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(57) ABSTRACT 
This disclosure is directed to data-agnostic computational 
methods and systems for adjusting hard thresholds based on 
user feedback. Hard thresholds are used to monitor time 
series data generated by a data-generating entity. The time 
series data may be metric data that represents usage of the 
data-generating entity over time. The data is compared with 
a hard threshold associated with usage of the resource or 
process and when the data violates the threshold, an alert is 
typically generated and presented to a user. Methods and 
systems collect user feedback after a number of alerts to 
determine the quality and significance of the alerts. Based on 
the user feedback, methods and systems automatically adjust 
the hard thresholds to better represent how the user per 
ceives the alerts. 

21 Claims, 18 Drawing Sheets 

21 / 
adjust alert 
thresholds 

anougi 

  

  



U.S. Patent Apr. 25, 2017 Sheet 1 of 18 US 9,632,905 B2 

102 103 

MEMORY 

CPU CPU 
104 

105 

112 
SPECIALZED 

- PROCESSOR BRIDGE 

114 16 

120 

CONTROLLER 

\in \ta \to \ is 
126 

Cld 127 
MASS 

SORAGE 
DEVICE 

128 FIG. 1 

  

  



US 9,632.905 B2 Sheet 2 of 18 Apr. 25, 2017 U.S. Patent 

eien egep 



U.S. Patent Apr. 25, 2017 Sheet 3 of 18 US 9,632.905 B2 

/ 302 
1. How indicative of a problem was the alert? 

O perfectly (1) 
304 O highly (0.75) 316 
N rather (0.5-1 

Somewhat (0.25) 
314 O none (0) 

?o 
2. HoW indicative Was the alert in terms of? 

a, Criticality: 

O too s 308 (1) 
O early (0.75) 
O) OK (0.5) 
O high (0.25) 
O too high (O) 

b. TimelineSS: 

O) too early 31 O (1) 
O early (0.75) 
O OK (0.5) 
O late (0.25) 
O too late (O) 

C Duration 

O too sons 312 (1) 
O short (0.75) 
O OK (0.5) 
(C) long (0.25) 
O too long (0) 



US 9,632.905 B2 

4.08 

6 

402 

U.S. Patent 

1 

O 

FIG. 4 

406 



U.S. Patent Apr. 25, 2017 Sheet S of 18 US 9,632.905 B2 

504 

FIG. 5 

604 
l 5 

a 1 1/40 

h in 9/40 

602 

  



U.S. Patent Apr. 25, 2017 Sheet 6 of 18 US 9,632.905 B2 

/ 700 
702 704 

alert index No. user-define 
feedback statistics 

706 708 
nun ratings(n) 

Fl 

- 

FIF 
710 NH-712 

F 

FIG. 7 

  

  



US 9,632.905 B2 Sheet 7 of 18 Apr. 25, 2017 U.S. Patent 

Z 

are elep 

  



U.S. Patent Apr. 25, 2017 Sheet 8 of 18 US 9,632.905 B2 

feedback 

FIG. 9 

h4 in 11 FAO 

  

  



US 9,632.905 B2 Sheet 9 of 18 Apr. 25, 2017 U.S. Patent 



U.S. Patent Apr. 25, 2017 Sheet 10 of 18 US 9,632.905 B2 

Method for adjusting 
alarm thresholds 

  



U.S. Patent Apr. 25, 2017 Sheet 11 of 18 US 9,632.905 B2 

calculate Confidences 

calculate weighted statistic 
S(f(B)) 

Calculate normalized -- 1306 
frequencies 

calculate ent opy 

- 1310 Set COffidence 
C(B) O 

calculate confidence 
C(B) 

another 

F.G. 13 

  

  

  

  

  

  

  

  

  

  



U.S. Patent Apr. 25, 2017 Sheet 12 of 18 US 9,632.905 B2 

adjustaieri 
thresholds 

1410 N Calculate 
mine(hnas) 

1413 N Calculate 

* - I O FIG 14 

  

  



U.S. Patent Apr. 25, 2017 Sheet 13 of 18 US 9,632.905 B2 

mowe hard threshold 
down 

1501 N make an array of related 
aestfeedbacks 

1502 N calculate average feedback 
count n(f) 

1503 N g gol 
to 

1504 N 

1505 N identify minimum V(r) of 
modal Subinterwal 

1506 N enlarge set of feedback 
statistics 

Calculate 1. 1514 
Confidence C(B) 

1507 N also identify minimum V(r) of 1 1513 
armia lesser Subinterval 

identify lesser interval next- 1512 
to model Subitterwal 

1511 roise 1. 
degree max close to 

rt is 
1510 N calculate 

D 

() FIG. 15 

  

  

  



U.S. Patent Apr. 25, 2017 Sheet 14 of 18 US 9,632.905 B2 

move hard threshold 
u) 

reduce set offeedback 
statistics 

calculate Confidence 
C(Ba) 

calculate average 
machina) 

1606 N. as-N- 1608 
degree max close to N 

- rs O yes 

1607 --- Calculate 
O 

FG 16 

    

  

  



U.S. Patent Apr. 25, 2017 Sheet 15 of 18 US 9,632.905 B2 

adjust criticality 

Calculate 
cri?hna) 

FIG. 17 

  



U.S. Patent Apr. 25, 2017 Sheet 16 of 18 US 9,632.905 B2 

adjust alert 
thresholds 

1401 

e-cs 
yes 

Calculae 1. 1402 
ma(hmas) 

1801 1803 
(1-m (ha)) O (i-in (ha)) O 
Wiswer K - ? Nower r S? 

yes u- 1802 yes- 1804 
move hard threshold mOWe hard threshold 

up down 

1407 N 1408 
yes adjust criticality |- -1 || T. 

1409 
D-6(B) So O 

yes 

1410 N Calculate 
mine(hnia) 

14s is 
1412 N. 

O 

yes 

1413 Y Calcuiate 
mau (;nay) 

is a 

FIG. 18 

  

  

  

  

  

  



U.S. Patent Apr. 25, 2017 Sheet 17 of 18 US 9,632.905 B2 

move hard threshold 
up 

1501 N, make an array of related 
alert feedbacks 

1502 N. calculate average feedback 
Count n(f) 

1901 --- owe threshold 
dow ce dow -- 

1506 N enlarge set of feedback Caculate - 1514 
Statistics confidence C(B) 

1507 --- calculate average 

O 1)N-1902 
r Wover s - ? 

identify minimum V(r) of - 1513 
lesser Subinterval 

identify esser interval next -- 1512 
to model stbinterval 

yes yes 
S-1903 - 1511 

degree max close to N. 

1 S. 
1904 --- calculate 

d 

(O) FIG. 19 

  

  



U.S. Patent Apr. 25, 2017 Sheet 18 of 18 US 9,632.905 B2 

rowe hard threshold 
down 

increase threshold 
chigh dhigh - 

reduce set offeedback 
statistics 

Calculate Confidence 
C(B) 

1604 N. 

1605 

2001 N. 

1602 N. 

1603 N. 

Calculate average 
a?thma) 

O 

side-s” - N - ? gree ma close to 

O yes 

d 

2002 

2003 N. 

FIG. 20 

    

  

  

  

    

  

  



US 9,632,905 B2 
1. 

DATA-AGNOSTIC ADJUSTMENT OF HARD 
THRESHOLDS BASED ONUSER FEEDBACK 

TECHNICAL FIELD 

The present disclosure is directed to adjusting hard thresh 
olds of time-series data based on user feedback. 

BACKGROUND 

In recent years, the number of enterprises relying on cloud 
computing to meet their computing needs has substantially 
increased. Many enterprises are able to cut costs by simply 
purchasing cloud computing services from hosting service 
providers that maintain cloud computing facilities. As a 
result, these enterprises eliminate a heavy investment in 
facilities, security, upgrades, and operating expenses. Cloud 
computing is typically carried out in computing facilities 
that house a vast array of networked physical machines 
(“PMs), data-storage devices, and network routers. The 
facilities use virtualization to efficiently and cost effectively 
run computing processes on one or more connected PMs. 
With virtualization, one or more PMs are partitioned into 
multiple independent virtual machines (“VMs) that func 
tion independently and appear to users as actual PMs. VMs 
can be moved around and scaled up or down as needed 
without affecting the user's experience. 

