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1
MULTI-STAGE DATA COMPRESSION FOR
TIME-SERIES METRIC DATA WITHIN
COMPUTER SYSTEMS

TECHNICAL FIELD

The current document is directed to data compression and
computer-system management and administration, and, in
particular, to a multi-stage data-compression method and
subsystem for compressing metric data within computer
systems.

BACKGROUND

Computer systems have evolved enormously in the past
60 years. Initial computer systems were room-sized,
vacuum-tube-based behemoths with far less computational
bandwidth and smaller data-storage capacities than a mod-
ern smart phone or even a microprocessor controller embed-
ded in any of various consumer appliances and devices.
Initial computer systems ran primitive programs one at a
time, without the benefit of operating systems, high-level
languages, and networking. Over time, parallel development
of hardware, compilers, operating systems, virtualization
technologies, and distributed-computing technologies has
led to modern distributed computing systems, including
cloud-computing facilities, that feature hundreds, thousands,
tens of thousands, or more high-end servers, each including
multiple multi-core processors, that can access remote com-
puter systems and that can be accessed by remote client
computers throughout the world through sophisticated elec-
tronic communications. As the complexity of computer
systems has grown, the administration and management of
computer systems has exponentially grown in complexity, in
the volume of data generated and stored for administration
and management purposes, and in the computational-band-
width used for collecting and processing data that reflects
the internal operational state of the computer systems and
their subsystems and components. While the operational
state of an early computer system may well have been
encapsulated in a handful of status registers and a modest
amount of information printed from teletype consoles, giga-
bytes or terabytes of metric data may be generated and
stored by internal automated monitoring, administration,
and management subsystems within a modern distributed
computing system on a daily or weekly basis. Storage and
processing of these large volumes of data generated by
automated monitoring, administration, and maintenance
subsystems within distributed computing systems is rapidly
becoming a computational bottleneck with respect to further
evolution, expansion, and improvement of distributed com-
puting systems. For this reason, designers, developers, ven-
dors, and, ultimately, users of computer systems continue to
seek methods and subsystems to more efficiently store,
process, and interpret the voluminous amount of metric data
internally generated within distributed computing systems to
facilitate automated administration and management of dis-
tributed computing systems, including diagnosing perfor-
mance and operational problems, anticipating such prob-
lems, and automatically reconfiguring and repairing
distributed-system-components to address identified and
anticipated problems.

SUMMARY

The current document is directed to a multi-stage metric-
data compression method and subsystem for compressing
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metric data collected and stored within distributed comput-
ing systems to facilitate computer-system management and
administration. In a described implementation, metric data is
partitioned into constant metric data, low-variability metric
data, and high-variability metric data. High-variability met-
ric data is compressed by identifying a set of basis metrics,
or independent metrics, with respect to which a remaining
set of dependent metrics can be expressed using coefficient
multipliers. The high-variability metric data can then be
stored as a set of independent metrics and set of coefficients,
along with a small amount of additional data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for vari-
ous types of computers.

FIG. 2 illustrates an Internet-connected distributed com-
puter system.

FIG. 3 illustrates cloud computing.

FIG. 4 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1.

FIGS. 5A-B illustrate two types of virtual machine and
virtual-machine execution environments.

FIG. 6 illustrates an OVF package.

FIG. 7 illustrates virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

FIG. 8 illustrates virtual-machine components of a VI-
management-server and physical servers of a physical data
center above which a virtual-data-center interface is pro-
vided by the VI-management-server.

FIG. 9 illustrates a cloud-director level of abstraction.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds.

FIG. 11 illustrate metric data that is collected, processed,
and used by the administrative and management subsystems
within a computer system.

FIGS. 12A-B illustrate metric data, metric-data variation,
and various types of metric-data compression.

FIG. 13 illustrates linear combination of two different
metrics.

FIG. 14 illustrates the notion of a set of basis vectors.

FIG. 15 illustrates a general approach for compressing
high-variability metric data using the concept of a set of
basis vectors and a set of coeflicients for linear combina-
tions.

FIG. 16 illustrates a general approach to compressing
metric data within a computer system.

FIG. 17 illustrates a first step undertaken by both the
independent component analysis and principle-component-
analysis methods for identifying a set of independent, basis
metrics.

FIG. 18 illustrates the sample correlation coefficient.

FIGS. 19-21 illustrate the independent-component-analy-
sis method for determining a set of independent basis
metrics.

FIGS. 22-24 illustrate the principle-component-analysis
method for determining a set of basis vectors.
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FIGS. 25A-C provide control-flow diagrams for one
implementation of the currently disclosed metric-data com-
pression method.

DETAILED DESCRIPTION

The current document is directed to a method and sub-
system for compressing metric data within a computer
system. In a first subsection, below, an overview of distrib-
uted computing systems is provided, with reference to FIGS.
1-10. In a second subsection, the methods and subsystems to
which the current document is directed are discussed, with
reference to FIGS. 11-25C.

Overview of Distributed Computing Systems

FIG. 1 provides a general architectural diagram for vari-
ous types of computers. The computer system contains one
or multiple central processing units (“CPUs”) 102-105, one
or more electronic memories 108 interconnected with the
CPUs by a CPU/memory-subsystem bus 110 or multiple
busses, a first bridge 112 that interconnects the CPU/
memory-subsystem bus 110 with additional busses 114 and
116, or other types of high-speed interconnection media,
including multiple, high-speed serial interconnects. These
busses or serial interconnections, in turn, connect the CPUs
and memory with specialized processors, such as a graphics
processor 118, and with one or more additional bridges 120,
which are interconnected with high-speed serial links or
with multiple controllers 122-127, such as controller 127,
that provide access to various different types of mass-storage
devices 128, electronic displays, input devices, and other
such components, subcomponents, and computational
resources. It should be noted that computer-readable data-
storage devices include optical and electromagnetic disks,
electronic memories, and other physical data-storage
devices. Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval, and can
transiently “store” only a byte or less of information per
mile, far less information than needed to encode even the
simplest of routines.

Of course, there are many different types of computer-
system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

FIG. 2 illustrates an Internet-connected distributed com-
puter system. As communications and networking technolo-
gies have evolved in capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types of com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
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wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system in which
a large number of PCs 202-205, a high-end distributed
mainframe system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user sitting in a home office may access
hundreds of millions of different web sites provided by
hundreds of thousands of different web servers throughout
the world and may access high-computational-bandwidth
computing services from remote computer facilities for
running complex computational tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web servers, back-end computer
systems, and data-storage systems for serving web pages to
remote customers, receiving orders through the web-page
interface, processing the orders, tracking completed orders,
and other myriad different tasks associated with an e-com-
merce enterprise.

FIG. 3 illustrates cloud computing. In the recently devel-
oped cloud-computing paradigm, computing cycles and
data-storage facilities are provided to organizations and
individuals by cloud-computing providers. In addition,
larger organizations may elect to establish private cloud-
computing facilities in addition to, or instead of, subscribing
to computing services provided by public cloud-computing
service providers. In FIG. 3, a system administrator for an
organization, using a PC 302, accesses the organization’s
private cloud 304 through a local network 306 and private-
cloud interface 308 and also accesses, through the Internet
310, a public cloud 312 through a public-cloud services
interface 314. The administrator can, in either the case of the
private cloud 304 or public cloud 312, configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers in order to carry
out any of many different types of computational tasks. As
one example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the resources to pur-
chase, manage, and maintain in-house data centers. Such
organizations can dynamically add and delete virtual com-
puter systems from their virtual data centers within public
clouds in order to track computational-bandwidth and data-
storage needs, rather than purchasing sufficient computer
systems within a physical data center to handle peak com-
putational-bandwidth and data-storage demands. Moreover,
small organizations can completely avoid the overhead of
maintaining and managing physical computer systems,
including hiring and periodically retraining information-
technology specialists and continuously paying for operat-
ing-system and database-management-system upgrades.



