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Abstract. We study almost everywhere divergence problems of the triangular and secto-
rial partial sums of the double Fourier series in Walsh and Haar orthonormal systems. In
particular, we construct an example of bounded function on the unit square, which dou-
ble Walsh-Fourier series diverges almost everywhere by an increasing sequence of triangular
regions.

1. Introduction

Almost everywhere (a.e.) convergence and divergence problems of Fourier series in different
classical orthonormal systems is one of the basic fields in Harmonic analysis. Carleson proved
in [4] that the partial sums of the trigonometric Fourier series of a function f ∈ L2(0, 2π) con-
verge a.e.. This fundamental theorem became a basis in the further study of a.e. convergence
properties of the trigonometric and Walsh series. Hunt, Sjölin and Antonov [1] established
a.e. convergence of Fourier series of functions from wider classes than L2. For the Walsh
system analogous problems were studied in [3], [22], [2], [23]. Convergence a.e. of the cubical
partial sums of the trigonometric and Walsh Fourier series were investigated in [5], [21], [24].
In particular, Sjölin [21] proved that such partial sums of trigonometric Fourier series of a
function from Lp(0, 2π), p > 1, converge a.e.. In the case of Walsh system the analogous is
known only for the functions from L2 (Tevzadze [24]). The problem of a.e. convergence of
cubical partial sums of the Fourier-Walsh series of a function f ∈ Lp with p > 2 is still open.
Ch. Fefferman [6] constructed a continuous function, which double trigonometric Fourier
series diverges everywhere by cubes. An analogous example for Walsh system is constructed
by Getzadze [8]. The a.e. convergence of Cezaro means of the isosceles triangular sums of
double Fourier-Walsh series considered in the papers [25], [9], [7], [20].

In the present paper we consider a.e. divergence problems for the sectorial and arbitrary
triangular partial sums of the double Fourier series in Haar and Walsh systems. Let φ =
{φn(x), n ∈ N} be an orthonormal system. For a given region G ⊂ N2 denote by

SG(x, y, φ, f) =
∑

(n,m)∈G

anmφn(x)φm(y), anm =

∫ 1

0

f(t, s)φn(t)φm(s)dtds,
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the partial sum of double Fourier series of a function f ∈ L1(R2) corresponding to the region
G. We shall consider the sectorial and triangular regions

V (α, β) =
{

(n,m) : n,m ∈ N̄,
m

n
∈ (tanα, tan β)

}
, 0 ≤ α < β ≤ π

2
,

∆(u, v) =
{
n,m ∈ N̄ :

n

v
+
m

u
≤ 1
}
, u, v > 0,

where N̄ = N in the case of Haar system and N̄ = N∪{0}, while Walsh system is considered.
We say an increasing sequence of regions Gk is complete, if ∪kGk = N̄2. We denote by IF (x, y)
the indicator function of a set F ⊂ (0, 1)2. Haar and Walsh systems will be defined below
and denoted correspondingly by χ = {χn(x) : n = 1, 2, . . .} and w = {wn(x) : n = 0, 1, . . .}.
The following theorem shows, that the double Fourier-Haar series of a bounded function can
diverge almost everywhere. Moreover, we prove

Theorem 1. If Vk is a complete increasing sequence of sectors, then there exists a measurable
set F ⊂ (0, 1)2 such that

lim sup
k→∞

|SVk(x, y, χ, IF )| =∞ a.e. on (0, 1)2.

In the next two theorems we establish analogous theorems for the double series in Walsh
system for the sectorial and triangular partial sums.

Theorem 2. For an arbitrary sequence of sectors Vk there exists a set F ⊂ (0, 1)2 such that

lim sup
k→∞

|SVk(x, y, w, IF )| =∞ a.e. on (0, 1)2.

Theorem 3. There exists a function f ∈ L∞(0, 1)2 and an increasing sequence of triangular
regions ∆k such that

lim sup
k→∞

|S∆k
(x, y, w, f)| =∞ a.e. on (0, 1)2.

