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AUTOMATED METHODS AND SYSTEMS
FOR CALCULATING HARD THRESHOLDS

TECHNICAL FIELD

The present disclosure is directed to automated manage-
ment tools of data-generating entities, and in particular, to
automated methods and system for calculating hard thresh-
olds used to monitor data generated by data-generating
entities.

BACKGROUND

With the advent of increased computing power and data
storage, the development of computational tools to study
ever increasingly complex systems in detail has increased.
Examples of complex systems include weather systems,
ecosystems, biological systems, business operations, infor-
mation technology, and cloud computing systems just to
name a few. Of particular importance to those who study
these complex systems is the ability to identify variations,
such as abnormalities, that occur within these complex
systems. For example, in the case of a data center, variations
from normal or expected computational operations could
lead to failures, slowdown, and other problems. These types
of problems are often triggered by unobserved variations or
abnormalities in the operation of processes or computational
resources that may cascade into larger problems.

Monitoring complex systems generates vast amounts of
time-series data that is collected, analyzed, and presented for
human understanding. In recent years, computational tech-
niques have been developed to detect anomalies in time-
series data that does not conform to an established normal
behavior for a complex system. These anomalies may trans-
late into critical and actionable information in several appli-
cation domains. In particular, thresholds are typically used to
identify anomalies in flows of time-series data. Alerts are
generated when the time-series data violates a predefined
threshold. Many processes used to monitor complex systems
provide hard threshold features and dynamic threshold capa-
bilities with the hard thresholds set manually. However, with
the increasing volume and variety of time-series data col-
lected for complex systems, manually setting hard thresh-
olds to monitor the behavior of complex systems is often
infeasible.

SUMMARY

This disclosure is directed to automated methods and
systems for calculating hard thresholds used to monitor
time-series data generated by data-generating entity. The
methods and systems are data-agnostic in that the data-
generating entity can be a computational process, computer,
sensor, virtual or physical machine running in a data center
or other computational environment, or a computational
resource, such as a processor, memory or network connec-
tion. The methods are based on determining a cumulative
distribution that characterizes the probability that data val-
ues of time-series data generated by the data-generating
entity violate a hard threshold. The hard threshold is calcu-
lated as an inverse of the cumulative distribution based on a
user defined risk confidence level. The hard threshold may
then be used to generate alerts when time-series data gen-
erated later by the data-generating entity violate the hard
threshold.

DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for vari-
ous types of computers.
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FIG. 2 shows an example plot of non-trendy time-series
data.

FIG. 3 shows an example plot of trendy time-series data.

FIG. 4 shows an example plot of the non-trendy set of data
shown in FIG. 2 with quantile depicted.

FIG. 5 shows an example plot of a data tail for the
distances above the quantile shown in FIG. 4.

FIG. 6 shows an example plot of a histogram of distances.

FIG. 7 shows an example of empirical density function fit
to the histogram of distances shown in FIG. 6.

FIG. 8 shows a plot of an empirical cumulative distribu-
tion and a corresponding parametric cumulative distribution.

FIG. 9 shows a plot of entropies.

FIG. 10 shows a flow-control diagram of an automated
method for calculating a hard threshold.

FIG. 11 shows a flow-control diagram of the routine
“calculate data tails” called in block 1007 of FIG. 10.

FIG. 12 shows a flow-control diagram of a parametric
implementation of the routine “extremes analysis” called in
block 1008 of FIG. 10.

FIG. 13 shows a flow-control diagram of a non-paramet-
ric implementation of the routine “extremes analysis™ called
in block 1008 of FIG. 10.

FIG. 14 shows a flow-control diagram of the routine
“extremes analysis” called in block 1008 of FIG. 10.

FIG. 15 shows a plot of a non-trendy set of data collected
for a data-generating entity.

FIG. 16 shows a table of results for a parametric imple-
mentation method applied to the data shown in FIG. 15.

FIG. 17 shows a data tail.

FIG. 18 shows a plot of corresponding empirical and
parametric cumulative distributions.

FIG. 19 shows a plot of the absolute error between the
empirical and parametric cumulative distributions shown in
FIG. 18.

FIG. 20 shows a plot of a hard threshold calculated using
parameter implementation for the data shown in FIG. 15

FIG. 21 shows a plot entropy of a non-parametric imple-
mentation applied to the set of data shown in FIG. 15.

FIG. 22 shows hard threshold values for the parametric
and non-parametric implementations applied to the data
shown in FIG. 15.

DETAILED DESCRIPTION

This disclosure is directed to automated, data-agnostic
computational methods and systems for calculating hard
thresholds used to monitor time-series data generated by a
data-generating entity. The data-generating entity can be a
computational process, computer, sensor, virtual or physical
machine running in a data center or other computational
environment, or a computational resource, such as a pro-
cessor, memory or network connection. The time-series data
may be metric data that represents usage of the data-
generating entity over time. For example, the data-generat-
ing entity can be a processor and the time-series data can be
percentage of processor usage measured over time.

It should be noted, at the onset, that the currently dis-
closed computational methods and systems are directed to
real, tangible, physical systems and the methods carried out
within physical systems, including client computers and
server computers. Those familiar with modem science and
technology well appreciate that, in modern computer sys-
tems and other processor-controlled devices and systems,
the control components are often fully or partially imple-
mented as sequences of computer instructions that are stored
in one or more electronic memories and, in many cases, also
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in one or more mass-storage devices, and which are
executed by one or more processors. As a result of their
execution, a processor-controlled device or system carries
out various operations, generally at many different levels
within the device or system, according to control logic
implemented in the stored and executed computer instruc-
tions. Computer-instruction-implemented control compo-
nents of modem processor-controlled devices and systems
are as tangible and physical as any other component of the
system, including power supplies, cooling fans, electronic
memories and processors, and other such physical compo-
nents.

