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Abstract— We introduce a statistical learning Normalcy 

Determination System (NDS) for data-agnostic management of 

monitoring flows. NDS performs data categorization with 

analysis tools that identify category-specific normalcy bounds in 

terms of dynamic thresholds. This information further can be 

applied for anomaly detection, prediction, capacity planning and 

root-cause analysis.        

Keywords - monitoring; time series data; statistical process 

control,  normalcy determination, dynamic thresholding, data 
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I. INTRODUCTION 

Today’s business and IT management face the problem of “big 

infrastructures” with millions of monitored metrics that need 

to be efficiently analyzed for gaining valuable insights in 

terms of underlying system control. The concept of control for 

ensuring the quality of services of different systems is 

originating from the ideas of the statistical process control 

charts which provide a comprehensive tool to determine 

whether the process is in normalcy state or not. The 

foundation of these concepts was established by Shewart ([1]) 

where he developed methods to improve quality and lower 

costs. Fluctuations and deviations from standards are present 

everywhere and the problem of constructing a relevant chart is 

in understanding which variations are normal and which are 

caused by a problem.  

In the classical theory of control the underlying processes have 

bell-shaped distribution and in those cases control charts are 

based on strong foundation of parametric statistics. The 

problems arise when the classical theory of control is applied 

to processes of other types.  

The problem of construction of a relevant control tool is in 

identification of normalcy bounds of the processes. Since 

developments of Shewart an explosion in controlling 

techniques has occurred ([2-4]). Different processes require 

different measures to be controlled and each one leads to a 

new control chart with the corresponding normalcy states 

defined by thresholds ([5-10]).  

Modern businesses and infrastructures are dynamic and as a 

consequence measured metrics are dynamic without any ad-

hoc known behavior. These cause extension of the classical 

ideas to encompass the notion of dynamic normalcy behavior. 

In some applications a notion of normalcy bound in terms of 

dynamic threshold (DT) arises naturally ([11-16]). Essentially 

different approach is determination of normalcy state in terms 

of correlated events which leads to a directed graph revealing 

the fundamental structure of a system beyond the sources and 

processes ([17, 18]). 

In this paper, we introduce a fully data-agnostic system ([19, 

20]) for determining normalcy bounds in terms of DTs of 

monitoring time series data without presumed behavior. The 

system performs data categorization based on some parametric 

and non-parametric models and applies category-specific 

procedures for optimized normalcy determination via 

historical simulation. Although experimental results are 

obtained based on IT data, the approach is applicable to wider 

domains since for different applications the data categories can 

be appropriately defined.  

Determined DTs can be further applied for anomaly detection 

by construction of anomaly events. As soon as the DT’s are 

historically constructed they can be projected into the future as 

prediction for time-based normalcy ranges. Any data point 

appearing above or below those thresholds is an abnormality 

event. An approach described in ([21-24]) employs a directed 

virtual graph showing relationships between event pairs. An 

information-theoretic processing of this graph enables reliable 

prediction of root causes of problems, bottlenecks and black 

swan events in IT systems.  

The NDS described here is realized in VMware’s vC Ops 

([25]) analytics and the last section presents some results for 

real customer data.   

II. GENERAL DESCRIPTION OF THE SYSTEM 

In this section, we present general principles of the NDS 

which performs fully data-agnostic normalcy determination 

based on historical simulation. Flowchart 1 illustrates the 

general concept.  The system sequentially utilizes different 

Data Quality Assurance (DQA) and Data Categorization (DC) 

routines that allow choosing the right procedure (right 

category of qualified data) for determination of data normalcy 

bounds in terms of DTs.  

 

 
Flowchart 1. General concept of the NDS. 

 

DQA filters data by checking different statistical 

characteristics defined for data qualification and it further 

passes through DC. DC performs data identification into 

categories (e.g. trendy, cyclical, etc.). We repeat this cycle for 

each time series performing category checking and 



identification with hierarchical/priority order until data is 

identified as belonging to some category or is identified as 

corrupted. The categorization order or the hierarchy is 

important as different orders of iterative checking and 

identification will lead to different final categorization with 

differently specified normalcy states.   

Flowchart 2 shows specific realization of the general concept. 

Here, NDS consists of three DQA modules – Data Quality 

Detector, Data Density Detector, Stability Detector, and two 

DC modules – Parametric Category Detector and Variability 

Detector. 

 

 
Flowchart 2. A specific realization of NDS. 

 

As a final result, the initial data is interpreted as Parametric, 

Sparse, Low-Variability, and High-Variability. In each of 

those cases the normalcy determination method is different. 

For instance, Parametric Data can be of different categories 

(Transient, Multinomial, Semi-constant, and Trendy) with a 

specific normalcy analysis algorithm in each case.  

The functional meanings of the above mentioned detectors are 

as follows: 

Data Quality Detector performs check of sufficient statistics. 

This block classifies data as Qualified when available data 

points and length of data are sufficient for further analysis 

otherwise data is classified as Corrupted.  

Parametric Category Detector performs data categorization by 

verifying data against a selected statistical parametric model. 

If categorization is possible then data is named as Parametric 

Data otherwise Regular Data.  