In the proofs of these theorems we use a technique of divergent rearrangements of Haar
series. We say, that a functional series

∑∞
n=1 fn(x) unconditionally converges a.e. on E, if a.e.

convergence holds on E for any rearrangements of the terms of series. Nikishin and Ulyanov
[15] (see also [14] p. 104) established, that for the Haar series a.e. unconditionally convergence
is equivalent to a.e. absolute convergence. Ulyanov in [17] constructed an example of function
from L2[0, 1], which Fourier-Haar series diverges a.e. after a suitable rearrangement of the
terms. Olevskii in [18], [19] extended this result for arbitrary complete orthonormal systems,
additionally guaranteeing continuity of the constructed function. In [16] it is proved

Theorem A. There exists a measurable set E ⊂ [0, 1] such that
∞∑
k=0

|ak(IE)χk(x)| =∞ a.e.

on [0, 1].
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In the proofs of the theorems we use also different Haar type systems, which spectrums are
in some sectorial or triangular regions. For these constructions we apply technique, which
previously was used in [12], [13].

2. Definitions of Haar and Walsh systems

Dyadic intervals are the intervals of the form

∆n = ∆i
k =

(
i− 1

2k
,
i

2k

)
,

where n = 2k + i, 1 ≤ i ≤ 2k, k = 0, 1, 2 . . .. The first Haar function is defined by χ1(x) ≡ 1.
For n ≥ 2 we define

χn(x) =

 2k/2 if x ∈ (∆n)−,
−2k/2 if x ∈ (∆n)+,

0 if x 6∈ ∆̄n,

where (∆n)− and (∆n)+ are left and right halves of ∆n. We do not need to define the Haar
functions at the points of discontinuity, since the present paper studies only a.e. behavior
of the Haar series. We shall use also the Haar system normalized in L∞. We denote these
functions by

χ̃n(x) = 2−k/2χn(x), n = 1, 2, . . . .

Recall also the definitions of the Rademacher and Walsh systems (see [10] or [20]). Consider
a function

r0(x) =

{
1, if x ∈ [0, 1/2),
−1, if x ∈ [1/2, 1),

periodically continued over the real line. The Rademacher functions are defined by rk(x) =
r0(2kx), k = 0, 1, 2, . . .. The Walsh functions are defined by the products of Rademacher
functions. We set w0(x) ≡ 1. To define wn(x) as n ≥ 1 we write n in the dyadic form

n =
k∑
j=0

εj2
j,

where εk = 1 and εj = 0 or 1 if j = 0, 1, . . . , k − 1, and denote

wn(x) =
k∏
j=0

(rj(x))εj .

The dyadic addition for the numbers x, y > 0 with the dyadic decompositions

x =
∞∑

k=−∞

θk(x)2−k, y =
∞∑

k=−∞

θk(y)2−k,

is defined by

x⊕ y =
∞∑

k=−∞

|θk(x)− θk(y)|2−k.
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3. Auxiliary lemmas

Recall the definition of the Haar type system on (0, 1)2 by [14]. Given a family of measur-
able sets

En = Ei
k ⊂ (0, 1)2, i = 1, 2, . . . , 2k, k = 0, 1, . . . ,

where n = 2k + i, 1 ≤ i ≤ 2k, k = 0, 1, 2, . . ., and

(1)

|Ei
k| = 2−k,

Ei
k = E2i−1

k+1 ∪ E
2i
k+1,

Ei
k ∩ E

j
k = ∅, if i 6= j.

Denote

ξ1(x, y) = 1,

ξn(x, y) =

 2k/2, if (x, y) ∈ E2i−1
k+1 ,

−2k/2, if (x, y) ∈ E2i
k+1,

0, if (x, y) 6∈ Ei
k.

The system {ξn(x, y)}∞n=1 is said to be Haar type system. If

(2) n = 2k + j, 1 ≤ j ≤ 2k,

then we denote

(3) n̄ = 2k−1 +

[
j + 1

2

]
,

where [·] denotes the integer part of a number. It is easy to observe that the number n̄ may
be equivalently defined by the relations

En ⊂ En̄, |En| = |En̄|/2,

where En are the sets, defined in (1) . This remark immediately implies

Lemma 1. For the functions ξn(x, y), n = 1, 2, . . ., defined on (0, 1)2, to form Haar type
system, it is necessary and sufficient to satisfy the conditions

|supp ξn| = 2−k,

|{ξn(x, y) = 2k/2}| = |{ξn(x, y) = −2k/2}| = 2−k−1,

supp ξn ⊂ {(−1)j+1 · ξn̄ > 0},

where k and j are defined in (2) .