FIG. 1 provides a general architectural diagram for vari-
ous types of computers. The internal components of many
small, mid-sized, and large computer systems as well as
specialized processor-based storage systems can be
described with respect to this generalized architecture,
although each particular system may feature many addi-
tional components, subsystems, and similar, parallel systems
with architectures similar to this generalized architecture.
The computer system contains one or multiple central pro-
cessing units (“CPUs”) 102-105, one or more electronic
memories 108 interconnected with the CPUs by a CPU/
memory-subsystem bus 110 or multiple busses, a first bridge
112 that interconnects the CPU/memory-subsystem bus 110
with additional busses 114 and 116, or other types of
high-speed interconnection media, including multiple, high-
speed serial interconnects. The busses or serial interconnec-
tions, in turn, connect the CPUs and memory with special-
ized processors, such as a graphics processor 118, and with
one or more additional bridges 120, which are intercon-
nected with high-speed serial links or with multiple control-
lers 122-127, such as controller 127, that provide access to
various different types of computer-readable media, such as
computer-readable medium 128, electronic displays, input
devices, and other such components, subcomponents, and
computational resources. The electronic displays, including
visual display screen, audio speakers, and other output
interfaces, and the input devices, including mice, keyboards,
touch screens, and other such input interfaces, together
constitute input and output interfaces that allow the com-
puter system to interact with human users. Computer-read-
able medium 128 is a data-storage device, including elec-
tronic memory, optical or magnetic disk drive, USB drive,
flash memory and other such data-storage devices. The
computer-readable medium 128 can be used to store
machine-readable instructions that encode the computa-
tional methods described below and can be used to store
encoded data, during store operations, and from which
encoded data can be retrieved, during read operations, by
computer systems, data-storage systems, and peripheral
devices.

Time-Series Data

Time-series data associated with a data-generating entity
is represented by
Xi=X(1) M
where X, represents a discrete data point or value;
t, represents a time stamp; and
subscript k is a data point index.
The time-series data can be collected and stored in com-
puter-readable medium. A set of N consecutive time-series
data points X, are represented in set notation by

X={x}5 2
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The set of data X may have a tendency to follow a particular
shape or pattern and is categorized as “trendy.” Alterna-
tively, the set of data X may be randomly distributed and
categorized as “non-trendy.” For example, trendy time-
series data may increases or decreases over time while
non-trendy time-series data stochastically varies over time.

Data points in the set of data X may be decomposed into
trendy and non-trendy components as follows:

X(t,)=x(t;,)+trend(z,) 3)

where x(t,) represents the stochastic (i.e., random) com-
ponent of the data point X(t,); and
trend(t,) is the trend component of the data point X(t,).
When the set of data X is non-trendy, the trend component
is essentially zero trend(t,)~0) and the data point represen-
tation in Equation (3) reduces to

X(t)=x(1) (©)]

On the other hand, when the set of data X is trendy, the trend
component in Equation (3) is not equal to zero (i.e., trend
(t,)=0) and the data point representation in Equation (3)
holds.

FIG. 2 shows an example plot of non-trendy time-series
data, and FIG. 3 shows an example plot of trendy time-series
data. In FIGS. 2-3, horizontal axes 202 represents time,
vertical axes 204 represents data values, and dots, such as
dot 206, represent data points X, of non-trendy and trendy
data, respectively. In the example of FIG. 2, the data points
are randomly distributed and do not exhibit a trend. By
contrast, in the example of FIG. 3, the data points exhibit a
trend in which the values of the data points increase with
time as indicated by dashed line 302.

Trend Detection and Trend Removal in Time-Series
Data

In order to apply analysis of extremes methods described
below applied to calculate a hard threshold for the set of data
X, the set of data X is first categorized as either trendy or
non-trendy. If the set of data X is categorized as trendy, then
the trend components are identified and essentially removed
to obtain non-trendy, time series data.

Trend detection is applied to the set of data X in order to
categorize the data as either trendy or non-trendy data. A
trend in the set of data X may be determined by calculating
a trend measure give by:

So ®

100%

p=

max

where the numerator S, is a sum of sign differences for the
full set of data set X given by

N-1 N (62)
So=. > sign(X;— X0
k=1 j=k+1
with
-1 when (X; - X;) <0
sign(X; - X;) =4 0 when (X;-X,)=0

+1 when (X; - X;) >0

and the denominator S, . is a count of the number of

difference combinations given by
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N-1

Smax = )| ZN:1

k=1 j=k+1

(6b)

The sign of the numerator S, determines whether the set of
data X is increasing or decreasing. When S,>0 the set of data
X is increasing, and when S,<0 the set of data X is
decreasing. When the trend measure p is greater than a trend
threshold T,,.,.; (.., T,,.,,;/~60%), the set of data X follows
a trend and is categorized as trendy as represented by
Equation (3). Otherwise, when the trend measure p is less
than the percentage threshold T, , the set of data X does
not follow a trend over time and is categorized as non-trendy
as represented by Equation (4).

When the set of data X is categorized as non-trendy,
analysis of extremes described below is used to calculate a
hard threshold. On the other hand, when the set of data X is
categorized as trendy, trend recognition is used to further
categorize the trendy data as linear, log-linear, or non-linear
trendy data.

Suppose the set of data X has been categorized as trendy.
Trend recognition may first be applied to determine whether
or not the trend in the set of data X is linear. This may be
accomplished by applying linear regression analysis to the
set of data Xin order to calculate a regression line that
represents the relationship between X, and t,. The set of data
X is checked for goodness-of-fit with resulting regression
line according to

o

Relo Rregression
Ro

where R, .50, 15 @ sum of squares of vertical distances
of the data points X(t;) from the regression line; and
R, is a sum of squares of vertical distances of the data
points X(t,) from a line with zero slop and passing
through the mean value of the data point.
The goodness-of-fit R is a unitless fraction between O and 1.
When R equals 1 all data points in the set of data X lie along
the regression line and when R equals O there is no linear
relationship between X, and t,. A threshold R,, (e.g.,
R,,=0.6) is used to determine whether or not the trend in the
data is linear. When R is greater than R, it is assumed that
the trend is linear. When the trend of the set of data X, or the
latest time portion of the X, is not linear (i.e., R<R,,), the
data is subjected to log-linear regression. For example, it
may be the case that the relationship between X, and t, can
be characterized by an exponential function be“, where b
and c are constants. In this example, natural logarithms are
applied to both X, and t, and linear regression is used to
calculate a log-linear regression line. When the goodness-
of-fit R is calculated for the log-linear regression line
according to Equations (6a) and (6b) and R is greater than
the threshold R,,,, the set of data X is identified as log-linear.
Finally, when the set of data X, or the latest time portion of
the data X, is neither linear nor log-linear, the trend is
identified as non-linear and the latest time portion of the set
of data X is selected for analysis of extremes described
below with the assumption that the data can be approxi-
mated by a linear trend.

