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usage or performance of an application or application mod-
ule run by the cloud-computing infrastructure or may rep-
resent use or performance of cloud-computing resources
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1
METHODS AND SYSTEMS TO MANAGE
BIG DATA IN CLOUD-COMPUTING
INFRASTRUCTURES

TECHNICAL FIELD

The present disclosure is directed to data analyzing sys-
tems to manage large amounts of metric data generated by
cloud-computing infrastructures.

BACKGROUND

In recent years, enterprises have shifted much of their
computing needs from enterprise owned and operated com-
puter systems to cloud-computing providers. Cloud-comput-
ing providers charge enterprises to store and run their
applications in a cloud-computing infrastructure and allow
enterprises to purchase other computing services in much
the same way utility customers purchase a service from a
public utility. A cloud-computing infrastructure may be
consolidated into a single data center or distributed geo-
graphically over numerous data centers, each data center
composed of numerous racks of servers, switches, routers,
and mass data-storage devices interconnected by local-area
networks, wide-area networks, and wireless communica-
tions.

IT managers of cloud-computing infrastructures rely on
cloud-computing-management systems to generate reliable
and accurate information regarding any current abnormali-
ties and identify bottlenecks associated with running each
enterprise’s applications, and promptly generate actionable
recommendations to handle the abnormalities. In an effort to
generate reliable and accurate information that may be used
to identify current abnormalities, modem cloud-computing
infrastructures now generate and store millions of different
types of metrics over time that may be referred to as “big
data.” Each metric may be a measure of a different aspect of
running an enterprise’s application in a cloud-computing
infrastructure. For example, one metric may measure the
number of users of an application, another metric may
measure the response time of the application, while other
metrics may each measure how much certain cloud-com-
puting resources are used by the application. Abnormalities
are typically identified when a metric violates a threshold.
However, because of an ever increasing volume of metric
data that is generated and stored over time, efforts to identify
and isolate abnormalities in these large volumes of metric
data is becoming increasingly more challenging. IT manag-
ers seek methods and systems to manage these increasing
volumes of metric data.

SUMMARY

Methods and systems that manage large volumes of
metric data generation by cloud-computing infrastructures
are described. The cloud-computing infrastructure generates
sets of metric data, each set of metric data may represent
usage or performance of an application or application mod-
ule run by the cloud-computing infrastructure or may rep-
resent use or performance of cloud-computing resources
used by the applications. The metric data management
methods and systems are composed of separate modules that
perform sequential application of metric data reduction
techniques on different levels of data abstraction in order to
reduce volume of metric data collected. In particular, the
modules determine normalcy bounds, delete highly corre-
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2

lated metric data, and delete metric data with highly corre-
lated normalcy bound violations.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a metric data management
method.

FIG. 2 shows a plot of example set of metric data.

FIGS. 3A-3B show plots of two example sets of metric
data.

FIG. 4 shows a flow-control diagram of a method to delete
sets of metric data based on standard deviation.

FIGS. 5A-5B show a plot of example sets of unsynchro-
nized metric data.

FIG. 6 shows an example a correlation matrix of N sets of
metric data.

FIG. 7 shows Q and R matrices of the correlation matrix
shown in FIG. 6.

FIG. 8 shows a flow-control diagram of a method to delete
correlated sets of metric data.

FIG. 9 shows a flow-control diagram of a generalized
method to calculate normalcy bounds.

FIG. 10 shows a flow-control diagram of a method to
calculate normalcy bounds.

FIG. 11 shows an example flow-control diagram of a
routine “parametric category detector” called in FIG. 10.

FIGS. 12A-12B show plots of example upper and lower
threshold violations.

FIG. 13 shows the set of metric data shown in FIG. 2 with
upper and lower dynamic thresholds.

FIG. 14 shows a plot of an example histogram.

FIG. 15 shows a plot of an empirical cumulative distri-
bution and a corresponding parametric cumulative distribu-
tion.

FIG. 16 shows a plot of current metric data generated after
the historical set of metric data shown in FIG. 13.

FIG. 17 shows an example of time-series data within a
region defined by hard upper and lower thresholds and a
time interval.

FIG. 18 shows an example of time-series data within a
region defined by dynamic upper and lower thresholds and
a time interval.

FIG. 19 shows a flow-control diagram of a method to
determine which normalcy bounds should be re-calculated.

FIGS. 20A-20C show plots an example of a set of metric
data, a set of anomaly metric data, and a cumulative sum of
anomaly metric data associated with an event.

FIG. 21 shows an example of a correlation matrix of a set
of anomaly metric data.

FIG. 22 Q and R matrices of the correlation matrix shown
in FIG. 21.

FIG. 23 shows a flow-control diagram of a method to
delete sets of metric data with correlated events.

FIG. 24 shows a flow-control diagram of the routine
“transform set of metric data to set of anomaly metric data”
called in FIG. 23.

FIGS. 25A-27D are an example of alert detection applied
to four sets of metric data.

FIG. 28 shows an example of a computer system that
executes efficient methods to manage large volumes of
metric data.

DETAILED DESCRIPTION

FIG. 1 shows an example of a metric data management
method 100 implemented as six modules 101-106. In the
example of FIG. 1, a number of enterprise applications 108
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are run in a cloud-computing infrastructure 110 that provides
a platform for using the applications by application users
112. The cloud-computing infrastructure 110 generates N
sets of different types of metric data denoted by

EO@} N

where x”(t) denotes the i-th set of metric data.
The N sets may collectively be called “big data.” Each set
of metric data x”(t) represents usage or performance of a
particular application or application module running in the
cloud-computing infrastructure 110, or use of computational
resources of the cloud-computing infrastructure 110. Each
set of metric data consists of time-series data represented by

M

*O={x200 e == P et
[

@

where x,"=x“(t,) represents a metric value measured at
the k-th time stamp t,.

FIG. 2 shows a plot of example time-series data associ-
ated with the i-th metric of the set of metric data is
represented by Equation (2). Horizontal axis 202 represents
time and vertical axis 204 represents a range of metric
values. Curve 206 represents time-series data generated by
the cloud-computing infrastructure 110 in FIG. 1. FIG. 2
includes a magnified view 208 of metric values. Each metric
value represents the result of a measurement performed at a
time stamp. Solid dots, such as solid dot 210, represent a
metric value x,” at a time stamp t,.

Returning to FIG. 1, the management method 100 uses the
six modules 101-106 to apply different data-analytical tools
on different levels of data abstraction to reduce the overall
volume of metric data and determine a root-cause and rank
of abnormalities contained in the metric data. Each set of
metric data generated by the cloud-computing infrastructure
110 is collected during a specified monitoring time, which
may be different for different sets of metric data. The sets of
metric data are stored in a monitoring data container 114.
The monitoring data container 114 may be a data-storage
device or a data structure. The monitoring data container 114
may be partitioned into two or more sub-containers in which
different sets of metric data may be stored. The modules
101-106 perform different operations on the sets of metric
data. A metric reduction module 101 performs metric quan-
tity reduction by deleting low-variability sets of metric data
and deletes highly correlated sets of metric data. Uncorre-
lated sets of metric data that are sufficiently variability pass
through to a normalcy analysis module 102 that calculates
the normalcy bounds (i.e., upper and lower dynamic, or
hard, thresholds) for each set of metric data that survives the
metric reduction module 101. An alteration inspection mod-
ule 103 calculates a data-to-threshold (“DT”) alteration
degree in order to recognize normal behavior of sets of
metric data against the thresholds determined by the nor-
malcy analysis module 102. In other words, the alteration
inspection module 103 compares behavior of historical sets
of metric data with behavior of a current set of metric data
in order to determine which thresholds should be recalcu-
lated. Abnormality degree calculation and anomaly event
generation module 104 constructs a next level of abstraction
by generating alerts based on metric data that violate nor-
malcy bounds. A metric data that violates normalcy bounds
is called an “event” The sets of metric data are collected in
an event data container 116. The event data container 116
may be a data-storage device or a data structure. Event
reduction module 105 performs a next level of reduction by
deleting sets of metric data based on whether or not the
events are correlated. Root-cause detection and anomaly
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4

ranking module 106 performs problem identification and/or
ranking of reduced event data set.

Metric Reduction Module

Increases in dimensionality and interdependencies of met-
ric data in modem cloud computing infrastructures make
dimensionality reduction a core component in any learning
application. By removing redundant sets of metric data,
learning accuracy is increased and recommendations to
handle abnormalities improve by decreasing the overall
complexity associated with a large number of sets of metric
data. The metric reduction module 101 in FIG. 1 performs
reduction on the sets of metric data by deleting those sets of
metric data with a small standard deviation and are corre-
lated with other sets of metric data. A number of the sets of
metric data may be coming from unloaded parts of the
infrastructure and the behavior of such low-variability (i.e.,
mostly constant) sets of metric data are meaningless regard-
ing further analysis. The sets of metric data within a group
will most probably be better correlated than metric data
collected from a number of different groups.

The metric reduction module 101 reduces the number of
sets of metric data as follows. The metric reduction module
101 begins by computing the standard deviation of each set
of metric data as follows:

- (3a)
= [Tl - 0y
n k=1
where the mean is given by
< (3b)

s 1 i
0 _ 2 (M)
=g § Xk

k=1

When the standard deviation o”>¢_,, where €, is a standard
deviation threshold (e.g., €,=0.01), the set of metric data
x®(t) is retained. Otherwise, when the standard deviation
o¥=e,, the set of metric data x®(t) is deleted from the
monitoring data container 114.