Data Density Detector filters Regular Data against gaps. Data 

with extremely high percentage of gaps is Corrupted Data. 

Data with low percentage of gaps is Dense Data. Data with 

high percentage of gaps which are uniformly distributed in 

time is Sparse Data. Data with high percentage of gaps which 

have localization in time is further processed through a gap 

filter which output is Dense or Corrupted Data.  

Stability Detector analyzes Dense Data in terms of statistical 

stability. If data is piecewise stable and the latest stable region 

is enough for further processing then this block performs a 

data selection, otherwise the data is Corrupted. Stable Data is 

then passed through Variability Detector.  

Variability Detector calculates variability indicators and 

classifies data into High-Variability or Low-Variability. 

In all categorization scenarios the data additionally is verified 

against periodicity for efficient construction of its normalcy 

bounds (see Flowchart 3).  

 

 
Flowchart 3. Categorization in terms of periodicity. 

III. PERIOD DETECTOR 

Period determination procedure (see Period Detector in 

Flowchart 3) in NDS is seeking similar patterns in the 

historical behavior of time series for accurate setting of its 

normalcy bounds based on the information on cycles.  

Some classical techniques known in the literature include 

seasonality analysis and adjustment [26-30], spectral analysis, 

Fourier transform, discrete Fourier transform [31-35], data 

decomposition into cyclical and non-cyclical components and 



the Prony method [36,37]. Our procedure is closer to the 

approach described in [38] that is based on clustering 

principles.  

The main steps of the period determination procedure are 

presented in Flowchart 4. 

 

 
Flowchart 4. The main steps of the period determination. 

 

Data preprocessing performs data smoothing and outlier 

removal by various procedures. We refer to standard classical 

algorithms [39-42]. The purpose of this step is two-fold: 

eliminating of extreme high or low outliers that can degrade the 

range information and smoothing of local fluctuations in data 

for more robust pattern recognition. 

Data Quantization performs construction of the Footprint of 

the historical data for further cyclical patterns recognition. 

This is a two-step procedure: 

1)  Frame construction.  

The range of data (smoothed data) is divided into non-uniform 

parts by quantiles 𝑞𝑘 with 𝑘 = 𝑘1, … , 𝑘𝑚 , 0 ≤ 𝑘1 < ⋯ <
𝑘𝑚 ≤ 1 , where parameter 𝑚  and the values of 𝑘𝑗  are 

predefined. Evidently, the grid lines are dense where the data 

is dense. For division of data into parts along the time axis two 

parameters “𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡”  and “𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡_𝑝𝑎𝑟𝑡𝑠”  are used.  

“𝑇𝑖𝑚𝑒_𝑢𝑛𝑖𝑡”  is a basic parameter that defines the minimal 

length of possible cycle that can be found. Moreover, any 

cycle can be a factor only of the length of  “𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡". Usual 

setting is 𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡 = 1 𝑑𝑎𝑦.  Parameter “𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡_𝑝𝑎𝑟𝑡𝑠” 

shows the number of subintervals that “𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡” must be 

divided. Actually this parameter is the measure of resolution. 

The bigger the value of “𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡_𝑝𝑎𝑟𝑡" then more sensitive 

is the footprint of the historical data. Figure 1 shows an 

example of a frame. Gridlines are equidistant along the time 

axis and non-uniform along the range.  

 

 
Figure 1. Example of a frame. 

 

2) Percentage calculation.  

For the given framework, we calculate the percentage of data in 

every grid-cell and obtain the corresponding column for the 

given time interval. Collecting all columns, we construct the 

matrix of percentages for that particular frame. The final matrix 

is a 2-dimensional classical histogram of historical data. Then 

for every column we calculate the corresponding cumulative 

sums getting cumulative distribution of data in each column. 

We call this matrix as a Footprint of historical data. 

Pattern Recognition procedure is described as: Let  𝑇 =
𝑁 × 𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡 , 𝑁 = 1,2, …  We collect the columns of the 

footprint matrix into subgroups with 𝐿 = 𝑁 × 𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡 ×
𝑡𝑖𝑚𝑒_𝑢𝑛𝑖𝑡_𝑝𝑎𝑟𝑡𝑠

 
columns in every subgroup. Overall number 

of the subgroups equals to 𝑀 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡)/𝐿 

(footprint matrix can be extended by zero columns if needed).  

For each 𝑘-th 𝑘 = 1, … , 𝐿 column in every subgroup, we check 

the similarity of columns by the well-known relative 𝐿2-norm: 

𝐴 = (

𝑎1

𝑎2

⋮
𝑎𝑛

) , 𝐵 = (

𝑏
𝑏2

⋮
𝑏𝑛

) , 𝑑(𝐴, 𝐵) =  
(∑ (𝑎𝑘 − 𝑏𝑘)2𝑛

𝑘=1 )1/2

𝑚𝑎𝑥(||𝑎||, ||𝑏||)
 

If  

𝑑(𝐴, 𝐵) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 

for some user-defined parameter “closeness” then it is 

assumed that two columns are similar. Let user defines 

parameters “𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠” (= 0.2)  and “𝑞𝑢𝑎𝑙𝑖𝑡𝑦” (= 75%) . In 

Figure 2 an example is shown where data is divided into T-

cycles. For this particular example, we assumed that 

𝑑(𝐴, 𝐸) > 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠, 𝑑(𝐴, 𝐼) > 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠,  
𝑑(𝐸, 𝑀) > 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠. 