Trend detection may be applied to a set of data X as
follows. Assume that the overall set of data X has no linear
trend. Using a time window T, (e.g., 1 week, 1 day, 1
hour), data points X, collected in the most recent time
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window T,,,,, ... of the set of data X are checked for a linear
trend using linear regression. If the data points X, in the time
window T, ... are not linear (i.e., R<R,,) then log-linear
regression is used to check the data points X, in the same
time window T, ... as described above. Alternatively, if
the data points X, in the time window T, ;, ..., are linear (i.e.,
R>R,,), the time window may be expanded to C-T, ,, 0.
where C>1, and data points in the time window C-T, ...
are again checked using linear regression for linear trend. By
this procedure, the longest and latest portion of data which
has a linear trend may be collected for calculating a hard
threshold below. If after a number of time window increases
the data points in the time window fail to show a linear trend,
the same procedure is applied to check for a log-linear trend.
After the trend in the set of data X has been identified as
linear, log-linear, or non-linear, the trend for the set of data
X is determined and subtracted from the set of data X. For
example, the trend may be a function of the linear or
non-linear regression line. Non-trendy components of data
points in a trendy set of data X are calculated as follows

*(1)=X(5)-trend(z,) ®)

Analysis of Extremes

Whether the set of data X is originally non-trendy or
reduced to non-trendy after applying regression and sub-
traction of the trend according to Equation (8), a hard
threshold is calculated by applying analysis of extremes to
the non-trendy time-series data x,. In particular, analysis of
extremes is based on extreme value theory and is applied to
the data “tail” of the non-trendy time-series data in accor-
dance with one of two implementations. The first imple-
mentation constructs parametric equations and defines a data
“tail” based on a measure of decay of the distances of data
points over threshold (“POT”). The second implementation
is a non-parametric procedure that defines the data “tail”
based on a measure of uncertainty of POT. The level for
which POTs indicate the maximum uncertainty is set as a
basic threshold with further possible adjustments. These two
alternative implementations of analysis of extremes are now
described for calculating an upper hard threshold for a set of
data X, but as explained below, the two methods can be
adapted to calculated a lower hard threshold for a set of data.

Data tails are produced from a set of data X for a number
of different quantiles. A quantity q.. is the c-th quantile of the
time-series data x,, where O<c<l. For example, for data
sorted in ascending order, the quantile q.=x_,, where the
product ¢'N is a natural number. Otherwise, if the product
¢'N is not a natural number, the natural number i that
satisfies the condition i<c'N<i+] is used to calculate a line
which passes through the data points x(t,) and x(t,, ) (after
sorting the data in ascending order) and the quantile q. may
be assigned as q_=x,,,(c'N-1)+x,(1-c:N+i). In order to cal-
culate an upper hard threshold, a number of data tails are
calculated for different values of the quantile index c. The
quantile index ¢ s a number of selected from a subinterval
C,m=c=c, . of the interval [0,1]. For example, a subinterval
0.92c=<0.99 may be used to select values for the quantile
index. For each quantile index c, the corresponding data tail
is composed of distances given by

a4 =x-q.>0

©
In other words, in calculating an upper threshold, the data
tail is composed of distances for data points x, greater than
the quantile q.. (i.e., X;>q_.). The data tail for the c-th quantile
q. is represented by a set
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where M is the number of data points x, greater than q_.

FIG. 4 shows an example plot of the non-trendy set of data
shown in FIG. 2. Lines that extend from the time axis 202
to the data points represent the magnitudes of the data
values. Dashed line 402 represents the c-th quantile q... The
distance of the point 206 above the quantile q_ is given by
d,© 404.

FIG. 5 shows an example plot of a data tail for the
distances above the quantile q. 402 in FIG. 4. Horizontal
axis 502 represents time, vertical axis 504 represents data
values, and lines that extends from the time axis 502
represents the distances calculated according to Equation
(8). For example, line 506 represents the distance d,° of the
data point 206 above the quantile 402 shown in FIG. 4. The
distances shown in FIG. 5 are collected to form a data tail
X associated with the c-th quantile q. 402 for the time-
series data shown in FIG. 2.

A histogram of normalized distances is formed for each
data tail X . Each histogram is formed by dividing the range
of distance values in a data tail X into n subintervals (i.e.,
bins). The fraction of distances in each subinterval is cal-
culated by counting the number of distances in the data tail
X ., that lie within each subinterval, and dividing the number
of distances counted for each subinterval by the total number
of distances in the set X. The fraction of distances calcu-
lated for each subinterval is a probability denoted by v,,
where O=v,<1 for a subinterval index 1=1, . . . , n. The
probability v, associated with the 1-th subintervals represents
the probability that a randomly selected distribution d from
the data tail X lies within the 1-th subinterval.

FIG. 6 shows an example plot of a histogram of distances
in a data tail X.. Horizontal axis 602 represents a range of
distance values for distances in the data tail X, and vertical
axis 604 represents real numbers greater than 0. Bars, such
as bar 606, represent the probability v, of a distance d
randomly selected from the data tail X lies in the l-th
subinterval 608.