FIGS. 3A-3B shows plots of two different example sets of
metric data.

Horizontal axes 301 and 302 represent time. Vertical axis
303 represents a range of metric values for a first set of
metric data x(t) and vertical axis 304 represents the same
range of metric values for a second set of metric data x7(t).
Curve 305 represents the set of metric data x®(t) over a time
interval between time stamps t; and t, and curve 306
represents the set of metric data x?)(t) over the same time
interval. FIG. 3A includes a plot an example first distribution
307 of the first set of metric data centered about a mean
value p®, and FIG. 3B includes a plot an example second
distribution 308 of the second set of metric data centered
about a mean value u"”. The distributions 307 and 308 reveal
that the first set of metric data 305 has a much higher degree
of variability than the second set of metric data.

FIG. 4 shows a flow-control diagram of a method to delete
sets of metric data based on standard deviation. A for-loop
beginning with block 401 repeats the operations represented
by blocks 402-406 for each set of metric data stored in the
monitoring data container 114. In block 402, a mean data
value is computed according to Equation (3b). In block 403,
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a standard deviation is computed according to Equation (3a).
In decision block 404, when the standard deviation is greater
than a threshold, control flows decision block 406. Other-
wise, control flows to block 405 and the set of metric data
is deleted from the monitoring data container 106. In deci-
sion block 406, the operations represented by blocks 402-
405 are repeated for a different set of metric data stored in
the monitoring data container 114.

The metric reduction module 101 may also reduce the
number of sets of metric data stored in the monitoring data
container 114 based on correlation. However, before further
reducing the number of sets of metric data, if the time-series
data of the sets of metric data are not synchronized in time,
the metric reduction module 101 performs time synchroni-
zation of the sets of metric data using data smoothing. For
example, time synchronization may be performed using a
sliding time window.

FIGS. 5A-5B show a plot of example sets of metric data
that are not synchronized with the same time stamps. Hori-
zontal axis 502 represents time and vertical axis 504 repre-
sents sets of metric data. Curves, such as curve 506, repre-
sent different sets of metric data. Solid dots represent metric
values recorded at different time stamps. For example, solid
dot 508 represents a metric value recorded at time stamp t,.
Solid dots 509-511 also represents metric values recorded
for each of the other sets of metric data with time stamps
closest to the time stamp t,, represented by dashed line 512.
However, in this example, because the metric values were
recorded at different times, the time stamps of the metric
values 509-511 are not aligned in time with the time stamp
t;. Dashed-line rectangle 514 represents a sliding window
with time width At. For each set of metric data, the metric
values with time stamps that lie within the sliding time
window are smoothed and assigned the earliest time defined
by the sliding time window. In one implementation, the
metric values with time stamps in the sliding time window
may be smoothed by computing an average as follows:

)

1 L

72w

=1

) =

where
t=<t=<t+At; and
L is the number of metric values in the time window.
In an alternative implementation, the metric values with
time stamps in the sliding time window may be smoothed by
computing a median value as follows:

x(g)=median{x®(5)} - "

®

After the metric values of the sets of metric data have been
smoothed for the time window time stamp t, the sliding
time window is incrementally advance to next time stamp
t.,1> as shown in FIG. 5B. The metric values with time
stamps in the sliding time window are smoothed and the
process is repeated until the sliding time window reaches a
final time stamp t,,.

The metric reduction module 101 then computes a cor-
relation matrix of the synchronized sets of metric data. FIG.
6 shows an example a NxN correlation matrix of N sets of
metric data. Each element of the correlation matrix may be
computed as follows:
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Z (x;(‘) —/,((‘))(x;(ﬂ _ﬂ(J))

)y = k=L
corr(x"’, x¥') = )

The correlation matrix is a symmetric matrix. The eigenval-
ues of the correlation matrix are computed and a numerical
rank of the correlation matrix is determined from the eigen-
values based on tolerance O<t<1. In particular, the tolerance
t may be in an interval 0.8=t=<1. Consider a set of eigen-
values of the correlation matrix given by:

Mt M

The eigenvalues of the correlation matrix are positive and
arranged from largest to smallest (ie., A=k, for
k=1, ..., N). The accumulated impact of the eigenvalues are
determined based on the tolerance r according to the fol-
lowing conditions:

A+ o+ A (8a)
- " <t

N
ALt oot At + A (8b)
" " er

N

where m is the numerical rank of the correlation matrix.
The numerical rank m indicates that the set of metric data
{x@1)},_," has m independent sets of time-series data.

Given the numerical rank m, the m independent sets of
metric data may be determined using QR decomposition of
the correlation matrix. In particular, the m independent sets
of metric data are determined based on the m largest
diagonal elements of the R matrix obtained from QR decom-
position.

FIG. 7 shows the correlation matrix of FIG. 6 and QR
decomposition of the correlation matrix. The N columns of
the correlation matrix are denoted by C;, C,, ..., Cy, N
columns of the Q matrix are denoted by Q, Q,, . . ., Qn,
and N diagonal elements of the R matrix are denoted by r;,
I35 - - - 5 Iyye The columns of the Q matrix are determined
based on the columns of the correlation matrix as follows:

_ U o
= o
where
|lU,|| denotes the length of a vector U,; and
the vectors U, are calculated according to
U =C, (Ob)
=, C, 9c)
Q> C)
Up=Ci— Q;
y= Q;, 0,y

where (*,*) denotes the scalar product.
The diagonal matrix elements of the R matrix are given by

rii:<Qixci>

The time-series data that correspond to the largest m (i.e.,
numerical rank) diagonal elements of the R matrix are
selected. The remaining time-series data may be deleted
from the monitoring data container 114.

(9d)
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FIG. 8 shows a flow-control diagram of a method to delete
correlated sets of metric data stored in the monitoring data
container 114. In decision block 801, if the sets of metric
data are synchronized, control flows to block 803, otherwise,
control flows to block 802. In block 802, the sets of metric
data are smoothed at the same time stamps as described
above with reference to FIG. 5 and Equations (4) and (5). In
block 803, a correlation matrix is computed as described
above with reference to FIG. 6 and Equation (6). In block
804, eigenvalues of the correlation matrix determined block
803 are determined. In block 805, a numerical rank m of the
correlation matrix is determined based on the eigenvalues
and tolerance as described above with reference to Equa-
tions (8a) and (8b). In block 806, the process of QR
decomposition is applied to the correlation matrix to deter-
mine the diagonal elements of a matrix as described above
with reference to FIG. 7 and Equations (9a)-(9d). In block
807, the m largest diagonal elements of the matrix R are used
to identify corresponding time-series data. In block 808,
time-series data that does not correspond to the m largest
diagonal elements of the matrix R are deleted from the
monitoring data container 114.

Normalcy Analysis Module

After sets of metric data have been deleted by the metric
reduction module 101 of FIG. 1, the normalcy analysis
module 102 of FIG. 1 provides a fully data-agnostic method
to calculate normalcy bounds based on analyzing and cat-
egorizing the sets of metric data remaining in the monitoring
data container 114. FIG. 9 shows a flow-control diagram of
a generalized method to calculate normalcy bounds. The
method utilizes data quality assurance (“DQA™) and data
categorization (“DC”) processes represented by blocks 903
and 906. A for-loop beginning with block 901 repeats the
operations represented by blocks 903, 906, 908, and 909 for
each set of metric data. In block 903, DQA receives a set of
metric data stored in the monitoring data container 114 of
FIG. 1. The DQA identifies a set of metric data 902 as either
corrupted data 904 or qualified data 905 by checking a set of
metric data 902 against different statistical characteristics
defined for data qualification. A corrupted set of metric data
904 is regarded as useless for further analysis and may be
deleted. In block 906, DC identifies and sorts the qualified
set of metric data 905 into one of a number of different types
of categorized data 907. In other words, for each qualified
set of metric data, the DC 906 performs category checking
and identification with hierarchical/priority ordering. In
block 908, category specific normalcy analysis is performed
to determine normalcy bounds for the categorized set of
metric data 907. It should be noted that the type of category
specific normalcy analysis applied to the categorized set of
metric data 907 depends on which statistical category the set
of metric data 907 belongs to. The categorized data 907 may
be input to an alerting engine for abnormality detection via
comparison with normalcy bounds (i.e., upper and lower
dynamic or hard thresholds). In decision block 909, the
operations represented by blocks 903, 906, and 908 are
repeated for another set of metric data.