US 9,742,435 Bl

5

Furthermore, cloud-computing interfaces allow for easy and
straightforward configuration of virtual computing facilities,
flexibility in the types of applications and operating systems
that can be configured, and other functionalities that are
useful even for owners and administrators of private cloud-
computing facilities used by a single organization.

FIG. 4 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1. The computer system 400 is
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.
The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/0”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor resources and
other system resources with other application programs and
higher-level computational entities. The device drivers
abstract details of hardware-component operation, allowing
application programs to employ the system-call interface for
transmitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
subsystems. The file system 446 facilitates abstraction of
mass-storage-device and memory resources as a high-level,
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easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successful level of
abstraction within computer systems, the operating-system-
provided level of abstraction is nonetheless associated with
difficulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difficulty arises from the fact that there are many
different operating systems that run within various different
types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system is ported
to additional operating systems, the application program or
other computational system can nonetheless run more effi-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difficulty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development efforts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, it is difficult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage in large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” has been developed and
evolved to further abstract computer hardware in order to
address many difficulties and challenges associated with
traditional computing systems, including the compatibility
issues discussed above. FIGS. 5A-B illustrate two types of
virtual machine and virtual-machine execution environ-
ments. FIGS. 5A-B use the same illustration conventions as
used in FIG. 4. FIG. 5A shows a first type of virtualization.
The computer system 500 in FIG. 5A includes the same
hardware layer 502 as the hardware layer 402 shown in FIG.
4. However, rather than providing an operating system layer
directly above the hardware layer, as in FIG. 4, the virtual-
ized computing environment illustrated in FIG. 5A features
a virtualization layer 504 that interfaces through a virtual-
ization-layer/hardware-layer interface 506, equivalent to
interface 416 in FIG. 4, to the hardware. The virtualization
layer provides a hardware-like interface 508 to a number of
virtual machines, such as virtual machine 510, executing
above the virtualization layer in a virtual-machine layer 512.
Each virtual machine includes one or more application
programs or other higher-level computational entities pack-
aged together with an operating system, referred to as a
“guest operating system,” such as application 514 and guest
operating system 516 packaged together within virtual
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machine 510. Each virtual machine is thus equivalent to the
operating-system layer 404 and application-program layer
406 in the general-purpose computer system shown in FIG.
4. Each guest operating system within a virtual machine
interfaces to the virtualization-layer interface 508 rather than
to the actual hardware interface 506. The virtualization layer
partitions hardware resources into abstract virtual-hardware
layers to which each guest operating system within a virtual
machine interfaces. The guest operating systems within the
virtual machines, in general, are unaware of the virtualiza-
tion layer and operate as if they were directly accessing a
true hardware interface. The virtualization layer ensures that
each of the virtual machines currently executing within the
virtual environment receive a fair allocation of underlying
hardware resources and that all virtual machines receive
sufficient resources to progress in execution. The virtualiza-
tion-layer interface 508 may differ for different guest oper-
ating systems. For example, the virtualization layer is gen-
erally able to provide virtual hardware interfaces for a
variety of different types of computer hardware. This allows,
as one example, a virtual machine that includes a guest
operating system designed for a particular computer archi-
tecture to run on hardware of a different architecture. The
number of virtual machines need not be equal to the number
of physical processors or even a multiple of the number of
processors.

The virtualization layer includes a virtual-machine-moni-
tor module 518 (“VMM?”) that virtualizes physical proces-
sors in the hardware layer to create virtual processors on
which each of the virtual machines executes. For execution
efficiency, the virtualization layer attempts to allow virtual
machines to directly execute non-privileged instructions and
to directly access non-privileged registers and memory.
However, when the guest operating system within a virtual
machine accesses virtual privileged instructions, virtual
privileged registers, and virtual privileged memory through
the virtualization-layer interface 508, the accesses result in
execution of virtualization-layer code to simulate or emulate
the privileged resources. The virtualization layer addition-
ally includes a kernel module 520 that manages memory,
communications, and data-storage machine resources on
behalf of executing virtual machines (“VM kernel”). The
VM kernel, for example, maintains shadow page tables on
each virtual machine so that hardware-level virtual-memory
facilities can be used to process memory accesses. The VM
kernel additionally includes routines that implement virtual
communications and data-storage devices as well as device
drivers that directly control the operation of underlying
hardware communications and data-storage devices. Simi-
larly, the VM kernel virtualizes various other types of I/O
devices, including keyboards, optical-disk drives, and other
such devices. The virtualization layer essentially schedules
execution of virtual machines much like an operating system
schedules execution of application programs, so that the
virtual machines each execute within a complete and fully
functional virtual hardware layer.

FIG. 5B illustrates a second type of virtualization. In FIG.
5B, the computer system 540 includes the same hardware
layer 542 and software layer 544 as the hardware layer 402
shown in FIG. 4. Several application programs 546 and 548
are shown running in the execution environment provided
by the operating system. In addition, a virtualization layer
550 is also provided, in computer 540, but, unlike the
virtualization layer 504 discussed with reference to FIG. 5A,
virtualization layer 550 is layered above the operating
system 544, referred to as the “host OS,” and uses the
operating system interface to access operating-system-pro-
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vided functionality as well as the hardware. The virtualiza-
tion layer 550 comprises primarily a VMM and a hardware-
like interface 552, similar to hardware-like interface 508 in
FIG. 5A. The virtualization-layer/hardware-layer interface
552, equivalent to interface 416 in FIG. 4, provides an
execution environment for a number of virtual machines
556-558, each including one or more application programs
or other higher-level computational entities packaged
together with a guest operating system.

In FIGS. 5A-B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 550 may reside within the host-operating-
system kernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored in physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term “virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A virtual machine or virtual application, described below,
is encapsulated within a data package for transmission,
distribution, and loading into a virtual-execution environ-
ment. One public standard for virtual-machine encapsulation
is referred to as the “open virtualization format” (“OVEF”).
The OVF standard specifies a format for digitally encoding
a virtual machine within one or more data files. FIG. 6
illustrates an OVF package. An OVF package 602 includes
an OVF descriptor 604, an OVF manifest 606, an OVF
certificate 608, one or more disk-image files 610-611, and
one or more resource files 612-614. The OVF package can
be encoded and stored as a single file or as a set of files. The
OVF descriptor 604 is an XML document 620 that includes
a hierarchical set of elements, each demarcated by a begin-
ning tag and an ending tag. The outermost, or highest-level,
element is the envelope element, demarcated by tags 622
and 623. The next-level element includes a reference ele-
ment 626 that includes references to all files that are part of
the OVF package, a disk section 628 that contains meta
information about all of the virtual disks included in the
OVF package, a networks section 630 that includes meta
information about all of the logical networks included in the
OVF package, and a collection of virtual-machine configu-
rations 632 which further includes hardware descriptions of
each virtual machine 634. There are many additional hier-
archical levels and elements within a typical OVF descrip-
tor. The OVF descriptor is thus a self-describing XML file
that describes the contents of an OVF package. The OVF
manifest 606 is a list of cryptographic-hash-function-gener-
ated digests 636 of the entire OVF package and of the
various components of the OVF package. The OVF certifi-
cate 608 is an authentication certificate 640 that includes a
digest of the manifest and that is cryptographically signed.
Disk image files, such as disk image file 610, are digital
encodings of the contents of virtual disks and resource files
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612 are digitally encoded content, such as operating-system
images. A virtual machine or a collection of virtual machines
encapsulated together within a virtual application can thus
be digitally encoded as one or more files within an OVF
package that can be transmitted, distributed, and loaded
using well-known tools for transmitting, distributing, and
loading files. A virtual appliance is a software service that is
delivered as a complete software stack installed within one
or more virtual machines that is encoded within an OVF
package.