Lemma 2. If 0 < α < β/8, β < π/4, then for an arbitrary number M > 0 there exist natural
numbers l,m > M such that

(4) [2l, 2l+1]× [2m, 2m+1] ⊂ V (α, β).
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Proof. It is clear, that for any l ∈ N there exists a number m ∈ N such that

(5) 2m−1 ≤ tanα · 2l+1 < 2m.

It is easy to observe that

2 tan(x/2) < tanx =
2 tan(x/2)

1− tan2(x/2)
, 0 < x < π/2,

which implies also 8 tan(x/8) < tanx. From this inequality and (5) , using the hypothesis of
the lemma, we obtain

(6) 2m+1 ≤ 4 tanα · 2l+1 < tan β · 2l.
The inequalities (5) and (6) imply

tanα <
2m

2l+1
,

2m+1

2l
< tan β.

Thus we conclude, each vertex of the rectangle (4) is in the sector V (α, β), which implies
(4) . �

Lemma 3. If Uk = V (αk+1, αk) is an arbitrary sequence of sectors with 0 < αk+1 < αk/8,
then there exists a Haar type system ξn(x, y), n = 1, 2, . . . , such that

(7) ξk(x, y) =
∑

(p,q)∈Dk

bijχp(x)χq(y), Dk ⊂ Uk, k = 2, 3, . . . .

Proof. We construct ξn(x, y) by induction. Applying Lemma 2, we find natural numbers l2
and m2, satisfying

(8) [2l2 , 2l2+1]× [2m2 , 2m2+1] ⊂ U2.

We set

ξ2(x, y) =
2l2+1∑
i=2l2+1

2m2+1∑
j=2m2+1

χ̃i(x)χ̃j(y).

Obviously we have (7) if k = 2. Then we suppose, that we have already constructed the
functions ξk(x, y), k = 1, 2, . . . , n− 1, satisfying (7) . Since each of these functions is a Haar
polynomial, they are constant on the dyadic rectangles(

i− 1

2ln
,
i

2ln

)
×
(
j − 1

2mn
,
j

2mn

)
, i = 1, 2, . . . , 2ln , j = 1, 2, . . . , 2mn ,

if we take ln,mn ∈ N to be sufficiently large. Using Lemma 2, we may additionally provide

[2ln , 2ln+1]× [2mn , 2mn+1] ⊂ Un.

Define

ξn(x, y) = 2k/2

 2ln+1∑
i=2ln+1

2mn+1∑
j=2mn+1

χ̃i(x)χ̃j(y)

 · IE(x, y),
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where

(9) E = {(−1)j+1 · ξn̄(x, y) > 0},

and the number n̄ is defined in (2) and (3) . We note, that n̄ < n, and so the function
ξn̄(x, y) is defined according the assumption of the induction. By Lemma 1 it is clear, that
the system obtained in this way satisfies the conditions of the lemma. �

A similar lemma for arbitrary sectors can be proved also for Walsh system .

Lemma 4. For any sequence of sectors Uk there exists a Haar type system ξn(x, y), n =
1, 2, . . . , such that

ξk(x, y) =
∑

(p,q)∈Dk

bijwp(x)wq(y), Dk ⊂ Uk, k = 2, 3, . . . .

Proof. The system ξk(x, y) again will be constructed by the induction. We define ξ2(x, y) to
be an arbitrary function of the double Walsh system wn(x)wm(y) with indexes (n,m) ∈ U2.
Then we suppose the functions ξk(x, y), k = 1, 2, . . . , n − 1, have been already constructed.
Since each of these functions is a Haar polynomial, they are constant on the dyadic rectangles(

i− 1

2ln
,
i

2ln

)
×
(
j − 1

2mn
,
j

2mn

)
, i = 1, 2, . . . , 2ln , j = 1, 2, . . . , 2mn ,

for large enough numbers ln,mn ∈ N. Such that that sectors Uk are arbitrary, we can not
provide (8) always. We define the function ξn(x, y) by