In order to maintain computing facility operations and 
execution of applications, many physical and virtual com 
putational resources, such as processors, memory, and net 
work connections, and other data-generating entities are 
monitored over time. Data-generating entities generate time 
series data that is collected, analyzed, and presented for 
human understanding. An alert is typically generated when 
the data violates a hard threshold so that a user can identify 
anomalies. However, because hard thresholds are static 
while data-generating entities may change over time, the 
likelihood of generating a false positive alert (i.e., an alert 
that incorrectly indicates a problem) or a false negative alert 
(i.e., an alert not given when there is a problem) based on the 
hard thresholds increases. 

SUMMARY 

This disclosure is directed to data-agnostic computational 
methods and systems for adjusting hard thresholds based on 
user feedback. Hard thresholds are used to monitor time 
series data generated by a data-generating entity. The data 
generating entity can be a computational process, computer, 
sensor, virtual or physical machine running in a data center 
or other computational environment, or a computational 
resource. Such as a processor, memory, or network connec 
tion. The time-series data may be metric data that represents 
usage of the data-generating entity over time. The time 
series data is compared with a hard threshold and when the 
data violates the threshold, an alert is typically generated and 
presented to a user. Methods and systems collect user 
feedback after a number of alerts to determine the quality 
and significance of the alerts. Based on the user feedback, 
methods and systems automatically adjust the hard thresh 
olds to better represent how the user perceives the alerts. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 provides a general architectural diagram for vari 
ous types of computers. 
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2 
FIG. 2 shows a plot of time-series data generated for a 

physical or virtual computational resource. 
FIG.3 shows an example of survey questions that may be 

presented to a user after an alert. 
FIG. 4 shows an example plot of feedback statistics 

collected after six alerts. 
FIG. 5 shows a plot of two exponential weights functions. 
FIG. 6 shows an example distribution/histogram of 

weighted statistics binned into five subintervals. 
FIG. 7 shows an example table of differently rated alerts. 
FIG. 8 shows a plot of time-series data with a lower hard 

threshold. 
FIG. 9 shows a weight statistic histogram with lower 

bound of the modal interval identified. 
FIG. 10 shows a weight statistic histogram with a lower 

bound of an interval identified. 
FIG. 11 shows a plot of time-series data with a higher hard 

threshold. 
FIG. 12 shows a flow-control diagram of a method for 

adjusting a hard threshold. 
FIG. 13 shows a flow-control diagram of the routine 

“calculate confidences’ called in block 1207 of FIG. 12. 
FIG. 14 shows a flow-control diagram of the routine 

“adjust alert thresholds' called in block 1211 of FIG. 12. 
FIG. 15 shows a flow-control diagram for the routine 

“move hard threshold down called in block 1404 of FIG. 
14. 

FIG. 16 shows a flow-control diagram for the routine 
“move hard threshold up' called in block 1406 of FIG. 14. 

FIG. 17 shows a flow-control diagram for the routine 
“adjust criticality” called in block 1408 of FIG. 14. 

FIG. 18 shows a flow-control diagram of the routine 
“adjust alert thresholds' called in block 1211 of FIG. 12. 

FIG. 19 shows a flow-control diagram for the routine 
“move hard threshold up' called in block 1801 of FIG. 18. 

FIG. 20 shows a flow-control diagram for the routine 
“move hard threshold down called in block 1802 of FIG. 
18. 

DETAILED DESCRIPTION 

This disclosure presents data-agnostic computational sys 
tems and methods for adjusting hard thresholds used to 
monitor time-series data based on user feedback. It should 
be noted, at the onset, that the currently disclosed compu 
tational methods and systems are directed to real, tangible, 
physical systems and the methods carried out within physi 
cal systems, including client computers and server comput 
ers. Those familiar with modern Science and technology well 
appreciate that, in modern computer systems and other 
processor-controlled devices and systems, the control com 
ponents are often fully or partially implemented as 
sequences of computer instructions that are stored in one or 
more electronic memories and, in many cases, also in one or 
more mass-storage devices, and which are executed by one 
or more processors. As a result of their execution, a proces 
sor-controlled device or system carries out various opera 
tions, generally at many different levels within the device or 
system, according to control logic implemented in the stored 
and executed computer instructions. Computer-instruction 
implemented control components of modern processor-con 
trolled devices and systems are as tangible and physical as 
any other component of the system, including power Sup 
plies, cooling fans, electronic memories and processors, and 
other such physical components. 

FIG. 1 provides a general architectural diagram for vari 
ous types of computers. The internal components of many 
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Small, mid-sized, and large computer systems as well as 
specialized processor-based storage systems can be 
described with respect to this generalized architecture, 
although each particular system may feature many addi 
tional components, Subsystems, and similar, parallel systems 
with architectures similar to this generalized architecture. 
The computer system contains one or multiple central pro 
cessing units (“CPUs) 102-105, one or more electronic 
memories 108 interconnected with the CPUs by a CPU/ 
memory-subsystem bus 110 or multiple busses, a first bridge 
112 that interconnects the CPU/memory-subsystem bus 110 
with additional busses 114 and 116, or other types of 
high-speed interconnection media, including multiple, high 
speed serial interconnects. The busses or serial interconnec 
tions, in turn, connect the CPUs and memory with special 
ized processors, such as a graphics processor 118, and with 
one or more additional bridges 120, which are intercon 
nected with high-speed serial links or with multiple control 
lers 122-127, such as controller 127, that provide access to 
various different types of computer-readable media, Such as 
computer-readable medium 128, electronic displays, input 
devices, and other Such components, Subcomponents, and 
computational resources. The electronic displays, including 
visual display Screen, audio speakers, and other output 
interfaces, and the input devices, including mice, keyboards, 
touch screens, and other Such input interfaces, together 
constitute input and output interfaces that allow the com 
puter system to interact with human users. Computer-read 
able medium 128 is a data-storage device, including elec 
tronic memory, optical or magnetic disk drive, USB drive, 
flash memory and other Such data-storage devices. The 
computer-readable medium 128 can be used to store 
machine-readable instructions that encode the computa 
tional methods described below and can be used to store 
encoded data, during Store operations, and from which 
encoded data can be retrieved, during read operations, by 
computer systems, data-storage systems, and peripheral 
devices. 

Thresholds and User Input 

FIG. 2 shows a plot of time-series data generated for a 
data-generating entity. The data-generating entity can be a 
computational process, computer, sensor, virtual or physical 
machine running in a data center or other computational 
environment, or a computational resource, such as a pro 
cessor, memory, or network connection. The time-series data 
may be metric data that represents usage of the data 
generating entity over time. Horizontal axis 202 represents 
time and vertical axis 204 represents data values. Dots, such 
as dot 206, are data values that represent usage of the 
resource measured at regularly intervals of time, and a curve 
208 connecting the data values illustrates how the data 
values, or usage of the resource, changes over time. Hori 
Zontal line 210 represents maximum usage of the resource. 
For example, the time-series of data 208 can represent 
processor usage by a VM, memory usage by a VM, amount 
of electrical power consumed by a VM, or hard-disk space 
used by a VM and line 210 may represent 100% usage of the 
resource. The data can also represents usage of various 
physical resources of a data center, including buffer access, 
amount of memory in use, network connections used or idle, 
electrical power consumption, network throughput, avail 
ability of hard-disk space, and processor time. 

In the example of FIG. 2, a user selects an upper hard 
threshold value, D, represented by dashed line 212 and a 
lower hard threshold, d, represented by dashed line 214. In 
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4 
particular, a user may only select an upper hard threshold, or 
a lower hard threshold, depending on the resource and the 
type of data. As shown in FIG. 2, the time-series of data 208 
has three sets of consecutive data 216-218 with values 
greater than the hard threshold D and two sets of consecutive 
data 220 and 221 with values less than the hard threshold d. 
The user also selects a wait interval w that is used to generate 
an alert and a cancellation interval c that is used to timely 
cancel the alert. The length of the wait interval w is an 
integer that represents the minimum number of consecutive 
data points that violate the hard threshold before generating 
an alert. The length or duration of the cancellation interval 
c is an integer that represents the minimum number of 
consecutive data points returned to normal (i.e., no longer 
violate the threshold) after the last abnormality reported as 
an alert. The duration of the cancellation interval c deter 
mines when an active alert is canceled due based on recov 
ery. For example, FIG. 2 shows example wait intervals that 
are three consecutive data points long, such as interval 222, 
and example cancellation intervals that are five consecutive 
data points long, such as interval 224. When a number of 
consecutive data points that violate a hard threshold is 
greater than or equal to the length w, an alert is generated, 
but the alert is cancelled and not reported to the user when 
the number of consecutive data points returned to normal is 
greater than the length c. On the other hand, when the 
number of consecutive data points returned to normal is less 
than the length c, the alert is not cancelled and presented to 
the user. For example, in FIG. 2, the set 216 has only two 
consecutive data points that violate the threshold D, which 
is not enough data points to generate an alert. The set 217 
has four consecutive data points that violate the threshold D. 
which is enough data points to generate an alert, but the alert 
is cancelled because the number of consecutive data points 
returned to normal after the data point 226 is greater than the 
length c. On the other hand, the set 218 has eight consecutive 
data points that violate the threshold D, which is enough data 
points to generate an alert. But this alert is not cancelled 
because only three consecutive data points after the point 
228 are below the threshold D which is less than the length 
c. In the case of the two sets 220 and 221, alerts are also 
generated because the number of consecutive data points in 
each set is greater than the length w, but the alerts are 
cancelled because the number of consecutive data points 
following the sets 220 and 221 is greater than the length c. 
The user also selects an alert criticality level L to assign 