FIG. 10 shows a flow-control diagram of a method to
calculate normalcy bounds that provides a more detailed
representation of the DQA process in block 903 and the DC
process in block 906 of FIG. 9. A for-loop beginning with
block 1001 repeats the operations represented by blocks
1004,1006, 1010, 1015, and 1018 for each set of metric data
retrieved from the monitory data container 114 of FIG. 1.
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The operations represented by blocks 1004, 1010, and 1015
comprise the DQA process represented by block 903 in FIG.
9, and the operations represented by blocks 1006 and 1018
comprise the DC process represented by block 906 in FIG.
9. In block 1004, a data quality detector receives a set of
metric data 1002 and performs a check of whether or not the
set of metric data satisfies sufficient statistics. Sufficient
statistics may be user defined parameters about the set of
metric data. For example, sufficient statistics may be a
requirement that the set of metric data have a minimum
number of data values and/or the duration of the set of metric
data is greater than a minimum time-series duration. The set
of metric data is identified as corrupted data 1003 if the
metric data does not have sufficient statistical information or
the set of metric data is identified as qualified data 1005. In
block 1006, a routine “parametric category detector” is
called to perform data categorization on the qualified set of
metric data 1005 based on selected statistical parametric
models. The parametric category detector 1006 categorizes
the set of metric data 1007 as a particular type of parametric
data, which may be one of multinomial data, transient data,
semi-constant data, and trendy data, as described below with
reference to FIG. 11. Otherwise, the parametric category
detector 1006 identifies the qualified set of metric data 1005
as a regular set of metric data 1008. Normalcy analysis 1009
is performed to determine normalcy bounds for the para-
metric data 1007. In block 1010, a data density detector
assesses gaps in the regular set of metric data 1008. When
the regular data 1008 is identified as having a high percent-
age of gaps, the regular set of metric data is considered
corrupted data 1011 that may be deleted. When the regular
set of metric data 1008 is identified as having a lower
percentage of gaps, the regular set of metric data is consid-
ered as being composed of dense data 1012. The data density
detector 1010 may also categorize the regular set of metric
data 1008 as sparse data 1013 when the regular set of metric
data includes a high percentage of gaps that are uniformly
distributed in time. In block 1014, normalcy analysis is
applied to determine normalcy bounds for the sparse set of
metric data 1013. In block 1015, a stability detector analyzes
the dense set of metric data 1012 in terms of statistical
stability. When the dense set of metric data 1012 is piece-
wise stable the dense set of metric data is further identified
as a stable set of metric data 1016, otherwise, the dense set
of metric data 1012 is categorized as corrupted data 1017
that may be deleted. In block 1018, a variability detector
receives the stable set of metric data 1016 and categorizes
the data as high-variability data 1019 or low-variability data
1020. In blocks 1021 and 1022, normalcy analysis is per-
formed to determine normalcy bounds for the high-variable
data 1019 and the low-variable data 1020. In decision block
1023, the operations represented by blocks 1004, 1006,
1010, 1015 and 1018 are repeated for another set of metric
data.

FIG. 11 shows an example flow-control diagram of the
routine “parametric category detector” called in block 1006
of FIG. 10. The blocks 1101-1104 determine which type of
parametric data categories the qualified data 1005 belongs
to. The parametric data categories are multinomial data
1106, transient data 1107, semi-constant data 1108, and
trendy data 1109. When the qualified set of metric data 1005
does not belong to any of the four categories identified in
blocks 1101-1104, the qualified set of metric data 1005 is
identified as regular data 1008. The routine shown in FIG. 11
includes the normalcy analysis 1009 applied the parametric
data categories 1106-1109.
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Techniques for determining the normalcy bounds
described in block 908 of FIG. 9 and in blocks 1009, 1014,
1021, and 1022 of FIG. 10 are described in greater detail in
U.S. patent application Ser. No. 13/853,321, Publication No.
2014/0298098, filed Mar. 29, 2013, owned by VM Ware, Inc.

Abnormality Degree Calculation and Anomaly
Event Generation Module

The abnormality degree calculation and anomaly event
generation module 104 of FIG. 1 provides abnormality
degree estimation based on hard or dynamic normalcy
ranges (i.e., upper and lower thresholds). The premise
behind module 104 is that a set of metric data may violate
a threshold for a period of time. The modules determines
historical and current degrees of abnormality. Threshold
violations are determined by computing a distance of each
metric value from upper and lower thresholds. Consider a set
of historical time-series data represented by Equation (2).
Let u,® denote the value of an upper threshold at time stamp
t, for the i-th set of metric data. The distance of a metric
value x, from the upper threshold u,* at time stamp t, is
given by.

& =0 - 10
Likewise, let 1, denote the value of a lower threshold at time
stamp t; for the i-th set of metric data. The distance of a data
value x, from the lower threshold 1, at the time stamp t,
is given by:

d}l=x, -1,

an

When the distance d =0 and the distance d,’<0, the data
value x, is considered normal and a threshold violation has
not occurred. On the other hand, when either d,*>0 or d,”>0
occurs, the data value x,* is considered abnormal and a
threshold violation has occurred.

FIGS. 12A-12B show plots of example upper and lower
threshold violations. Horizontal axes 1201 and 1202 repre-
sent time and vertical axes 1203 and 1204 represent a range
of metric values. Solid dots represent metric values. In FIG.
12A, dashed curve 1205 represents an upper dynamic
threshold denoted by u. Metric values greater than the upper
threshold 1205, such as metric value 1206, have distances
d,* greater than zero and correspond to a sequence of upper
threshold violations. In FIG. 12B, dashed curve 1207 rep-
resents a lower dynamic threshold denoted by 1. Metric
values less than the lower threshold 1207, such as metric
value 1208, have distances d,* greater than zero and corre-
spond to a sequence of lower threshold violations.

A sequence of threshold violations is called an “event.”
FIG. 13 shows the time-series data shown in FIG. 2 with
upper and lower dynamic thresholds added. The time-series
data represents historical time-series data recorded between
time t, and t,. Dashed curve 1302 represents an upper
dynamic threshold and dashed curve 1304 represents a lower
dynamic threshold. A constant upper or lower threshold
would be represented by a straight line that runs parallel to
the time axis 202. The time-series data 206 includes four
events denoted by E|, E,, E;, and E,,. The events E, and E;
are each composed of a sequence of consecutive time-series
data that are less the lower threshold 1304 and are called
“lower-threshold events.” Each of the lower-threshold
events E, and E; corresponds to a sequence of time-series
data values where d,”>0. The events E, and E, are composed
of'a sequence of consecutive time-series data that are greater
than the upper threshold 1302 and are called “upper-thresh-
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old events.” Each of the upper-threshold events E, and E,
corresponds to a sequence of consecutive time-series data
values where d,”>0.

The distances d,“>0 for the full set of time-series data
may be collected to form a set of historical upper-threshold
event distances given by

Du:{dku}}FlM 12)

where
d,>0; and
M is the number of historical upper threshold viola-
tions.
Likewise, the distances d,”>0 for the full set of time-series
data may also be collected to form a set of historical
lower-threshold event distances given by
D'={d/}iei®
where
d,”>0; and
R is the number of historical lower threshold violations.
Alternatively, a single distance metric may be calculated
for each upper-threshold event, and the distance metrics
associated with each upper threshold event may be collected
to form a set of historical upper-threshold distance metrics.
Consider an upper-threshold event E; composed of a set of
m distances greater than zero:

d,*D,d, D

(13)

(14)

where d,>0, for 1si=m.
A distance metric for the upper-threshold event E may
calculated as follows:

%u:(P(dlu(/')’ dz"(/) (1 5)

where ¢ represents one of the mean, median, and maxi-

mum of the distances.

This procedure may be repeated for each upper-threshold
event and the distance metrics associated with the upper-
threshold events may be collected to form a set of historical
upper-threshold distance metrics represented by:

5u:{3ju}j:1J

(16)
where J represents the number of upper-threshold events.
Likewise, consider a lower-threshold event E, composed

of r lower-threshold distances greater than zero:

dll(q)’ dzl(q) d,l(q)

a7

where d/ >0, for 1<izr.
A distance metric may be calculated as follows:

gqu:q,(dlu(q)’ dzu(q) (18)

where ¢ represents one of the mean, median, and maxi-
mum of the distances.
The distance metrics of the lower-threshold events may be
collected to form a set of historical lower-threshold distance
metrics represented by:

D=3},

(19)

where Q represents the number of lower-threshold events.

The event counts of the upper-threshold events may be
collected to form a set of historical upper-threshold event
counts given by

Cu:{cj}j:lj
where ¢, represents the number of upper-threshold viola-
tions comprising the upper-threshold event E,.
Analogously, the event counts of the lower-threshold events
may also be collected to form a set of historical lower-
threshold event counts given by

Cl:{cq}q:lg

(20)

@n
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where C, represents the number of upper-threshold vio-
lations comprising the upper-threshold event E,.

The sets C* and C’ are count sets of abnormalities that may
be combined with distance sets of abnormalities D¥, IV, D,
and D’ as follows to provide a two-component representation
of historical threshold violations. An upper-threshold com-
bined set of abnormalities may be formed from the set of
historical upper-threshold event distances and the set of
historical upper-threshold event counts as follows:

G“=(D* C¥) (22)

Alternatively, an upper-threshold combined set of abnor-
malities may be formed from the set of historical upper-
threshold distance metrics and the set of historical upper-
threshold event counts as follows:

G“=(D",C*) (23)

Likewise, a lower-threshold combined set of abnormali-
ties may be formed from the set of historical lower threshold
distances and the set of historical lower-threshold counts as
follows:

G'=(D',C" (24)

Alternatively, a lower-threshold combined set of abnormali-
ties may be formed from the set of historical lower-threshold
distance metrics and the set of historical lower-threshold
event counts as follows:

G=(D'.C) 25

Equations (22)-(25) represent various types of combined
sets of abnormalities that may be formed from historical
time-series data. In practice, only one upper-threshold com-
bined set of abnormalities and only one lower-threshold
combined set of abnormalities are formed from historical
time-series data.

