
(12) United States Patent 
MarVasti et al. 

USO0954771 OB2 

US 9,547,710 B2 
Jan. 17, 2017 

(10) Patent No.: 
(45) Date of Patent: 

(54) METHODS FOR THE CYCLICAL PATTERN 
DETERMINATION OF TIME-SERIES DATA 
USING ACLUSTERING APPROACH 

(75) Inventors: Mazda A. Marvasti, Rancho Santa 
Margarita, CA (US); Astghik 
Grigoryan, Yerevan (AM); Arnak 
Poghosyan, Yerevan (AM); Naira 
Grigoryan, Yerevan (AM); Ashot 
Harutyunyan, Yerevan (AM) 

(73) Assignee: VMware, Inc., Palo Alto, CA (US) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 1435 days. 

(21) Appl. No.: 12/186,494 

(22) Filed: Aug. 5, 2008 

(65) Prior Publication Data 

US 201O/OO36643 A1 Feb. 11, 2010 

(51) Int. Cl. 
G06F 7/00 (2006.01) 
G06F 7/30 (2006.01) 
G06O 40/00 (2012.01) 
H04L 29/08 (2006.01) 

(52) U.S. Cl. 
CPC. G06F 17/30598 (2013.01); G06F 17/30548 

(2013.01); G06O 40/00 (2013.01); H04L 
67/22 (2013.01) 

(58) Field of Classification Search 
CPC ..................... G06F 17/30548; G06F 17/30598 
USPC ........ 707/737, 758, 776, 10; 706/12; 702/44 
See application file for complete search history. 

202 

200 
N 

204 
Cluster Data 

Into 
N-1 
Custers 

206 

Discretiza Data 
By Cluster 
Index Value 

Obati, Tine 
Serias Data 
S= (X,t 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,954,981 A * 9/1990 Dehner et al. ................ 345,440 
5,864,855 A * 1/1999 Ruocco et al. 
6,609,085 B1* 8/2003 Uemura et al. ............... TO2,189 
6,862,540 B1* 3/2005 Welch et al. ................... TO2/44 
7,251,589 B1* 7/2007 Crowe et al. ... TO2,189 
7.346,595 B2 * 3/2008 Aoyama et al. ................ 7O6/25 
7,369,961 B2* 5/2008 Castelli et al. . 702/176 
7,711,734 B2 * 5/2010 Leonard ........................ 707 736 

2003/0074251 A1* 4, 2003 Kumar ..... . GO6Q 10/087 
705/7.29 

2003/0101009 A1 5/2003. Seem .............................. TO2.61 
2004/0088722 A1* 5/2004 Peker .............................. 725/19 
2004,022.1855 A1* 11, 2004 Ashton ....... ... 128/898 
2006/0271533 A1* 11/2006 Sakurai et al. ................... 707/5 
2006/02824.57 A1* 12/2006 Williams ...................... 707/102 
2009, O19864.0 A1* 8, 2009 TO ........................ GO6N 99,005 

7O6/52 
2010/0023497 A1* 1/2010 Magdy ................. GO6K 9.6251 

TO7/E17.136 

OTHER PUBLICATIONS 

Todd Wittman Dec. 2002. Time-Series Clustering and Association 
Analysis of Financial Data, CS 8980 Project.* 

(Continued) 
Primary Examiner — James Trujillo 
Assistant Examiner - John J Morris 

(57) ABSTRACT 
Cycles and other patterns within time-series data are deter 
mined. Time-series data are transformed into discretized sets 
of clustered data that are organized by time period. Com 
parison is made of the organized data to determine similar 
time periods and multiclusters of the similar time periods are 
formed. From the multicluster data, cycles are identified 
from which thresholds and other useful data may be derived, 
or the data used for other useful purposes. 

10 Claims, 15 Drawing Sheets 

For S(t) 
20 

- - - - - ? 
Divide data into 

equal time divisions 

Transformed S(x) 
and S(t) data 

  



US 9,547,710 B2 
Page 2 

(56) References Cited 

OTHER PUBLICATIONS 

Singhal, A. and Seborg, D. E. (2005), Clustering multivariate 
time-series data. Journal of Chemometrics, 19: 427-438. doi: 
10.1002, cem.945. 
T. Warren Liao; Clustering of time series data—a Survey; Nov. 
2005: Journal Pattern Recognition vol. 38 issue 11.* 

* cited by examiner 



U.S. Patent Jan. 17, 2017 Sheet 1 of 15 US 9,547,710 B2 

n 

Vs 

n lr 
YN 

S 
U N 

r 

n 

N 

Q 

ts 

ly 

afeS?) yuoMJaN 

N 

r s 

S 
N U 

N 

afeS/7 yIOMeM 



U.S. Patent Jan. 17, 2017 Sheet 2 of 15 US 9,547,710 B2 

200 
Process and 

Structure Data 

700 
Recognize Cycles 

202 

200 Obatin Time 
N Series Data For S(t) 

204 ------ C 
Cluster Data Divide data into 

Into equal time divisions 
W-1 
Clusters 

206 

Discretize Data 
By Cluster 
Index Value 

Transformed S(x) 
and S(t) data 

FIG, 3A 

  

  

  



IETEELETT-EJ}, 
US 9,547,710 B2 

EEEEEEEEEFFE}, 
U.S. Patent 

  

  

  





U.S. Patent Jan. 17, 2017 Sheet 5 Of 15 US 9,547,710 B2 

502 504 

For each Smallest time Populate W-1 away 
interval, determine Which With binary values 
Clusters were populated 1- if data present in 
With data during the Cluster for time division 

time division, 0- if no data present 

FIG 5A 

S= {(0,0,1,1,1],ti 

FIG 5B 

S= {(1,1,1,1,0),t2 ; 
2 FIG 5C 

S= {(0,0,1,1,0),tg ; 
3 FIG 5D 

  

  

  



US 9,547,710 B2 Sheet 6 of 15 Jan. 17, 2017 U.S. Patent 

| 0 || iz 

ZGZÉ ZZZZ 89 GTZ80I 
S. 
S 

SS 

N 
SS 

  





U.S. Patent Jan. 17, 2017 Sheet 8 of 15 

Find Similar time divisions 

MultiCluster matches 

Second level disCretization Of 
multicluster data 

Determine cycles 

Cycle Reduction 

US 9,547,710 B2 

702 

720 

740 

760 

780 

FIG 7 

  



U.S. Patent 

702 

706 

l, y is Similar to lik every M and Mgreater 

Jan. 17, 2017 Sheet 9 Of 15 US 9,547,710 B2 

704 

Compare 
5 and 5k 

for fixediand alj 

Compare each element of ; j 
to each corresponding 

element On lik 

For each element that 

doesn't match in , j and 7 

Create Subarray for each of 
* and , 

Calculate u as the median, 
mean, Oraverage of all raW 

data for the element 

difference between 

than a threshold 
probability 

716 

FIG, 8A 
7 and , 

are NOTSimilar 

  