The advent of virtual machines and virtual environments
has alleviated many of the difficulties and challenges asso-
ciated with traditional general-purpose computing. Machine
and operating-system dependencies can be significantly
reduced or entirely eliminated by packaging applications
and operating systems together as virtual machines and
virtual appliances that execute within virtual environments
provided by virtualization layers running on many different
types of computer hardware. A next level of abstraction,
referred to as virtual data centers which are one example of
a broader virtual-infrastructure category, provide a data-
center interface to virtual data centers computationally con-
structed within physical data centers. FIG. 7 illustrates
virtual data centers provided as an abstraction of underlying
physical-data-center hardware components. In FIG. 7, a
physical data center 702 is shown below a virtual-interface
plane 704. The physical data center consists of a virtual-
infrastructure management server (“VI-management-
server”) 706 and any of various different computers, such as
PCs 708, on which a virtual-data-center management inter-
face may be displayed to system administrators and other
users. The physical data center additionally includes gener-
ally large numbers of server computers, such as server
computer 710, that are coupled together by local area
networks, such as local area network 712 that directly
interconnects server computer 710 and 714-720 and a mass-
storage array 722. The physical data center shown in FIG. 7
includes three local area networks 712, 724, and 726 that
each directly interconnects a bank of eight servers and a
mass-storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple virtual machines. Different physical data cen-
ters may include many different types of computers, net-
works, data-storage systems and devices connected accord-
ing to many different types of connection topologies. The
virtual-data-center abstraction layer 704, a logical abstrac-
tion layer shown by a plane in FIG. 7, abstracts the physical
data center to a virtual data center comprising one or more
resource pools, such as resource pools 730-732, one or more
virtual data stores, such as virtual data stores 734-736, and
one or more virtual networks. In certain implementations,
the resource pools abstract banks of physical servers directly
interconnected by a local area network.

The virtual-data-center management interface allows pro-
visioning and launching of virtual machines with respect to
resource pools, virtual data stores, and virtual networks, so
that virtual-data-center administrators need not be con-
cerned with the identities of physical-data-center compo-
nents used to execute particular virtual machines. Further-
more, the VI-management-server includes functionality to
migrate running virtual machines from one physical server
to another in order to optimally or near optimally manage
resource allocation, provide fault tolerance, and high avail-
ability by migrating virtual machines to most effectively
utilize underlying physical hardware resources, to replace
virtual machines disabled by physical hardware problems
and failures, and to ensure that multiple virtual machines

10

15

20

25

30

35

40

45

50

55

60

65

10

supporting a high-availability virtual appliance are execut-
ing on multiple physical computer systems so that the
services provided by the virtual appliance are continuously
accessible, even when one of the multiple virtual appliances
becomes compute bound, data-access bound, suspends
execution, or fails. Thus, the virtual data center layer of
abstraction provides a virtual-data-center abstraction of
physical data centers to simplify provisioning, launching,
and maintenance of virtual machines and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the resources of individual physical
servers and migrating virtual machines among physical
servers to achieve load balancing, fault tolerance, and high
availability.

FIG. 8 illustrates virtual-machine components of a VI-
management-server and physical servers of a physical data
center above which a virtual-data-center interface is pro-
vided by the VI-management-server. The VI-management-
server 802 and a virtual-data-center database 804 comprise
the physical components of the management component of
the virtual data center. The VI-management-server 802
includes a hardware layer 806 and virtualization layer 808,
and runs a virtual-data-center management-server virtual
machine 810 above the virtualization layer. Although shown
as a single server in FIG. 8, the VI-management-server (“VI
management server’) may include two or more physical
server computers that support multiple VI-management-
server virtual appliances. The virtual machine 810 includes
a management-interface component 812, distributed ser-
vices 814, core services 816, and a host-management inter-
face 818. The management interface is accessed from any of
various computers, such as the PC 708 shown in FIG. 7. The
management interface allows the virtual-data-center admin-
istrator to configure a virtual data center, provision virtual
machines, collect statistics and view log files for the virtual
data center, and to carry out other, similar management
tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
virtual machines within each of the physical servers of the
physical data center that is abstracted to a virtual data center
by the VI management server.

The distributed services 814 include a distributed-re-
source scheduler that assigns virtual machines to execute
within particular physical servers and that migrates virtual
machines in order to most effectively make use of compu-
tational bandwidths, data-storage capacities, and network
capacities of the physical data center. The distributed ser-
vices further include a high-availability service that repli-
cates and migrates virtual machines in order to ensure that
virtual machines continue to execute despite problems and
failures experienced by physical hardware components. The
distributed services also include a live-virtual-machine
migration service that temporarily halts execution of a
virtual machine, encapsulates the virtual machine in an OVF
package, transmits the OVF package to a different physical
server, and restarts the virtual machine on the different
physical server from a virtual-machine state recorded when
execution of the virtual machine was halted. The distributed
services also include a distributed backup service that pro-
vides centralized virtual-machine backup and restore.

The core services provided by the VI management server
include host configuration, virtual-machine configuration,
virtual-machine provisioning, generation of virtual-data-
center alarms and events, ongoing event logging and statis-
tics collection, a task scheduler, and a resource-management
module. Each physical server 820-822 also includes a host-
agent virtual machine 828-830 through which the virtual-
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ization layer can be accessed via a virtual-infrastructure
application programming interface (“API”). This interface
allows a remote administrator or user to manage an indi-
vidual server through the infrastructure API. The virtual-
data-center agents 824-826 access virtualization-layer server
information through the host agents. The virtual-data-center
agents are primarily responsible for offloading certain of the
virtual-data-center management-server functions specific to
a particular physical server to that physical server. The
virtual-data-center agents relay and enforce resource allo-
cations made by the VI management server, relay virtual-
machine provisioning and configuration-change commands
to host agents, monitor and collect performance statistics,
alarms, and events communicated to the virtual-data-center
agents by the local host agents through the interface API,
and to carry out other, similar virtual-data-management
tasks.

The virtual-data-center abstraction provides a convenient
and efficient level of abstraction for exposing the computa-
tional resources of a cloud-computing facility to cloud-
computing-infrastructure users. A cloud-director manage-
ment server exposes virtual resources of a cloud-computing
facility to cloud-computing-infrastructure users. In addition,
the cloud director introduces a multi-tenancy layer of
abstraction, which partitions virtual data centers (“VDCs™)
into tenant-associated VDCs that can each be allocated to a
particular individual tenant or tenant organization, both
referred to as a “tenant.” A given tenant can be provided one
or more tenant-associated VDCs by a cloud director man-
aging the multi-tenancy layer of abstraction within a cloud-
computing facility. The cloud services interface (308 in FIG.
3) exposes a virtual-data-center management interface that
abstracts the physical data center.