In an alternative implementation, upper and lower-thresh-
old event durations may be used instead of upper and
lower-threshold event counts in Equations (22)-(25). An
upper-threshold event duration may be collected to form a
set of historical upper-threshold event durations given by

T={t}-/ 26

where T, is the duration of the j-th upper-threshold event.
The duration may be calculated as /=T, ,,,;~T; 10, Where
T, s1ar: FEPresents the time stamp of the first metric value in
the upper-threshold event E, to violate the upper threshold
and T, ,,, represent the time stamp of the last metric value in
the upper-threshold event E; to violate the upper threshold.
Analogously, the durations of the lower-threshold events
may also be collected to form a set of historical lower-
threshold event durations given by

TF{Tq}fflg @7

where T, is the duration of the q-th lower-threshold event.

After an upper-threshold combined set of abnormalities
and a lower-threshold combined set of abnormalities are
formed from the historical time-series data, a corresponding
pair of upper and lower estimated historical degrees of
abnormality are determined. Upper and lower threshold
estimated historical degrees of abnormality that correspond
to the upper and lower combined sets of abnormalities given
by Equations (22)-(25) are denoted by

Go“=(Do*,Co¥) (28a)

Go*=Do",Co") (28b)
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Gol:(Dolx Col) (28¢c)

Go=(Dy.Cy))
In Equations (28a)-(28d), the two quantities within the
brackets are called “abnormality degree components.” For
example, the quantities D,* and C,* in Equation (28a) are the
abnormality degree components of the upper historical
degree of abnormality G,”. Each abnormality degree com-
ponent of an upper or a lower historical degree of abnor-
mality is a numerical value. For example, the quantities D,*
and C,” in Equation (28a) are numerical values.

The follow description presents a method for determining
an abnormality degree component S, based on a correspond-
ing set of abnormalities S. In the following description, the
set of abnormalities S represents any one or the sets of
abnormalities described above with reference to Equations
(22)-(25) and the abnormality degree component S, repre-
sents any one of the corresponding abnormality degree
components introduced in Equations (28a)-(28d). For
example, the set S may represent the set of historical
upper-threshold event distances D* represented by Equation
(12) and S, may represent the corresponding abnormality
degree component D,*. The abnormality degree component
S, may be computed as the inverse of an empirical cumu-
lative distribution of the set S denoted by Fs,emp"l(s).
Methods for computing the inverse of the empirical cumu-
lative distribution for the set S are now described. It should
be noted that although in the following description only one
method is described for determining abnormality degree
component S,, other methods may be used to determine an
abnormality degree component S, based on a corresponding
set of abnormalities S. For example, an abnormality degree
component S, of the set S may be determined based on hard
or dynamic thresholds for S. In the case of dynamic thresh-
olds, the abnormality degree component S, may include
cyclical behavior of the set S. In other words, different time
segments may have different degrees of abnormalities.

First, a histogram of the values s comprising the set S is
computed. The histogram is formed by dividing the range of
value s in the set S into L. subintervals (i.e., bins). Each
subinterval covers a range of values associated with the
value s. The fraction of values in each subinterval may be
calculated by counting the number of values s in the set S
that lie within each subinterval and dividing by the total
number of values s in the set S. The fraction of values s
calculated for each subinterval is a probability denoted by v,,
where O=v,<1 for a subinterval index 1=1, . . ., L. The
probability v, associated with the 1-th subinterval represents
the probability that a randomly selected value s from in the
set S lies within the 1-th subinterval.

FIG. 14 shows a plot of an example histogram of values
s in the set S. Horizontal axis 1402 represents a range of
values, and vertical axis 1404 represents a range of real
numbers greater than 0. Bars represent the probability of
values in S lies within subintervals. For example, bar 1406
represent the probability vt that a value s selected from the
set S lies in the 1th subinterval 1408.

An empirical probability density function is then calcu-
lated for the set S based on the histogram. An empirical
probability density function denoted by f_,,, may be inter-
polated or estimated from the histogram of the set S. The
empirical probability density function may be obtained
using density estimation of the histogram corresponding to
the set S or by fitting a polynomial to the probabilities (i.e.,
fractions) of the histogram for the set S.

Returning to FIG. 14, a dashed curve 1410 that passes
through the probabilities v, represented by the bars repre-

(28d)
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sents an interpolated empirical probability density function
J omp that characterizes the probability of the random distri-
bution of values in the set S.

An empirical cumulative distribution Fy_,,, associated
with the set S is calculated from the corresponding empirical
probability density function f,,,,. The empirical cumulative
distribution F,,,, represents the probability that a randomly
selected value in the set S will have a value less than or equal
to a particular value s. An empirical cumulative distribution
F§ mp may be represented mathematically as the integral of
an empirical probability density function f_  as follows:

emp

* 29
Fyompls) = f df ) 29)
0

where s represents a value along the axis 1402 in FIG. 14.
An empirical cumulative distribution Fg_,,,, may be calcu-
lated from a probability density function f_,,, using any one
of many different numerical integration techniques. Alter-
natively, an empirical cumulative distribution Fg ,,, may be
calculated as a sum of the probabilities v, up to and including
the 1th interval that contains the value s as follows:

A (30)

Fomp©)= Y Wi

=1

where 1 is the subinterval that contains the value s.

The abnormality degree component S, may be determined
by computing the inverse of an empirical cumulative distri-
bution as follows:

SOZFS,empil(SO)

where Oss <1 (e.g., 5,=0.7).
For example, the lower-threshold estimated historical degree
of abnormality of Equation (28c) is given by

G

Go'=(Dy!, CH=(F, Dl,em;;l (sp),F C'!,empil(s o)
where
Ossp,s-=1 (e.g., sp=s-=0.7); and
F Dl,emp‘l(s ) 1s the inverse of the empirical cumulative
distribution for the set D; and
Fcf,emp‘l(sc) is the inverse of the empirical cumulative
distribution for the set C’.

In an alternative implementation, a parametric cumulative
distribution Fg may be calculated based on the empirical
cumulative distribution Fg_,,, by making an appropriate
selection of the parameters of the parametric cumulative
distribution F. For example, the parameters associated with
a parametric cumulative distribution F ¢ may be calculated so
that the parametric cumulative distribution F¢ approximates
the empirical cumulative distribution Fg_,,,.

FIG. 15 shows a plot of an empirical cumulative distri-
bution Fg_,, represented by dashed curve 1502 and a
corresponding parametric cumulative distribution Fg repre-
sented by solid curve 1504. The parametric cumulative
distribution Fg 1504 may be obtained by calculating the
parametric cumulative distribution parameters as a best fit to
the empirical cumulative distribution Fg_,,,.

Examples of other parametric cumulative distributions
that may to be used includes a generalized Pareto (“GP”)
distribution and a generalized extreme value (“GEV”) dis-
tribution. The GP distribution is given by:
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s ); 33

Fis)=1 —(1 -
for A=0 and 0>0; and

Fis)=l-co 34

for A=0 and o>0,
where s=0 if y=0; and

0=xs=Lify>0.
y

The parameters y and o of the GP distribution are deter-
mined as a best fit to an empirical cumulative distribution
F The GEV distribution is given by:

S,emp*

(35

e =ewf-{1 o2 ¥}

for

s—p
a

1+§( )>0,

where £=0 is the shape parameter, p is a location parameter,
and 0>0; and

s—u

Fils) = exp{-exp-—= |} 36)

for £=0.
The parameters 1, o, & of the GEV distribution are deter-
mined as a best fit to the empirical cumulative distribution
FS,emp'

The abnormality level component S, may be given by the
inverse of a parameter cumulative distribution as follows:

So=Fs"(s0) (37

where O=s,=1 (e.g., 5,=0.7).
For example, the upper-threshold estimated historical degree
of abnormality of Equation (28a) is given by

Go*=(Do*, CoY=(Fpv (sp).F e H(s0)) (38)

where
0=s,,5.=1 (e.g., s,=5,=0.7); and
F'(sp) is the inverse of a parametric cumulative
distributions for the set D*; and
Fo'(s.) is the inverse of a parametric cumulative
distributions for the set C*.

When a current threshold violation (i.e., normalcy bound
violation) occurs, a number of additional current violations
may be allowed to accumulate in order to determine whether
or not the violations constitute an event that needs attention.
Consider a sequence of a current threshold violations rep-
resented by

LIYRN YRR it (39)
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where the distance d,,, is the current violation of a
threshold.
A current distance metric is computed for the current event
as follows:

= p(dpg 1, Gapns - - - rfc)

where ¢ is the mean, median, or maximum.
An estimated current degree of abnormality may be given by

(40)

Grun-time(grun-time o\ @1

where c is the time stamp count of the current event.
Alternatively, the estimated current degree of abnormality
may be given by

Gun-time(grun-time [run-cime) 42)

where T is the current duration of the current event.

FIG. 16 shows a plot of current data generated after the
historical time-series data shown in FIG. 13. Time stamp t,,
identifies the final time stamp of the historical time-series
data. As shown FIG. 16, current data collected after the time
stamp t, includes an upper-threshold event E;. When a
threshold violation occurs at data value 1602 in magnified
view 1604 of upper-threshold event E, eight additional
metric values are allowed to accumulate, where data value
1606 represents the most recently generated metric value.