Hence column 𝐴 is not similar to columns 𝐸, 𝐼 and 𝑀and we 

put zero under it. Now, we try column 𝐸. We assumed that  

𝑑(𝐸, 𝐼) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠, 𝑑(𝐸, 𝑀) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠. 

Hence, column 𝐸 assumed to be similar to 𝐼 and 𝑀 and we put 

ones under these columns. If the percentage of ones is not less 

than the value of parameter “quality” then, we declare that the 

corresponding column of T-cycle is periodic otherwise non-

periodic. In our example taking into account that three 

columns from four compose 75% ≥ "𝑞𝑢𝑎𝑙𝑖𝑡𝑦" , we declare 
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that
 
the first column of the T-cycle is periodic and put one in 

the corresponding column (see Figure 3). We repeat the 

procedure for all columns (see particular example in Figure 2) 

and check periodicity of each column (see Figure 3).   
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Figure 2. T-cycle checking procedure. 

 

Figure 3 shows that in this particular example, two columns 

are periodic (𝐴, 𝐸, 𝐼, 𝑀  and 𝐷, 𝐻, 𝐿, 𝑃 ) and two columns are 

non-periodic. As periodic columns compose 50%  of all 

columns then T-cycle has 50% similarity of columns. 
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Figure 3. T-cycle similarity calculation.  

 

Repeating this procedure for all possible T-cycles, we 

compose a Cyclochart of data which shows percentage of 

similarities against 𝑇 . Figure 4 shows an example of a 

Cyclochart. 

 

 
Figure 4. Example of a Cyclochart. 

 

Period determination procedure is based on the Cyclochart 

analysis and consists of four steps. Let us consider the 

particular example of Figure 4.   

1) Finding out the local maximums in the Cyclochart with 

their corresponding similarities (see Table 1).  

 

Local maximums  Similarity 

2 34.7% 

4 31.3% 

7 82.5% 

11 44.9% 

14 73.28% 

19 60.5% 

21 90.3% 

23 68.1% 

28 78% 

31 37% 

Table 1. Local maximums (first column) and the 

corresponding similarities (second column) corresponding to 

the Cyclochart of Figure 4. 

 

2) Construction of the periods that correspond to every 

local maximum. Data with T-cycle also have kT-cycle for 

every natural k. Hence for the first row in Table 1 together 

with the 2-day period, we expect also 4-day, 6-day, … periods. 

So 2-day period creates the following period series  

2 →  2, 4, 6, 8, 10, … . 
The peak 4 creates another series 

4 →  4, 8, 12, 16, . . . 
and so on.  

3) The third step is calculation of the series characteristics 

for every period series. The following characteristics are 

assumed to be important: positive factor of the period series is 

the number of peaks in that series and negative factor of the 

period series is the number of members in that series which 

are not the peaks.  

Then, we set  

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ  =  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 –  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑎𝑐𝑡𝑜𝑟. 

Table 2 shows these characteristics for Table 1. 

 

Local 

maximum 

Positive 

factor 

Negative 

factor 

Strength Similarity 

2 4 11 -7 34.7% 

4 2 5 -3 31.3% 

7 4 0 4 82.5% 

11 1 1 0 44.9% 

14 2 0 2 73.28% 

19 1 0 1 60.5% 

21 1 0 1 90.3% 

23 1 0 1 68.1% 

28 1 0 1 78% 

31 1 0 1 37% 

 

Table 2. Positive factors, negative factors, strengths and the 

corresponding similarities. 
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4) Period determination based on the defined 

characteristics by the following procedure. We select the 

periods with maximum strength. From that list, we choose  the 

periods with minimum negative factor then with maximum 

similarity. Then, we pick the period with minimum length and 

check its similarity measure. The similarity of the determined 

final period must be greater than 20%  otherwise data is 

claimed to be non-periodic. This procedure applied to the 

results in Table 2 leads to the 7-day period as it has the 

maximum 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 4. 

We will now discuss the general procedure how the normalcy 

bounds can be determined based on periodicity taking into 

account that for specific categories it can be modified 

appropriately.  

In case of non-periodic data normalcy bounds can be 

determined by the well-known whisker’s method. If data is 

claimed as periodic then normalcy bounds are calculated based 

on cycle information (see Figure 5 for a specific example).  

 

 
Figure 5. Normalcy bounds for periodic data. 

 

More specifically, consider the case of cyclical data and the 

following four columns from the Footprint which are shifted 

one from another by the period of data 

𝐴 = (

𝑎1

𝑎2
𝑎3

𝑎4

) , B = (

𝑏1

𝑏2

𝑏3

𝑏4

) , 𝐶 = (

𝑐1

𝑐2
𝑐3

𝑐4

) , 𝐷 = (

𝑑1

𝑑2

𝑑3

𝑑4

) 

If  

𝑑(𝐴, 𝐵) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠, 𝑑(𝐴, 𝐶) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠,  
and 

𝑑(𝐴, 𝐷) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠, 
then all columns make a cyclical subgroup and we calculate 

the bounds based on the four data columns. Then, if  

𝑑(𝐴, 𝐵) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠, 𝑑(𝐴, 𝐶) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 

but  

𝑑(𝐴, 𝐷) > 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 

then only the columns 𝐴, 𝐵, 𝐶  make a cyclical subgroup. 