1. Parametric Implementation

The parametric implementation is predicated on an

assumption of decay represented by

10)

M—0 as c—=1 (11)

In other words, the volume (i.e., cardinality) of the data tails
X . approaches zero as the quantile index ¢ approaches one.
The average decay is determined by a predefined family of
distributions. In the case of power law, the Cauchy distri-
bution can be used. In case of sub-exponential decay, a
Generalized Pareto (“GP”), Generalized Extreme Value
(“GEV™), Weibull, or other distributions may be used to
represent the distribution of distances in the data tail X..
When a data tail over a given quantile is appropriately
fitted by a selected parametric model, the POTs behave as
“outliers.” As a result, a lowest quantile with this property is
the upper hard threshold that can be assigned to the time-
series data for further adjustments. In other words, the
quantile serves as a threshold for data points that violate
(i.e., greater than in the case upper hard thresholds and less
than in the case of lower hard thresholds) the quantile. The
data tail X is composed of points that violate the quantile.
For each data tail X generated according to Equations (9)
and (10), an empirical cumulative distribution F,, ° is
derived to serve as a parametric model for each data tail X..
Bach empirical cumulative distribution F,,° associated
with a data tail X may be calculated from a corresponding
probability density function f,,,,° that characterizes the ran-
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dom distribution of distances in the data tail X.. The
cumulative distribution F_, . (d) gives the probability that a
data point x,, that is greater than the corresponding quantile
q. will have a distance d,“ less than or equal to a distance d.
Bach probability density function f,,,,° can be interpolated
or estimated from the histogram of a data tail X.. The
probability density function can be obtained using density
estimation of the histogram or by fitting a polynomial to the
probabilities of the histogram.

FIG. 7 shows an example empirical density function fit to
the histogram shown in FIG. 6. Dashed curve 702 that passes
through the probabilities v, represented by the bars repre-
sents an interpolated probability density function f,,,,° that
characterizes the probability of the random distribution of
distances in the data tail X..

The empirical cumulative distribution F,,, © characterizes
the probability that the random distances in the data tail X
will be found to have a value less than or equal to distance
d. An empirical cumulative distribution F,,,,° can be repre-
sented mathematically as the integral of a probability density
function f,, ° as follows:

f Ath [y (80)
[

where x represents distance along the axis 602 in FIG. 6.
An empirical cumulative distribution F,, ,° may be calcu-
lated from a probability density function f,,,,° (u) using any
one of many different numerical integration techniques.
Alternatively, an empirical cumulative distribution F,,,°
may be calculated as a sum of the probabilities v, up to a
distance d as follows:

12
F (d) = (12

emp

a3

Mm.

Fopld = ) v

£

As a result, an empirical cumulative distribution F_, % is
constructed for each data tail X .. The empirical cumulative

distributions form a set represented by

Fonip=F emp Yo ™™

for each value of ¢ in the subinterval ¢, =<c=<c,,, .

Next, for each empirical cumulative distribution F,,,.°, a
parametric cumulative distribution F, ¢ is calculated by an
appropriate selection of the parametric cumulative distribu-
tion parameters. In other words, the parameters associated
with a parametric cumulative distribution F,,,° are calcu-
lated so that the parametric cumulative distribution F,,,°
approximates an empirical cumulative distribution F,,°.

FIG. 8 shows a plot of an empirical cumulative distribu-
tion F_ ¢ represented by dashed curve 802 and a corre-
sponding parametric cumulative distribution F,,,° repre-
sented by curve 804. The parametric cumulative distribution
F,..~ 804 is obtained by calculating the parametric cumula-
tive distribution parameters as a best fit to the empirical
cumulative distribution F,,,,,°.

The type of parametric cumulative distribution selected
for a particular data tail X is based primarily on the shape
of the histogram of the data tail X. Initially, the Cauchy
distribution is used as a parametric cumulative distribution
F,. to characterize the distribution of distances d of a data

tail X is given by

(14)



US 9,996,444 B2

9

1s)

c 1 d
Fro(d) = ;arctan(

where d, is a location parameter; and
y is a scale parameter.
The parameters d, and y are determined as a best fit to an
empirical cumulative distribution F,,,,° for a given ¢ (i.e,
quantile q,). If attempting to the fit the Cauchy distribution
fails, other distributions may be used.

Examples of other distributions that may to be used when
the Cauchy distribution fails includes the generalized Pareto
(“GP”) and the generalized extreme value (“GEV”) distri-
butions. The GP distribution is given by:

—d0]+1
¥ 2

L (16a)
. yd\y
Fra{d) =1 —(1 - ?)
for A #0 and o > 0; and
Fold) =1 e (16b)

forA=0and o >0,
whered = 0 if y < 0; and

0=d=Zify>0.
y

The parameters y and o of the GP distribution are deter-
mined as a best fit to an empirical cumulative distribution
F,,, for a given c (i.e., quantile q,.). The GEV distribution
is given by:

(17a)

Fpa{d) = exp{—[l +§({%ﬂ)]ﬁé}

for

d—
1+§(—ﬂ]>0,
a

where £=0 is the shape parameter, p is a location
parameter, and 0>0; and

d—p (17b)

Fo(x) = exp{—exf’(‘T)}

for £=0.

The parameters 1, o, & of the GEV distribution are deter-
mined as a best fit to the empirical cumulative distribution
F_,,” for a given quantile q,.

A parametric cumulative distribution F,,,,” is constructed
for each data tail X based on obtaining a best fit of the
parametric cumulative distribution parameters to the empiri-
cal cumulative distribution F,,,,° obtained for the same data

tail X. As a result, a set of parametric cumulative distri-
butions is formed and represented by

Foar={F Yot ™ (18)

for each quantile index c in the subinterval c,,,,=c=c,, ..
For each quantile index c, a relative error between a

parametric cumulative distribution F,,,,° and a correspond-

ing empirical distribution F,,,,° is calculated as follows:
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std(F¢

emp

Sz

emp

—Frar)

a9

where “std” represents the standard deviation
When the relative error r is less than a relative-error thresh-
old T, (i.e., T,=0.1), the parametric cumulative distribution
F,, is considered a satisfactory fit to the empirical cumu-
lative distribution F,,,,°. Otherwise, the parametric distri-
butionF,,“ is considered an unsatisfactory fit to the empiri-
cal cumulative distribution F,,°. When none of the
parametric cumulative distributions in Equation (18) are less
than the relative-error threshold, no hard threshold can be
calculated using the parametric implementation.