  

  

  

  

  

  

  



US 9,547,710 B2 Sheet 10 of 15 Jan. 17, 2017 U.S. Patent 

88 501-/ 
QZ08 

EZ09 

| 0 || 0 || || 

  

  

    

  



US 9,547,710 B2 U.S. Patent 

  

  

  

  

    

    

  

  



US 9,547,710 B2 U.S. Patent 

  

  



U.S. Patent Jan. 17, 2017 Sheet 13 of 15 US 9,547,710 B2 

Identify similar cycles and create 
Subsets Of each Similar cycle if: 

- 1202a 
If a =9; *h, where 

h=2,..., div(E) 
J 

1202b and 

Ki L-ki Where gi =0,..., div(4) and g=0,..., div() J J 

If k =k, f(g (, ) or k = k (g op) 

For each n, determine Which 
cycle is the representative cycle 

Determine separate Cycles and 
max representative cycles back 

to Separate cycles 

  



US 9,547,710 B2 U.S. Patent 

  



US 9,547,710 B2 

f7] [50]-/ 

U.S. Patent 

N 



US 9,547,710 B2 
1. 

METHODS FOR THE CYCLICAL PATTERN 
DETERMINATION OF TIME-SERIES DATA 

USING ACLUSTERING APPROACH 

BACKGROUND 

This disclosure relates to methods for determining cycli 
cal patterns in time-series date (i.e., one or more data 
indicators tracked over a time period). 

SUMMARY 

Cycles and other patterns within time-series data are 
determined. Time-series data are transformed into dis 
cretized sets of clustered data that are organized by time 
period. Comparison is made of the organized data to deter 
mine similar time periods and multiclusters of the similar 
time periods are formed. From the multicluster data, cycles 
are identified from which thresholds and other useful data 
may be derived, or the data used for other useful purposes. 

According to a feature of the present disclosure, a method 
is disclosed comprising: obtaining a set of time-series data; 
clustering the time-series data into at least one cluster, 
organizing the clustered time-series data into a data structure 
that, on a per time period basis, indicates the clusters having 
time-series data for each time period; and recognizing at 
least one cycle from the clustered time-series data by 
comparing the clusters to identify similar time periods, 
multiclustering the time periods, discretizing the multiclus 
ters, and determining from the discretized multiclusters at 
least one cycle. 

According to a feature of the present disclosure, a method 
is disclosed comprising recognizing at least one cycle from 
the clustered time-series data by comparing the clusters to 
identify similar time intervals, multiclustering the time 
intervals to form multiclusters of similar time intervals, 
discretizing the multiclusters to form a discretized multi 
cluster array, and determining from the discretized multi 
cluster array at least one cycle. 

According to a feature of the present disclosure, a method 
is disclosed comprising obtaining a set of time-series data, 
clustering the time-series data, discretizing the clustered 
time-series data, creating at least one time interval. The 
clustering comprises clustering the data according to a 
clustering method and discretizing the data. 

DRAWINGS 

The above-mentioned features and objects of the present 
disclosure will become more apparent with reference to the 
following description taken in conjunction with the accom 
panying drawings wherein like reference numerals denote 
like elements and in which: 

FIGS. 1A-1B are graphs of implementations of exemplary 
time-series data; 

FIG. 2 is a flow diagram of an implementation of the 
present disclosure illustrating processing and structuring of 
time-series data prior to determining cycles from the time 
series data; 

FIG. 3A is a flow diagram of an implementation of the 
present disclosure illustrating a method for processing and 
structuring time-series data for determination of cycles; 

FIG. 3B is an illustration of an implementation of an 
transformation of time-series data; 

FIGS. 4A-4C are graphs of implementations of time 
series data divided into clusters; 
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2 
FIGS. 5A-5D are flow diagram of an implementation of 

an transformation of time-series data and three representa 
tive sets of data illustrating implementations of the methods 
of the present disclosure to transform sets of hypothetical 
time-series data; 

FIGS. 6A-6C are illustrations of examples of implemen 
tations of methods of the present disclosure to transform sets 
of hypothetical time-series data; 

FIG. 7 is a flow diagram of an implementation for 
determining cycles from a set of transformed time-series 
data; 

FIG. 8A is a flow diagram of an implementation for 
identifying instances of time-series data that are similar on 
a time period basis to be able to isolate cycles based on 
similar data observed per time period; 

FIG. 8B is an illustration of an implementation of real 
time data comparison to identify similar time periods; 

FIG. 9 is an illustration of an implementation of multi 
clustering time periods having similar data patterns; 

FIG. 10 is an illustration of an implementations of an 
organization of multiclustered time-series data to aid in 
determination of cycles; 

FIG. 11 is an illustration of an implementation of a 
method of determining cycles from multiclusters of similar 
time-series data; 

FIG. 12 is a flow diagram of an implementation of a 
process for cycle reduction. 

FIG. 13 is an illustration of an implementation of cycles 
from which the cycles are reduced to prevent groups of 
repetitive cycles; and 

FIG. 14 is an illustration of an implementation of opti 
mized cycles determined using the methods of the present 
disclosure. 

DETAILED DESCRIPTION 

In the following detailed description of embodiments of 
the present disclosure, reference is made to the accompa 
nying drawings in which like references indicate similar 
elements, and in which is shown by way of illustration 
specific embodiments or implementations in which the pres 
ent disclosure may be practiced. These embodiments are 
described in sufficient detail to enable those skilled in the art 
to practice the present disclosure, and it is to be understood 
that other embodiments may be utilized and that logical, 
mechanical, electrical, functional, and other changes may be 
made without departing from the scope of the present 
disclosure. The following detailed description is, therefore, 
not to be taken in a limiting sense, and the scope of the 
present disclosure is defined only by the appended claims. 
As used in the present disclosure, the term 'or' shall be 
understood to be defined as a logical disjunction (inclusive 
of the term “and”) and shall not indicate an exclusive 
disjunction unless expressly indicated as such or notated as 
XOr. 
The inventors discovered novel methods for determining 

cycles from time-series data irrespective of the expected 
variations that occur in sets of time-series data. Indeed, 
according to implementations of the present disclosure, sets 
of time-series data are transformed and aggregated into 
discrete time periods. Each time intervals is compared to 
other time intervals to determine time intervals having 
similar data. Observation of cycles may then be made based 
on the similar time intervals. These cycles of similar data are 
useful for determining appropriate thresholds and predica 
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tive models for the source of the data, and for other purposes 
as would be known and understood to a person of ordinary 
skill in the art. 
To illustrate the utility of the methods of the present 