Taking into account that "𝑞𝑢𝑎𝑙𝑖𝑡𝑦" = 75% and three columns 

from four compose 75%  then we assume that column 𝐷  is 

corrupted and consider only the three columns.  If  

𝑑(𝐴, 𝐷) ≤ 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 

but 

𝑑(𝐴, 𝐵) > 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 

then we discard column 𝐴 . If less than 75%  of these four 

columns are similar then we have non-cyclical subgroup and 

take into consideration all columns 𝐴, 𝐵, 𝐶, 𝐷. Then, for each 

group of columns normalcy bounds can be taken as 

(𝑚𝑖𝑛, 𝑚𝑎𝑥) values of data (see Figure 6) taking into account 

preliminary data smoothing factor. 

 

 
Figure 6. Normalcy bounds construction procedure from 

Footprint taking into account the information on cycles. 

 

IV. DATA QUALITY  AND PARAMETRIC CATEGORY 

DETECTORS 

Data Quality Detector performs check of sufficient statistics. 

This block classifies data as Qualified when available data 

points (are greater than 20 points for example) and length of 

data (is greater than 1 week for example) are enough for 

further analysis otherwise data is classified as Corrupted. 

Flowchart 5 shows the principal scheme of the Parametric 

Category Detector. It specifies data either Parametric or 

Regular. Parametric Data can belong to different categories: 

Multinomial, Transient, Semi-Constant, Trendy or any other 

user defined category.   

 
Flowchart 5. Parametric Category Detector. 

 

Multinomial Data. Flowchart 6 describes the process of 

Multinomial Data (MD) categorization. The module Checking 
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Parameters for MD calculates statistical parameters for 

comparison with the predefined measures. If the checking is 

positive then data is classified as MD otherwise the module 

Performing De-noising performs data cleaning with sequential 

checking of predefined parameters. We consider the following 

predefined statistical measures. Let 𝑝𝑗  be the frequency of 

occurrences of the integer 𝑛𝑗 

𝑝𝑗 =
𝑛𝑗

𝑁
100, 𝑗 = 1, … , 𝑚 

where 𝑁  is the total number of integer values and 𝑚  is the 

number of different integer values. 

 

 
 

Flowchart 6. Categorization of Multinomial Data. 

 

Data is multinomial if it takes less than 𝑚  different integer 

values and at least  𝑠 of them have frequencies greater than 

parameter 𝐻1.  

Two different de-noising procedures can be performed:   

The first procedure is filtering against non-integer values with 

smaller than 𝐻2   percentage (𝐻2 < 𝐻1 ). If this condition is 

satisfied then in the remaining analysis the non-integer 

numbers are discarded.  

The second procedure is filtering against integer values with 

small cumulative percentage. Sorting the percentages 𝑝𝑗  in 

descending order we define the cumulative sum 𝑐𝑗  as: 

𝑐1 = 100,  𝑐𝑗 = 𝑝𝑗 + ⋯ + 𝑝𝑚, 𝑐𝑚 = 𝑝𝑚. 

Now, if 𝑐𝑘 < 𝐻3 , 𝑐𝑘−1 ≥ 𝐻3  then the integer values 

𝑛𝑘, 𝑛𝑘+1, … , 𝑛𝑚 can be discarded from further analysis.  

Determination of normalcy bounds is started with periodicity 

analysis. Here, while constructing the Footprint, instead of the 

percentages of data in every cell we are taking the values of 𝑐𝑘 

in every column. Then, if data is claimed as periodic points in 

similar columns are collected together and new values of the 

numbers 𝑐𝑘  are calculated. If 𝑐𝑘+1 < 𝐻 , 𝑐𝑘 ≥ 𝐻  then the 

values 𝑛1, 𝑛2, … , 𝑛𝑘  constitute the most probable set (normalcy 

set) of similar columns. If data is determined as non-periodic 

then the numbers 𝑐𝑘  are calculated for all data points and 

normalcy set is determined similarly.  

Transient Data is categorized by multimodality, modal 

inertia, and randomness of modes appearing along the time 

axis. Transient Data must have at least two modes. In this 

context modal inertia means that data points in each mode 

must have some inertia (they can’t oscillate from one mode to 

the other too quickly). Actually the inertia can be associated 

with the time duration that data points remain in the selected 

mode.  

Detection of inertial modes is based on calculation of 

transition probabilities. By the first step we seek for a 

region/interval of sparse data values and for data with some 

inertia concentrated in upper and lower regions of this interval. 