In calculating an upper hard threshold, parametric cumu-
lative distributions in the set of parametric distributions F,,,,.
with corresponding relative errors less than the relative error
threshold T, are identified. The parametric cumulative dis-
tribution, F',,.° with the lowest corresponding quantile

index c is used to calculate the hard threshold as follows:

T=(F',,") (@) (20)

where a is a user-defined risk confidence level with
O=<a<l.
If the relative errors of the parametric cumulative distribu-
tions comprising the set F, are greater than the relative-error
threshold T, then the set of data X represented by Equation
(2) is considered intractable for the parametric implemen-
tation.

Alternatively, in calculating an upper hard threshold,
parametric cumulative distributions in the set of parametric
distributions F__with corresponding relative errors less
than the relative-error threshold T, are identified, but the
inverse of the parametric cumulative distribution, F',, %,
with the lowest relative error r is used to calculate the hard
threshold according to Equation (20).

II. Non-Parametric Implementation

The non-parametric implementation for calculating a hard
threshold is based on calculating an entropy of each data tail
X obtained as described above with regard to Equations (9)
and (10). For each data tail X, the entropy is calculated as
follows:

n 21
HX.)= —Z vilog,v

=1

The entropy calculated for each data tail X is compared to
an entropy threshold T, (e.g., T;=0.5). The maximum
entropy H,, (X ) for a quantile index c¢* (i.e., quantile q_.)
in the subinterval c,,=c=c,,, . that is greater than the
entropy threshold T, is used to calculate a hard threshold for
the set of data X. In other words, a maximum entropy H,,,(
X_.) is the portion of the set of data X that is maximally
away from dominating concentrations and having the largest
random distribution. This portion represents the outlying
behavior of the original set of data X and the corresponding
hard threshold gives the best partition for time-independent
anomaly detection.

Note that, in practice, there may be two or more maximum
entropies for different quantile indices. When there are two
or more maximum entropies, the largest quantile index (i.e.,
quantile) of the corresponding two or more quantile indices
is selected. For example, suppose H,, ., (X.«)=H,..X>)
where c*>C(i.e., q.«>q;). The quantile q_. is selected to
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calculate a hard threshold. One the other hand, when there
is no maximum entropy (i.e., H, (X _.)=constant) for all ¢
in the subinterval ¢,,,,,<c=c,, ., or the maximum value H,, , . (
X..) is less than T, the set of data X is considered
intractable for the non-parametric implementation.

FIG. 9 shows a plot of entropies for each set X_. Hori-
zontal axis 902 represents the interval c,, =sc=c, ., and
vertical axis 904 represents entropy. Curve 906 represents
the entropy calculated according to Equation (21) for each
set X_. Point 908 is the maximum entropy H,, (X ), which
corresponds to a value c* and a quantile g_..

After a quantile index c* that corresponds to the maxi-
mum entropy H,,,.(X.) has been obtained, an empirical
cumulative distribution Fempc* is calculated according to
Equation (12) or Equation (13) from the histogram associ-
ated with the data tail X_.. The inverse of the empirical
cumulative distribution Fempc* is used to calculate the hard
threshold as follows:

To=(Fomp”™ (@)
for the user-defined risk confidence level a.

Either the hard threshold T calculated according to Equa-
tion (20) or the hard threshold T, calculated according to
Equation (22) can be used to generate alerts when time-
series data generated by the data-generating entity violates
the hard threshold. For example, when the time-series data
violates the hard threshold (either T or T,) for a minimum
number of time stamps, t;, an alert is generated. If the data
returns to normal for a minimum number of stamps after the
alert, the alert may be cancelled. Otherwise, if the data
continues to violate the threshold within the minimum
number of alerts for cancelling the alert, the alert may be
displayed to a user.

The parametric and non-parametric implementations
described above can be modified to calculate a lower hard
threshold. For the parametric implementation, the decay is
represented by

22

M—0 as c—=0 (23)

In particular, in forming the data tails used to calculate a
lower hard threshold, the subinterval c,,,,=c=c,,,. of the
interval [0,1] is located closer to 0. For example, the
subinterval may be 0.01=c=0.1. For each quantile index c,

the corresponding data tail is composed of distances given
by

d°=q.~x>0 (24)

In other words, in calculating a lower hard threshold, a data
tail is composed of distances for data points x, less than the
quantile g, (i.e., q.>X;). In applying the parametric imple-
mentation to calculate a lower hard threshold, a set of
parametric cumulative distributions F, . and relative errors
r are calculated as described for the upper hard threshold.
The parametric cumulative distributions in the set of para-
metric distributions F,, with corresponding relative errors
less than the relative error threshold T, are identified, but the
parametric distribution, F", °, with the highest correspond-

par

ing c is used to calculate the hard threshold as follows:
T=(F ") (@)
The non-parametric implementation is not changed to cal-
culate the lower hard threshold.
The parametric and non-parametric implementations for
calculating a hard threshold do not necessarily result in the
same hard threshold for the same set of data Xand the

associated quantile indices may be different. In other words,
when the same set of data X is used to calculate a hard
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threshold T according the parametric implementation and
calculate a hard threshold T, according the non-parametric
implementation, the two hard thresholds and associated
quantiles may be different.

Although the parametric and non-parametric implemen-
tations may result in different hard thresholds, one imple-
mentation can be used when the other implementation fails.
For example, if the parametric implementation fails to
produce a parametric distribution F,, ¢ for all quantile indi-
ces ¢ in the subinterval c,,;,,<c=c,, .., then the non-parametric
implementation may be used to calculate the hard threshold.
On the other hand, if the non-parametric implementation
fails to produce a maximum entropy or the maximum
entropy is less than the entropy threshold, then the paramet-
ric implementation may be used to calculate a hard thresh-
old.