a level of importance to an alert. The criticality level L is a 
number in the interval 0.1. When L=0 the alert is “non 
critical' or “none,' when the critical L=0.25 the alert is 
“informative; when the criticality is L=0.5 the alert is a 
“warning; when the criticality is L=0.75 the alert is “imme 
diate; and when criticality is L=1 the alert is “critical.” 

After an alert is displayed for a user, the user is presented 
with survey questions to determine how indicative the alert 
was of a problem with usage of the resource. Answers to the 
Survey questions form user feedback that is used as input to 
adjust the hard threshold. However, adjustments to the hard 
threshold, as described below, are controlled by a user 
defined noise tolerance N. The noise tolerance N is a 
numerical value in the interval 0.1 selected by a user to 
represent the users tolerance to false positive alerts. A noise 
tolerance N equal to “O'” indicates the user has no tolerance 
for false positive alerts while a noise tolerance N equal to 
“1” indicates the user is indifferent to false positive alerts. 
For example, a user may select the noise tolerance N equal 
to 0.2, which indicates the user has a low tolerance to false 
positive alerts. 
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Collecting Feedback Statistics 

FIG.3 shows an example of survey questions that may be 
presented to a user after an alert has been generated. In the 
example of FIG. 3, the user is presented with a general 
Survey question regarding “How indicative of a problem was 
the alert?' 302. The user may then select one of five answers 
304 that indicate the user's level of satisfaction with the 
alert. The survey also includes three additional more specific 
questions regarding "How indicative was the alert in terms 
of?” 306 “Criticality” 308, “Timeliness” 310, and “Dura 
tion 312. For each of the example questions, the user selects 
one of five answers that indicate the user's level of satis 
faction with the indicativeness, criticality, timeliness, and 
duration of the alert. The five answers the user may select 
from to answer each question are associated with numerical 
values in parentheses that lie in the interval 0.1. These 
numerical values form the feedback statistics. For example, 
with regard to question 1, the user has filled in the bubble 
314 which indicates that the user found the alert “rather 
indicative of a problem which, in turn, corresponds to a 
feedback statistic of 0.5316. Methods for adjusting hard 
thresholds are predicated on the assumption that the indica 
tiveness of alert increases with the greater the distance a data 
value is from a hard threshold. For example, consider two 
sets of consecutive data values that violate the same hard 
threshold. It is assumed that the user will rate the indica 
tiveness of the alert associated with the set located farther 
from the hard threshold more critical than the indicativeness 
of the alert for the set located closer to the hard threshold. 

For this particular example survey questions in FIG. 3, the 
feedback statistic have a feedback resolution of five, which 
corresponds to the five ways the user may answer each 
question. A Survey questions with only two possible 
answers, such as “like' (1.0) of “dislike' (0.0) answers, 
represents the minimum in user feedback because there are 
only two ways a user may indicate their level of satisfaction. 
In this case, the feedback resolution is two with no inter 
mediate values that may used to indicate varying degrees of 
user satisfaction. 

Alternatively, indirect collection of feedback statistics 
may be obtained by tracking a user's activities for each alert. 
Any indirect feedback that can be tracked over time may 
also be mapped to values in the interval 0.1. For example, 
a user's activities after an alert many be monitored and 
certain actions counted and normalized to determine feed 
back statistics for each alert. 

Methods for Calculating Confidence and Weighted 
Average of Feedback Statistics 

In a data-agnostic approach to adjusting a hard threshold, 
beliefs are applied directly without user experience or exper 
tise of direct or indirect feedback consideration. Consider a 
set of beliefs associated with a user's assessment of an alert 
given by: 

B- Bat Brie Baine, Ba- (1) 

where B represents a belief about the indicativeness of 
the alert; 
B represents a belief about the criticality of the alert; 
B, represents a belief about timeliness of the alert (i.e., 

wait interval); and 
B. represents a belief about the duration of the alert (i.e., 

cancellation interval). 
In the follow description, each belief in the set B is repre 
sented by B, where the index i represents “al.” “crit.” 
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6 
“time,” and “dur. Each belief B, represents a statement, 
truth, law, or expert knowledge about an alert presented to 
a user or any statement, truth, law, or expert knowledge 
learned data agnostically about an alert presented to a user. 
The beliefs may also be represented by probabilities. For 
example, each beliefs in the set B may be represented by a 
value in the interval 0<Bs1, with “1” representing a maxi 
mum confidence in a statement, truth, law, or expert knowl 
edge about an alert presented to a user, and “0” representing 
no confidence in a statement, truth, law, or expert knowledge 
about the alert presented to the user. 

Feedback statistics for the belief B, are collected after 
each alert to form a set of feedback statistics 

where subscript k is an integer feedback statistic index; 
f. (B) is the k-th feedback statistic for the belief B; and 
K is an integer number of feedback statistics. 

Each feedback statistic f. (B) in the set offeedback statistics 
corresponds to a value in the interval 0.1. For example, the 
k-th feedback statistics for the answers to the survey ques 
tions in FIG. 3 are f (B)=0.5, f(B)=0.5, f(B)=1.0, 
and f(B)=0.25. In other words, four sets of feedbacks 
statistics F(B), F(B), F(B), and F(B) are generated 
for Kalerts. Because the feedback statistics are collected at 
different times, the feedback statistics may also be consid 
ered a collection of time-dependent feedback statistics 
denoted by 

where t represents the time at which the feedback statis 
tics where generated. 

FIG. 4 shows an example plot of feedback statistics 
collected after six different alerts. Vertical axis 402 repre 
sents feedback statistics values in the interval 0.1. Axis 404 
represents k, and axis 406 represents the beliefs B. B., 
B, and B. Bars extending perpendicular from the 
k-beliefs plane represent feedback statistics associated with 
each belief. For example, bar 408 represents the feedback 
statistic f(B). The varying height of the bars as indicated 
by dashed lines, such as dashed lines 410, represent how 
feedback statistics for a particular belief may vary after each 
alert. For example, the feedback statistic associated with the 
belief B is trending down, which indicates that a user finds 
the alerts less indicative of a problem over time. 

Based on the set of feedback statistics F(B) a conver 
gence evaluation in user opinion is made and a confidence 
value C(B) is calculated. The confidence value C(B) sup 
ports the degree of validity of the initial belief B. The 
method used to adjust a hard threshold, criticality, wait 
interval, and cancellation interval described below is predi 
cated on three postulates: 

1) The posting of feedback statistics is assumed to be a 
process with increasing degree of importance with respect to 
time (in particular, an independent and identically distrib 
uted process); 

2) When there is no convergence in user feedback statis 
tics, the hard threshold, criticality, wait interval, and can 
cellation interval are not updated; 

3) When there is a convergence to some degree of user 
feedback, the hard threshold, criticality, wait interval, and 
cancellation interval are adjusted according to the corre 
sponding calculated confidence values. 
The feedback convergence is estimated by processing the 

feedback statistics with weighted importance based on time 
and measuring the uncertainty. In other words, if the con 
fidence is low enough, a bias in weighted opinion statistics 
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is estimated. Weighted statistics of a past series of feedback 
statistics may be calculated at each time t, when an alert is 
generated as follows: 

k (4) 

X w(t)f(B) 
S(f(B) = 1 

2, w(t) 

where w(t) is a weight function. 
The weighted statistic values lie within the interval 0,1 
(i.e., 0<S(f(B))<1). The weight function ranges from 0 to 
1 over a time domain 0 to t. The weight function is selected 
to place more weight or influence on feedback statistics 
collected later in time than on feedback statistics collected 
earlier in time. In other words, the weighted Statistic given 
by Equation (4) is a time-dependent weighted mean of the 
feedback statistics collected over time between 0 and t with 
more weight placed on feedback Statistics collected later in 
time. For example, the weight function is selected to give the 
feedback statistic f. (B) more weight in Equation (4) than 
the feedback statistic f.(B), where 0<t.<tist. An example 
of a weight function w(t) that places more weight on 
feedback statistics collected later in time is an exponential 
weight function given by: 

(5) 1 for r = k 
i.) w(t) { eikr) for r < k 

Alternatively, another example of a weight function w(t) 
that places more weight on feedback statistics collected later 
in time is a linear weight function given by: 

(6) 

where Ostist. In an alternative implementation, the feed 
back statistics may all be given equal weight (i.e., w(t)=1). 