disclosure, hypothetical network usage time-series data for 
an exemplary stock trading business is presented and illus 
trated according to in FIG. 1. Accordingly, time-series data 
is shown representing hypothetical network usage in a 
business. During days one through five, the business is open 
and employees utilize the network resources. On the week 
end, represented by days six and seven, most employees do 
not come to work unless there is a pressing issue that must 
be addressed over the weekend. 
As observed in the network data of FIG. 1A, during the 

business hours of the business each weekday, a large 
increase in network activity is observed. Around the middle 
of each day, a slight dip in the network activity is also 
observed, corresponding to the decrease in network activity 
as lunch breaks are taken, followed by an increase in the 
network usage in the afternoon similar to that of the morn 
ing. At night, network usage decreases to a baseline level 
until the next work day as the employees are at home. 
On the weekend, Small increases are observed as a small 

percentage of employees come to work to address issues 
over the weekend. However, because the number of employ 
ees reporting to work is reduced, the network activity is 
similarly reduced. 
As observed in FIG. 1A, the spikes each day, generally, 

but do not exactly resemble one another. For example, the 
maximum network usage on Friday is illustrated as slightly 
less than that of the other weekdays because some employ 
ees are getting a head start on the weekend and the overall 
workforce reporting to work is decreased on that Friday. 
Similar variations in the data for each day is observable 
depending on the activities in the office, such as meetings, 
Socials, or projects that do not require network usage. For 
example, on day 2 the network usage during the dip in the 
middle of the day is observed to be greater than that of the 
other work days, perhaps due to working through a lunch 
period, for example. 

Variations in these types of data sets are expected. How 
ever, for the purpose of setting thresholds for real-time data 
observations to alert of problems states, such variations 
prove troublesome because spikes and other data that appear 
to be outside of the average have the potential to trigger 
alarms. For example, if the data for all seven days were 
averaged to determine the average network usage at noon for 
any given day, the lack of network usage over the weekend 
would skew the average thereby causing every noon to be an 
alarm state. However, the weekend data cannot be omitted 
because the real-time monitoring of the data must also be 
performed on the weekend to catch abnormal behavior 
during the weekend hours. 

Moreover, certain time periods fall far outside of the 
average ranges, but are expected and considered to be 
normal. For example, during the triple witching hours that 
occur on the last Friday of every March, June, September, 
and December in the United States stock markets, certain 
securities expire, which might greatly increase network 
usage on those Friday as illustrated in FIG. 1B. Indeed, the 
peak network usage on day 4 is slightly increased over 
normal, and the network activity during the nighttime hours 
between day 4 and day 5 is similarly slightly increased. The 
peak network activity on day 5 is around 33% greater than 
should be expected on normal Fridays. Yet the increased 
network activity is entirely expected. 
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4 
Thresholds and other predictive functions must account 

for the day to day variations, as well as the abnormal, yet 
expected, variations that occur in regular time-series data. To 
more accurately predict thresholds, for example, the present 
inventors discovered that the thresholds can be varied based 
on cyclical patterns in the data to reflect even abnormal, yet 
expected, fluctuations in the time-series data. 

For example, because triple witching Friday occurs four 
times a year, thresholds may be determined based solely on 
the four times a year cycle, creating a threshold 'exception' 
for expected variation in the network usage data that would 
otherwise trigger alarm states. Additionally, because the 
large variation cycles are not included in the normal, day 
to-day data sets, the thresholds for those days may be more 
accurately predicted and set, thereby alerting potential prob 
lem states more accurately. 

Thus, the present disclosure relates to the recognition of 
cycles within time-series data sets. According to implemen 
tations illustrated in FIG. 2, the methods of the present 
disclosure comprise two general processes. The first is a 
transformation of the data by processing and structuring of 
raw time-series data in operation 200. According to imple 
mentations, the raw data is clustered, discretized, and orga 
nized into discrete time intervals. From these organized time 
intervals containing the clustered, discretized data, in opera 
tion 700, cycles are recognized. These general processes are 
described in detail below. 
Processing and Structuring the Data 

According to more specific implementations, FIG. 3A 
illustrates the general process of transforming the time 
series data (operation 212) through processing and structur 
ing (operation 200 of FIG. 2). Time-series data is obtained 
in operation 202. Generally, time-series data may be denoted 
by time-series data set S, which comprises the non-time data 
points X collected from a metric, associated with time data 
points t corresponding to time in which the non-time data 
was gathered, where S={x;t. According to embodiments, 
the time-series data set may have data values for multiple 
metrics associated with each time. For example, each mem 
ber of set S may contain a network usages value, a CPU 
usage value, or other metric data, together with a time value. 
Generally, according to embodiments, cycles are determined 
on a metric by metric basis. 

Each set of non-time data S(X), is clustered into a prede 
termined number of clusters in operation 204. Any cluster 
ing method is appropriate, for example K-means clustering. 
The result of the clustering step in operation 204 is a set of 
clusters denoted as C(X), where 

where i=0, 1,..., N-1 and C is an operator representing 
some clustering method, for example K-means clustering. In 
other words, when C is applied to the set S(x), then the data 
points in S(X) are grouped into clusters of related data 
represented by C(x). Note that the total number of clusters 
is N. 

After the non-time data is clustered, it is discretized in 
operation 206. According to embodiments, discretization 
transforms the raw data in S(x) into values of the index of 
the cluster to which the data point was grouped in the 
clustering set. In other words, if c (x)=156 and was clustered 
into cluster 5 of 10 clusters, the value of c (x) would be 
transformed from 156 to 5. 
The discretization method may be denoted by operator D. 

Consequently, when D is applied to the clusters (C(X)), a 



US 9,547,710 B2 
5 

new set D where the raw data value has been replaced with 
the index value from the cluster to which each raw data point 
belongs is formed: 

D=DC(x) 

where 

which denotes that each element in D is an index value 
corresponding to the cluster to which the raw non-time data 
points were clustered by operator C. Thus, after discretiza 
tion, the raw data values for the non-time data are replaced 
with the index reference for the cluster to which each raw 
non-time data belongs. 

For example, turning to FIGS. 4A-4C, there are shown 
examples of time-series data with dashed lines exemplifying 
where clusters exist within the data depending the clustering 
method used. As illustrated in FIG. 4A, a set of time-series 
data is shown, as well as dashed lines representing the 
clustering of data. Cluster 4 is much larger than the other 
clusters and contains all of the largest data values, while the 
others are relatively constant in size. Artisans will readily 
observe that the time-series data need not be continuous. 

In FIGS. 4B and 4C, the same data set is shown, but 
clustered by different methods. In FIG. 4B, for example, 
K-means clustering was used to cluster the data, which 
tended to capture the data into five clusters, where no cluster 
is present between 20 and 100, or above 130. In FIG. 4C, 
clusters were more simply created by compartmentalizing 
the data range in about equal slices. 