When a current distance metric d””"™ is greater than the
abnormality degree component Dy or D, and/or a current
time stamp count c is greater than C,* or C,’, the current
normalcy bound violation is considered an event worth of an
alert and attention by IT managers is stored in the event
container 116 of FIG. 1. Consider, for example, the follow-
ing pseudo-code representation of determining whether cer-

tain threshold violations with a current degree of abnormal-

ity G™"%™ is an event:

1 compute Go* = (Dg*,Co*);

2 compute Gy = (Dy,Cq);

3 compute G me = (drun-time ¢

4 if (G“"™me corresponds to an upper-threshold event) {

5 if (drime > D* and ¢ > Co¥) {  // event is worthy of
attention

6 store in event container;

7 return;

8 }

9

10 if (G™"*™e corresponds to a lower-threshold event) {

11 if (& #me > Dl and ¢ > Cyf) {  // event is worthy of
attention

12 store in event container;

13 return;

In an alternative implementation, rather than comparing
both current abnormality degree components with historical
abnormality degree components, a single metric based on
the abnormality degree components may be used. Consider
a single-valued metric of the form f(x,y), where x and y are
abnormality degree components of an estimated historical
degree of abnormality. For example, the metric may be a
product to the abnormality degree components f(X,y)=xy or
a linear combination of the abnormality degree components
f(x,y)=ax+by, where a and b are weights assigned to the
components. An abnormality threshold may also be defined
by £(X,¥,) and compared with a current metric f(x"*™,
YRy When f(x™777 v >(X0,Y ), the event is
worthy of an alert and attention by IT managers and is stored
in the event container 116 of FIG. 1.
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Consider, for example, the following pseudo-code repre-
sentation of determining whether certain threshold viola-

tions with a current degree of abnormality G™*#™ is an

event:

1 compute Gy = (Dg*,Co");

2 compute Gy’ = (Dy',Co');

3 compute G#m-fime = (drun-ime oy

4 if (G“™e corresponds to an upper-threshold event) {

5 £ (drn-rime )

6 1 (Dg*,Co");

7 if (f (dmme ey > £ (D, Co*)) {  // event is worthy of
attention

8 store in event container;

9 return;

10 1

11

12 if (G™**™e corresponds to a lower-threshold event) {

13 £ (dremime g);

14 f (Dy',Co);

15 if (F (d™mme ey > £ (Dy,CoN) { // event is worthy of
attention

16 store in event container;

17 return;

18 1

9}

In alternative implementations, the estimated historical
degree of abnormality given by Equations (28b) and (28d)
may be used. In still other implementations, rather than
computing estimated historical degrees of abnormality, con-
stant thresholds may be used instead. For example, rather
than computing D,* and C,* as described above, D, and C,*
may both be assigned a constant numerical value in 0<D,*,
C,“<1, such as 0.9.

Alteration Inspection Module

The alteration inspection module 103 of FIG. 1 identifies
sets of metric data for which normalcy bounds should be
re-computed. If a set of metric data shows little variation
from historical behavior, then there may be no need to
re-compute normalcy bounds. On the other hand, determin-
ing a time to recalculate normalcy bounds in the case of
global or local changes and postponing recalculation for
conservative data often decreases complexity and resource
consumption and minimizes the number of false alarms and
improves accuracy of recommendations.

The alteration inspection module 103 compares normal
characteristics of a historical set of metric data with the
characteristics calculated for a current time period. The
module 103 computes a data-to-threshold (“DTT”) altera-
tion degree of the interdependence between a set of metric
data and the associated normalcy bounds, which may be
used to decide whether or not the normalcy bounds should
be recalculated.

A DT alteration degree may be computed as follows:

S 43
g(P,§)=e 1P @y

max

where

a>0 is a sensitivity parameter (e.g., a=10);

P is a percentage or fraction of current time-series data
values that lie between upper and lower thresholds
over a current time interval [t,,,,,,:{,mcl

S,.ar 1 the area of a region defined by an upper

threshold, u, and a lower threshold, 1, and the current
time interval [t and

minstmax];
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S is the square of the area between metric values within
the region and the lower threshold.
The DTT alteration degree has the property that O=g(P,S)=<1.
The DTT alteration degree may be computed for dynamic or
hard thresholds.
When the upper and lower thresholds are hard thresholds,
an area of a region, S is computed as follows:

max?

S e L) (U=1) 44)

An approximate square of the area, S, between metric values
in the region and a hard lower threshold may be computed
as follows:

= 45)
§= EZ (K1 + % = 2D)(Wer — 1)
=

where
M is the number metric values with time stamps in the
time interval [t
t,,,=t;; and
t, s

FIG. 17 shows an example of current time-series data
within a region defined by hard upper and lower thresholds
and a current time interval [t,,,,.t,...]. Horizontal axis 1701
represents time and vertical axis 1702 represent a range of
metric values. Dashed line 1703 represents an upper thresh-
old, u, and dashed line 1704 represents a lower thresholds,
1. Dashed line 1705 represents time t,,,, and dashed line 1706
represents time t,,,,.. The upper and lower thresholds and the
current time interval define a rectangular region 1708. Solid
dots, such as solid dot 1710, represent metric values with
time stamps in the current time interval. In this example, the
percentage of current time-series data in the region 1708 is
66.7%. The area of the rectangular region S, is computed
according to Equation (44). Shaded areas 1712 and 1714
represent areas between metric values in the region 1708 and
the lower threshold 1704. An approximate square of the
areas 1712 and 1714 may be computed according to Equa-
tion (45).

When the upper and lower thresholds are dynamic thresh-
olds, an approximate area of the region, S,,,,, defined by the
dynamic upper and lower thresholds and the time interval
may be computed as follows:

min’tmax] s

M-1

Smax = Z (41 = Bt Waer — 1)
=

(46)

An approximate square of an area, S, between metric values
in the region and a dynamic lower threshold may be com-
puted as follows:

= @7
S = EZ (et = ber) + (o = L))t — 1)
=

FIG. 18 shows the example current time-series data of
FIG. 17 within a region defined by dynamic upper and lower
thresholds and the same time interval [t,,,,,.t,...]- F1G. 18 is
similar to FIG. 17 except the hard upper and lower thresh-
olds of FIG. 17 have been replaced by dynamic upper and
lower thresholds 1801 and 1802, respectively. The approxi-
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mate area S,,,, of a region 1803 defined by the upper and
lower thresholds and the time interval is computed accord-
ing to Equation (46). Shaded arcas 1804 and 1805 represent
areas between metric values in the region 1803 and the
dynamic lower threshold 1802. An approximate square of
the areas 1804 and 1805 may be computed according to
Equation (47).

The DTT alteration degree is computed for a current time
interval and compared with a previously computed DTT
alteration degree for the same metric but for an earlier time
interval. When the following condition is satisfied, the
thresholds for the metric are re-computed:

Ig*(BS)-g"(B.S)1>¢g (48)

where
g™ (PS) is a DTT alteration degree computed for
current time interval;
g”“(P,S) is a previously computed DTT alteration
degree computed for a previous time interval; and
€, is an alteration threshold (e.g., €,=0.1).
When the condition represented by Equation (48) is not
satisfied, the thresholds for the metric are unchanged. The
thresholds may be recomputed using the normalcy analysis
module 102 of FIG. 1.

FIG. 19 shows a flow-control diagram of a method to
determine which normalcy bounds should be re-calculated
executed by the alteration inspection module 103 of FIG. 1.
A for-loop beginning with block 1901 repeats the operations
represented by blocks 1902-1911 for each set of metric data
in the monitoring data container 114 of FIG. 1. In block
1902, current time-series data with time stamps in a current
time interval [t,,,1,...] are retrieved from a data-storage
device. In block 1903, a percentage of metric values that lie
within a region defined by the upper and lower thresholds
and the time interval [t,,,.t,.,.] 15 computed as described
above with reference to FIGS. 17 and 18. In block 1904, the
area S,,,. of the region bounded by the upper and lower
thresholds and the time interval [t,,.t,,] is computed.
When the thresholds are hard thresholds, the area may be
computed according to Equation (44). When the thresholds
are dynamic thresholds, the area may be computed accord-
ing to Equation (46). In block 1905, the square area of
between the metric values in the region and the lower
threshold are computed. When the lower threshold is a hard
threshold, the square of the area may be computed according
to Equation (45). When the lower threshold is a dynamic
threshold, the square of area may be computed according to
Equation (47). In block 1907, a DTT alteration degree
g“’(P,S) of the current time interval is computed based on
the values obtained in blocks 1903-1905 according to Equa-
tion (43). In block 1907, a previous DTT alteration degree
g77°(P,S) computed for a previous time interval is retrieved
from data storage.

In decision block 1908, when the condition represented
by Equation (48) is satisfied, control flows to block 1909 and
the thresholds are recomputed using the normalcy analysis
module 102 of FIG. 1. Otherwise, control flows to block
1910, and the DTT alteration degree g”*(P,S) is assigned the
value of the DTT alteration degree g”(P,S). In decision
block 1911, the operations represented by blocks 1902-1910
are repeated for another set of metric data.

Alert Reduction Module

The alert reduction module 105 of FIG. 1 deletes and/or
stops collecting sets of metric data with no events and
deletes sets of metric data with correlated events.