FIG. 10 shows a flow-control diagram of an automated
method for calculating a hard threshold. In block 1001, a set
of data associated with a data-generating entity is received.
The set of data can be time-series data as described above
with reference to Equations (1) and (2). The set of data may
include a trend component as described above with refer-
ence to FIG. 3. In block 1002, trend detection is applied to
the set of data to calculate trend measure p as described
above with reference to Equation (5). In decision block
1003, when the trend measure p is greater than a trend
threshold T,,,,., (e.g., T,..,.;/~060%) the set of data is catego-
rized as trendy data and control flows to block 1004.
Otherwise, the set of data is categorized as non-trendy data
and control flows to block 1007. In block 1004, trend
recognition is applied to the set of data in order to identify
the set of data at linear, log-linear, or non-linear. In blocks
1005 and 1006, the trend is calculated and subtracted from
the set of data to given a non-trendy set of data as described
above with reference to Equation (8). In block 1007, a
routine “calculate data tails” is called to calculate a number
of data tails for the set of data as described below with
reference to FIG. 11. In block 1008, a routine “extremes
analysis” is called to calculate the hard threshold. The
routine “extreme analysis” can be a parametric implemen-
tation of extremes analysis described below with reference
to a flow-control diagram in FIG. 12. Alternatively, the
routine “extremes analysis” can be a non-parametric imple-
mentation of extremes analysis described below with refer-
ence to a flow-control diagram in FIG. 12. In an alternative
implementation, the routine “extremes analysis” can be
executed as a combination of the parametric and non-
parametric implementations as described below with to the
flow-control diagram in FIG. 14. In block 1009, the hard
threshold output from the routine “extremes analysis™ can be
used as the hard threshold to assess time-series data output
from the data-generating entity. If the set of data is trendy as
determined in block 1004, the trend calculated in block 1006
is added to the hard threshold.

FIG. 11 shows a flow-control diagram of the routine
“calculate data tails” called in block 1007 of FIG. 10. A
for-loop begins with block 1101 with operations in blocks
1102-1110 executed for each quantile index ¢ in a subinter-
val ¢,,;,=c=c,, .. of the interval [0,1]. When the hard thresh-
old to be calculated is an upper hard threshold, the subin-
terval is located closer to 1. For example, when calculating
an upper hard threshold, a suitable subinterval to select
quantile indices ¢ from is 0.9=c<0.99. On the other hand,
when the hard threshold to calculated is a lower hard
threshold, the subinterval is located closer to 0. For example,
when calculating a lower hard threshold, a suitable subin-
terval to select quantile indices ¢ from is 0.01=c<0.1. A
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for-loop begins with block 1102 with operations in blocks
1103-1108 executed for each data point in the set of data,
where k is a data point index and N is the number of data
points in the set of data. In block 1103, a distance is
calculated from a data point x, to a quantile g... In the case
of an upper hard threshold, the distances are calculated
according to Equation (9) for data points x, greater than the
quantile q.. In the case of a lower hard threshold, the
distances are calculated according to Equation (24) for data
points x,. less than the quantile q.. In decision block 1104,
when a distance is greater than zero, control flows block
1105 where the distances are collected to form a data tail X_..
Otherwise, control flows to decision block 1106. In decision
block 1106, when the data point index k equals N, control
flows to block 1107. Otherwise, k is incremented in block
1108 and the operations associated with blocks 1103-1106
are executed for another data point. In block 1107, when
formation of the data tail X_ is complete from blocks
1102-1106 and 1108, a histogram is generated as described
above with reference to FIG. 6. In decision block 1109,
when another quantile index c is available, the next quantile
index is selected from the subinterval in block 1110 and the
operations associated with blocks 1102-1108 are repeated.

FIG. 12 shows a flow-control diagram of a parametric
implementation of the routine “extremes analysis” called in
block 1008 of FIG. 10. A for-loop begins with block 1201
with operations in blocks 1202-1207 executed for each
quantile index c¢ in the subinterval ¢, =c=c, . of the inter-
val [0,1]. In block 1202, an empirical probability density
function f,,, . is calculated from the histogram of the data
tail X, as described above with reference to FIG. 7. In block
1203, an empirical cumulative distribution F,_,,,° is calcu-
lated from the probability density function f,,, as described
above with reference to Equation (12) using numerical
integration. In block 1204, a parametric cumulative distri-
bution F, ¢ is calculated from the empirical cumulative

par
distribution F, < as described above with reference to the

Cauchy distribu}tjion represented by Equation (15), the GP
distribution represented by Equations (16a) and (16b), or the
GEV distribution represented by Equations (17a) and (17b).
In block 1205, the relative error r is calculated as described
above with reference to Equation (19) for the empirical and
parametric cumulative distributions calculated in blocks
1203 and 1204. In decision block 1206, when another
quantile index ¢ is available, the next quantile index is
selected from the subinterval in block 1207 and the opera-
tions associated with blocks 1202-1206 are repeated. Oth-
erwise, control flows to decision block 1206 in which the
relative errors are compared with a relative-error threshold
T,. If there are any relative errors less than the threshold,
control flows to block 1209 in which parametric cumulative
distributions with relative errors less than the relative-error
threshold are identified. In block 1210, when an upper hard
threshold is desired, the parametric cumulative distribution
with the lowest quantile index for relative errors less than the
relative-error threshold is identified. When a lower hard
threshold is desired, the parametric cumulative distribution
with the highest quantile index for relative errors less than
the relative-error threshold is identified. In block 1211, the
inverse of this parametric cumulative distribution is used to
calculate an upper hard threshold for a predefined confi-
dence level. In block 1212, an indication is given that
calculation of the threshold is intractable.

FIG. 13 shows a flow-control diagram of a non-paramet-
ric implementation of the routine “extremes analysis™ called
in block 1008 of FIG. 10. A for-loop begins with block 1301
with operations in blocks 1302-1304 executed for each
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quantile index c in the subinterval c,,,,,<c=c,,,. of the inter-
val [0,1]. In block 1302, the entropy is calculated from a
histogram of a data tail X_ as described above with reference
to Equation (21). In decision block 1302, when another
quantile index ¢ is available, the next quantile index is
selected from the subinterval in block 1304 and the opera-
tions associated with blocks 1302-1303 are repeated. In
block 1305, the entropies calculated in block 1302 are
checked for one or more maximum entropies H,,,.(X.+). In
decision block 1306, if no maximum entropy exists, control
flows to block 1312. Otherwise, a maximum entropy exists
and control flows to decision block 1307 in which the
maximum threshold is compared with an entropy threshold
T, (e.g., T;=0.5). When the maximum entropy is greater
than the entropy threshold, control flows to block 1308.
Otherwise, control flows to block 1312. In block 1312, an
indication is given that calculation of the threshold is
intractable. In block 1308, an empirical probability density
fempc* is calculated from the histogram associated with the
maximum entropy. If there are two or more maximum
entropies, the empirical probability density f,,, " is calcu-
lated from the histogram associated with the largest quantile
index of the two or more maximum entropies. In block 1309,
an empirical cumulative distribution Fempc* is calculated
according to Equation (12) or Equation (13) from the
probability density function. In block 1310, an inverse of the
empirical cumulative distribution is calculated as used to
calculate a hard threshold according to Equation (22) for a
risk confidence parameter.