FIG. 9 illustrates a cloud-director level of abstraction. In
FIG. 9, three different physical data centers 902-904 are
shown below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The resources of these multi-
tenant virtual data centers are securely partitioned in order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 is partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Each multi-tenant virtual data center is
managed by a cloud director comprising one or more
cloud-director servers 920-922 and associated cloud-direc-
tor databases 924-926. Each cloud-director server or servers
runs a cloud-director virtual appliance 930 that includes a
cloud-director management interface 932, a set of cloud-
director services 934, and a virtual-data-center management-
server interface 936. The cloud-director services include an
interface and tools for provisioning multi-tenant virtual data
center virtual data centers on behalf of tenants, tools and
interfaces for configuring and managing tenant organiza-
tions, tools and services for organization of virtual data
centers and tenant-associated virtual data centers within the
multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
ization networks from a network pool. Templates are virtual
machines that each contains an OS and/or one or more
virtual machines containing applications. A template may
include much of the detailed contents of virtual machines
and virtual appliances that are encoded within OVF pack-
ages, so that the task of configuring a virtual machine or
virtual appliance is significantly simplified, requiring only
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deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates in virtual appliances across organizations. Cata-
logs may include OS images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

Considering FIGS. 7 and 9, the VI management server
and cloud-director layers of abstraction can be seen, as
discussed above, to facilitate employment of the virtual-
data-center concept within private and public clouds. How-
ever, this level of abstraction does not fully facilitate aggre-
gation of single-tenant and multi-tenant virtual data centers
into heterogeneous or homogeneous aggregations of cloud-
computing facilities.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are illustrated
1002-1008. Cloud-computing facility 1002 is a private
multi-tenant cloud with a cloud director 1010 that interfaces
to a VI management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VI management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VI management servers,
remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Method and Subsystems for Compressing Metric
Data

FIG. 11 illustrate metric data that is collected, processed,
and used by the administrative and management subsystems
within a computer system. At the top of FIG. 11, an abstract
system block diagram 1102 is shown. This system includes
11 main subcomponents a-m and s 1104-1116 and four
subcomponents in each of components a, b, and c, such as
subcomponents 1117-1120 in component a 1104. The system
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is abstractly characterized and no further details with regard
to component functionalities, interfaces, and connections are
provided.

In a complex system, various types of information are
collected with regard to the operational states and statuses of
many, if not all, components, subcomponents, systems, and
subsystems. The information can be encoded in many dif-
ferent ways, can be expressed in many different forms, and
can be provided by a number of different information
sources. For example, metrics may be provided by various
types of monitoring applications and monitoring hardware
within a computer system. As another example, metrics may
be obtained from log files that store various types of log
messages and error messages generated by computer-system
components. However, for the purposes of the current dis-
cussion, this information can be described as a set of
time-stamped or time-associated floating-point numbers.
Clearly, even for descriptive textural information, there is
generally a finite number of different values or forms of the
information, as a result of which any such information can
be mapped to numeric values. Thus, no generality is lost by
considering the information from various types of monitor-
ing and diagnostic agents and subsystems within the system
to be floating-point values, also referred to as “metric
values” and “metric data.” Information may be generated,
within the system, with regard to each of the systems,
subsystems, components, and subcomponents within a com-
putational system. Thus, the operational state and status of
each component, subcomponent, system, and subsystem is
described, at any given point in time, by the current values
for all attributes reported for the component, subcomponent,
system, or subsystem. Table 1130, in the lower portion of
FIG. 11, illustrates a portion of the metric data collected for
the system shown in block diagram 1102. Each row in the
table, such as the first row 1132, represents a time series of
metric-data values. The first three rows 1134 of the table
represent the data of three different metrics, s,, s,, and s; for
subcomponent s 1116. The next five rows 1136 of table 1130
represent the data stored for five metrics associated with
subcomponent 1 (1117 in FIG. 11) of subcomponent a 1104.
Additional rows of the table represent data for additional
metrics collected for the other components of the abstract
computer system represented by block diagram 1102. In an
actual computer system, there may be tens or hundreds of
different metrics associated with any particular main sub-
component of a distributed computing system, and there
may be thousands, tens of thousands, or more subcompo-
nents.

FIGS. 12A-B illustrate metric data, metric-data variation,
and various types of metric-data compression. In FIG. 12A,
a metric 1202 is shown to be associated with a component
1204 of a system 1206. The metric generates a time-
associated sequence of numeric values, a portion of which is
shown in plot 1208. The vertical axis represents floating-
point values 1210 and the horizontal axis represents time
1212. Each datapoint is shown in the plot as a vertical bar,
such as vertical bar 1214 associated with time t; 1216, the
length of the vertical bar representing a floating-point value.
In many cases, a metric outputs data values associated with
timestamps over an extended period of time. Often, the data
values associated with particular time intervals are com-
pressed and stored in long-term storage. For example, the
raw data values may be temporarily stored without com-
pression, and blocks, chunks, or other such portions of these
data values may be periodically compressed and stored in
long-term storage while newly generated data values con-
tinue to accumulate in raw form. The data values for a metric
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may be alternatively represented by a table 1220 that
includes a first column 1222 that stores numeric values and
a second column 1224 that stores the associated times or
timestamps. As shown in expression 1226 in FIG. 12A, the
metric may be represented as a series of numeric values x,,
each numeric value x, generated by a function x(t,), where
t, is the time associated with the k” numeric value x,. There
are n numeric values in the metric data x;,.

In the lower portion of FIG. 12A, the plot of the metric
data 1208 is shown again as plot 1230 with a dashed line
1232 added to represent a numeric-value-versus-time curve
corresponding to the discrete numeric-value/time pairs plot-
ted in the plot. In addition, small arrows, such as arrow 1234,
are included to show the current trend, or slope, of the curve
from the preceding data point to the current data point at
each of the second through 11% data points. As shown in
inset 1236, the small arrow 1234 is the signed difference
between the numeric value of a current data point and the
numeric value of the previous data point. These signed
differences can be plotted in a second plot 1238 for the
function v(t,) which generates the signed trend or slope at
each of the timepoints t,, where ke[2, 3, . . ., n].

FIG. 12B shows numerous different compression tech-
niques that can be used to compress metric data depending
on the variability of the data, as indicated by the signed
values produced by the function v(t,), discussed above with
reference to plot 1238. In FIG. 12B, a metric-data plot 1240
and corresponding data-variation plot 1242 are shown using
the same illustration conventions as used in FIG. 12A. In this
case, the data values of data point 1244-1249 are identical,
as a result of which the variation values in the variation plot
1242 are 0 for timepoints t5, t,, . . ., t,. When, in other words,
v,=0, there has been no change in the metric data values
between timepoints t,; and t,. The timepoints for which
v,=0 are thus candidates for compression. In one scheme,
referred to below as “Cpl,” each data value is associated
with one or two timestamps 1250. A datapoint associated
with one timestamp, such as datapoint x(t,) 1252, indicates
a numeric value different from the adjacent numeric values
in the time sequence of datapoints. A data value associated
with two timestamps, such as data value x(t,) 1254, indi-
cates that at the two timestamps and any intervening time-
stamps, the value of the metric at a constant value is equal
to the numeric value. Thus, the three entries 1252, 1254, and
1256 in table 1250, representing an example of the com-
pression technique Cpl, fully describe the eight numeric
values shown in plot 1240 associated with times t,-t;. For
constant or near-constant metrics, Cpl compression pro-
vides large compression ratios, where the compression ratio
is the number of bytes of raw data divided by the number of
bytes of corresponding compressed data. A second type of
compression, referred to below as “Cp2,” is illustrated in
table 1260 in FIG. 12B. In this technique, each numeric
value in the table is associated with a single timestamp.
However, all numeric-value/timestamp pairs for points in
time t, for which v(t,)=0 are omitted. This technique also
achieves large compression ratios for constant and low-
variability metric data. A third compression technique,
referred to below as “CpRoll,” summarizes a sequence of
metric data values as the average data value for the time
interval corresponding to a sequence of data values, and thus
a single entry 1262 is used to represent a potentially very
long sequence of data values. A first portion of the entry
1264 indicates the time interval represented by the entry and
a second portion 1266 of the entry includes the average
numeric value for the sequence of numeric values of the time
interval 1264. The Cpl and Cp2 compression methods are
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lossless. The exact, original metric data can be restored from
the compressed data. The CpRoll compression technique
provides an extremely high compression ratio for constant,
low-variability, and high-variability data, but is, unlike the
lossless compression methods Cpl and Cp2, lossy. Only a
single average value can be obtained from the compressed
data for an entire time interval, without any indication of the
variability in the data within the time period.