US 9,948,528 B2

19

Alternatively, the rate at which such sets of metric data are
stored may be lowered in order to conserve storage space
and threshold recalculation by alteration inspection module
103 may be postponed. On the other hand, certain sets of
metric data that do not have events may still provide useful
information about the cloud-computing infrastructure or an
enterprise’s applications, leading to proactive actions
towards optimizations and infrastructure reorganizations.

The alert reduction module 105 may include calculation
of an event rate for each set of metric data stored in the event
data container 116. The event rate of a set of metric data,
denoted by E, ., is the number of events that occur over a
period of time. When the event rate is less that an event-rate
threshold, (e.g., less than 5 events in a 3 month period), the
set of metric data may be deleted. Alternatively, the events
may be rated by root cause and black swan analyses module
106 described below in order to give high rates to metrics
with impactful events.

For sets of metric data with a number of events greater
than the event-rate threshold, the alert reduction module 105
reduces the number of events in the event data container 116
based on event correlation. The alert reduction module 105
is based on normalcy bounds assigned to a set of metric data
x®@(t) and at each time stamp t, threshold violation may be
determined, and in case of sequential threshold violations, a
duration or number of sequential violated metric values may
be determined. A set of metric data x(t) is transformed to
a set of anomaly metric data as follows:

49

0 for = x9(z,) < u,

aP@) =4 @) —u,  for x01g) > ug

1 —x9(,) for xP(,) < I

In an alternative implementation, a cumulative sum of the
anomaly metric values may be calculate as follows:

_ 6 (50)
SOy = a0

t

where t is an event time stamp.

FIGS. 20A-20C show plots an example set of metric data,
a set of anomaly metric data, and a cumulative sum of
anomaly metric data associated with an event. Horizontal
axis 2001 represents time and vertical axis 2002 represents
a range of metric values. Solid dots, such as solid dot 2003,
represent a set of metric data. FIG. 20A shows the set of
metric data with seven metric values that violate an upper
threshold 2004 to form an event. FIG. 20B shows a set of
anomaly metric data with zero values that corresponding to
the metric data that does not violate the upper threshold in
FIG. 20A and positive valued anomaly metric values that
correspond to the metric data greater than the threshold
determined according to Equation (49). For example,
anomaly metric value 2006 is the distance of the metric
value 2003 above the threshold 2004 at time stamp tg. FIG.
20C shows a cumulative sum of the anomaly metric data up
to the time stamp t;. For example, cumulative sum metric
value 2008 is computed as the sum of the anomaly metric
values in FIG. 20B up to and including the anomaly metric
value 2006 at the time stamp t.

A correlation matrix is then computed for one of the set
of anomaly metric values {a®(t)},_,”, and the set of cumu-
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lative sum anomaly metric values {s®(t)},_," as described
above with reference Equation (6). FIG. 21 shows an
example of a correlation matrix for the set of anomaly metric
values {a®(t)}),_,”. Each element of the correlation matrix
in FIG. 21 may be computed using Equation (6).

The eigenvalues of the correlation matrix are computed,
ordered from largest to smallest as described above with
reference to Equation (7), and a numerical rank m of the
correlation matrix is determined from the eigenvalues based
on a tolerance O<t<l, as described above with reference to
Equations (8a)-(8b). Depending on the whether the correla-
tion matrix has been computed for the set of metric data
xOm)}),_,Y, the set of anomaly metric values {x®(t)},_",
or the set of cumulative sum anomaly metric values
{s@)},_,", the numerical rank m indicates the number of
independent sets of metric data (i.e., independent events).

Given the numerical rank m, the m independent sets of
metric data may be determined using QR decomposition of
the correlation matrix. In particular, the m independent sets
of metric data are determined based on the m largest
diagonal elements of the R matrix obtained from QR decom-
position.

FIG. 22 shows the correlation matrix of FIG. 21 after QR
decomposition. The N columns of the correlation matrix
shown in FIG. 21 are denoted by A |, A, . . ., Ay, N columns
of the Q matrix are denoted by Q;, Q,, . . ., Qy, and N
diagonal elements of the R matrix are denoted by t,;,
Thss « - - s Eyne The columns of the Q matrix are determined
based on the columns of the correlation matrix as follows:

o L (51a)
&=
where
||A,|| denotes the length of a vector A,; and
the vectors V, are calculated according to
Vi = Ay (51b)
il g (5lc)
WA
yon Sh )y
=1 <Qj’ QJ>

where (*,*) denotes the scalar product.
The diagonal matrix elements of the R matrix are given by

7 ii:<Qi’Ai>
In this example, the sets of anomaly metric data that
correspond to the largest m (i.e., numerical rank) diagonal
elements of the R matrix are selected. The remaining sets of
anomaly metric data may be deleted from the event data
container 116.

FIG. 23 shows a flow-control diagram of a method to
delete sets of metric data with correlated events. A for-loop
beginning with block 2301 repeats the operations repre-
sented by blocks 2302-2307 for each set of metric data
stored in the event data container 116 of FIG. 1. In decision
block 2302, when a set of metric data has threshold violation
events, control flows to block 2303. Otherwise, the set of
metric data has no events, control flows to block 2305. In
block 2303, an event rate E, .., is compute for the set of
metric data as a count of the number of events that occurred
over a period of time. In decision block 2304, when the
event rate E, .. is less than an event-rate threshold e

(51d)

rate rate’
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control flows to block 2305. Otherwise, when the event rate
E, . is greater than the event-rate threshold €,,, . control
flows to block 2306. In this example, in block 2305, the set
of metric data is deleted from the event data container 116.
In block 2306, a routine “transform set of metric data to set
of anomaly metric data” is called to perform the transfor-
mation represented by Equation (49). In decision block
2307, the operations represented by blocks 2302-2306 are
repeated for another set of metric data stored in the event
data container 106. In block 2308, matrix elements of a
correlation matrix are computed as described above with
reference to FIG. 21 and Equation (6). In block 2309,
eigenvalues of the correlation matrix determined block 2308
are determined. In block 2310, a numerical rank m of the
correlation matrix is determined based on the eigenvalues
and tolerance as described above with reference to Equa-
tions (8a) and (8b). In block 2311, the process of QR
decomposition is applied to the correlation matrix to deter-
mine the diagonal elements of a matrix as described above
with reference to FIG. 7 and Equations (51a)-(51d). In block
2312, the m largest diagonal elements of the matrix R are
used to identify corresponding time-series data. In block
2313, time-series data that does not correspond to the m
largest diagonal elements of the matrix R are deleted from
the event data container 116.

FIG. 24 shows a flow-control diagram of the routine
“transform set of metric data to set of anomaly metric data”
called in block 2306 of FIG. 23. A for-loop beginning with
block 2401 repeats the operations of blocks 2402-2409 for
each metric value x,” of the set of metric data. In decision
block 2402, when x,“>u,®, where u,® is the upper thresh-
old value at time stamp t,, control flow to block 2403.
Otherwise, x,”=u,® and control flows to decision block
2404. In block 2403, an anomaly metric value is computed
as a,"=x,"—u,®. In decision block 2404, when x,"<1,)
where 1, is the lower threshold value at time stamp t,,
control flow to block 2405. Otherwise, x,=<1,*” and control
flows to decision block 2406. In block 2405, an anomaly
metric value is computed as a,*=1,—x, . In block 2406,
the anomaly metric value a,%’ is set equal to zero. In an
alternative implementation, when sets of cumulative sums
are used instead of sets of anomaly metric data, cumulative
sums may be calculated in block 2407, as described above
with reference to Equation (50). In block 2408, the set of
anomaly metric data (or cumulative sums) are stored in a
data-storage device. In decision block 2409, the operations
represented by blocks 2402-2408 are repeated for another
set of metric data in event data container 116.

FIGS. 25A-27D illustrate an example of the alert detec-
tion module 105 applied to four sets of metric data. Two of
the four sets of metric data represent user counts and
response time of a first application, and the other two of the
four sets of metric data represent user counts and response
of a second application.

FIGS. 25A-25B show plots of the user counts x,(t) and
response times X,(t) for the first application, respectively.
Line 2501 represents a user-count upper threshold of 70
users for the first application, and line 2502 represents a
response-time upper threshold of 4 milliseconds for the first
application. Spikes, such as spike 2505, represent events.
FIGS. 26A-26B show plots of sets of anomaly metric data
a,;(t) and a,(t) calculated for events shown in FIGS. 25A-
25B, respectively. FIGS. 27A-27B show plots of sets of
cumulative sums s, (t) and s,(t) of the sets of anomaly metric
data shown in FIGS. 26A-26B, respectively. However,
because the duration of alarms and associated magnitudes
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are small, sets of metric data x,(t) and x, (t) remain uncor-
related with a correlation coefficient

Py, =0-091.

The correlation coefficient of the sets of anomaly metric data
a,(t) and a,(t) is

Prapuy=0-907.

The correlation coefficient of the sets of cumulative sums
s,(t) and s,(t) is

Paysy=0-904.

The correlation matrix of sets of metric data x,(t) and x,(t)
is

( 1 0.091 ]
0.091 1

with eigenvalues
2=1.091,0,=0.909

With tolerance ©=0.9 both sets of metric data x,(t) and x,(t)
are retained without reduction. On the other hand, perform-
ing correlation analysis on the sets of cumulative sums s, (t)
and s,(t) gives a correlation matrix

( 1 0.904]
0904 1

with eigenvalues
2,=1.904,0,=0.096.