We take two numbers 𝑎, 𝑏 such that 

𝑥𝑚𝑖𝑛 ≤ 𝑎 < 𝑏 ≤ 𝑥𝑚𝑎𝑥, 

where 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 are minimum and maximum values of data, 

respectively. These numbers divide the interval [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥] 
into three regions 𝐴 ≝ [𝑥𝑚𝑖𝑛 , 𝑎] , 𝐵 ≝ (𝑎, 𝑏) , and 𝐶 ≝
[𝑏, 𝑥𝑚𝑎𝑥]. We calculate the following transition probabilities 

𝑝𝐴→𝐴 =
𝑁𝐴→𝐴

𝑁𝐴
, 𝑝𝐵→𝐵 =

𝑁𝐵→𝐵

𝑁𝐵
, 𝑝𝐶→𝐶 =

𝑁𝐶→𝐶

𝑁𝐶
, 

where  

𝑁𝐴 – is the number of points in [𝑥𝑚𝑖𝑛 , 𝑎), 𝑁𝐵 – is the number 

of points in [ 𝑎, 𝑏] , 𝑁𝐶  – is the number of data points in 

(𝑏, 𝑥𝑚𝑎𝑥], 𝑁𝐴→𝐴  – is the number of points with the property 

𝑥(𝑡𝑖) ∈ 𝐴  and 𝑥(𝑡𝑖+1) ∈ 𝐴, 𝑁𝐵→𝐵  – is the number of points 

with the property 𝑥(𝑡𝑖) ∈ 𝐵   and 𝑥(𝑡𝑖+1) ∈ 𝐵 , 𝑁𝐶→𝐶  – is the 

number of points with the property 𝑥(𝑡𝑖) ∈ 𝐶  and 𝑥(𝑡𝑖+1) ∈
𝐶. 

Starting from the highest possible position and shifting the 

region 𝐵  to the lowest possible we calculate those three 

transition probabilities and stop the procedure until the 

following condition is fulfilled 

𝑝𝐴→𝐴 > 𝐻, 𝑝𝐶→𝐶 > 𝐻, 𝑝𝐵→𝐵 < ℎ, and 𝑁𝐴, 𝑁𝐶 ≫ 1, 

where the numbers 𝐻 and ℎ are some predefined parameters. 

In our experiments below we set 𝐻 = 0.75 and ℎ = 0.25. If 

this procedure ends without finding the needed interval we 

narrow the region 𝐵 and repeat the procedure.  

In our experiments we divide the interval [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥]  into 

𝑁 + 1  equal parts  

𝑥𝑚𝑖𝑛 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 < 𝑥𝑚𝑎𝑥 

and check sequentially the following intervals (𝑎, 𝑏): 
(𝑥𝑚𝑖𝑛 , 𝑥𝑁), (𝑥1, 𝑥𝑚𝑎𝑥), (𝑥𝑚𝑖𝑛 , 𝑥𝑁−1), (𝑥1, 𝑥𝑁), 

(𝑥2, 𝑥𝑚𝑎𝑥), … , (𝑥𝑚𝑖𝑛 , 𝑥1), (𝑥1, 𝑥2), … , (𝑥𝑁 , 𝑥𝑚𝑎𝑥). 

When the first needed interval is found then the procedure 

stops. If it is needed the procedure can be repeated for the 

lowest (𝐴) region and the highest (𝐶) region for finding new 

inertial modes if data is supposed to be multi-modal. If the 

needed interval was not found then actually the data is without 

inertial modes in terms of the given resolution.  

Now suppose that we found 𝑀  inertial modes and the 

corresponding regions are 

𝐴1 = [𝑎1, 𝑏1], … , 𝐴𝑀 = [𝑎𝑀, 𝑏𝑀]. 
The next step is checking the transiency of each inertial mode. 

We select one of the found inertial modes, delete all other data 

points which are outside of this region and by 𝑥(𝑡𝑘) denote 

data points of this mode. The first step is estimation of the 

monitoring time by the following formula 

∆𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛(∆𝑡𝑘),    ∆𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘. 

We suppose that time intervals with  ∆𝑡𝑘 ≤ 𝑐 ∆𝑡  are normal 

data intervals while ∆𝑡𝑘 > 𝑐 ∆𝑡   are holes (gaps). 𝒄   is a 



predefined parameter for the hole determination. It is assumed 

that for transient data the holes must be “uniformly” 

distributed along time axis. This can be checked by transition 

probabilities. 

Let 𝑇𝑘   be the duration (in milliseconds, seconds, minutes, etc., 

but in the same measures as the monitoring time) of the  𝑘-th 

gapless data portion. For data without holes we have only one 

such portion and 𝑇𝑘 = 𝑡𝑁 − 𝑡1. The sum  

𝑇 = ∑ 𝑇𝑘

𝑁𝑇

𝑘=1

 

is the duration of gapless data. 𝑁𝑇  is the number of gapless 

data portions. Let 𝐺𝑘 be duration (in the same measures as 𝑇𝑘) 

of the 𝑘-th hole. The sum 

𝐺 = ∑ 𝐺𝑘

𝑁𝐺

𝑘=1

 

is the duration of all holes in data. 𝑁𝐺 is the number of hole 

portions. Obviously, 𝐺 + 𝑇 = 𝑡𝑁 − 𝑡1.  

By 𝜌 we define the percentage of holes in data     

𝜌 =  
𝐺

𝐺+𝑇
100%. 