ξn(x, y) = 2k/2

 2ln+1∑
i=2ln+1

2mn+1∑
j=2mn+1

χ̃i(x)χ̃j(y)

 · IE(x, y) · wp(x)wq(x),

where the set E is defined like (9) . It is clear, that this function is a polynomial in double
Walsh system and its spectrum is in the sector Un for suitable choices of p and q. Obviously
the obtained system satisfies the conditions of the lemma. �

Lemma 5. Let L, n ∈ N, n > 2, and σ is a rearrangement of the numbers 2, 3 . . . , n. Then
there exists an increasing sequence of triangles ∆k, k = 1, 2, . . . , n which sides are bigger than
L and a Haar type system ξk(x, y) such that

(10) ξσ(k)(x, y) = w2l−1(x)
∑

(p,q)∈Bk

bpqwp(x)wq(y), Bk ⊂ ∆k \∆k−1, k = 2, 3, . . . , n.

where l ∈ N is an integer.

Proof. We consider the sequence of sectors

Vk = V

(
0,
π

4
− 1

k

)
, k = 1, 2, . . . , n,
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and let Uk = Vk \ Vk−1, k = 2, 3, . . . , n. Applying the lemma 4, we find a Haar type system
of the form

ξk(x, y) =
∑

(p,q)∈Dk

bpqwp(x)wq(y), Dk ⊂ Uσ−1(k), k = 2, 3, . . . , n.

We note, that the last can be written in the form

ξσ(k)(x, y) =
∑

(p,q)∈Dσ(k)

bpqwp(x)wq(y), Dσ(k) ⊂ Uk, k = 2, 3, . . . , n.

We take the number l such that

∪nk=2Dk ⊂ [0, 2l)2.

Denote

Bk =
{

(p, q) ∈ N2 : (2l − p− 1, q) ∈ Dσ(k)

}
, k = 1, 2, . . . , n,

∆k =
{

(p, q) ∈ N2 : 1 ≤ p, q < 2l, (2l − p− 1, q) ∈ Vk
}
, k = 1, 2, . . . , n.

It is clear, that ∆k is an increasing sequence of triangular regions and their sides can be
bigger than given number L, if l is sufficiently big. Thus, using the relation Dσ(k) ⊂ Uk, we
obtain

(11) Bk ⊂ ∆k \∆k−1, k = 2, 3, . . . , n.

Considering the dyadic decomposition, we easily get

2l − p− 1 = p⊕ (2l − 1)

for any 0 ≤ p < 2l. This implies

w2l−1(x)ξσ(k)(x, y)

=
∑

(p,q)∈Dσ(k)

bpqwp⊕(2l−1)(x)wq(y)

=
∑

(p,q)∈Dσ(k)

bpqw2l−p−1(x)wq(y)

=
∑

(p,q)∈Bk

b̃pqwp(x)wq(y), k = 2, 3, . . . , n.

The last equality together with (11) gives (10) .
�

Lemma 6 ([14], p. 105). For any Haar polynomial

M∑
n=N

bnχn(x)
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there exists a rearrangement σ(n) of the numbers N,N + 1, ...,M , such that

max
N<p≤q≤M

∣∣∣∣∣
q∑

n=p

bσ(n)χσ(n)(x)

∣∣∣∣∣ ≥ 1

4

M∑
n=N

|bnχn(x)|,

for any x ∈ [0, 1].

From Theorem A it easily follows

Lemma 7. For any natural number N there exists a Haar polynomial

QN(x) =

c(N)∑
i=N

aiχi(x),

which satisfies the conditions

‖QN‖∞ ≤ 1,∣∣∣∣∣∣
x ∈ (0, 1) :

c(N)∑
i=N

|aiχi(x)| > N


∣∣∣∣∣∣ > 1− 1

N
.

4. Proof of the Theorems

Proof of Theorem 1. Without loss of generality we may suppose that

Vk = V (αk, π/2), αk+1 < αk/8, k = 1, 2, . . . .

Then we consider the sectors

(12) U1 = V1, Uk = Vk \ Vk−1 = V (αk−1, αk), k = 2, 3, . . . .