With tolerance ©=0.9 one sets of the metric data x,(t) and
X,(t) is retained. QR decomposition yields the following
matrix R

( 1348 1341 ]
L0 0136

and hence, the set of metric data x,(t) is sufficient for
description of Application 1.

FIGS. 25C-25D show plots of the user counts x,(t) and
response times x,4(t) for the second application, respectively.
Line 2503 represents a user-count upper threshold of 140
users for the second application, and line 2504 represents a
response-time upper threshold of 4 milliseconds for the
second application. FIGS. 26C-26D show plots of the sets of
anomaly metric data a,(t) and a,(t) calculated for events
shown in FIGS. 25C-25D, respectively. FIGS. 27C-27D
show plots of the sets of cumulative sums s,(t) and s,(t) of
the sets of anomaly metric data shown in FIGS. 26C-26D,
respectively. Correlation coefficient of the sets of metric data
x,(t) and x,(1) is

Py ~0-0003

Correlation coefficient of the sets of anomaly metric data
a,(t) and a,(t) is

Prayay=0-907

Correlation coeflicient of the sets of cumulative sums s;(t)
and s,(t) is

Paysy=0-931
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Correlation analysis applied to x;(t) and x,(t) shows no-
reduction and correlation analysis applied the sets of cumu-
lative sums s;(t) and s,(t) shows that x(t) is sufficient for
description of Application 2.

When the four sets of metric data associate with the first
and second applications are considered together, the sets of
metric data are represented by {x,},_,* and the correlation
matrix is given by

1 0.091 0.812 -0.140

0.091 1 —0.0999 0.785

7| 0811 -0.09999 1 0.0003
-0.140  0.785 0.0003 1

with eigenvalues
2=1.8755,0,=1.7247,13=0.3658,,=0.0340.

The numerical rank of the correlation matrix M, is 2 and
with a tolerance

A A+
=09, 2L =047 and 21772

7 = 0.90005.

QR decomposition gives the following Rx matrix:

13 —0007 12 -0.16
0 128 —009 122
B=lo 0 om o4
00 0 0071

which shows that x, () and x,(t) compose a basis. So the sets
of metric data that correspond to Application 2 may be
deleted. Applying correlation analysis to the four sets of
cumulative sums represented by {s,},_,* gives a correlation
matrix

1 09 —0.02 —0.02
09 1 —0.02 -002

712002 002 1 09
—002 —002 09 |1

with eigenvalues
2=1.9615,0,=1.8735,1;=0.096,A,=0.069.

The numerical rank is 2 and QR decomposition gives the
following R matrix:

1.35 1.34 -0.061 -0.06

R 0 01 =009 122
Tl o o 14 14
0 0 0 0.097

As a result, the sets of metric x,(t) and x5(t) compose the
basis.

Root-cause Detection and Anomaly Ranking
Module

The root-cause detection and anomaly ranking module
106 of FIG. 1 determines a root cause based on monitoring

10

15

20

25

35

40

45

65

24

and the event data remaining in the event data container 116
after the alert reduction module 105, such as described in
U.S. Pat. No. 8,751,867 B2 filed Oct. 12, 2011 and owned
by VMWare, Inc. The root-cause detection and anomaly
ranking module 106 may include historical analysis of
events with associated probabilistic correlations. Applying
information measures between random variables, which
embody those events origins of problems may be detected
and used to generate real-time recommendations for loca-
tions in a hierarchical system. Estimation of system bottle-
necks, as well as the risk of “black swan”-type events may
also be computed.

It should be noted that the currently disclosed computa-
tional methods and systems are directed to real, tangible,
physical systems and the methods carried out within physi-
cal systems, including client computers and server comput-
ers. Those familiar with modern science and technology well
appreciate that, in modem computer systems and other
processor-controlled devices and systems, the control com-
ponents are often fully or partially implemented as
sequences of computer instructions that are stored in one or
more electronic memories and, in many cases, also in one or
more mass-storage devices, and which are executed by one
or more processors. As a result of their execution, a proces-
sor-controlled device or system carries out various opera-
tions, generally at many different levels within the device or
system, according to control logic implemented in the stored
and executed computer instructions. Computer-instruction-
implemented control components of modern processor-con-
trolled devices and systems are as tangible and physical as
any other component of the system, including power sup-
plies, cooling fans, electronic memories and processors, and
other such physical components.

FIG. 28 shows an example of a computer system that
executes efficient metric data management methods and
modules of the management methods described above. The
internal components of many small, mid-sized, and large
computer systems as well as specialized processor-based
storage systems can be described with respect to this gen-
eralized architecture, although each particular system may
feature many additional components, subsystems, and simi-
lar, parallel systems with architectures similar to this gen-
eralized architecture. The computer system contains one or
multiple central processing units (“CPUs”) 2802-2805, one
or more electronic memories 2808 interconnected with the
CPUs by a CPU/memory-subsystem bus 2810 or multiple
busses, a first bridge 2812 that interconnects the CPU/
memory-subsystem bus 2810 with additional busses 2814
and 2816, or other types of high-speed interconnection
media, including multiple, high-speed serial interconnects.
The busses or serial interconnections, in turn, connect the
CPUs and memory with specialized processors, such as a
graphics processor 2818, and with one or more additional
bridges 2820, which are interconnected with high-speed
serial links or with multiple controllers 2822-2827, such as
controller 2827, that provide access to various different
types of computer-readable media, such as computer-read-
able medium 2828, electronic displays, input devices, and
other such components, subcomponents, and computational
resources. The electronic displays, including visual display
screen, audio speakers, and other output interfaces, and the
input devices, including mice, keyboards, touch screens, and
other such input interfaces, together constitute input and
output interfaces that allow the computer system to interact
with human users. Computer-readable medium 2828 is a
data-storage device, including electronic memory, optical or
magnetic disk drive, USB drive, flash memory and other
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such data-storage devices. The computer-readable medium
2828 can be used to store machine-readable instructions that
encode the computational methods described below and can
be used to store encoded data, during store operations, and
from which encoded data can be retrieved, during read
operations, by computer systems, data-storage systems, and
peripheral devices.

It is appreciated that the various implementations
described herein are intended to enable any person skilled in
the art to make or use the present disclosure. Various
modifications to these implementations will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other implementations
without departing from the spirit or scope of the disclosure.
For example, any of a variety of different implementations
can be obtained by varying any of many different design and
development parameters, including programming language,
underlying operating system, modular organization, control
structures, data structures, and other such design and devel-
opment parameters. Thus, the present disclosure is not
intended to be limited to the implementations described
herein but is to be accorded the widest scope consistent with
the principles and novel features disclosed herein.

The invention claimed is:

1. A method stored in one or more data-storage devices
and executed using one or more processors of a computing
environment to manage sets of metric data stored in the one
or more data-storage devices, the method comprising:

computing a correlation matrix of the sets of metric data;

applying OR-decomposition to the correlation matrix to
obtain an R matrix;

identifying largest diagonal elements of the R matrix, the

number of largest diagonal elements equals a numerical
rank of the correlation matrix;

deleting one or more sets of metric data from the one or

more data storage devices that do not correspond to the
largest number of diagonal elements;
calculating normalcy bounds for each set of metric data
stored in the one or more data-storage devices;

determining which normalcy bounds of the sets of metric
data should be re-calculated based on comparisons with
historical characteristics of the sets of metric data;

determining which normalcy bound violations of the sets
of metric data are events worthy of an alert based on a
degree of abnormality determined for each normalcy
bound violation; and

deleting sets of metric data from the one or more data

storage devices with events that are correlated with
events of other sets of metric data.

2. The method of claim 1, further comprising detecting a
root cause for each event and ranking each event.

3. The method of claim 1, wherein identifying the largest
number of diagonal elements of the R matrix that equals the
numerical rank of the correlation matrix further comprises:

determining eigenvalues of the correlation matrix;

rank ordering the eigenvalues; and

determining the numerical rank of the correlation matrix

as the largest of the rank ordered eigenvalues with a
sum greater than a numerical tolerances.

4. The method of claim 3, further comprising

computing a standard deviation for each set of metric

data;

deleting each set of metric data with a standard deviation

less than a standard deviation threshold.

5. The method of claim 1, wherein in computing the
normalcy bounds for each set of metric data further com-
prises:
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for each set of metric data stored in the one or more
data-storage devices,
performing data quality assurance to identify qualified
sets of metric and corrupted sets of metric data;
deleting the corrupted sets of metric data;
categorizing each set of metric data; and
computing normalcy bounds for each set of metric data
based on the set of metric data category.
6. The method of claim 1, wherein determining which

normalcy bounds of the sets of metric data should be
re-calculated based on comparisons with historical charac-
teristics of the sets of metric data further comprises:

for each set of metric data,
computing a percentage of metric data are within a
region defined by upper and lower thresholds and a
current time interval;
computing area of the region defined by the upper and
lower thresholds and the current time interval,
computing a square area between the metric data within
the region and the lower threshold;
computing a current data-to-threshold alteration degree
based on the percentage, the area of the region and
the square area; and
re-calculating normalcy bounds for the set of metric
data when a difference between the current data-to-
threshold alteration degree and a previous data-to-
threshold alteration degree is greater than an altera-
tion degree threshold.
7. The method of claim I, wherein determining normalcy

bound events of the sets of metric data based on a degree of
abnormality determined for each event further comprises:

computing estimated upper-threshold and lower-threshold
historical degrees of abnormality based on historical
time-series data, the historical time-series data repre-
sents one of past behavior, performance, and usage of
a resource or application and is retrieved from a data-
storage device;

computing estimated current degree of abnormality based
on current time-series data, the current time-series data
represents one of current behavior, performance, and
usage of the resource or application system retrieved
from a data-storage device; and

comparing the estimated current degree of abnormality
with one of the estimated upper-threshold and lower-
threshold historical degrees of abnormality to deter-
mine whether one of the current behavior, performance,
and usage of the resource or application system is
abnormal.