FIG. 14 shows a flow-control diagram of the routine
“extremes analysis” called in block 1008 of FIG. 10 in
which the parametric and non-parametric implementations
of the analysis of extremes are used as alternatives should
one of the implementations fail to produce a hard threshold.
In block 1401, one of the routines “extremes analysis”
described above in FIGS. 12 and 13 is called to perform
extremes analysis. In decision block 1402, when the routine
finds calculation of the hard threshold intractable, control
flows to block 1403. Otherwise, the hard threshold calcu-
lated in block 1401 is returned. In block 1403, the other of
the two routines “extremes analysis” described above in
FIGS. 12 and 13 is called to perform extremes analysis. In
decision block 1402, when the routine finds calculation of
the hard threshold intractable, control flows to block 1405 in
which an indication is given that calculation of the threshold
is intractable for both implementations. Otherwise, the hard
threshold calculated in block 1403 is returned.

Computational Results

FIG. 15 shows a plot of an actual non-trendy set of data
collected for a data-generating entity. Horizontal axis 1502
represents time, and vertical axis 1504 represents a range of
data values for the set of data. The parametric and non-
parametric implementations described above were used to
calculate upper hard thresholds for the set of data shown in
FIG. 15 using the quantile index ¢ subinterval 0.90=c=<0.99.

The corresponding results for a parametric implementa-
tion are displayed in table shown in FIG. 16 for the param-
eter implementations using the GP distribution of Equation
(16a). Column 1601 displays the quantile index values in
hundredths, columns 1602 and 1602 displays values for the
parameters y and o respectively, and column 1604 displays
the relative error calculated according to Equation (19). For
relative-error threshold equal to 0.1, only quantile index
values in subinterval 0.92=c<0.98 provide the required
goodness-of-fit. The lowest quantile index value in the
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subinterval 0.92=c=0.98 is ¢=0.92 1606 which provides a
reasonable quantile to obtain the representative data tail.
FIG. 17 shows the data tail X, o, with horizontal axis 1702
representing time and vertical axis 1704 representing dis-
tance calculated according to Equation (9). FIG. 18 shows a
plot of corresponding empirical and parametric cumulative
distribution for ¢=0.92, and FIG. 19 shows a plot of the
absolute error between the empirical and parametric cumu-
lative distributions for c=0.92. FIG. 20 shows a hard thresh-
old value 1.156x10® represented by dashed line 2002 cal-
culated using an inverse of the parametric GP distribution
given by

T=2(-(1-a) 23
¥

with a predefined risk confidence level a=0.97 and the
parameters in the table of FIG. 16 for e=0.92.

The entropy results for the non-parametric implementa-
tion applied to the same set of data shown in FIG. 15 are
displayed in FIG. 21. In FIG. 21, horizontal axis 2102
represents the subinterval 0.90=c<0.99, vertical axis 1604
represents entropy, and curve 2106 represents the entropy
calculated using Equation (21). The maximum entropy 2108
corresponds to quantile index ¢=0.961 and quantile q_=3.1x
107 (which is very close to the base-line derived in the
parametric case for the GP fit). Applying the same confi-
dence level a=0.97, in this case the hard threshold value is
1.402x10%. FIG. 22 shows the threshold value 1.402x10®
represented by dashed line 2202 and threshold value 1.156x
10® represented by dashed line 2002 for comparison.

It is appreciated that the various implementations
described herein are intended to enable any person skilled in
the art to make or use the present disclosure. Various
modifications to these implementations will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other implementations
without departing from the spirit or scope of the disclosure.
For example, any of a variety of different implementations
can be obtained by varying any of many different design and
development parameters, including programming language,
underlying operating system, modular organization, control
structures, data structures, and other such design and devel-
opment parameters. Thus, the present disclosure is not
intended to be limited to the implementations described
herein but is to be accorded the widest scope consistent with
the principles and novel features disclosed herein.

The invention claimed is:

1. A method stored in one or more data-storage devices
and executed using one or more processors of a computing
environment, the method comprising:

receiving time-series data associated with a data-gener-

ating entity over a period of time;

categorizing the data as trendy data or non-trendy data;

when the data is identified as trendy data, subtracting a

trend from the data to give non-trendy data;
determining a cumulative distribution that represents

probability of data values of the data that violate a
quantile of the data by:
calculating a plurality of quantiles of the data; and
for at least one of the plurality of quantiles,