FIG. 5 shows a plot of the exponential weight function in 
Equation (5) and a plot of the linear weight function in 
Equation (6). Horizontal axis 502 represents time t, and 
vertical axis 504 represents the value of the weight function 
w(t), which ranges from 0 to 1. Curve 506 represents the 
exponential function given by Equation (5), and dashed line 
508 represents the linear function given by Equation (6). 
Both weight functions are 0 at time 0 and increase to a value 
of 1 at time t. In other words, the weight functions repre 
sented by Equations (5) and (6) place more weight on 
feedback statistics collected later in time than on feedback 
statistics collected earlier in time with the most current 
weight w(t) having a value of 1. 
A set of weighted statistics obtained over a time interval 

from 0 to t is given by 

The weighted statistic values range over the interval 0.1. 
which is divided into 1 subintervals. The weighted statistics 
in the set of weighted statistics S(B) are binned according 
to which subinterval of the interval 0,1 the weighted 
statistics values fall within. The number of subintervals 1 of 
the interval 0.1 corresponds to the resolution of the 
requested feedback statistics. For example, if binary like/ 
dislike user feedback is expected, then 1-2 is selected. In this 
case, the feedback statistics may be 0 or 1 and the interval 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
0.1 may be partitioned into two subintervals 0,0.5) and 
0.5.1. On the other hand, if 5 possible feedback statistics 
are expected, as described above with reference to FIG. 3, 
then l=5 is selected. In this case, the feedback statistics may 
be 0, 0.25, 0.5, 0.75, and 1, as described above with 
reference to the example survey question of FIG. 3, and the 
weighted statistics fall into five subintervals 0,0.20), 0.20, 
0.40), 0.40,0.60), 0.60,0.80), and 0.80,1). Note that the 
subintervals do not have to be of the same length. 

FIG. 6 shows an example distribution/histogram for 40 
weighted statistics for the belief B binned into five subin 
tervals (i.e., l=5) of the interval 0.1. Horizontal axis 602 
represents the weighted statistical values in the interval 
0,1, and vertical axis 604 represents the frequency or count 
of the weighted statistics within the five subintervals iden 
tified by Subinterval index r-1, 2, 3, 4, and 5. Boxes, such 
as box 606, represent 40 weighted statistics in set S(B) 
(i.e., K=40) binned according to which subinterval the 
weighted statistic falls within. For example, six of the 40 
weighted statistic values in the set S(B) lie within subin 
terval r-1. 
The fraction of weighted statistics that lie within each 

subinterval of the histogram of weighted statistic in FIG. 6 
are normalized frequencies denoted by h. In other words, in 
general, X, "h, 1. For example, in FIG. 6, the normalized 
frequencies for each of the subintervals are given by: 

40 40 40 40 40 

Uncertainty in the weighted Statistics of Equation (4) may 
be determined by calculating the entropy of the normalized 
frequencies: 

(8) 
H(S(B)) = -Xh,logh, 

El 

where 

X. h.-1. - - 

Note that the entropy calculated according to Equation (8) 
satisfies the condition 

Next, confidence in a belief B, is calculated based on the 
entropy. When the entropy H(S(B)) is less than or equal to 
an uncertainty threshold denoted by U, (i.e., H(S(B))sU), 
the uncertainty in the feedback statistics associated with the 
belief B, is low and the confidence in the belief B, may be 
calculated as a function of the entropy as follows: 

On the other hand, when the entropy H(S(B)) is greater than 
the uncertainty threshold U, (i.e., H(S(B))>U), the uncer 
tainty in the feedback statistics associated with the belief B, 
is high and the confidence is given by: 

C(B)=0 (10) 

An example of a suitable uncertainty threshold value is: 

1 1 2 2 
Uh = - slogs slogs (11) 

The uncertainty threshold characterized by Equation (11) 
corresponds to a histogram of weighted Statistics in which 
1-2 subintervals of the interval 0.1 contain 0 weighted 
statistics and two other Subintervals have /3 and 2/3 of the 
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weighted Statistics, respectively, which is a case of accept 
able uncertainty in feedback statistics. When the entropy is 
greater than U, there is no convergence in user opinion and 
the corresponding confidence should be at the minimum 
(i.e., C(B)=0)). Because the entropy is normalized, in alter 
native implementations the uncertainly threshold U, may be 
assigned a value in the interval (/2, 1 (e.g., a value close to 
1). 
The average of the weighted statistics in the set S(B.) is 

calculated according to 

1 A (12) 

The mode of the histogram of weighted Statistics is given by 

h, max{h 1, ..., h (13) 

In other words, the mode h of the histogram of the set 
S(B.) is the largest normalized frequency of weighted sta 
tistics and corresponds to the subinterval, called the “modal 
subinterval, which is the subinterval with the largest num 
ber of weighted statistics. For example, in FIG. 6, the mode 
his h=11/40 and the modal subinterval is r–4. The mode 
he takes into account the degree of importance in time of 
the weighted statistic values that lie within the modal 
subinterval of the histogram. When the uncertainty H(S(B)) 
is less than or equal to the uncertainty threshold U, the 
confidence C(B) is calculated according to Equation (9) by 
checking which Subinterval contains the bias in uncertainty. 
The subinterval with the largest bias in uncertainty corre 
sponds to the mode of the histogram, h. 

Methods for Calculating an Adjusted Hard 
Threshold 

Feedback-based adjustments of a hard threshold may be 
executed when a sufficient number of alerts with feedback 
statistics have been collected from a user and a sufficient 
number of feedback statistics associated with other users 
have been collected. In particular, methods for adjusting a 
hard threshold may be executed when the following two 
conditions are satisfied: 

1. The minimum number of alerts with feedback statistics 
is a; and 

2. At least 25% of users produced feedback statistics that 
satisfy 

(14) 

where U is the total number of users; 
||f| is the number of all available feedbacks; 
||f| is the number of feedbacks generated by user u; and 
b>0 is parameter with default value 1 that may be set to 

require at least b-times the average feedback per user 
(i.e., |fi/U) for some portion of the users. 

Assuming the two conditions for having enough feedback 
statistics associated with other users are satisfied, the 
method then proceeds to determining whether or not a hard 
threshold should be adjusted. Consider adjusting an upper 
hard threshold D, such as the upper hard threshold D 212 
described above with reference to FIG. 2. The confidence 
C(B) is calculated from the feedback statistics F(B) 
according to Equation (9). When the confidence C(B) 
equals Zero, the upper hard threshold is not adjusted. On the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
other hand, when the confidence C(B) is greater than Zero, 
the average m (h) of the set of weighted statistics S(B) 
is calculated according to Equation (12). 

Next, the user noise tolerance N is compared with a noise 
degree at the user (i.e., a noise degree) quantified by 

(1-mi(h)) (15) 

The noise degree is an estimate of the actual noise degree 
that the feedback statistics obtained from the users indicate. 
The noise degree is equal to “0” when all alerts are rated 
perfectly. Otherwise, the noise degree indicates a departure 
from perfection. The noise degree is compared with the 
user's selected noise tolerance N to determine whether or 
not the alerts generated by violating the hard threshold D 
satisfy the users tolerance for false positive alerts. In 
particular, when the difference between the noise degree and 
the user's noise tolerance N satisfies the following condition 

(16) 

with a tolerance parameter 8 (e.g., 8-0.01), the noise degree 
(1-m(h)) is sufficiently close to the user noise tolerance 
N that the hard threshold D is left unchanged. Alternatively, 
when the difference satisfies the following condition 

(1-m(h)-N-8 (17) 

the noise degree is too low, or when the difference satisfies 
the following condition 

the noise degree is too high. When one of the conditions 
represented by Equations (17) and (18) is satisfied, the hard 
threshold D is adjusted. 