Calculation of Probabilities. By 𝑝11, 𝑝10, 𝑝00, 𝑝01 define the 

probabilities of data-to-data, data-to-gap, gap-to-gap and gap-

to-data transitions, respectively  

𝑝11 = 1 −
𝑁𝑇

𝑇

∆𝑡

 ,  𝑝10 = 1 − 𝑝11,  

and 

𝑝00 = 1 −
𝑁𝐺

𝐺/∆𝑡
 ,  𝑝01 = 1 − 𝑝00. 

We seek for an inertial mode for which 

𝜌 > 𝑃, 𝑝10 > 𝜀,  𝑝01 > 𝜀. 

Where 𝑃 and 𝜀 are user defined parameters. 

If at least two inertial modes satisfy these conditions then data 

is transient. 

Normalcy determination is performed separately for each 

mode.   

Semi-Constant Data. Data is Semi-Constant if 

𝑖𝑞𝑟({𝑥𝑘}𝑘=1
𝑁 ) = 0 

where 𝑁  corresponds to data length and 𝑖𝑞𝑟  stands for 

interquartile range of  𝑥𝑘 = 𝑥(𝑡𝑘).  

If data is not semi-constant but its latest enough long time 

period satisfies the condition then, we select it for further 

normalcy bounds determination. 

Normalcy determination of the Semi-Constant Data can be 

performed as follows. For Semi-Constant Data every data 

point greater than 𝑞0.75  (quantile) or less than  𝑞0.25  is an 

outlier. If the percentage of outliers is greater than 𝑝% (𝑝 =
15%) then we check for periodicity in outlier data by the 

procedure described above. For that, data points equal to the 

median are excluded from the analysis. In case of non-periodic 

data the normalcy bounds are calculated by whisker’s method. 

In case of periodic data the same procedure is applicable for 

each periodic column of the Footprint of data.  

Trendy Data. Different classical methods are known for trend 

determination [43-48]. In our analysis Trendy Data 

recognition and related determination of its normalcy bounds 

consists of three main steps (see Flowchart 7).  

 

 
Flowchart 7. Trend determination and normalcy analysis. 

 

1) Trend identification by Trend Detector which separates 

Qualified Data into Trendy and Non-Trendy Data.  

2) Trendy Data goes through Trend Recognition module 

that classifies the trend into linear, log-linear and non-linear 

categories. The main purpose of this step is decomposition of 

the original time series 𝑓0(𝑡), consisting of 𝑁 points, into sum 

of non-trendy time series 𝑓(𝑡) and trend component 𝑡𝑟𝑒𝑛𝑑(𝑡) 

𝑓0(𝑡) = 𝑓(𝑡) + 𝑡𝑟𝑒𝑛𝑑(𝑡) 

that allows more accurate normalcy analysis based on 𝑓(𝑡). 

3) Specific normalcy bounds calculation for each category.  

Trend Detector performs different classical tests for trend 

detection. Mann-Kendall (MK) test is appropriate for our 

purposes although other known tests are also possible to apply. 

MK statistic (𝑆0) can be computed by the formula 

𝑆0 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑁

𝑗=𝑘+1

𝑁−1

𝑘=1

 

In general, the procedure consists of the following steps: data 

smoothing, calculation of the MK statistic 𝑆0 for the smoothed 

data. If 𝑆0>0 then trend can be increasing, otherwise (if 𝑆0 <0) 

decreasing. Then, calculation of the trend measure  

𝑝 = |
𝑆0

𝑆𝑚𝑎𝑥

| 100% 

where 

𝑆𝑚𝑎𝑥 = ∑ ∑ 1

𝑁

𝑗=𝑘+1

𝑁−1

𝑘=1

 

Data is trendy if, for example 𝑝 > 40%.  

Trend Recognition reveals the nature (linear, log-linear or 

non-linear) of the trend. We are checking linear and log-linear 

trends by the linear regression analysis. Goodness of fit is 

checked by the following formula 



𝑅 = 1 −
𝑅𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑅0

 

where 𝑅𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  is the sum of squares of the vertical 

distances of the points from the regression line and 𝑅0  is 

similar quantity for the line with zero slop and passing through 

the mean of data (null hypothesis).  

If 𝑅 is, for example, greater than 0.6 then it is assumed that 

trend is linear otherwise the log-linearity is checked by the 

same procedure for 𝑓(𝑒𝑐 𝑡), where 𝑐 is some constant. If the 

corresponding goodness of fit is greater than 0.6 then data is 

assumed to be log-linear otherwise data is non-linear trendy. 

Normalcy is performed as follows:  

Data with Linear Trend. We decompose original data 

𝑓0(𝑡) into form 

𝑓0(𝑡) = 𝑓(𝑡) + 𝑙𝑖𝑛𝑒𝑎𝑟_𝑡𝑟𝑒𝑛𝑑(𝑡) 

where 

𝑙𝑖𝑛𝑒𝑎𝑟_𝑡𝑟𝑒𝑛𝑑(𝑡) = 𝑘𝑡 + 𝑏 

with coefficients 𝑘  and 𝑏   determined by linear regression 

analysis and perform periodicity analysis for 𝑓(𝑡)  as we 

described above.  