There are many additional types of compression, includ-
ing run-length encoding, Huffman encoding, computing
differences or deltas, linear-algebra based encoding meth-
ods, and many complex types of compression employed for
particular classes of data, including MPEG, JPEG, and
H.264 encoding methods. Many of these methods do not
work well for metric data. Others may be used in addition to,
or in place of, the above discussed Cpl, Cp2, and CpRoll
methods. In the following discussion, the meaning of the
term “Cpl” is expanded to refer to the general class of
compression methods suitable and efficient for constant and
near-constant metric data, the term “Cp2” is expanded to
refer to the general class of compression methods suitable
and efficient for low-variability metric data, and the term
“CpRoll is expanded to refer to the general class of com-
pression methods that are suitable for constant, near-con-
stant, low-variability, and high-variability metric data, that
are significantly lossy in nature, and that are based on
statistically derived metrics, such as average or median
values.

FIG. 13 illustrates linear combination of two different
metrics. FIG. 13 uses the same metric-data-plot convention
as used in FIGS. 12A-B. In FIG. 13, a first plot 1302 shows
the metric data for a metric X, and a second plot 1304 shows
the data values for metric X,. Metric X, features data values
that linearly increase with time and metric X, includes data
values that linearly decrease in time. Plot 1306 is generated
by adding each data value of metric X; to the corresponding
data value of metric X,. For example, the first numeric value
for metric X, 1308 is 1.0 and the first data value for metric
X, 1310 is 11.0. The sum of these two data values is 12.0,
which is the value of the first data value 1312 in plot 1306.
Plot 1306 is described as a metric generated by a linear
combination of metric X, and X,. For this example, the
linear combination is expressed as X, +X,. A linear combi-
nation can include multiplicative coefficients for each term.
For example, plot 1314 is a composite metric generated by
the linear combination '2X,+%:X,. A composite metric
value can be generated from an arbitrary number of metrics,
each multiplied by a constant: X =a,X,+
a,X,+ ... +a,X,.

FIG. 14 illustrates the notion of a set of basis vectors. FIG.
14 uses a two-dimensional vector space to illustrate the
concept of a vector basis. In a let-hand plot 1402 in FIG. 14,
two arbitrary vectors v, 1404 and v, 1406 are shown. Vector
v, can alternatively be described by the coordinates of its
head (10, 2) and, similarly, vector v, can be described by the
coordinates (2, 8). Provided that the two arbitrary vectors v,
and v, are not parallel, any other vector in the two-dimen-
sional vector space can be expressed as a linear combination
of vectors v, and v,. In the right-hand plot 1410 in FIG. 14,
a third arbitrary vector v; 1412 is plotted in addition to
vectors v, 1404 and v, 1406. The dashed lines, such as
dashed line 1414, indicate a geometrical construction for a
pair of vectors that, when added, produce vector v;. The first
vector 1416 in the pair of vectors is collinear with vector v,
and has a length equal to %slv,|. The second vector 1418
of the pair of vectors is collinear with vector v, and has a
length equal to
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Thus, vector v, can De expressed as the linear combination
of vectors v, and v,, as follows:

-16
19

23

V3 = E

Vi + V2.

In a three-dimensional space, an arbitrary vector can be
expressed as a linear combination of three arbitrary vectors,
no two of which are parallel. In an n-dimensional vector
space, an arbitrary vector can be expressed as the linear
combination of n different, arbitrary vectors, no pair of
which are parallel.

FIG. 15 illustrates a general approach for compressing
high-variability metric data using the concept of a set of
basis vectors and a set of coeflicients for linear combina-
tions. As shown in the top left-hand portion of FIG. 15, the
high-variability metric data can be considered to be a matrix
X" 1502. Each column in matrix X", such as the first
column 1504, denoted X,™", represents the data associated
with a metric. Each row in matrix X" represents a point in
time. There are n rows and s columns. The compression
method identifies a set of basis metrics 1506. Each column
of matrix Y 1506 represents one of the basis metrics. Every
non-basis metric in X" can be computed as a linear
combination of the basis metrics 1506. The coefficients for
these linear combinations are stored in a coefficient matrix
C 1508. Thus, a large set of metric data X™" can be
compressed to a comparatively small set of basis metrics
1506 and a set of coefficients 1508. Note that this compres-
sion method assumes that all of the metric data, represented
by columns in X", are aligned with respect to timepoints,
represented by row indices k of the matrix X™*. When the
set of metrics are not so aligned in time, interpolation and
other methods can be used to produce an aligned set of
metric data. Additionally, the total metric data for a time
interval within a computing system can be partitioned into
similarity groups, where similar metrics are roughly time-
aligned and the compression method illustrated in FIG. 15
can be used to separately compress each similarity group,
minimizing the amount of interpolation and other adjust-
ments needed to produce a time-aligned set of raw data.

In the following discussion, two different approaches to
expressing a set of metrics in terms of a small set of
independent, basis metrics and set of coeflicients are dis-
cussed. The first method, referred to as “independent com-
ponent analysis,” is summarized within rectangle 1510 in
FIG. 15. In this method, m independent basis metrics are
selected from the original metrics in X" 1512. For the
remaining dependent metrics in X™*", the dependent metrics
can be expressed as linear combinations of the independent
basis metrics 1513. In this case, the dimensions of the
coeflicients matrix 1508 are m by r, where r=s—m. A second
method, summarized within rectangle 1516 in FIG. 15, is
referred to as “principle component analysis.” In this
method, a set of m independent basis vectors are determined
as linear combinations of the s metrics in X" 1518 and
each metric in X™" is computed as a linear combination of
the independent basis metrics 1520. In this case, the dimen-
sions of the coefficients matrix 1508 are m by r, where r=s.
This overall approach to compressing high-variability met-
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ric data using a set of independent basis metrics and a set of
coeflicients is referred to as “CpL.C.”

FIG. 16 illustrates a general approach to compressing
metric data within a computer system. A timeline 1602 is
shown in FIG. 16 with three different intervals, including a
first initial period 1604, a second intermediate period 1606,
and a subsequent, archival period 1608. This describes the
time progression of a particular set of metric data, collected
over a particular time interval, through different storage
states within a computer system. During the initial period,
metric data is stored in its raw form 1610. It is stored in its
raw form because, during the initial period, the metric data
may need to be frequently accessed and processed for
various types of monitoring and remediation tasks carried
out by automated administration and maintenance subsys-
tems. After the initial period, the data is compressed and
stored in compressed form, during the intermediate period
1606. The metric data is partitioned into relatively constant
raw data 1612, low-variability raw data 1614, and high-
variability raw data 1616. The constant raw data 1612 is
compressed using a Cpl compression technique 1618. The
low-variability raw data 1614 is compressed using a Cp2
compression technique 1620. The high-variability raw data
1616 is compressed using a CpLC technique 1622. In many
implementations, the initially compressed data may be fur-
ther compressed using other, additional data-compression
techniques. The compressed data stored in the intermediate
period can generally be recovered either without any loss in
accuracy, having been compressed by a lossless compres-
sion method, or with a generally small loss of accuracy,
bounded by a threshold accuracy loss, having been com-
pressed by a lossy compression method. In the final archival
period 1608, the compressed data is compressed using a
CpRoll technique 1624 in which a large number of time-
associated values are replaced by one or a few statistically
derived metric values, as discussed above. Once compressed
using the CpRoll compression, and, in certain implementa-
tions, using additional compression, the detailed raw data
with variations over small time intervals can no longer be
recovered. This final compression is suitable for data that
may need to be infrequently accessed only for tasks that
require relatively low-accuracy estimates of the original raw
data.

