first set of event 
types is larger than the second set of event types. 

14. A non-transitory computer-readable medium encoded 
with machine-readable instructions that implement a method 
carried out by one or more processors of a computer system to 
perform the operations of 

collecting first and second sets of event types from a stream 
of log data, the second set of event types a Subset of the 
first set of event types: 

maintaining a historical dynamic normalcy graph of meta 
data that represents statistical patterns based on the first 
set of event types; 

detecting changes within the stream of log databased on 
the second set of event types; and 

identifying abnormalities in the stream of log databased on 
the statistical patterns and the detected changes and the 
event types collected within an observation window of 
the stream of log data. 

15. The medium of claim 14, wherein maintaining the 
historical graph of meta-data further comprises: 

calculating conditional probabilities for each pair of event 
types in the first set of event types: 

constructing a graph of meta-data with the event types in 
the first set of event types as nodes and the conditional 
probabilities as edges; and 

extracting the historical dynamic normalcy graph from the 
graph of meta-data. 
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16. The medium of claim 15, wherein extracting the 

dynamic normalcy graph further comprises discarding con 
ditional probabilities that are less than a dynamic normalcy 
threshold. 

17. The medium of claim 14, wherein detecting changes 
within the stream of log data further comprises: 

calculating conditional probabilities for each pair of event 
types in the second set of event types; 

constructing a moving historical graph of meta-data with 
the event types in the second set of event types as nodes 
and the conditional probabilities as edges; 

calculating a similarity measure between the historical 
dynamic normalcy graph and the moving historical 
graph; and 

replacing the historical dynamic normalcy graph with the 
moving historical graph when the similarity measure is 
less than a similarity threshold. 

18. The medium of claim 17, wherein identify abnormali 
ties in the stream of log data further comprises: 

calculating a mismatch between the event types in the first 
and second sets; 

calculating a relative abnormality degree based on the mis 
match and a historical abnormality; 

generating an alert when the relative abnormality degree is 
greater than Zero; and 

identifying sources of event based on associated mis 
matches greater than a mismatch threshold. 

19. The medium of claim 18, wherein calculating the rela 
tive abnormality degree based on the mismatch and a histori 
cal abnormality further comprise: 

collecting a set of mismatches for pervious time incre 
ments of the observation window; and 

calculating the historical abnormality for the set of mis 
matches based on method of whiskers or dynamic 
thresholding. 

20. The medium of claim 19, wherein the first set of event 
types is larger than the second set of event types. 
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