If  𝑓(𝑡)  is non-periodic then normalcy bounds of 𝑓0(𝑡)  are 

straight lines (upper and lower dynamic thresholds) which we 

set up by maximization of the objective function. As an 

objective function we consider the following expression 

𝑔(𝑃, 𝑆) =
𝑒𝑎 𝑃 − 1

𝑒𝑎 − 1

𝑆

𝑆𝑚𝑎𝑥

 

where 𝑆 is the square of the area limited by 𝑡𝑚𝑖𝑛 ,  𝑡𝑚𝑎𝑥  and 

some lower and upper lines (see Figure 7),  

𝑆𝑚𝑎𝑥 = ℎ(𝑡𝑚𝑎𝑥 −  𝑡𝑚𝑖𝑛) 

and 𝑃  is the fraction of data within upper and lower lines and 

𝑎 is a user defined parameter. 

Then we calculate variability (standard deviation) of 𝑓(𝑡) 

𝜎 = 𝑠𝑡𝑑(𝑓(𝑡)) 

and consider the following set of lower and upper lines 

[𝑘𝑡 + 𝑏 − 𝑧𝑗  𝜎, 𝑘𝑡 + 𝑏 + 𝑧𝑗  𝜎],   𝑗 = 1,2, … 

calculating each time the corresponding value 𝑔𝑗  of the 

objective function. Lines that correspond to max (𝑔𝑗)  we take 

as appropriate normalcy bounds.  

In our experiments we use the following values for 𝑧𝑗 

𝑧1 = 1, 𝑧2 = 1.5, 𝑧3 = 2, 𝑧4 = 3, 𝑧5 = 4. 
If  𝑓(𝑡) is periodic then the procedure described above can be 

performed for each set of similar columns by calculating 

variability (𝜎𝑚) of the 𝑚-th set and considering the following 

normalcy bounds 

[𝑘𝑡 + 𝑏 − 𝑧𝑗  𝜎𝑚, 𝑘𝑡 + 𝑏 + 𝑧𝑗  𝜎𝑚],   𝑗 = 1,2, … 

Then maximum of the objective function will give the 

normalcy bounds of the 𝑚-th set. 

Data with Log-Linear Trend.  Taking into account that 𝑓(𝑒𝑐 𝑡) 

is data with linear trend the above described procedure is valid 

for this as well.  

Data with Non-Linear trend. For this case we select the last 

reasonable portion of data and calculate the normalcy bounds 

according to the above described procedure for non-periodic 

case. 

Figure 8 shows an example of trendy periodic data with the 

corresponding normalcy bounds. 

 

 
Figure 7. Auxiliary drawing for definition of the objective 

function. 

 

 

Figure 8. Normalcy bounds for trendy periodic data. Red 

curve is upper threshold, green curve lower threshold and blue 

curve is the original data. 

V. DATA DENSITY DETECTOR 

Data density recognition is based on probability calculation 

that reveals distribution of gap. According to our analysis we 

differentiate the following categories: Dense Data (relative to 

estimated monitoring time), Sparse Data (relative to estimated 

monitoring time) and data with technical gap (localized gap 

due to malfunction of device) that after data selection will 

belong to Dense Data cluster, and finally, Corrupted Data.   

The principle scheme of density recognition and recovering 

(data selection) procedures is presented in Flowchart 8. For 

categorization purposes we deal with the following measures 

that characterize the nature of gap presence in data: 

1) percentage of gaps,  

2) probabilities for gap-to-gap, data-to-data, gap-to-data and 

data-to-gap transitions.  

If the total percentage of gaps is acceptable then data is 

categorized as Dense Data.  
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If the total percentage of gaps is higher than some limit and 

they have non-uniform distribution in time (it means that gaps 

have some localization in time) then gap clean up (data 

selection) procedure will give a Dense Data.  

If gaps have uniform distribution in time then data belongs to 

a Sparse Data cluster. If gaps have extremely high percentage 

that further analysis is impossible then data belongs to 

Corrupted Data cluster.  

We omit technical details as calculation of the transition 

probabilities can be performed as for Transient Data. 

  

 
Flowchart 8. Data Density Detector. 

 

For normalcy determination data is preliminary checked for 

periodicity. In case of Sparse Data duration of gaps is 

reasonable to take into account.  

VI. STABILITY DETECTOR 

The problem of change detection in time series ([49-55]) is a 

well-known statistical problem. Stability Detector (see 

Flowchart 9) performs data processing for statistical stability 

recognition. If data is stable or its stable portion can be 

selected then the data (or selected portion) is defined as Stable 

Data otherwise Corrupted. 

Stability identification is accomplished by construction of data 

StabiloChart that shows the stability intervals of time series 

and allows selection of the recent enough long data region for 

further analysis.  

For every given 𝑚 we calculate the quantity 

𝑠𝑚 =  
|𝑖𝑞𝑟({𝑥𝑘}𝑘=𝑚−𝑛

𝑚 ) − 𝑖𝑞𝑟({𝑥𝑘}𝑘=𝑚
𝑚+𝑛)|

𝑖𝑞𝑟({𝑥𝑘}𝑘=1
𝑁 )

100% 

that shows the relative change (left-right) attached to the point  

𝑥𝑚  in terms of the 𝑖𝑞𝑟  measure where 𝑛  is some parameter 

(for example 𝑛 = [
𝑇

4
], where 𝑇  is the length of data). 