The partitioning of the raw data into constant, low-
variability, and high-variability raw data, represented by the
circled arrow 1626, is illustrated in greater detail in the
lower portion of FIG. 16 1628. The initial metrics are
received in step 1630. For each metric, a variation sequence
and variability ratio are computed in step 1632. The varia-
tion sequence v(t,) is discussed above with reference to
FIGS. 12A-B. The variation ratio r, for metric i is computed
1634 as the ratio of values in the variation sequence equal to
0 divided by the total number of values in the variation
sequence. Alternatively, the variation ratio r; may be com-
puted as the number of values in the variation sequence
below a threshold value divided by the total number of
values in the variation sequence. When r; is less than a first
threshold T,, the metric is considered to be a constant
metric, as determined in step 1636. When the ratio r, is less
than a second threshold T,, as determined in step 1638, the
metric 1 is considered to be a low-variability metric. Other-
wise, the metric is considered to be a high-variability metric.
There are, of course, additional methods for determining the
variability of metric data, including methods that use the
familiar statistical metrics, including variance, standard of
deviation, and coeflicient of variance.
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FIG. 17 illustrates a first step undertaken by both the
independent component analysis and principle-component-
analysis methods for identifying a set of independent, basis
metrics. The input to these methods, as discussed above with
reference to FIG. 15, is a metric-data matrix X" 1702. As
discussed above, each column in matrix X™", such as
column X 1704 is a metric containing n numeric values.
The mean p; 1706 and the standard deviation o, are com-
puted for the metric data represented by column X ", as
indicated by expressions 1710 and 1712. The values in
column X " are modified by first subtracting p, and then
dividing the result by o), as indicated by expression 1714.
This produces a normalized metric X ; 1716 which becomes
column j of the normalized data set X 1718.

FIG. 18 illustrates the sample correlation coefficient. In
FIG. 18, the data for two metrics X, and X, are shown in
tabular form 1802 and plotted in graphical form 1804.
Similarly, the data values for two metrics X; and X, are
shown in tabular form 1806 and plotted in plot 1808. It is
apparent, in plot 1804, that the two metrics X, and X, are
linearly correlated. The plot of pairs of numeric values from
the two metrics is roughly linear. By contrast, metrics X5 and
X, appear to be uncorrelated, since there is no apparent trend
or pattern in a plot of the data points. The means and
standard deviations for metrics X, and X, 1810 and for
metrics X; and X, 1812 are computed and shown below
tables 1802 and 1806, respectively. These values are used to
compute a correlation coeflicientr, . for metrics X, and X,
according to expression 1814 and to compute a correlation
coefficient r, , for the metrics X; and X, 1816. For the
positively linearly correlated pair of metrics X, and X,, the
computed correlation coeflicient is 1.0. For the apparently
uncorrelated or weekly correlated metrics X; and X, the
correlation coefficient has a value 0.17. In general, the
correlation coefficient has the value 1.0 for positively lin-
early related metrics having a positive slope when plotted in
a two-dimensional plot, such as plot 1804, and has a value
-1.0 for negatively linearly related metrics. The correlation
coeflicient tends to 0 as the two metrics become increasingly
linearly uncorrelated. A correlation matrix P of dimension s
by s can be computed from a normalized metric-data matrix
X by computing the correlation coefficient for each possible
pair of columns in a normalized data matrix X. In other
words, an element in the correlation matrix P, P, ;, stores the
correlation coeflicient for metrics i1 and j corresponding to
columns X; and X,. The correlation matrix is computed both
as an intermediate step by the independent-component-
analysis method as well as the principle-component-analysis
method.

FIGS. 19-21 illustrate the independent-component-analy-
sis method for determining a set of independent basis
metrics. This approach starts with the correlation matrix P
discussed above with reference to FIG. 18. As shown in FIG.
19, the independent-component-analysis method partitions
the correlation matrix P 1902 into two matrices Q 1904 and
R 1906. The matrix Q is an orthogonal matrix. The matrix
R is an upper-triangular matrix. This partitioning is accom-
plished using the QR decomposition method, discussed
below with reference to FIG. 20. The diagonal elements of
the matrix R 1908 are sorted in descending order by value
to generate an array 1910 that serves as a map for reorga-
nizing the columns in the normalized data matrix X to
generate a matrix X* 1912. Note that the original indices of
the diagonal elements of matrix R are reordered when the
elements are sorted by value and the reordered indices
constitute a map for correspondingly reordering the columns
of data matrix X to produce matrix X*. The first m columns
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1914 of matrix X* are selected as the independent basis
metrics for the raw data set X™*". The magnitude of m is
selected in order to represent the non-independent metrics
via linear combinations with a greater than a threshold
accuracy. In other words, in is the minimum number of basis
metrics needed in order to represent the non-independent
metrics as linear combinations with an accuracy greater than
or equal to a threshold accuracy.

FIG. 20 illustrates the QR-decomposition method used to
decompose the correlation matrix P into the matrices Q and
R. The QR-decomposition method is based on a theorem
2002 that a given matrix A with real-valued components can
be decomposed into matrices Q and R that, when multiplied
together by matrix multiplication, generate the matrix A,
where matrix Q7Q=I and where R is upper triangular. In the
following discussion, columns of the matrix A, A, 2004, are
considered to be column vectors that can be transposed,
using the transposition operation, to corresponding row
vectors 2006 A,”. The dot product 2008 of the transpose of
vector A, A%, and vector B, alternatively represented as the
inner product of vectors A and B 2010, is computed as the
product of the components of the two vectors 2012. Note
that this assumes an orthogonal basis. The projection of a
vector A 2014 onto a vector B 2016 produces a resultant
vector 2018 in the same orientation as vector B but with a
length equal to the inner product of B and A divided by the
inner product of B and B 2020. The projection operation of
a vector A onto a vector B is symbolically represented as
przA 2022.

The QR-decomposition method begins with generation of
a matrix U 2024 from the matrix A 2026, as indicated by the
expressions 2028 in FIG. 20 and by the general expression
2030 in FIG. 20. The first column of the matrix U, U, is
equal to the first column of the matrix A, A, 2032. The
second column of the matrix U, U,, is equal to a result 2034
obtained by subtracting the projection of column A, onto U,
pry, A, from column A,. Each successive column of the
matrix U is computed using one more term than used to
compute the previous column, as indicated by the pattern of
expressions 2028 and by the general expression 2030. This
operation ensures that the columns of the matrix U are
orthogonal with respect to one another. The matrix U is then
normalized by dividing each column vector by its length
2036 to generate the matrix Q 2038. An expression for the
length of a column vector of the matrix U 2040 is provided
in the lower portion of FIG. 20. The values of the column
vectors of the matrix A can be expressed in terms of the
columns of matrix Q by expression 2042. The specific
expressions for A, and A, 2044 and 2046 are shown below
the general expression 2042 to indicate the pattern. This
pattern of terms can be used to directly determine the values
of matrix R 2048 so that the product QR=A.

FIG. 21 illustrates the high-variability-metric compres-
sion method based on the independent-component-analysis
method, previously generally described in FIG. 15. Rather
than storing the raw data X", this method stores a set of in
independent normalized basis metrics M 2102, a set of in by
s—m coefficients C 2104, an array of standard deviations
2106 for columns of X"*", and an array of means 2108 for
columns of X™". The non-independent normalized columns
of X are generated by multiplying matrices M and C 2110.
The coeflicients stored in matrix C can be computed by a
least-squares process represented by expressions 2112. The
estimated raw metrics corresponding to the independent
basis metrics can be recovered by multiplying the corre-
sponding basis metric by the standard deviation for the
metric and then adding a vector of elements equal to the
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mean for the metric, as shown in expression 2114. The
non-independent normalized metrics can be recovered by
multiplying matrix M with vector C,_,,, as shown in expres-
sion 2116. The notation )N(_,imw is used to represent the
recovered columns corresponding to the original metrics
X /" Several different error values 2118 and 2120 can be
computed from X ; and )N(_,l.. One or more of these error
values are used to select the number of basis metrics m so
that the accuracy of recovery of estimated raw metrics from
the compressed data does not fall below a threshold value.