According to embodiments, the time data from the S={x: 
t} data set denoted S(t) is divided into discrete time intervals 
in operation 210 of FIG. 3A. According to embodiments and 
as will be readily appreciated by artisans, S(t) may be 
divided into any number of time intervals. The more time 
units or the Smaller the time intervals, the more granular the 
data to analyzed will be. Likewise, the less time units or the 
larger the time intervals, the less granular the data to be 
analyzed will be. 

According to embodiments, for example, S(t) may be 
divided into two set of time intervals: elements and units. 
According to an exemplary embodiment as shown in FIG. 
3A, the entire time period constituting S(t) is discretized 
(divided) into N equal time elements in operation 210A, 
where each time element has the same cardinality (i.e., each 
time element is the same size as the other time elements). 
Alternately expressed: 

where E is an operator that divides S(t) into N. time 
elements (e) of equal size, where: 

Thus, the entire time period over which time and non-time 
data is measured belongs to set E. 

With respect to the time intervals, it should be noted, 
according to embodiments, that the time intervals are con 
tinuous irrespective of how they are chosen, and that each 
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6 
begins where the last leaves off. As such, if to is the start time 
for the entire data set and tis the end time for the entire data 
set, and t, is the time interval of each element, then 

if - to 
NE 

is the size of each element of time, and each of j-1 and 
represent intervals. It should be noted, that the interval is 
inclusive of the first value for eacht, the interval does not 
include the last value as represented in the equation above 
(shown by the open interval symbol); rather the last value is 
the start time of the next time interval. 

After breaking the total time interval into elements, 
according to embodiments, each element is Subdivided into 
equal sized units in operation 210B of FIG. 3A. Units can be 
of any size depending on the desired granularity. Repre 
sented mathematically: 

i 

U={u} i-1,2,... Ni-1,2,. . . .N. 

|ull-lul 
where U is an operator that breaks each element into N, 
units of equal size, where: 

Note that each unit is indexed by a unit index i and an 
element index j. 

For example, according to embodiments each element 
may be a day and each unit an hour. Selection of days and 
hours represents user accessible time intervals in which 
cycles are measured. For example, with information sys 
tems-type data, days represent discrete intervals that are 
often cyclical from the standpoint of day and night usage, 
while hours represent time intervals of appropriate granu 
larity to measure data from one or more metrics that provide 
a Snapshot of the state of a system being measured, but 
allowing for the variances within the demands of the system 
during the day to be reflected (e.g., lunch breaks, employees 
who come in early to work, employees who stay late for 
work, etc.). Likewise, if a baseball game was the Source of 
the data, each game might serve as a element and each 
inning or third of an inning a unit. Other Suitable time 
periods depend on criteria Such as the time intervals over 
which data is received (e.g., receiving data every 5 minutes 
versus every 5 seconds), the type of data set being observed, 
and the desired level of granularity necessary to be useful. 
Additionally, the principles of the present disclosure are 
adaptable to more or less than two discrete time intervals 
(i.e., more than elements and units, or just elements for 
example). 

After both the time intervals are determined in operation 
210 and the raw non-time data clustered and discretized in 
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operations 204, 206, the discretized non-time data is “reas 
sociated with the unit and element from which it was 
originally gathered. Artisans will readily understand that the 
time data and the non-time data are not dissociated; the 
“dissociation' is for the purposes of explaining what is 
occurring with the non-time and time data herein. 

During the “reassociation, the discretized non-time data 
is organized into per time interval (unit) arrays that indicate 
only the presence of data in a given cluster or the absence of 
data in the given cluster. The array has a length equal to the 
number of clusters in which the time-series data was clus 
tered and each position in the array corresponds with one 
cluster. Each index of the cluster associated with the non 
time data is mapped to a presence value in the time interval 
array at the location corresponding to the index of the cluster 
in the time interval array to which the data point belongs. 
The set S represents the discretized data organized into 

elements and units. 

s=(Yu,) 
According to embodiments, the vector Y, is an array con 
taining N elements corresponding to each cluster, where 
each element has a value of 0 or 1, where 1 indicates that the 
data of the time intervalu, belongs to that cluster in that time 
period and 0 indicates that no data belongs to the given 
cluster over the data period. u, is a time interval, for example 
a unit. Stated another way: a 1 in Y, indicates that for the 
specified cluster index (0. . . . . N-1), data values existed 
from D for time u,. A 0 indicates that no such data was 
available for the specified time interval. 

FIG. 3B illustrates an embodiment of s. According to 
FIG. 3B, a plurality of elements 310 are shown. Each 
element 310 comprises a plurality of units 320 and associ 
ated discretized non-time data values s, according to 
exemplary embodiments. As illustrated, each unit 322 is 
associated with cluster set 324. Cluster sets 324 are arrays of 
discretized non-time data. 

According to embodiments and as illustrated in FIG. 5A, 
each cluster set 324 comprises an array of N length, where 
N is the number of clusters the non-time data. For example, 
as shown in FIGS. 5B-5D, the non-time-series data are 
clustered into five clusters from K to 4. Thus according to the 
example in FIGS. 5B-5D, the array for each cluster set 
would be five wide, one array location for each cluster. 

To populate each array, the data is examined for each 
smallest time interval to determine which clusters (repre 
sented by the cluster indexes of the discretized non-time 
data) for the raw non-time within that interval in operation 
502. For each array location in each smallest time interval, 
for example a unit, if the cluster index is present in the 
discretized non-time data, then the value of the array loca 
tion corresponding to that cluster is set to 1, in operation 
504. Otherwise, the value in the array location correspond 
ing to a given cluster remains 0. According to other embodi 
ments, other differentiation methods with respect to how the 
array is filled in and how the values differentiated are 
possible and contemplated within the scope of the present 
disclosure. 

To better illustrate the process shown in FIG. 5A, exem 
plary data is shown in FIGS. 5B-5D for three time intervals 
corresponding to three Smallest time intervals. As illustrated, 
the raw data is shown in the solid line of the graph in each 
of FIGS. 5B-5D. Along the y-axis of each graph are cluster 
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breakpoints. If data exists in the range of a cluster, its raw 
data value was converted to the index value corresponding 
to its first cluster during the discretization process. For 
example, in the graph of FIG. 5B, the highest peak corre 
sponds in y-value with cluster 4 and its raw value is 
therefore correlated with the cluster to which it belongs, 
which is 4 in this case. Likewise, while the lowest trough 
value is discretized with an index value of 2 because its raw 
data belongs to cluster 2. 