Consider the case where the noise degree (1-m(h)) 
satisfies the condition represented by Equation (17). As a 
result, the hard threshold is decreased to a lower hard 
threshold, which may trigger one or more alerts from the 
time-series data that were not generated for the previous 
hard threshold. Because feedback statistics were not gener 
ated for alerts triggered as a result of decreasing the hard 
threshold to a lower hard threshold for the existing time 
series of data, estimated feedback statistics regarding indica 
tiveness of newly created/appeared alerts for the existing 
time-series of data are extrapolated from feedback statistics 
generated by the users for rated alerts based on the previous 
threshold value. As a result, the feedback statistics generated 
by users for the rated alerts are collected into an array. 

FIG. 7 shows an example of a table 700 of differently 
rated alerts. Column 702 is a list alert indices and column 
704 is a list of the number of feedbacks or number of ratings 
collected for each alert. For example, the number of feed 
backs collected for the m-th alert 706 is represented by 
num rating(m) 708, and the number of feedbacks collected 
for the n-th alert 710 is represented by num rating(n) 712. 

After the feedback statistics have been assembled into an 
array, an average of feedbacks counts per alert is calculated 
as follows: 

i (19) 
X num ratings(n) 
n=1 

n(f) = 

where M is the number of alerts ever rated; and 
num ratings(m) is the number of feedback statistics gen 

erated for the m-th alert. 
The average offeedback counts n(f) is rounded to its integer 
part (i.e., truncated). Alternatively, the average of feedback 
counts may be rounded to its nearest integer. 
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Next, the hard threshold D is iteratively decreased by 
initially setting a lower hard threshold D. equal to the hard 
threshold D and, for each iteration, calculating the lower 
hard threshold according to 

D-D-e (20) 

where edO is the step size that can be even in precision of 
nearest neighbor data point down. 
For each iteration that the lower hard threshold is decreased, 
the number of alerts generated from the existing time-series 
of data potentially increases. 

FIG. 8 shows the plot of time-series data shown in FIG. 
2 with the hard threshold decreased to lower hard threshold 
represented by dashed line 802. As a result, a new set of 
consecutive data 804 is greater than the lower hard threshold 
802 with the number of consecutive data points greater than 
the length w, which generates a new alert. The new alert is 
maintained because the number of consecutive data points 
below the lower hard threshold is less than the duration c. As 
a result, estimated feedback statistics regarding indicative 
ness of the new alert associated with the set 804 are 
extrapolated from feedback statistics associated with the real 
rated alerts. 
When a new alert is generated as a result of a lower hard 

threshold, estimated feedback statistics for the alert belief 
B are formed from lower bounds, V(r), of the model 
Subintervals the weighted Statistic histograms. For example, 
FIG. 9 shows the weight statistic histogram for belief B. 
shown in FIG. 6. As described above with reference to FIG. 
6, the subinterval r-4 is the modal subinterval with the 
largest number of weighted statistics counts at 11. The lower 
bound of the subinterval r-4 is denoted by V(r). The 
lower bound V(r) is added as a feedback statistics n(f) 
times to the set of feedback statistics. 

The estimated feedback statistics for the new alerts are 
added to the set of feedback statistics F(B) represented by 
Equation (2) to give an enlarged set of feedback statistics 

FK(B)=f(B). . . . fix(B).fx (B), ... fr(B). (21) 

where f(B)=V(r) for 1s1sK; and 
K-K-Kn(f), where K is the number of newly 

appeared hypothetical alerts. 
Weighted statistics for the set F(B) are calculated accord 
ing to Equation (4) to give a set of weighted Statistic given 
by 

Sk(B)=S(f(B)), . . . .S(f(B))} 

The average of the weighted statistics in the set S (B) is 
calculated according to 

(22) 

1 K (23) 
macha)=X S(f(Bai) 

A noise degree (1-m(h)) is calculated for the belief 
B and compared with the user's noise tolerance N. When 
the condition given by Equation (17) is satisfied, the hard 
threshold is lowered again according to Equation (20) and 
the operations described for Equations (21)-(23) are 
repeated for the lower hard threshold. On the other hand, 
when the condition given by Equation (16) is satisfied or 
when a noise degree maximum close to N is reached a fixed 
number of iterations P, the adjusted hard threshold is calcu 
lated according to 

D=(1-C(B)--C(B) Dr. (24) 
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12 
Alternatively, if condition given by Equation (16) is still 

not satisfied and if 

then V(r) is reset to the lower bound of the lesser valued 
subinterval adjacent to the modal interval. For example, 
FIG. 10 shows the weight statistic histogram for belief B. 
shown in FIG. 6. As described above with reference to FIG. 
6, the subinterval r=4 is the modal subinterval with the 
largest number of weighted Statistics counts at 11. The lesser 
valued subinterval adjacent to the modal subinterval r-4 is 
the Subinterval r=3. The lower bound of the lesser valued 
subinterval r–3 is identified by V(r). 

For each iteration in which the hard threshold is lowered 
according to Equation (20), an alert confidence C(B) is 
calculated. A weighted Statistics histogram is formed from 
the set of weighted statistics S(B) which gives a set of 
normalized frequencies {h} determined from the 1 subin 
tervals of the histogram. The entropy is calculated for the 
normalized frequencies according to 

(25) 

When H(S(B))sU, the confidence includes contributions 
from feedback statistics associated with the new alerts is 
calculated according to 

C(B)=1-H(Sk(B)) (27) 

Otherwise, the confidence is given by 

C(B)=0 (28) 

When the alert confidence C(B) is greater than Zero (i.e., 
C(B)0), the noise degree is calculated according to Equa 
tion (15) using the average of the weighted Statistics given 
by Equation (27). If the noise degree satisfies the condition 
given by Equation (17), the iteration stops. Otherwise, the 
iteration stops for the maximum noise degree estimate 
closest to N. 

Consider the case in which the noise degree (1-m(h)) 
satisfies the condition represented by Equation (18). In this 
case, the hard threshold D is iteratively increased. Initially, 
a higher hard threshold D., is set equal to the hard 
threshold D, and for each iteration, the higher hard threshold 
is increased according to 

Dhigi, Digite (29) 

For each iteration, the number of previous alerts potentially 
decreases. 

FIG. 11 shows the time-series plot of data shown in FIG. 
2 with the hard threshold increased by the parameter £ to a 
higher hard threshold represented by dashed line 1102. As a 
result, not all of the data values in the set of consecutive data 
218 are greater than the higher hard threshold 1102. As a 
result, the alert associated with the set 218 is eliminated and 
the feedback statistics associated with the alert are removed 
from the set of feedback statistics F(B). 

After each iterative increase of the hard threshold, the 
time-series data is reexamined to reform the set of feedback 
statistics. Feedback statistics collected after previous alerts 
that were associated with data above a previous hard thresh 
old but are not above a current higher hard threshold are 
removed from the set offeedback statistics to give a reduced 
set of feedback statistics associated with the higher hard 
threshold 

FAB)=f(B), ... f(B)} 

where J is the number of all ratings (i.e., JsK). 
(30) 
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The set of feedback statistics F(B) includes only the 
feedback statistics associated with alerts that would have 
been generated by data greater than the higher hard thresh 
old. 