FIGS. 22-24 illustrate the principle-component-analysis
method for determining a set of basis vectors. As shown in
FIG. 22, the principle-component-analysis method begins
with the correlation matrix P 2202, discussed above with
reference to FIGS. 18 and 19. In this method, a matrix of
Eigen vectors V is determined. Multiplication of the corre-
lation matrix P on the right by V and on the left by V™!
produces a diagonal matrix D that contains the Eigen values
A=A, corresponding to the Figen vectors of matrix V, as
shown by expression 2204 in FIG. 22.

FIG. 23 illustrates determination of the eigenvalues and
eigenvectors of the covariance matrix C. The basic eigen-
value expression 2320 states that an eigenvector v of the
covariance matrix C multiplied with the covariance matrix C
is equal to the product of a scalar value A and the eigenvector
v. This equation can be rearranged, as shown in the pair of
equations 2322, to show that the product of matrix (C-Al)
and the eigenvector v is equal to the all-zeros column vector
0. This expression leads to non-trivial results only when the
determinant of the matrix (C-Al) is equal to O or, in other
words, when the matrix (C-Al) is not invertible. The expres-
sion for the determinate being O leads to a polynomial
expression in A with n roots 2324. Solving of this polyno-
mial expression leads to the eigenvalues of the covariance
matrix. With these eigenvalues determined, expression 2320
can be used to find the eigenvectors of the covariance matrix
Vi, Va, . . ., V; using the eigenvalue equation 2320. The
eigenvectors can then be combined together to produce the
matrix V 2326. The matrix V is then be used to diagonalize
the covariance matrix C to produce the diagonal matrix D
2328. The values along the diagonal of matrix D are the
eigenvalues of the covariance matrix. These eigenvalues can
be rearranged in order of decreasing magnitude, with the
corresponding eigenvectors identically rearranged, to pro-
duce matrices D' and V' 2330 and 2331.

FIG. 24 illustrates the compression method based on the
principle-component-analysis method, previously generally
discussed with reference to FIG. 15. Multiplication of the
normalized data matrix X by the Eigen vector matrix V'
produces matrix P' 2402, as shown by expression 2404. The
initial m columns 2406 of the matrix P' are selected as the
independent basis metrics and stored in a matrix P 2408. The
coeflicients are stored in a matrix C 2410 and generated by
a least-squares process indicated by expression 2412, similar
to the generation of coefficients for the previously discussed
method based on independent component analysis and
shown in equations 2110 and 2112 in FIG. 21. The standard-
deviation and mean arrays 2414 and 2416 are also stored as
part of the compressed data. The estimated metric X,/*" is
obtained by multiplying together the matrix P with the
vector C,, multiplying the result by o,, and adding to the
vector results a vector with elements containing p,, as
indicated by expression 2420. As with the previous method,
the number of basis metrics m is selected so that the
difference between the recovered metrics and the original
raw-data metrics, as computed by any one or more of the
various error metrics, falls below a threshold value.
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FIGS. 25A-C provide control-flow diagrams for one
implementation of the currently disclosed metric-data com-
pression method. FIG. 25A shows an overall control-flow
diagram for metric-data compression within a computer
system. The overall method is modeled as a continuously
executing event loop in which the event loop waits, in step
2502, for a next event to occur and then handles the event.
When an event occurs, control flows to step 2503, where the
method determines whether the event is a new-data event.
When the event is a new-data event, a handler “store
metrics” 2504 is called to store the raw data within the
system. Otherwise, when the event is an initial-compress-
timer expiration event, as determined in step 2505, a handler
“initial compress” is called, in step 2506, to carry out the
data compression for the intermediate period 1606 previ-
ously described with reference to FIG. 16. Otherwise, when
the event is a final-compress-timer expiration event, as
determined in step 2507, a handler “final compress” is called
in step 2508 to compress the data for archival purposes. A
general handler 2509 handles other types of events that are
beyond the scope of the current discussion. When there are
additional queued events, as determined in step 2510, con-
trol returns to step 2503. Otherwise, control returns in step
2502 where the method waits for a next event to occur.

FIG. 25B provides a control-flow diagram for the handler
“initial compress,” called in step 2506 of FIG. 25A. In step
2520, the available raw metric data is collected. In step
2522, the variation sequence is determined for each
numeric-value sequence corresponding to a metric and the
variation ratio 1, is computed for each metric I. In step 2524,
these computed variation ratios r, are used, as previously
discussed with reference to FIG. 16, to partition the metric
data into constant, low-variability, and high-variability met-
rics. The constant metrics are compressed using a Cpl
compression method, in step 2526. The low-variability
metrics are compressed using a Cpl compression method, in
step 2528. The high-variability metrics are compressed by a
call to the routine “compress high-variability data,” in step
2530. Finally, in step 2532, any additional secondary com-
pression methods are applied to the compressed data and it
is stored within the computer system in data-storage devices.

FIG. 25C provides a control-flow diagram for the routine
“compress high-variability metrics™ called in step 2530 of
FIG. 25B. In step 2540, the metrics are partitioned into
similarity groups. In the for-loop of steps 2542-2548, each
similarity group is separately compressed. In step 2543,
interpolation and other methods are used to generated
aligned metrics. In step 2544, a set of basis metrics is
obtained by one of the independent-component-analysis and
principle-component-analysis methods, or by another, simi-
lar method. In step 2545, a set of coefficients is generated
using a least-squares process or another coeflicient-deter-
mination method. In step 2546, a compressed group is
generated by including the basis metrics, coefficients, and
mean and standard deviation arrays. In step 2547, a com-
pressed package is generated from the compressed group by
adding a header to the compressed group that describes the
compression methods that were employed, number of met-
rics compressed, and other such data. Following completion
of the for-loop of steps 2542-2548, a pointer is returned to
the compressed packages in step 2550. In certain cases, the
metrics are compressed together, without partitioning into
similarity groups.

Although the present invention has been described in
terms of particular embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
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skilled in the art. For example, and of many different design
and implementation parameters can be varied to produce
alternative implementations, including choice of hardware
platforms, operating systems, virtualization technologies,
programming language, data structures, control structures,
modular organizations, and other such design and imple-
mentation parameters. As discussed above, additional meth-
ods may be used to identify a set of basis metrics, and a
variety of different compression methods may be employed,
alone or in combination, for compressing constant, near-
constant, and low-variability metric data as well as com-
pressing already compressed metric data to further compress
the already-compressed metric data for storage.

It is appreciated that the previous description of the
disclosed embodiments is provided to enable any person
skilled in the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure is not intended to be limited to the
embodiments shown herein but is to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The invention claimed is:

1. A metric-data compression subsystem within a com-
puter system that includes one or more processors, one or
more memories, and one or more data-storage devices, the
metric-data compression subsystem comprising:

a first compression component that compresses constant

and near-constant metric data;
a second compression component that compresses low-
variability metric data;
a third compression component that compresses high-
variability metric data using a basis-metric-and-coeffi-
cient method; and
a processing component that processes metric data by
storing, in one or more data-storage devices, initially
received metric data in raw form during an initial
period, and

compressing previously stored metric data, during an
intermediate period, by compressing constant and
near-constant metric data using the first compression
component, compressing low-variability metric data
using the second compression component, com-
pressing high-variability metric data using the third
compression component, and storing the compressed
data in one or more data-storage devices.
2. The metric-data compression subsystem of claim 1
wherein the processing component
compresses previously compressed data, during a final,
archival period, using a lossy, statistical-metric-based
compression method that achieves a greater than
threshold compression ratio.
3. The metric-data compression subsystem of claim 1
wherein compressing previously stored metric data further
comprises:
for each metric represented by data in to stored data,
determining a variability ratio,
when the variability ratio has a value within a first
interval, classifying the metric as associated with
constant or near-constant data and compressing the
data associated with the metric using the first com-
pression component,

when the variability ratio has a value within a second
interval, classifying the metric as associated with
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low-variability data and compressing the data asso-
ciated with the metric using the second compression
component, and

when the variability ratio has a value within a third
interval, classifying the metric as associated with
high-variability data and compressing the data asso-
ciated with the metric using the third compression
component.