Thus, for the time interval in FIG. 5B, the discretized 
non-time data contains indexes for clusters 2, 3, and 4 in one 
or more iterations (for example, if the time period is an hour 
and data measurements were taken every minute, there are 
multiple discretized non-time data belonging to cluster 2, to 
cluster 3, etc.). Because there were five clusters, the cluster 
set is an array of length five, which can be represented by: 

No, N1, N2, NN 

where each N is a cluster. Because no data in the time unit 
is observed in clusters N=0 or N=1, the corresponding 
values in the array are set to Zero, and the values corre 
sponding to clusters N-2, N-3, and N=4 are set to 1 because 
their values are observed in the discretized data over the 
given time interval, producing a vector having the generated 
array for the given time interval: 

O,0,1,1,1] 

Associating each cluster set array with its Smallest time 
interval yields for the data shown in FIG. 5B; 

Likewise, for the data in the graph shown FIG. 5C, data 
exists in every cluster except cluster 4. Thus, the cluster set 
array is 1, 1, 1, 1, 0, and associated with the time index of 
smallest time interval to which it belongs t, would yield: 

Finally, in FIG. 5D, large variation is observed in the data 
set over the time interval ts. However, all of the data falls 
within clusters N=2 and N=3. Thus, the cluster set array is 
0, 0, 1, 1, 0, and associated with the time index of its 
interval would yield: 

In practice and according to embodiments, each non-time 
data point is not dissociated from its time element. Rather, 
the data is transformed and each unit and element of time 
aggregates a set of discretized data together with the time in 
which it was collected. 

FIGS. 6A-6B graphically illustrate an example of the 
clustering, discretization, and cluster set formation pro 
cesses. According to embodiments shown, a set of raw data 
is clustered in FIG. 6A. As shown, the clustering method 
determines a range of raw data values for each cluster. Of 
note, the clusters do not have to be of equal size, as 
illustrated elsewhere herein. FIG. 6B shows the result of the 
discretization process. For each raw data point collected, the 
metric value is correlated to the cluster to which it belongs 
and the metric value is replaced or collected together with 
the index of the cluster to which it belongs. 

For example, the time stamp at 12:01 has a raw metric 
value of 1360. Referring to FIG. 6A, the cluster to which the 
raw metric value of 1360 belongs is cluster 3, which has a 
range of 1087-1558. Consequently, the raw value of 1360 for 
the time stamp 12:01 is replaced or complemented with the 
cluster index of 3, as shown. 
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As shown in FIG. 6C, the entire data range is divided into 
time elements 310 of one day each for an entire year from 
Jan. 1, 2006 to Dec. 31, 2006. Each day is divided into 24 
units 320 of one hour each. Looking at the Jan. 2, 2006 
element, it is observed that each element has unit 322 and 
cluster set 324. The interval for each unit comprises one 
hour, starting at 0:00 AM (Unit 1) and ending at 11:59 PM 
(Unit 24). 

Turning again to FIG. 6B, the raw data and transformed 
cluster index data for Jan. 2, 2006 is shown for the interval 
1:01 AM-1:37 AM, where data was collected every two 
minutes (with a break in the data from 1:05 AM-1:25 AM). 
For the interval (assuming the data not shown comprising 
the rest of the hour have a cluster index value of 0), cluster 
indexes 0, 1, 3, 4, and 8 are present in the set. Turning again 
to the cluster data shown in Unit 2 of FIG. 6C, the cluster set 
array is 1; 1; 0; 1; 1; 0; 0; 1; O for the unit from 1:00 
AM-1:59 AM in element Jan. 2, 2006. 
Recognizing Patterns and Cycles from the Processed and 
Structured Data 

According to embodiments, the process of recognizing 
patterns or cycles in operation 700 of FIG. 2 is accomplished 
according to embodiments illustrated in FIG. 7. In operation 
702, similar time divisions are determined by comparing 
cluster sets 324. After matches are determined, multiclusters 
of matching cluster sets 324 are determined in operation 
720. After creation of the multiclusters, the sets of multi 
clustered data is again discretized in operation 740, followed 
by cycle determination in operation 760. Finally, according 
to embodiments, the same general cycle may be recognized 
at different intervals (e.g., a cycle recognized every three 
days, might also show up as a 6 day cycle or a 9 day cycle, 
but are the same cycle). Therefore, in operation 780 these 
cycles are reduced so as not to have multiple cycles existing 
for the same occurrence in the data. 

According to embodiments and as illustrated in FIG. 8A, 
each cluster set (Y) is compared for fixed units (smallest 
time intervals, e.g., a unit) for all elements (larger time 
intervals, e.g., an element) in operation 704. For example, 
the comparisons of each cluster set are for all of the same 
time unit (e.g., midnight to 1:59 am) for every element (e.g., 
day). Recalling that s, comprises a cluster set Y, and a 
smallest time interval (unit) u, thens, is compared to each 
s, where j, k are the indexes of the units and i is the index 
of the element. 

If the cluster sets (Y, and Y) are exactly the same, then 
the cluster sets are identical and are deemed to be similar in 
operation 706. For a cluster set to be identical to another 
cluster set, the array comprising the cluster set will be 
exactly the same on a position by position basis. Thus, at 
position one in the array, both cluster sets have the same 
value, at position two both cluster sets have the same value, 
and so forth. 

For the comparison of two cluster sets, if they are exactly 
the same (i.e., Y, -Y), then the cluster sets are determined 
to be similar in operation 706. 

However, cluster sets may be different, according to 
embodiments, yet close enough to be determined to be 
similar. For two cluster sets to be similar where the cluster 
set have at least one position that does not match the other 
cluster set (i.e., YaY), the element at each array position 
ofy, is compared to the element of each array position in Y, 
in operation 708. For each pair of elements from Y, and Y, 
that do not match, a Subarray is formed around the non 
matching position for each non-match in the comparison of 
Y, and Y, in operation 710. 
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10 
The Subarray for each cluster set comprises, according to 

embodiments, the m-1", m", and m+1" positions of each 
cluster set (each Subarray is denoted as m, and m. 
respectively). In other words, the non-matching array posi 
tion m and its surrounding positions are contained in each 
Subarray to determine if, despite the non-match, the cluster 
set are still similar. In the case where m is the first position 
of the cluster sets, the subarray will contain the m" and 
m+1 positions; in the case where m is the last position of 
the cluster sets, the subarray will contain the m” and m-1 
positions, according to embodiments. According to other 
embodiments, the subarrays contain the m", m+1, and 
m+2" or the m", m-1, and m-2" positions. Other varia 
tions may also be used as would be known and understood 
by artisans. 

For each Subarray and may and me the median, mean, 
or average of the raw data corresponding to the certain 
positions in the Subarray are computed for all raw data 
belonging to the cluster from which the data was derived in 
operation 712. The median, mean, or average is denoted by 
u, where 1 is the position within the cluster set array and 
in represents the relative cluster sets. In other words, ut, 
represents the median, mean, or average for a given array 
position in each element in a cluster. Computation of the 
median, mean, or average allows for a direct comparison 
between the raw data of two elements that have non 
matching cluster set positions, and determination of whether 
the difference between the median, mean, or average raw 
data values between the elements being compared in the 
subarrays is below a given threshold probability p. 
Comparison using the raw values accounts for adjacent 

data points that are clustered into different clusters, but in 
actuality be very close from a raw data standpoint. Thus, 
even though the data points are in different clusters, the 
method checks to see whether the difference in clustering 
falls within an acceptable range of error, and if so, treats the 
differential clustering as if they were in the same cluster. 