If 

𝑠𝑚 < 𝑆 

then we set 𝑠𝑚 = 0 showing the stability against the point 𝑥𝑚 

with the given sensitivity 𝑆 (= 70%), otherwise we put 𝑠𝑚 =
1 showing instability against the point 𝑥𝑚. 

The graph of 𝑠𝑚’s obtained along the moving (by a preset data 

points) 𝑥𝑚  is the Stabilochart of the data. Stabilochart shows 

if data is stable, the latest stable portion can be selected, or 

data is corrupted. 

 
Flowchart 9. Stability Detector. 

VII. VARIABILITY DETECTOR 

Variability Detector performs data processing for variability 

recognition. Two different categories can be recognized: Low-

Variability and High-Variability. Based on the absolute jumps 

𝑥𝑘
′  of data points 

𝑥𝑘
′ = |𝑥𝑘+1 − 𝑥𝑘| 

the following measure 𝑅 of variability is considered 

𝑅 =
𝑖𝑞𝑟({𝑥𝑘

′ }𝑘=1
𝑁−1)

𝑖𝑞𝑟({𝑥𝑘}𝑘=1
𝑁 )

100%,    𝑖𝑞𝑟({𝑥𝑘}𝑘=1
𝑁 ) ≠ 0.   

Data clustering is performed by the following comparison with 

parameter 𝑉 (= 20%) : if 𝑅 ≤ 𝑉 then data is from Low-

Variability cluster otherwise from High-Variability cluster. 

Normalcy determination for both categories is performed by 

different setup of preliminary parameters – less sensitive for 

High-Variability Data.  

VIII. EXPERIMENTAL RESULTS AND DISCUSSION 

We present some results of experiments on an actual customer 

data set. First we performed experiments for short-term data 

with   almost one month duration. NDS was applied to 3215 

time series metrics. Table 3 shows the distribution along 

different data categories. Table 4 shows the count of periodic 

and non-periodic data.  

 

Data Category Count (Percentage) of 

Metrics in a Specific 

Category 

Multinomial 724 (22.5%) 

Trendy 165 (5.1%) 

Semi-Constant 532 (16.5%) 

Transient 102 (3.2%) 

Sparse 88 (2.7%) 

Low-Variability 826 (25.7%) 

High-variability 669 (20.8%) 

Corrupted 109 (3.4%) 

Table 3. Distribution along the categories for short-term data  

set. 



Periodic Non-Periodic Corrupted Overall  

1511 1595 109 3512 

Table 4. Count of periodic and non-period data for short-term 

data set. 

 

We also examined the distribution of periodic data in some 

categories. For 532 Semi-Constant Data (see Table 3), 267 

have percentage of outliers less than 15% and they are claimed 

as non-periodic without any further checking. The remaining 

235 metrics are investigated in sense of periodic structure and 

in 212 of them periods are found. In case of High-Variability 

and Low-Variability categories periods are found for 378 and 

165 metrics, respectively. 

Second, we performed experiments for long-term data with 

almost three month length. We obtained 3956 metrics and 

Table 5 shows distribution along different categories. Table 6 

shows distribution of metrics along periodicity.  For 586 Semi-

Constant metrics 324 have outliers less than 15% and they are 

categorized as non-periodic, 262 checked for periodicity and 

for 221 periods are found. Then, for High-Variability and 

Low-Variability categories periods are found for 457 and 165 

metrics, respectively. 

It is worth noting that results obtained for the specific 

customer can’t be in any manner generalized to other cases. 

The results can vary widely from one customer to another 

without any intersection. 
 

Data Category Count (Percentage) 

of Metrics in a 

Specific Category 

Multinomial 877 (22.2%) 

Trendy 406 (10.3%) 

Semi-Constant 586 (14.8%) 

Transient 89 (2.2%) 

Sparse 129 (3.3%) 

Low-Variability 1130 (28.6%) 

High-variability 683 (1.6%) 

Corrupted 56 (1.4%) 

Table 5. Distribution along the categories for long-term data 

set. 

Periodic Non-Periodic Corrupted Overall  

1742 2158 56 3956 

Table 6. Count of periodic and non-period data for long-term 

data set. 

However, results obtained for a specific customer can 

provide useful information about the customers’ 

environment. In terms of our approach this can also lead to 

some optimizations by excluding procedures for a specific 

category that is not common for the customer. For example, in 

Table 5, we see that Sparse and Transient categories cover 

only 5.5% of the overall data set and the system can be applied 

without specifying them.  

Another important insight is that data category is not an 

invariant property. Change in length of data in general changes 

the category. Moreover, data selection module is picking up 

the last stable portion and categorization is performed only on 

this portion. So visually data can be corrupted but its latest 

stable portion belongs to some of the predefined categories.   

Figures 10, 11, and 12 present reliably predicted normalcy 

bounds obtained by the NDS.  

 
Figure 9. An example of a non-periodic data with the 

corresponding normalcy bounds. 

 
Figure 10. An example of a periodic data with the 

corresponding normalcy bounds. Yellow area is alarm. 

 
Figure 11. An example of a Trendy Data with the 

corresponding normalcy bounds and an alarm. 
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