Next, the weighted statistics for the set F(B) are recal 
culated according to Equation (4) to give a set of weighted 
statistic 

The weighted Statistics histogram is generated from the set 
S(B) to give a set of normalized frequencies h", deter 
mined from the 1 subintervals of the histogram. The entropy 
is calculated for the normalized frequencies according to 

(32) 
H(S, (Bt)) = -X hClogh, 

=l 

When H(S(B))<U, the confidence that includes contri 
butions from feedback statistics associated with the new 
alerts is calculated according to 

C(B)=1-HCS(B)) (33) 

Otherwise, the confidence is given by 
C(B)=0 (34) 

The average of the weighted Statistics in the set is calculated 
according to 

A noise degree (1-m(h)) is calculated for the belief 
B and compared with the user's noise tolerance N. When 
the condition given by Equation (18) is satisfied, the hard 
threshold is increased again according to Equation (29) and 
the operations described for Equations (30)-(35) are 
repeated for the higher hard threshold. On the other hand, 
when the condition given by Equation (16) is satisfied or 
after a fixed number iterations P, the adjusted hard threshold 
is calculated according to 

It should be noted that if in increasing the hard threshold, 
results in the minimum number of alerts is less thana or the 
feedback statistics fails to satisfy the condition given by 
Equation (14), the procedure stops. 
The criticality L. timeliness w, and duration c are also 

adjusted based on criticality confidence C(B), timeliness 
confidence C(B), and duration confidence C(B). When 
the hard threshold is left unchanged and satisfies the con 
dition given in Equation (16), the confidences C(B), 
C(B), and C(B) are calculated according to Equations 
(9). When the hard threshold is decreased according to 
Equation (20), the confidences C(B), C(B), and 
C(B) are calculated according to Equations (9) and (10). 
When the hard threshold is increased according to Equation 
(29), the confidences C(B), C(B), and C(B) are 
calculated according to Equations (9) and (10). 
When the criticality confidence C(B)>0, the average of 

the weighted Statistics m(h) is calculated and the 
criticality L is updated according to 

(36) 
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14 
Otherwise, the criticality is left unchanged. When L=0, the 
alert is changed to “non-critical' or “none;” when 0<Ls 0.25 
the alert is changed to “informative: when 0.25<Ls 0.5 the 
alert is changed to “warning; when 0.5<Ls 0.75 the alert is 
changed to “immediate; and when 0.75<Ls 1 the alert is 
changed to “critical.” 
When the timeliness confidence C(B)>0, the average 

of the weighted Statistics m(h) is calculated. The wait 
time may initially be set to w=0.5. Assume that adjusting the 
wait time is controlled by a fraction ki. In general, the 
fraction k, can vary within the interval 0, +OO), or, in 
particular, within the interval 0.1. In other words, the wait 
time w varies from w-kW to w-kW under the condi 
tion that if w-kew-0, then wait time is set to 0. The 
interval w-kew.w-kw is mapped to the interval 0,1 
by a linear function given by 

y = f(x) = (38) 
2kwait W 2kwait W 

The wait time is updated according to Equation (38) by 
Setting 

and taking the integer part to obtain w. Otherwise, when 
C(B)=0, the wait time is left unchanged. 
When the duration confidence C(B)-0, the average of 

the weighted Statistics m(h) is calculated. The duration 
may initially be set to c=0.5. Assume that adjusting the 
duration is controlled by a fraction ki. In general, the 
fraction k can vary within the interval 0, +OO), or, in 
particular, within the interval 0.1. In other words, the 
duration c varies from c-kic to c+kic under the condition 
that if c-kc-0, then the duration c is set to 0. The interval 
c-kic, c-kic is mapped to 0.1 by a linear function 
given by 

(39) 

1 C - kauric 
2ke 2ke 

40 3 = h(x) = (40) 

The duration is updated according to Equation (40) by 
Setting 

and taking the integer part to obtain c. Otherwise, when 
duration confidence C(B)=0, the duration is left 
unchanged. 

FIG. 12 shows a flow-control diagram of a method for 
adjusting an upper hard threshold D. In block 1201, alert 
thresholds are initials. For example, a user may initially set 
the wait time w and duration c to 0.5 and set the criticality 
L to a value in the interval [0,1]. The user may also set values 
for a noise tolerance N, an upper hard threshold D, a 
tolerance parameter ö, and a step size e. In block 1202, a 
time-series data for a resource is continuously collected as 
described above with reference to FIG. 2. In decision block 
1203, when the data is greater than the hard threshold as 
described above with reference to FIG. 2, control flows to 
block 1204. Otherwise, control flows to block 1202 and data 
continues to be collected. In block 1204, an alert is gener 
ated. In block 1205, an alert count num-alerts is incre 
mented. In block 1206, feedback statistics are collected from 
the user. The feedback statistics can answers to survey 
questions as described above with reference to FIG. 3 or 

azir 
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obtained by monitoring the user's action after the is pre 
sented with an alert. In block 1207, a routine "calculate 
confidence' is called to calculate a confidence as described 
below with reference to FIG. 13. In decision block 1208, 
when number of alerts num alerts is greater than the mini 
mum number of alerts a control flows to decision block 
1209. Otherwise, control flows to decision block 1210. 
Decision block 1209 determines whether or not enough 
feedbacks statistics have been collected according to Equa 
tion (14). When enough feedback statistics have been col 
lected according to Equation (14), control flows to block 
1211. Otherwise, control flows to decision block 1210. In 
decision block 1201, as long as the data continues to be 
monitored, the computational operations in blocks 1202 
1209 are repeated. In block 1211, a routine “adjust alert 
thresholds’ is called as described below with reference to 
FIG 14. 

FIG. 13 shows a flow-control diagram of the routine 
“calculate confidences called in block 1207 of FIG. 12. In 
block 1301, a set of beliefs B given by Equation (1) and set 
of feedback statistics represented by Equation (2) are 
received. In block 1302, afar-loop repeats the computational 
operations of blocks 1303-1305 for each belief. In block 
1303, a for-loop repeats the computational operations of 
blocks 1304 and 1305 for each feedback statistic f (B) in a 
set of feedback statistics F(130 described above with refer 
ence to Equation (2). In block 1304, a weighted statistic 
S(f(B)) is calculated according to Equation (4). In block 
1305, the method repeats the computational operation of 
block 1304 for another feedback statistic in the set F(B) 
until a weighted statistic has been calculated for each of the 
feedback statistics in the set F(B). The weighted statistic 
calculated according to blocks 1304 and 1305 form a set of 
weighted statistics S(B) as described above with reference 
to Equation (7). In block 1306, normalized frequencies are 
calculated for the set of weighted statistics based on a 
resolution 1 of the feedback statistics, as described above 
with reference to FIG. 6. In block 1307, the entropy H(S(B)) 
of the set of weighted statistics is calculated based on the 
normalized frequencies according to Equation (8). In deci 
sion block 1308, when the entropy H(S(B)) is less than an 
uncertainty threshold U, control flows to block 1309, 
otherwise, control flows to block 1310. The uncertainty 
threshold may be the uncertainty threshold given in Equa 
tion (11). In block 1309, a confidence value C(B) may be 
calculated according to Equation (9) described above. In 
block 1310, the confidence value C(B) is set to zero. In 
decision block 1311, the method repeats the computational 
operations of blocks 1303-1311 for another belief until a 
confidence has been calculated for each of the beliefs. 

FIG. 14 shows a flow-control diagram of the routine 
“adjust alert thresholds” called in block 1211 of FIG. 12. 
When the confidence C(B) is greater than Zero in decision 
block 1401, control flows to block 1402 in which the 
average of weighted Statistics m (h) is calculated. Oth 
erwise, control flows to decision block 1407. In decision 
block 1403, when the condition represented by Equation 
(17) is satisfied, control flows to block 1404. Otherwise, 
control flows to decision block 1405. In decision block 
1405, when the condition represented by Equation (18) is 
satisfied, control flows to block 1406. Otherwise, control 
flows to decision block 1407. When the results of both 
decision blocks 1403 and 1405 are “no, the hard threshold 
is not adjusted, which is equivalent to satisfying the condi 
tion represented by Equation (16). In block 1405, a routine 
“move hard threshold down” is called as described below 
with reference to FIG. 15. In block 1406, a routine “move 
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16 
hard threshold up' is called as described below with refer 
ence to FIG. 16. The routines called in blocks 1404 and 1406 
both calculate confidences C(B), C(B), and C(B) 
associated with either moving the hard threshold down or up 
as described above with reference to Equation (25) and 
Equation (34). In decision block 1407, when the criticality 
confidence C(B) is greater than Zero, control flows block 
1408 in which a routine “adjust criticality” is called as 
described below with reference to FIG. 17. Otherwise, 
control flows to decision block 1409 and the criticality is not 
adjusted. In decision block 1409, when timeliness confi 
dence C(B) is greater than Zero, control flows to block 
1410. Otherwise, control flows to decision block 1412 and 
the timeliness w is not adjusted. In block 1410, the average 
of weighted Statistics for timeliness m(h) is calcu 
lated. In block 1411, the timeliness is adjusted as described 
above with reference to Equation (40). In decision block 
1412, when duration confidence C(B) is greater than Zero, 
control flows to block 1413. Otherwise, the duration c is not 
adjusted. In block 1413, the average of weighted statistics 
for duration m(h) is calculated. In block 1414, the 
duration is adjusted as described above with reference to 
Equation (42). 