According to embodiments, matches are made using the 
following table in operation 714: 

TABLE 1. 

Determination of similar Subarrays. 

lin.ii lin.ii. n is similar to n if and only if: 

{1, 0, 0} {0, 1, 0} *2 Pil sp 
kill 

{0, 1, 0} {1, 0, 0} kii.2 plk. 
- H is 

kik, 1 

{0, 1, 0} {0, 0, 1} P. Pie - p. 
kii.2 

{1, 1, 0} {1, 0, 0} it.2 plk. 
- H is 

kik, 1 

{0, 1, 1} {0, 0, 1} plk.3 kti.2 
-H is 

ki.2 

{1, 1, 0} {1, 0, 1} File Pils p and Pie sp 
kik.1 ki.2 

{0, 1, 1} {1, 0, 1} * Pls p and P. sp 
kik.1 ki.2 
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TABLE 1-continued 

Determination of similar Subarrays. 

lin.ii lin.ii. n is similar to n if and only if: 

{1, 1, 1} {1, 0, 1} it.2 plk, sp and plk.3 ti.2 sp 
lik, kii.2 

Artisans will readily note that because j and k are inter 
changeable, only half of the iterations are shown in the table. 
If all comparisons of each instance of m, and m in a 
cluster set are similar, then the cluster sets are determined to 
be similar. In other words Y, is similar to Y, as shown in 
operation 706. According to embodiments, if m and m 
do not have a pattern as shown in the first two columns of 
Table 1, then m, is not similar to me, and Y, is not 
similar to Y, in operation 716. Similarly, if the conditions 
of the third column are not true, then m is not similar to 
m, and Y, is not similar to Y, in operation 716. 

However, ify, is similar to Y, for all the comparisons for 
the elements for a fixed unit, then for elements S. S., i.e., 
element S, is similar to element S. 
As illustrated according to embodiments in FIG. 8B, and 

example of finding similar time divisions in operation 702 
(FIG. 7). According to the example in FIG. 8B, there is 
shown two elements 802a, 802b having 24 units 804a, 804b 
each. Each unit 804a, 804b comprises time interval 806a, 
806b and cluster set 808a, 808b as described above. As 
illustrated in the example, each cluster set 808a, 808b 
comprises five elements corresponding to five clusters of the 
raw data and populated with discretized cluster data, also as 
described above. 
As shown in unit 1 for both elements 802a, 802b, the 

elements of each cluster set array are the same. At element 
(position) 0 of each cluster set, the value is 0; at element 1 
of each cluster set, the value is 0; at element 2 of each cluster 
set, the value is 1; at element 3 of each cluster set, the value 
is 0; and at element 4 of each cluster set, the value is 1 
Because there is no difference in the value of each corre 
sponding element in each array, no Subarray is necessary. 

In unit 2, the same process is undertaken. However, at 
element 3 in each cluster set array, the values diverge. In 
cluster set 808a, the value is 0; in the corresponding cluster 
set 808b, the value is 1. To determine whether the cluster sets 
808a and 808b are similar despite the variant values, sub 
arrays m, and m are created, where m-3. Thus, the 
cluster set values for elements 2 (m-1) and 4 (m+1) are also 
used to populate the Subarrays, resulting in Subarrays 810a 
and 810b respectively. Referring to table 1, if subarray 810a 
(1,0,0) is m, and subarray 810b (1,1,0) is me, there 
is no match. However, since and k are interchangeable, the 
fourth row of Table 1 produces a match when subarray 810a 
(1,0,0) is m and Subarray 810b (1,1,0) is m. Thus, 
f 

kii.2 plk, 
s 

kik.1 p 

is true, subarray 810a and 810b are similar. 
Assume that p is 0.05, according to the example pre 

sented. Also, assume thatua (i.e., the median of all elements 
in each cluster set that correspond to element 2 in the 
Subarray belonging to the same cluster—the median of 
element 3 in each cluster set belonging to the same cluster) 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
is calculated to be 34.9. Assume that u is 35.2 (i.e., the 
median of element 2 in each cluster set belonging to the 
same cluster). Then: 

34.9-35.2 
is a = O09 

Thus, because 0.009<0.05 is true, m, is determined to be 
similar to me. For elements 4 and 5 of Unit 2's cluster sets, 
the value of each element is 0 and thus they match. Conse 
quently, the cluster sets are determined to be identical, 
despite the discrepancy at element 3. The same process is 
repeated for each cluster set 806b and 806c. If each cluster 
set in elements 802a and 802b are similar, then the elements 
are determined to be similar. The process is repeated, so that 
each element is compared. 

Referring again to FIG. 7, after the similar time divisions 
are determined in operation 702, the results are multiclus 
tered in operation 720 in sets of matching elements, as 
illustrated in FIG.9. Each multicluster will contain elements 
where each cluster set in the element matches each cluster 

set in each element of the multicluster. Otherwise expressed, 
M is an operator that produces sets Mofidentical elements 
(S): 

The size of each cluster is denoted as L., which will be used 
during the process of determining cycles. 

According to embodiments, in operation 740, the multi 
clusters are discretized whereby a vector (i.e., an array) is 
created, that when applied to S. contains the multicluster 
indexes for all j. Otherwise expressed, let D, be a second 
level discretization operator. Then: 

whered, contains a value from the multicluster index and the 
time associated with each index j can be obtained from t, 
As illustrated in FIG. 10, an exemplary vector is shown 

with the multicluster data in FIG. 9. As shown, each element 
is clustered into a multicluster. When second level discreti 
Zation is applied, a vector (array) is formed where the 
multicluster index of each element populates the vector 
serially. For example, as shown, element 1 belongs to 
multicluster 1, element 2 belongs to multicluster 2, element 
3 belongs to multicluster 1, element 4 belongs to multiclus 
ter X, and so forth. Thus, the vector, as shown in FIG. 10, is 
1, 2; 1; X; . . . . The resulting vector can then be used to 
locate cycles. 

Turning again to FIG. 7, after the multiclustering and 
second level discretization of the multiclustered data, the 
cycles are determined in operation 760. To obtain the cycles 
present in the collected data, a comparison is made of the 
discretized multicluster vector, that is D, to find similar 
“substrings” of length one within the vector. More generally, 
within the discretized multicluster vector, repeating indexes 
are located. Noting that the indexes each represent an 
element (for example 1 day) and that matching indexes 
represent matching or similar sets of data (because of the 
multiclustering), cycles within the vector indicate periods 
where data trends repeat. 
To locate these pattern or cycles, repeating period () is 

located in the discretized multicluster vector. A cycle period 
() from a starting index k exists if in D at positions k+(iw) 
at least v 96 of elements have the same multicluster index 
value (d), where 
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i = 0, 1, ... f) div () 

and (p=1. . . . . L/3. Artisans will readily note that the div 
operator returns an integer value by ignoring any remainder. 