4. The metric-data compression subsystem of claim 3
wherein determining a variability ratio further comprises:

generating a variation function for the data associated

with the metric; and

computing the variability ratio as the number of time-

associated data points for which the variation function
returns a value O to the total number of time-associated
data points.

5. The metric-data compression subsystem of claim 3
wherein determining a variability ratio further comprises:

generating a variation function for the data associated

with the metric; and

computing the variability ratio as the number of time-

associated data points for which the variation function
returns a value less than a threshold value to the total
number of time-associated data points.
6. The metric-data compression subsystem of claim 1
wherein the basis-metric-and-coefficient method used by the
third compression component compresses high-variability
metric data by:
determining a set of independent basis metrics for the
metrics associated with high-variability data;

determining a set of coefficients with which each non-
basis metric associated with high-variability data is
expressed as a linear combination of terms, each term
comprising a coefficient multiplied by a basis metric;
and

storing the set of independent basis metrics and the set of

coeflicients as the compressed high-variability metric
data.

7. The metric-data compression subsystem of claim 6
wherein each metric is a set of data points, each data point
comprising a time-associated data value.

8. The metric-data compression subsystem of claim 6
wherein determining a set of independent basis metrics for
the metrics associated with high-variability data further
comprises:

generating a set of normalized metrics by

for each metric,
determining a mean and standard deviation, and
generating a normalized metric by
for each data point associated with the metric,
generating a normalized data point metric by
subtracting the mean from the data value and
dividing the result by the standard deviation,
and
including the normalized data point in the nor-
malized metric, and
including the normalized metric in the set of nor-
malized metrics;

computing a set of correlation coefficients for each pair of

normalized metrics; and

using the set of correlation coefficients to select a set of

independent basis metrics.

9. The metric-data compression subsystem of claim 8
wherein using the correlation matrix to select a set of
independent basis metrics further comprises:

using a QR-decomposition method to generate, from the

set of correlation coeflicients, a first set of unit metrics
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that are mutually orthogonal and a second set of
multipliers that, when applied to the first set of unit
metrics, recover the set of correlation coeflicients;

sorting a subset of the multipliers in the second set of
multipliers by value;

using indexes of the sorted subset of the multipliers to sort

the set of normalized metrics; and

selecting, as the independent basis metrics, a first subset

of normalized metrics from the sorted set of normalized
metrics.

10. The metric-data compression subsystem of claim 9
wherein selecting, as the independent basis metrics, a first
subset of normalized metrics from the sorted set of normal-
ized metrics further comprises:

selecting a minimum number of the initial normalized

metrics from the sorted set of normalized metrics, using
which the remaining normalized metrics can be repre-
sented by linear combinations of the selected a mini-
mum number of the initial normalized metrics from the
sorted set of normalized metrics and regenerated from
the representations at a greater than threshold accuracy.

11. The metric-data compression subsystem of claim 10
wherein selecting, as the independent basis metrics, a first
subset of the new metrics from the new metrics further
comprises:

selecting a minimum number of the new metrics from the

set of new metrics, using which the normalized metrics
can be represented by linear combinations of the
selected minimum number of the new metrics from the
set of new metrics and regenerated from the represen-
tations at a greater than threshold accuracy.

12. The metric-data compression subsystem of claim 10
wherein selecting, as the independent basis metrics, a first
subset of the new metrics from the new metrics further
comprises:

selecting a minimum number of the new metrics from the

set of new metrics, using which the normalized metrics
can be represented by linear combinations of the
selected minimum number of the new metrics from the
set of new metrics and regenerated from the represen-
tations at a greater than threshold accuracy.

13. The metric-data compression subsystem of claim 8
wherein using the correlation matrix to select a set of
independent basis metrics further comprises:

identifying a set of eigenvectors and eigenvalues for the

set of correlation coeflicients;

sorting the eigenvalues by value;

correspondingly sorting the eigenvectors;

using the eigenvectors to generate a set of new metrics;

and

selecting, as the independent basis metrics, a first subset

of the new metrics from the new metrics.
14. The metric-data compression subsystem of claim 6
further including:
storing the means and standard deviations computed for
the data associated with each of the metrics; and

storing one or more additional parameters that described
the number of metrics compressed and additional infor-
mation needed to recover estimates of the original data
from the stored basis metrics and coefficients.

15. A method that compresses metric data within a com-
puter system that includes one or more processors, one or
more memories, and one or more data-storage devices, the
metric-data comprising a set of data points associated with
each of multiple metrics, each data point comprising a
time-associated data value, the method comprising:
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determining a set of independent basis metrics for the

metrics;
determining a set of coefficients with which each non-
basis metric is expressed as a linear combination of
terms, each term comprising a coefficient multiplied by
a basis metric; and

storing the set of independent basis metrics, the set of
coeflicients, and a set of statistical metrics as the
compressed metric data.

16. The method of claim 15 wherein determining a set of
independent basis metrics for the metrics further comprises:

generating a set of normalized metrics by

for each metric,
determining a mean and standard deviation that
together constitute statistical metrics associated
with the metric, and
generating a normalized metric by
for each data point associated with the metric,
generating a normalized data point metric by
subtracting the mean from the data value and
dividing the result by the standard deviation,
and
including the normalized data point in the nor-
malized metric, and
including the normalized metric in the set of nor-
malized metrics;

computing a set of correlation coefficients for each pair of

normalized metrics; and

using the set of correlation coefficients to select a set of

independent basis metrics.
17. The method of claim 16 wherein using the correlation
matrix to select a set of independent basis metrics further
comprises:
using a QR-decomposition method to generate, from the
set of correlation coeflicients, a first set of unit metrics
that are mutually orthogonal and a second set of
multipliers that, when applied to the first set of unit
metrics, recover the set of correlation coeflicients;

sorting a subset of the multipliers in the second set of
multipliers by value;

using indexes of the sorted subset of the multipliers to sort

the set of normalized metrics; and
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selecting, as the independent basis metrics, a first subset
of normalized metrics from the sorted set of normalized
metrics.

18. The method of claim 17 wherein selecting, as the
independent basis metrics, a first subset of normalized
metrics from the sorted set of normalized metrics further
comprises:

selecting a minimum number of the initial normalized

metrics from the sorted set of normalized metrics, using
which the remaining normalized metrics can be repre-
sented by linear combinations of the selected a mini-
mum number of the initial normalized metrics from the
sorted set of normalized metrics and regenerated from
the representations at a greater than threshold accuracy.

19. The metric-data compression subsystem of claim 16
wherein using the correlation matrix to select a set of
independent basis metrics further comprises:

identifying a set of eigenvectors and eigenvalues for the

set of correlation coeflicients;

sorting the eigenvalues by value;

correspondingly sorting the eigenvectors;

using the eigenvectors to generate a set of new metrics;

and

selecting, as the independent basis metrics, a first subset

of the new metrics from the new metrics.

20. Computer instructions, stored within a physical data-
storage device, that, when executed by one or more proces-
sors of a computer system that includes the one or more
processors, one or more memories, and one or more data-
storage devices, control the computer system to compress
metric data comprising a set of data points associated with
each of multiple metrics, each data point comprising a
time-associated data value, by:

determining a set of independent basis metrics for the

metrics;
determining a set of coefficients with which each non-
basis metric is expressed as a linear combination of
terms, each term comprising a coeflicient multiplied by
a basis metric; and

storing the set of independent basis metrics, the set of
coeflicients, and a set of statistical metrics as the
compressed metric data.
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