forming a data tail,

constructing a histogram for the data tail, and
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calculating an empirical cumulative distribution that
represents probability of data values in the data
belonging to the data tail;
calculating a hard threshold for the data-generating entity
as an inverse of the cumulative distribution based on a
user-defined risk confidence level; and
generating an alert when the time-series data violates the
hard threshold for a number of time stamps, the alert
indicating a problem with the data-generating entity.
2. The method of claim 1, wherein categorizing the data
as trendy or non-trendy data further comprises:
calculating a trend measure of the data;
when the trend measure is greater than a trend threshold,
categorizing the data as trendy data, otherwise,
categorizing the data as non-trendy data.
3. The method of claim 1, wherein subtracting the trend
from the data further comprises:
recognizing the trend in the data as one of linear, log-
linear, and non-linear using regression analysis;
decomposing data values in the data into non-trendy
components and trendy components; and
for each data value of the data, subtracting the trendy
components based on the trend.
4. The method of claim 1, wherein forming the data tail
further comprises:
for an upper hard threshold,
calculating a distance from the quantile to data values
that are greater than the quantile; and
collecting the distances to form the data tail.
5. The method of claim 1, wherein forming the data tail
further comprises
for a lower hard threshold,
calculating a distance from the quantile to data values
of the data that are less than the quantile; and
collecting the distances to form the data tail.
6. The method of claim 1, further comprising:
for the at least one of the plurality of quantiles,
calculating a parametric cumulative distribution from
the empirical cumulative distribution, and
calculating a relative error between the parametric
cumulative distribution and the empirical cumulative
distribution; and
selecting a parametric cumulative distribution as the
cumulative distribution to calculate the hard threshold
based on a corresponding relative error being less than
a relative-error threshold.
7. The method of claim 1, further comprising:
for the at least one of the plurality of quantiles,
calculating an entropy for each histogram, and
selecting a maximum entropy greater than an entropy
threshold; and
calculating an empirical cumulative distribution as the
cumulative distribution used to calculate the hard
threshold based on the histogram that corresponds to
the maximum entropy.
8. A system for generating a data structure of metric data
generated in a computing environment comprising:
one Or mMore processors;
one or more data-storage devices; and
a routine stored in the data-storage devices that when
executed using the one or more processors, controls the
system to carry out:
receiving time-series data associated with a data-gen-
erating entity over a period time;
categorizing the data as trendy data or non-trendy data;
when the data is identified as trendy data, subtracting a
trend from the data to give non-trendy data;
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determining a cumulative distribution that represents
probability of data values of the data that violate a
quantile of the data by:
calculating a plurality of quantiles of the data; and
for each quantile:
forming a data tail,
constructing a histogram for the data tail, and
calculating an empirical cumulative distribution
that represents probability of data values in the
data belonging to the data tail;
calculating a hard threshold for the data-generating
entity as an inverse of the cumulative distribution
based on a user-defined risk confidence level; and
generating an alert when the time-series data violates
the hard threshold for a number of time stamps, the
alert indicating a problem with the data-generating
entity.

9. The system of claim 8, wherein categorizing the data as
trendy or non-trendy data further comprises:

calculating a trend measure of the data;

when the trend measure is greater than a trend threshold,

categorizing the data at as trendy data, otherwise,
categorizing the data as non-trendy data.

10. The system of claim 8, wherein subtracting the trend
from the data further comprises:

recognizing the trend in the data as one of linear, log-

linear, and non-linear using regression analysis;
decomposing data values in the data into non-trendy
components and trendy components; and

for each data value of the data, subtracting the trendy

components based on the trend.

11. The system of claim 8, wherein forming the data tail
further comprises:

for an upper hard threshold,

calculating a distance from the quantile to data values
that are greater than the quantile; and
collecting the distances to form the data tail.

12. The system of claim 8, wherein forming the data tail
further comprises:

for a lower hard threshold,

calculating a distance from the quantile to data values
of the data that are less than the quantile; and
collecting the distances to form the data tail.
13. The system of claim 8, further comprising:
for each quantile,
calculating a parametric cumulative distribution from
the empirical cumulative distribution, and
calculating a relative error between the parametric
cumulative distribution and the empirical cumulative
distribution; and
selecting a parametric cumulative distribution as the
cumulative distribution to calculate the hard threshold
based on a corresponding relative error being less than
a relative-error threshold.

14. The system of claim 8, further comprising:

for each quantile,
calculating an entropy for each histogram, and
selecting a maximum entropy greater than an entropy

threshold; and
calculating an empirical cumulative distribution as the
cumulative distribution used to calculate the hard
threshold based on the histogram that corresponds to
the maximum entropy.

15. A non-transitory computer-readable medium encoded
with machine-readable instructions that implement a method
carried out by one or more processors of a computer system
to perform the operations of
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receiving time-series data associated with a data-gener-
ating entity over a period of time;
categorizing the data as trendy data or non-trendy data;
when the data is identified as trendy data,
subtracting a trend from the data to give non-trendy
data;
determining a cumulative distribution that represents
probability of data values of the data that violate a
quantile of the data by:
calculating a number of quantiles of the data; and
for each quantile,
forming a data tail,
constructing a histogram for the data tail, and
calculating an empirical cumulative distribution that
represents probability of data values in the data
belonging to the data tail;
calculating a hard threshold for the data-generating entity
as an inverse of the cumulative distribution based on a
user-defined risk confidence level; and
generating an alert when the time-series data violates the
hard threshold for a number of time stamps, the alert
indicating a problem with the data-generating entity.
16. The method of claim 15, wherein categorizing the data
as trendy or non-trendy data further comprises:
calculating a trend measure of the data;
when the trend measure is greater than a trend threshold,
categorizing the data as trendy data, otherwise,
categorizing the data as non-trendy data.
17. The method of claim 15, wherein subtracting the trend
from the data further comprises:
recognizing the trend in the data as one of linear, log-
linear, and non-linear using regression analysis;
decomposing data values in the data into non-trendy
components and trendy components; and
for each data value of the data, subtracting the trendy
components based on the trend.
18. The method of claim 15, wherein forming the data tail
further comprises:
for an upper hard threshold,
calculating a distance from the quantile to data values
that are greater than the quantile; and
collecting the distances to form the data tail.
19. The method of claim 15, wherein forming the data tail
further comprises
for a lower hard threshold,
calculating a distance from the quantile to data values
of the data that are less than the quantile; and
collecting the distances to form the data tail.
20. The method of claim 15, further comprising:
for each quantile,
calculating a parametric cumulative distribution from
the empirical cumulative distribution, and
calculating a relative error between the parametric
cumulative distribution and the empirical cumulative
distribution; and
selecting a parametric cumulative distribution as the
cumulative distribution to calculate the hard threshold
based on a corresponding relative error being less than
a relative-error threshold.
21. The method of claim 15, further comprises compris-
ing:
for each quantile,
calculating an entropy for each histogram, and
selecting a maximum entropy greater than an entropy
threshold; and
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calculating an empirical cumulative distribution as the
cumulative distribution used to calculate the hard
threshold based on the histogram that corresponds to
the maximum entropy.
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