Alternately stated, operator up is applied to set D to output 
a set of cycles, each cycle being denoted by S.: 

Where (), is the period length, k, is the starting index, d is 
the value of the multicluster index in the vector. Note that 
N. denotes the total number of cycles determined. 

For example, according to exemplary embodiments illus 
trated in FIG. 11, there is shown a discretized multicluster 
vector shown in two iterations. As shown, the process of 
cycle determination is performed on each discretized mul 
ticluster vector (D). In the topmost example, the starting 
index is k=1. As will be observed in this example, d =1 (i.e., 
the multicluster index for the cycle being determined is 1). 
Also observed, the cycle period is co-3 because the multi 
cluster index is repeated every three array positions. All 
permutations of starting index and cycle period (D-1, . . . . 
L/3 are tested on the discretized multicluster index to locate 
potential cycles, according to embodiments. 

Each d, according to the process, must be the same at 
each k+(iw) for 

div() i = 0, 1, ... 

and period (0–3. In this case assume that L for d=1 is 20 
elements, then i=0, 1, 2, 3, 4, 5, 6. i.e., 

div's 1 ) div() div(6) = 6. 

Artisans will readily observe that for multicluster index 1 
(d =1), the following periods will be observed for cycles: 
(p=1,..., L/3=1,..., 20/3=1, 2, 3, 4, 5, 6, 7. 

However, it will be noted at the 4" cycle, the multicluster 
index is 2 rather than one. Occasionally, for every “real' 
cycle, the multicluster index will not match, indicating that 
the elements didn't match when compared. However, 
according to the methods disclosed herein, such variance is 
expected and the cycle will be detected assuming V '% of the 
multicluster indexes (ds) are the same. For example, if 
v=80%, then the cycle of period 3 detected in the topmost 
discretized multicluster array will be determined to be a real 
cycle because 5 of 6 of the d’s match (i.e., five of six of the 
multicluster indexes were 1, and one of six indexes were 2). 
Thus, because 83% of the multicluster indexes were 1, and 
because 83% is greater than the 80% threshold, cycle S=(3. 
1, 1) is determined. 

Likewise in the bottommost array in FIG. 11, a cycle is 
being determined for d. 3. In this case, the starting index is 
k=3, and the period is co-3. In this case, multicluster index 
is observed at array positions 3, 9, 12, but not at array 
positions 6 and 15. Assuming against, V-80%, in this case no 
cycle would be determined because only 3/s (of the shown 
array positions at (0–3) have index valued 3, which is less 
than the required 80% to determine a cycle. 
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14 
The set is defined to contain all the possible cycles 

available in D. However, redundant cycle information may 
be present. For example, a cycle of length co-3 may also be 
part of as cycles of length (D-6, (t)=9, etc. because they are 
multiples of each other. According to embodiments, the 
redundant cycle information is reconciled in operation 780 
of FIG. 7 to determine which representation most accurately 
reflects the actual cycle. 

According to embodiments and as illustrated in FIG. 12, 
the process of cycle reduction is broken down in to three 
steps: identification of similar cycles and creation of Subsets 
of each similar cycle in operation 1202 and for each similar 
cycle, determination of the representative cycle in operation 
1204. In operation 1206, separate cycles are determined, 
optimized, and the representative cycle is applied to each 
separate cycle. 

According to embodiments and with respect to the iden 
tification of similar cycles and creation of Subsets of each 
similar cycle in operation 1202, three conditions each must 
be met. One condition that must be met for two cycles to be 
similar to each other is the periods of each must be integer 
multiples of each other in operation 1202a. Alternately 
expressed: 

where 

( L - ki h = 2, ... dist } (to 

Another condition that must be met is that the starting 
indexes of two cycles starting at different starting indexes 
must maintain the period () away from the respective 
starting indexes, even when the starting points are shifted by 
a fraction of (). According to embodiments, there are two 
possible cases: 

a) k,<k, and co,<co, where k, and k, are the cycle start 
points, and co, and co, are the period of the cycles. For this 
case, the following condition must be met: 

b) k>k, and co,<co, where k, and k, are the cycle start 
points, and co, and co, are the period of the cycles. For this 
case, the following condition must be met: 

ki - ki mod ) = 0; (O; 

Artisans will readily note that the mod operator (modulo 
operator) returns a remainder that is the result of a division 
operation. 

According to embodiments, the same process is also 
expressed in operation 1202b: 

if k = k + (gi k (di) or ki = ki - (gi k (di), 
k; 

where g = 0, ... dist and gi = 0, ... dist (to (to 

Another condition that must be met is that the discretized 
multicluster index of one cycle must be the same as the 



US 9,547,710 B2 
15 

discretized multicluster index of the other cycle in operation 
1202c. Alternately expressed: 

de-d 
The entire operation 1202 of FIG. 12 can be encapsulated 

into operator Y, which when applied to produces a series 
of subsets of similar cycles. 

3–3, 
where L is the total number of similar cycles obtained and 
index 1 refers to the given cycles index. Note that: 

Ec 

Y = US, 
n=1 

For example, as illustrated in FIG. 13, two exemplary 
cycle lengths are shown, for co-7 and co-14. Observing the 
cycles and the multiclusters, it is observed that days 1 and 
2 of (p=7 correlate with multicluster index 1, while the rest 
correlate with multicluster index 3. In the cycles determined 
for (O-14, days 2, 3, 9, and 10 correlate with multicluster 
index 1, while the rest again correlate with multicluster 
index 3. 
Two sets of similar cycles are observed. Recalling that for 

cycles to be similar they must have periods that are integer 
multiples of each other, the starting indexes of two cycles 
starting at different starting indexes must maintain the period 
(i) away from the respective starting indexes, and the mul 
ticluster index values must be the same. Starting with the 
third criteria where d=1, it is observed that two cycles have 
a period ()=7 and four have a period of co=14. Because 14 
is two times 7, the first criteria is also satisfied regarding the 
similarity of all the cycles having d-1. Similarly, the second 
criteria is met because the cycles maintain ()–7 and (0–14. 
respectively, whether they start on day 1, 2 for ()=7 or 2, 3, 
9, or 10 for co-14. Consequently, days 1 and 2 where (D=7 
are groups together; also grouped in that group are days 2, 
3, 9, and 10 from the co=14 because although they have 
different starting indexes, each of the three criteria are 
satisfied for these data as well. 

After identification of the similar cycles and creation of 
the Subsets of the similar cycles (S), a representative cycle 
is chosen. The representative cycle is determined by defin 
ing, according to embodiments, a period weight (W) that is 
used to determine the representative cycle by selecting the 
cycle with the highest period weight. W, is calculated by: 

where n is the number of cycles in up with a cycle of co. The 
cycle with the highest period weight is selected as the 
representative period. If multiple cycles have the same 
period weight, then the cycle with the Smallest () is chosen. 