FIG. 15 shows a flow-control diagram for the routine 
“move hard threshold down called in block 1404 of FIG. 
14. In block 1501, feedback statistics associated with related 
alerts are collected as described above with reference to FIG. 
7. In block 1502, an average feedback count is calculated 
according to Equation (19). In block 1503, the hard thresh 
old is decreased as described above with reference to Equa 
tion (20). In decision block 1504, when additional alerts are 
identified as described above with reference to FIG. 8, 
control flows to block 1505. Otherwise, control flows back 
to block 1503. In block 1505, a lower bound V(B) for the 
modal Subinterval of the weighted Statistics histogram is 
identified. In block 1506, estimated feedback statistics for 
new alerts are added to the set of feedback statistics as 
described above with reference to FIG. 9 and Equation (21). 
In block 1507, the average of weighed Statistics m(k) is 
calculated according to Equation (23). In decision block 
1508, when the condition represented by Equation (17) is 
satisfied, control flows to decision block 1509. Otherwise, 
control flows to block 1510. In decision block 1509, when 
the noise degree is a maximum is close to the noise tolerance 
N, control flow to block 1510. Otherwise control flows to 
decision block 1511. In block 1510, an adjusted hard thresh 
old is calculated according to Equation (24). 
The control-flow diagram in FIG. 15 also includes blocks 

1511-1515 that may be used to further decrease the hard 
threshold. In block 1511, when the condition given by 
Equation (25) is satisfied, control flows to block 1512. 
Otherwise, control flows to block 1510. The lesser interval 
next to the modal interval is identified in block 1512 and the 
lower bound of the lesser interval is identified in block 1513, 
as described above with reference to FIG. 10. In block 1514, 
the confidence C(B) is calculated according to Equation 
(27). In decision block 1515, when the confidence C(B) 
equals Zero, control flows to block 1503. Otherwise, control 
flows to block 1506. 

FIG. 16 shows a flow-control diagram for the routine 
“move hard threshold up' called in block 1406 of FIG. 14. 
In block 1601, the hard threshold is increased as described 
above with reference to Equation (30). In block 1602, the set 
of feedback statistics is reduced by removing feedback 
statistics associated with deleted alerts as described above 
with reference to Equation (31). In block 1603, the confi 
dence C(B) is calculated according to Equation (33). In 
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decision block 1604, when the alert confidence C(B) is 
greater than Zero, control flows to block 1605 in which the 
average of weighted Statistics for the indicativeness of the 
alerts is calculated. Otherwise, control flows back to block 
1601 and the hard threshold is increased. In block 1606, 
when the condition represented by Equation (18) is satisfied, 
control flows to block 1608. Otherwise, control flows to 
block 1607 in which an adjusted hard threshold is calculated 
according to Equation (36). In decision block 1608, when 
the noise degree is a maximum is close the noise tolerance 
N, control flow to block 1607. Otherwise control flows to 
decision block 1601. 

FIG. 17 shows a flow-control diagram for the routine 
“adjust criticality” called in block 1408 of FIG. 14. In bock 
1701, average of the weighted statistics for criticality con 
fidence C(B) is calculated. In block 1702, the criticality is 
calculated according to Equation (38). In decision block 
1703, when L=0, the alert is changed to “non-critical or 
“none' in block 1704. In decision block 1705, when 
0<Ls0.25 the alert is changed to “informative' in block 
1706. In decision block 1707, when 0.25<Ls0.5 the alert is 
changed to “warning in block 1708. In decision block 1709, 
when 0.5~Ls 0.75 the alert is changed to “immediate' in 
block 1710. Otherwise, and the alert is changed to “critical 
in block 1711. 

Although FIGS. 12-17 present flow-control diagrams of a 
method for adjusting an upper hard threshold D. methods 
and systems are not intended to be limited to adjusting upper 
hard thresholds. The methods described above may also be 
used to adjust a lower hard threshold d, such example lower 
hard threshold d in FIG. 2. The noise degree calculated as 
described above with reference to Equation (15) and com 
pared with the user's selected noise tolerance N, which 
can differ from the noise tolerance N for the upper threshold, 
to determine whether or not the alerts generated by violating 
the lower hard threshold d satisfy the user's tolerance for 
false positive alerts. When the difference between the noise 
degree and the user's noise tolerance N the condition 
given by Equation (16) with N equal to N, the hard 
threshold d is left unchanged. However, when the difference 
satisfies the condition represented by Equation (18), with N 
equal to N, the noise degree is too high, and the hard 
threshold is decreased according to 

high dise (43) 
On the other hand, when the difference satisfies the condi 
tion represented by Equation (17), with N equal to N. 
the noise degree is too low and the threshold is increased 
according to 

dio-date 

Although the control-flow diagrams in FIGS. 14-16 are 
directed to adjusting alert thresholds for an upper threshold 
D, these control-flow diagrams can be modified for adjusting 
alert thresholds for a lower hard threshold d. The flow 
control diagram in FIG. 14 is replaced by flow-control 
diagram in FIG. 18; the flow-control diagram in FIG. 15 is 
replaced by flow-control diagram in FIG. 19; and the flow 
control diagram in FIG. 16 is replaced by flow-control 
diagram in FIG. 20. Note that in decision blocks 1801 and 
1803 of FIG. 18, decision blocks 1902 and 1903 of FIG. 19, 
and decision blocks 2002 and 2004 of FIG. 20, the noise 
tolerance N is replaced by the noise tolerance N. In 
block 1802 of FIG. 18, a routine “move threshold up' is 
called and implemented as represented in FIG. 19, and in 
block 1804 of FIG. 18, a routine “move threshold down” is 
called an implemented as represented in FIG. 20. In block 

(44) 
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18 
1901 of FIG. 19, the lower threshold is adjusted according 
to Equation (44) and an adjusted threshold is calculated in 
block 1904 according to 

In block 2001 of FIG. 20, the lower threshold is adjusted 
according to Equation (43) and an adjusted threshold is 
calculated in block 2003 according to 

It is appreciated that the various implementations 
described herein are intended to enable any person skilled in 
the art to make or use the present disclosure. Various 
modifications to these implementations will be readily 
apparent to those skilled in the art, and the generic principles 
defined herein may be applied to other implementations 
without departing from the spirit or scope of the disclosure. 
For example, any of a variety of different implementations 
can be obtained by varying any of many different design and 
development parameters, including programming language, 
underlying operating system, modular organization, control 
structures, data structures, and other Such design and devel 
opment parameters. Thus, the present disclosure is not 
intended to be limited to the implementations described 
herein but is to be accorded the widest scope consistent with 
the principles and novel features disclosed herein. 
The invention claimed is: 
1. A method stored in one or more data-storage devices 

and executed using one or more processors of a computing 
environment, the method comprising: 

generating alerts when a portion of time-series data gen 
erated by a data-generating entity is greater than an 
upper hard threshold or less than a lower hard thresh 
old; 

collecting user feedback for a number of the alerts; 
generating a set of user feedback statistics based on the 

user feedback; 
calculating an alert confidence based on the feedback 

statistics; and 
calculating an adjusted hard threshold based on the hard 

threshold when the alert confidence is greater than Zero. 
2. The method of claim 1, wherein collecting user feed 

back further comprises one or presenting a user with one or 
more Survey questions for each of the number of alerts and 
monitor the user's activities following each of the number of 
alerts. 

3. The method of claim 1, wherein generating the set of 
user feedback statistics further comprises assigning a 
numerical value to each answer a user gives to one or more 
Survey questions regarding an alert, each numerical value is 
a user feedback statistic in the set of feedback statistics. 

4. The method of claim 1, wherein calculating the alert 
confidence further comprises 

calculating weighted statistics for the set of feedback 
statistics; 

forming a histogram of the weighted Statistics distributed 
over a number of subintervals; 

calculating normalized frequencies of the weighted sta 
tistics based on the distribution of the weighted statis 
tics; 

calculating an entropy value of the weighted Statistics; 
and 

calculating a confidence value based on entropy value of 
the weighted Statistics. 

5. The method of claim 1, wherein calculating the 
adjusted hard threshold further comprises 
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calculating an average of weighted Statistics based on the 
feedback statistics when the alert confidence is greater 
than Zero; 

calculating a noise degree from the average of the 
weighted Statistics; 

when the hard threshold is an upper hard threshold, 
decreasing the hard threshold, when a difference 

between the noise degree and a user-defined noise 
tolerance is negative valued and outside a tolerance 
interval; 

increasing the hard threshold, when the difference 
between the noise degree and the user-defined noise 
tolerance is positive valued and outside the tolerance 
interval; and 

calculating the adjusted hard threshold as a function of the 
average of the weighted Statistics, the alert confidence, 
and one of the increased and decreased hard threshold. 