According to Theorem A, there exists a series in Haar system

∞∑
k=1

ckχk(x),

which is an indicator function of a measurable set and diverges a.e. after some rearrangement
σ. According to the nature of Haar type system, the series

(13)
∞∑
k=1

ckξk(x, y)

with the same coefficients converges in L1 norm to an indicator function on (0, 1)2, while, the
series

(14)
∞∑
k=1

cσ(k)ξσ(k)(x, y),
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where σ is the same rearrangement, diverges a.e. on (0, 1)2. By Lemma 3, there exists a the
Haar type system

ξk(x, y) =
∑

(p,q)∈Dk

bijχp(x)χq(y),

with the condition

(15) Dk ⊂ Uσ−1(k), k = 2, 3, . . . ,

where Uk is defined in (12) , and σ is the rearrangement from (14) . According to (13) , the
series

∞∑
k=1

ckξk(x, y) =
∞∑
k=1

ck
∑

(p,q)∈Dk

bijχp(x)χq(y)

can be considered as a Fourier series of some indicator function IE(x, y) in double Haar
system. In addition, a.e. divergence of (14) implies the same for the series

∞∑
k=1

cσ(k)

∑
(p,q)∈Dσ(k)

bijχp(x)χq(y).

In view of Dσ(n) ⊂ Un, coming from (15) , it is easy to observe, that

SVn(x, y, χ, IE) =
n∑
k=1

cσ(k)

∑
(p,q)∈Dσ(k)

bijχp(x)χq(y)

and these sums diverge a.e. as n→∞. �

Proof of Theorem 2. To prove Theorem 2, we have just to repeat the proof of Theorem 1,
using lemma 4 instead of 3. �

Proof of Theorem 3. Applying Lemma 7, we can find a Haar polynomial

Qk(x) =

mk∑
i=nk

aiχi(x),

and sets Ek ⊂ (0, 1), satisfying the conditions

|Ek| > 1− 2−k,

mk < nk+1,

‖Qk‖∞ ≤ 1,
mk∑
i=nk

|aiχi(x)| > 4k, x ∈ Ek.
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Using Lemma 6, we get a rearrangement σ of the numbers nk, nk + 1, . . . ,mk, which satisfies
the inequality

sup
nk≤l≤mk

∣∣∣∣∣
l∑

i=nk

aσ(i)χσ(i)(x)

∣∣∣∣∣ > 4k−1, x ∈ Ek.

Since the intervals [mk, nk] are pairwise disjoin, we will use a common notation σ for these re-
arrangements. Using Lemma 5 countable number of times, we will get an increasing sequence
of triangular regions ∆k, k = 1, 2, . . ., and a Haar type system ξk(x, y) such that

εk(x)ξσ(j)(x, y) =
∑

(p,q)∈Bk

bpqwp(x)wq(y),(16)

Bj ⊂ ∆j \∆j−1, nk ≤ j ≤ mk, k = 2, 3, . . . ,

where |εk(x)| ≡ 1. Denote

φj(x, y) = 2−kεk(x)aσ(j)ξσ(j)(x, y), mk ≤ j ≤ nk,

and consider the function

f(x, y) =
∞∑
j=1

φj(x, y),

where the terms with indexes out of ∪k[nk,mk] are zero. It is obvious, that this series
converges uniformly to a function f ∈ L∞(0, 1)2. By (16) we have

S∆l
(x, y, w, f) =

l∑
j=1

φj(x, y).

Thus, for any nk ≤ l ≤ mk we get

|S∆l
(x, y, w, f)− S∆nk

(x, y, w, f)| = 2−k

∣∣∣∣∣
l∑

j=nk

aσ(j)ξσ(j)(x, y)

∣∣∣∣∣ ,
and consequently

sup
nk≤l≤mk

|S∆l
(x, y, w, f)− S∆nk

(x, y, w, f)| > 2k−2, (x, y) ∈ Ẽk,

where Ẽk ⊂ (0, 1)2 is a set, obtained from Ek by the transformation, corresponding to the
constructed Haar type system. Thus, we obtain

|Ẽk| = |Ek| > 1− 2−k.

Denoting
E = ∪k≥1 ∩i≥k Ẽi,

we obviously get |E| = 1 and

lim sup
l→∞

|S∆l
(x, y, w, f)| =∞, x ∈ E,

which completes the proof of the theorem.
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