According to other embodiments, a cycle with the shortest 
period may be selected as the representative cycle. 

After the representative cycle is chosen, and as illustrated 
in FIG. 14, separate cycles are determined (operation 1206 
of FIG. 12), for example those having the same multicluster 
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16 
index, same period, but different starting indexes, and the 
representative cycle is applied to each of those cycles. For 
example, in the exemplary example shown in FIGS. 13 and 
14, days 1 and 2 of (p=7 and days 2, 3, 9, and 10 of ()=14 
are grouped together as similar groups. However, these form 
two disparate cycles—one starting on day 1 and one starting 
on day 2. Artisans will readily recognize that the cycles in 
(p=14 are the same as and belong to one of day 1's cycle or 
day 2's cycle. These different cycles are differentiated, but 
once the representative cycle is decided, for example S= 
(7. 1, 1) (i.e., period of 7, starting index of 1, and multi 
cluster set of 1), that cycle is applied to both day 1 and day 
2, as illustrated in FIG. 14. Likewise with the other cycles 
determined for multicluster 3: the are decided to be similar, 
a representative cycle is decided and applied to each dispa 
rate cycle in the group. 
The result of the processes disclosed herein detects cycles 

in the data from which thresholds or other uses may be 
made. For example, by knowing the expected behavior 
based on the cycles determined, appropriate thresholds may 
be determined and applied on a time period by time period 
basis depending on which cycle the time period belongs. 
The process and methods described herein can be stored 

in a memory of a computer system as a set of instructions to 
be executed. In addition, the instructions to perform the 
processes described above could alternatively be stored on 
other forms of machine-readable media, including magnetic 
and optical disks. For example the processes described could 
be stored on machine-readable media, for example magnetic 
disks or optical disks, which are accessible via a disk drive 
(or computer-readable medium drive). Further, the instruc 
tions can be downloaded into a computing device over a data 
network in a form of compiled and linked version. 

Alternatively, the logic to perform the processes as dis 
cussed above could be implemented in additional computer 
and/or machine readable media, such as discrete hardware 
components as large-scale integrated circuits (LSIS), appli 
cation-specific integrated circuits (ASICs), firmware Such 
as electrically erasable programmable read-only memory 
(EEPROMs); and electrical, optical, acoustical and other 
forms of propagated signals (e.g., carrier waves, infrared 
signals, digital signals, etc.) 
While the apparatus and method have been described in 

terms of what are presently considered to be the most 
practical and preferred embodiments, it is to be understood 
that the disclosure need not be limited to the disclosed 
embodiments. It is intended to cover various modifications 
and similar arrangements included within the spirit and 
scope of the claims, the scope of which should be accorded 
the broadest interpretation so as to encompass all Such 
modifications and similar structures. The present disclosure 
includes any and all embodiments of the following claims. 
The invention claimed is: 
1. A method that detects and records patterns in a data set 

stored in one or more physical data-storage devices within a 
computer system, the computer system controlled to carry 
out the method by execution of computer instructions stored 
in a memory of the computer system, the method compris 
1ng: 

clustering a data set comprising multiple data-point/time 
point pairs into one or more clusters, each cluster 
associated with a cluster index and each data point 
contained in a single cluster; 

generating a discretized data set by replacing each data 
point of each data-point/time-point pair within the data 
set with a cluster index for the cluster that contains the 
data point; 
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for each large time interval of an ordered set of contiguous 
large time intervals, dividing the large time interval into 
Small time intervals and storing, for each Small time 
interval, an indication, for each cluster, of whether or 
not the discretized data set includes an index for the 
cluster associated with a time point in the Small time 
interval; 

clustering large time intervals into large-time-interval 
clusters, each large-time-interval cluster associated 
with a large-time-interval-cluster index; 

constructing an ordered set of discretized large time 
intervals by replacing each large time interval in the 
ordered set of large time intervals with a large-time 
interval-cluster index for the large-time-interval cluster 
that contains the large time interval; 

identifying at least one periodic occurrence of large-time 
interval-cluster indexes in the ordered set of discretized 
large time intervals; and 

storing an indication of the identified periodic occurrence 
in a physical data-storage device. 

2. The method of claim 1 where the discretized data set 
comprises multiple cluster-index/time-point pairs. 

3. The method of claim 1 where the ordered set of 
contiguous large time intervals is obtained by dividing a 
time range, the time range equal to or including a time period 
that begins with the earliest time point and that ends with the 
latest time point, into a set of equal-length contiguous large 
time intervals. 

4. The method of claim 1 
wherein the indication for a particular cluster and for a 

particular Small time interval has one of two values 
selected from among: 
a first value indicating that the discretized data set 

includes the cluster index for the cluster in associa 
tion with the time point in the small time interval, 

a second value indicating that the discretized data set 
does not include the index for the cluster in associa 
tion with the time point in the small time interval: 
and 

wherein the second value is different from the first value. 
5. The method of claim 1, wherein the large time interval 

is a day and the Small time interval is an hour. 
6. The method of claim 1, wherein clustering large time 

intervals into large-time-interval clusters further comprises 
assigning, to each large-time-interval cluster, a set of pair 
wise matching large-time-intervals. 
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7. The method of claim 6, wherein a first large time 

interval matches a second large time interval when the 
small-time-interval indications within the first large time 
interval are identical to the small-time-interval indications 
within the second large time interval or when each of those 
small-time-interval indications within the first large time 
interval that are not identical to corresponding Small-time 
interval indications within the second large time interval 
have greater than a threshold similarity to one another. 

8. The method of claim 1 wherein identifying at least one 
periodic occurrence of large-time-interval-cluster indexes in 
the ordered set of discretized large time intervals further 
comprises: 

identifying cycles in the ordered set of discretized large 
time intervals, each cycle associated with a period 
value, a starting index, and a large-time-interval-cluster 
index; 

determining sets of related cycles from the identified 
cycles; and 

for each set of related cycles 
calculating a period weight for each cycle, and 
identifying a representative cycle with a highest period 

weight. 
9. The method of claim 8 wherein identifying cycles in the 

ordered set of discretized large time intervals further com 
prises: 

identifying an ordered set of a first number of large time 
intervals at a particular period within the ordered set of 
discretized large time intervals; 

identifying a second number of large time intervals within 
the identified first number of large time intervals that 
have a common large-time-interval-cluster index; 

computing a ratio of the second number to the first 
number, and 

determining whether or not the computed ratio is greater 
than a threshold. 

10. The method of claim 8 wherein one cycle is related to 
another cycle when 

the period of one cycle is an integer multiple of the period 
of another cycle; 

the large-time-interval-cluster indexes of the two cycles 
are the same; and 

the starting indexes of the two cycles starting at different 
starting indexes are separated by one of the periods. 
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