8. The method of claim 1, wherein deleting sets of metric

data from the one or more data storage devices with events
that are correlated with events of other sets of metric data
further comprises:

transforming the sets of metric data to sets of anomaly
metric data;

computing a correlation matrix of the sets of the anomaly
metric data;

determining eigenvalues of the correlation matrix;

determining numerical rank of the correlation matrix
based on the eigenvalues;

decomposing the correlation matrix into a Q matrix and
an R matrix;

identifying a largest number of diagonal elements of the
R matrix, the largest number of diagonal elements
equal to the numerical rank; and

deleting sets of metric data that do not correspond to the
number of diagonal elements.
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9. A system for generating a data structure of metric data
generated in a computing environment comprising:

one or more processors;

one or more data-storage devices; and

machine-readable instructions stored in the one or more

data-storage devices that when executed using the one

or more processors control the system to carry out:

computing a correlation matrix of the sets of metric
data;

applying QR-decomposition to the correlation matrix
to obtain an R matrix;

identifying largest diagonal elements of the R matrix,
the number of largest diagonal elements equals a
numerical rank of the correlation matrix;

deleting one or more sets of metric data from the one
or more data storage devices that do not correspond
to the largest number of diagonal elements;

calculating normalcy bounds for each set of metric data
stored in the one or more data-storage devices;

determining which normalcy bounds of the sets of
metric data should be re-calculated based on com-
parisons with historical characteristics of the sets of
metric data;

determining which normalcy bound violations of the
sets of metric data are events worthy of an alert based
on a degree of abnormality determined for each
normalcy bound violation; and

deleting sets of metric data from the one or more data
storage devices with events that are correlated with
events of other sets of metric data.

10. The system of claim 9, further comprising detecting a
root cause for each event and ranking each event.

11. The system of claim 9, wherein identifying the largest
number of diagonal elements of the R matrix that equals the
numerical rank of the correlation matrix further comprises:

determining eigenvalues of the correlation matrix;

rank ordering the eigenvalues; and

determining the numerical rank of the correlation matrix

as largest of the ranked ordered eigenvalues with a sum
greater than a numerical tolerance.

12. The system of claim 11, further comprising

computing a standard deviation for each set of metric

data;

deleting each set of metric data with a standard deviation

less than a standard deviation threshold.

13. The system of claim 9, wherein in computing the
normalcy bounds for each set of metric data further com-
prises:

for each set of metric data stored in the one or more

data-storage devices,

performing data quality assurance to identify qualified
sets of metric and corrupted sets of metric data;

deleting the corrupted sets of metric data;

categorizing each set of metric data; and

computing normalcy bounds for each set of metric data
based on the set of metric data category.

14. The system of claim 9, wherein determining which
normalcy bounds of the sets of metric data should be
re-calculated based on comparisons with historical charac-
teristics of the sets of metric data further comprises:

for each set of metric data,

computing a percentage of metric data are within a
region defined by upper and lower thresholds and a
current time interval;

computing area of the region defined by the upper and
lower thresholds and the current time interval;
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computing a square area between the metric data within
the region and the lower threshold;

computing a current data-to-threshold alteration degree
based on the percentage, the area of the region and
the square area; and

re-calculating normalcy bounds for the set of metric
data when a difference between the current data-to-
threshold alteration degree and a previous data-to-
threshold alteration degree is greater than an altera-
tion degree threshold.

15. The system of claim 9, wherein determining normalcy
bound events of the sets of metric data based on a degree of
abnormality determined for each event further comprises:

computing estimated upper-threshold and lower-threshold

historical degrees of abnormality based on historical
time-series data, the historical time-series data repre-
sents one of past behavior, performance, and usage of
a resource or application and is retrieved from a data-
storage device;

computing estimated current degree of abnormality based

on current time-series data, the current time-series data
represents one of current behavior, performance, and
usage of the resource or application retrieved from a
data-storage device; and

comparing the estimated current degree of abnormality

with one of the estimated upper-threshold and lower-
threshold historical degrees of abnormality to deter-
mine whether one of the current behavior, performance,
and usage of the resource or application is abnormal.

16. The system of claim 9, wherein deleting sets of metric
data from the one or more data storage devices with events
that are correlated with events of other sets of metric data
further comprises:

transforming the sets of metric data to sets of anomaly

metric data;

computing a correlation matrix of the sets of the anomaly

metric data;

determining eigenvalues of the correlation matrix;

determining numerical rank of the correlation matrix

based on the eigenvalues;

decomposing the correlation matrix into a Q matrix and

an R matrix;

identifying a largest number of diagonal elements of the

R matrix, the largest number of diagonal elements
equal to the numerical rank; and

deleting sets of metric data that do not correspond to the

number of diagonal elements.

17. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations of

computing a correlation matrix of the sets of metric data;

applying OR-decomposition to the correlation matrix to

obtain an R matrix;

identifying largest diagonal elements of the R matrix, the

number of largest diagonal elements equals a numerical
rank of the correlation matrix;

deleting one or more sets of metric data from the one or

more data storage devices that do not correspond to the
largest number of diagonal elements;

calculating normalcy bounds for each set of metric data

stored in the one or more data-storage devices;
determining which normalcy bounds of the sets of metric

data should be re-calculated based on comparisons with

historical characteristics of the sets of metric data;
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determining which normalcy bound violations of the sets
of metric data are events worthy of an alert based on a
degree of abnormality determined for each normalcy
bound violation; and

deleting sets of metric data from the one or more data

storage devices with events that are correlated with
events of other sets of metric data.

18. The medium of claim 17, further comprising detecting
a root cause for each event and ranking each event.

19. The medium of claim 17, wherein identifying the
largest number of diagonal elements of the R matrix that
equals the numerical rank of the correlation matrix further
comprises:

determining eigenvalues of the correlation matrix;

rank ordering the eigenvalues; and

determining the numerical rank of the correlation matrix

as the largest of the rank ordered eigenvalues with a
sum greater than a numerical tolerance.

20. The medium of claim 19, further comprising

computing a standard deviation for each set of metric

data;

deleting each set of metric data with a standard deviation

less than a standard deviation threshold.

21. The medium of claim 17, wherein in computing the
normalcy bounds for each set of metric data further com-
prises:

for each set of metric data stored in the one or more

data-storage devices,

performing data quality assurance to identify qualified
sets of metric and corrupted sets of metric data;

deleting the corrupted sets of metric data;

categorizing each set of metric data; and

computing normalcy bounds for each set of metric data
based on the set of metric data category.

22. The medium of claim 17, wherein determining which
normalcy bounds of the sets of metric data should be
re-calculated based on comparisons with historical charac-
teristics of the sets of metric data further comprises:

for each set of metric data,

computing a percentage of metric data are within a
region defined by upper and lower thresholds and a
current time interval;

computing area of the region defined by the upper and
lower thresholds and the current time interval;

computing a square area between the metric data within
the region and the lower threshold;
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computing a current data-to-threshold alteration degree
based on the percentage, the area of the region and
the square area; and

re-calculating normalcy bounds for the set of metric
data when a difference between the current data-to-
threshold alteration degree and a previous data-to-
threshold alteration degree is greater than an altera-
tion degree threshold.

23. The medium of claim 17, wherein determining nor-
malcy bound events of the sets of metric data based on a
degree of abnormality determined for each event further
comprises:

computing estimated upper-threshold and lower-threshold

historical degrees of abnormality based on historical
time-series data, the historical time-series data repre-
sents one of past behavior, performance, and usage of
a resource or application and is retrieved from a data-
storage device;

computing estimated current degree of abnormality based

on current time-series data, the current time-series data
represents one of current behavior, performance, and
usage of the resource or application retrieved from a
data-storage device; and

comparing the estimated current degree of abnormality

with one of the estimated upper-threshold and lower-
threshold historical degrees of abnormality to deter-
mine whether one of the current behavior, performance,
and usage of the resource or application is abnormal.

24. The medium of claim 17, wherein deleting sets of
metric data from the one or more data storage devices with
events that are correlated with events of other sets of metric
data further comprises:

transforming the sets of metric data to sets of anomaly

metric data;

computing a correlation matrix of the sets of the anomaly

metric data;

determining eigenvalues of the correlation matrix;

determining numerical rank of the correlation matrix

based on the eigenvalues;

decomposing the correlation matrix into a Q matrix and

an R matrix;

identifying a largest number of diagonal elements of the

R matrix, the largest number of diagonal elements
equal to the numerical rank; and

deleting sets of metric data that do not correspond to the

number of diagonal elements.
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