6. The method of claim 1, wherein calculating the 
adjusted hard threshold further comprises 

calculating an average of weighted Statistics based on the 
feedback statistics when the alert confidence is greater 
than Zero; 

calculating a noise degree from the average of the 
weighted Statistics; 

when the hard threshold is a lower hard threshold, 
increasing the hard threshold, when a difference 

between the noise degree and a user-defined noise 
tolerance is negative valued and outside a tolerance 
interval; 

decreasing the hard threshold, when the difference 
between the noise degree and the user-defined noise 
tolerance is positive valued and outside the tolerance 
interval; and 

calculating the adjusted hard threshold as a function of the 
average of the weighted Statistics, the alert confidence, 
and one of the increased and decreased hard threshold. 

7. The method of claim 1 further comprises 
generating sets of user feedback statistics regarding criti 

cality, timeliness, and duration of the number of alerts 
based on the user feedback; 

calculating a criticality confidence, timeliness confidence, 
and duration confidence based on corresponding feed 
back statistics; 

calculating adjusted criticality when the criticality confi 
dence is greater than Zero 

calculating adjusted timeliness when the timeliness con 
fidence is greater than Zero; and 

calculating adjusted duration when the duration confi 
dence is greater than Zero. 

8. A system for adjusting a hard threshold comprising: 
one or more processors; 
one or more data-storage devices; and 
a routine stored in the one or more data-storage devices 

and that when executed using the one or more proces 
Sors, the routine controls the system to carry out 
generating alerts when a portion of time-series data 

generated by a data-generating entity is greater than 
an upper hard threshold or less than a lower hard 
threshold; 

collecting user feedback for a number of the alerts: 
generating a set of user feedback statistics based on the 

user feedback; 
calculating an alert confidence based on the feedback 

statistics; and 
calculating an adjusted hard threshold based on the 

hard threshold when the alert confidence is greater 
than Zero. 
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9. The system of claim 8, wherein collecting user feed 

back further comprises one or presenting a user with one or 
more Survey questions for each of the number of alerts and 
monitor the user's activities following each of the number of 
alerts. 

10. The system of claim 8, wherein generating the set of 
user feedback statistics further comprises assigning a 
numerical value to each answer a user gives to one or more 
Survey questions regarding an alert, each numerical value is 
a user feedback statistic in the set of feedback statistics. 

11. The system of claim 8, wherein calculating the alert 
confidence further comprises 

calculating weighted statistics for the set of feedback 
statistics; 

forming a histogram of the weighted Statistics distributed 
over a number of subintervals; 

calculating normalized frequencies of the weighted sta 
tistics based on the distribution of the weighted statis 
tics; 

calculating an entropy value of the weighted Statistics; 
and 

calculating a confidence value based on entropy value of 
the weighted Statistics. 

12. The system of claim 8, wherein calculating the 
adjusted hard threshold further comprises 

calculating an average of weighted Statistics based on the 
feedback statistics when the alert confidence is greater 
than Zero; 

calculating a noise degree from the average of the 
weighted statistics; 

when the hard threshold is an upper hard threshold, 
decreasing the hard threshold, when a difference 

between the noise degree and a user-defined noise 
tolerance is negative valued and outside a tolerance 
interval, decreasing the hard threshold; 

increasing the hard threshold, when the difference 
between the noise degree and the user-defined noise 
tolerance is positive valued and outside the tolerance 
interval, increasing the hard threshold; and 

calculating the adjusted hard threshold as a function of the 
average of the weighted Statistics, the alert confidence, 
and one of the increased and decreased hard threshold. 

13. The system of claim 8, wherein calculating the 
adjusted hard threshold further comprises 

calculating an average of weighted Statistics based on the 
feedback statistics when the alert confidence is greater 
than Zero; 

calculating a noise degree from the average of the 
weighted Statistics; 

when the hard threshold is a lower hard threshold, 
increasing the hard threshold, when a difference 

between the noise degree and a user-defined noise 
tolerance is negative valued and outside a tolerance 
interval, decreasing the hard threshold; 

decreasing the hard threshold, when the difference 
between the noise degree and the user-defined noise 
tolerance is positive valued and outside the tolerance 
interval, increasing the hard threshold; and 

calculating the adjusted hard threshold as a function of the 
average of the weighted Statistics, the alert confidence, 
and one of the increased and decreased hard threshold. 

14. The system of claim 8 further comprises 
generating sets of user feedback statistics regarding criti 

cality, timeliness, and duration of the number of alerts 
based on the user feedback; 
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calculating a criticality confidence, timeliness confidence, 
and duration confidence based on corresponding feed 
back statistics; 

calculating adjusted criticality when the criticality confi 
dence is greater than Zero 

calculating adjusted timeliness when the timeliness con 
fidence is greater than Zero; and 

calculating adjusted duration when the duration confi 
dence is greater than Zero. 

15. A non-transitory computer-readable medium encoded 
with machine-readable instructions that implement a method 
carried out by one or more processors of a computer system 
to perform the operations of 

generating alerts when a portion of time-series data gen 
erated by a data-generating entity is greater than an 
upper hard threshold or less than a lower hard thresh 
old; 

collecting user feedback for a number of the alerts: 
generating a set of user feedback statistics based on the 

user feedback; 
calculating an alert confidence based on the feedback 

statistics; and 
calculating an adjusted hard threshold based on the hard 

threshold when the alert confidence is greater than Zero. 
16. The medium of claim 15, wherein collecting user 

feedback further comprises one or presenting a user with one 
or more survey questions for each of the number of alerts 
and monitor the user's activities following each of the 
number of alerts. 

17. The medium of claim 15, wherein generating the set 
of user feedback statistics further comprises assigning a 
numerical value to each answer a user gives to one or more 
Survey questions regarding an alert, each numerical value is 
a user feedback statistic in the set of feedback statistics. 

18. The medium of claim 15, wherein calculating the alert 
confidence further comprises 

calculating weighted statistics for the set of feedback 
statistics: 

forming a histogram of the weighted statistics distributed 
over a number of subintervals; 

calculating normalized frequencies of the weighted sta 
tistics based on the distribution of the weighted statis 
tics; 

calculating an entropy value of the weighted statistics; 
and 

calculating a confidence value based on entropy value of 
the weighted statistics. 

19. The medium of claim 15, wherein calculating the 
adjusted hard threshold further comprises 
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calculating an average of weighted statistics based on the 

feedback statistics when the alert confidence is greater 
than Zero; 

calculating a noise degree from the average of the 
weighted statistics; 

when the hard threshold is an upper hard threshold, 
decreasing the hard threshold, when a difference 

between the noise degree and a user-defined noise 
tolerance is negative valued and outside a tolerance 
interval, decreasing the hard threshold; 

increasing the hard threshold, when the difference 
between the noise degree and the user-defined noise 
tolerance is positive valued and outside the tolerance 
interval, increasing the hard threshold; and 

calculating the adjusted hard threshold as a function of the 
average of the weighted statistics, the alert confidence, 
and one of the increased and decreased hard threshold. 

20. The medium of claim 15, wherein calculating the 
adjusted hard threshold further comprises 

calculating an average of weighted statistics based on the 
feedback statistics when the alert confidence is greater 
than Zero; 

calculating a noise degree from the average of the 
weighted statistics; 

when the hard threshold is a lower hard threshold, 
increasing the hard threshold, when a difference 

between the noise degree and a user-defined noise 
tolerance is negative valued and outside a tolerance 
interval, decreasing the hard threshold; 

decreasing the hard threshold, when the difference 
between the noise degree and the user-defined noise 
tolerance is positive valued and outside the tolerance 
interval, increasing the hard threshold; and 

calculating the adjusted hard threshold as a function of the 
average of the weighted statistics, the alert confidence, 
and one of the increased and decreased hard threshold. 

21. The medium of claim 15 further comprises 
generating sets of user feedback statistics regarding criti 

cality, timeliness, and duration of the number of alerts 
based on the user feedback; 

calculating a criticality confidence, timeliness confidence, 
and duration confidence based on corresponding feed 
back statistics; 

calculating adjusted criticality when the criticality confi 
dence is greater than Zero 

calculating adjusted timeliness when the timeliness con 
fidence is greater than Zero; and 

calculating adjusted duration when the duration confidence 
is greater than Zero. 


