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Abstract. We introduce a class of operators on abstract measure
spaces, which uni�es the Calderón-Zygmund operators on spaces of
homogeneous type, the maximal functions, the martingale trans-
forms and Carleson operators. We prove that such operators can
be dominated by simple sparse operators with a de�nite form of
the domination constant. Applying these estimates, we improve
several results obtained by di�erent authors in recent years.

1. introduction

The study of weighted inequalities in Harmonic Analysis started in
early 1970's. In 1972 Muckenhaupt [27] proved that the maximal func-
tion is bounded on Lp(w) for 1 < p < ∞ if and only if the weight w
satis�es the Ap condition

(1.1) [w]Ap = sup
I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w−1/(p−1)
)p−1

<∞.

One year later Hunt, Muckenhaupt and Wheeden [9] established the
same property for Hilbert transform. For the general Calderón-Zygmund
operators weighted Lp(w) bound was �rst proved by Coifman and Fef-
ferman [4].
In 1993 Buckley [3] discovered that the maximal function M has the

sharp estimate

(1.2) ‖Mf‖Lp(w)→Lp(w) ≤ C‖w‖1/(p−1)Ap
,

arising a similar problem for Calderón-Zygmund operators. Last �fteen
years there has been an activity in the investigation of this problem.
For the general Calderón-Zygmund operators the conjecture was the
bound

(1.3) ‖Tf‖Lp(w)→Lp(w) ≤ C‖w‖max{1,1/(p−1)}
Ap

.
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An extrapolation theorem proved in [7] reduced the conjecture to the
case p = 2 so the inequality (1.3) became known as A2 conjecture. After
being established for several particular operators �rst ([33], [31], [32],
[30], [13]), in 2010 Hytönen [11] proved A2 conjecture for the general
Calderón-Zygmund operators.
Series of recent works are motivated on domination of Calderón-

Zygmund operators by very simple sparse operators ([22]-[25], [5], [21],
[12]-[17]). From such results in particular follows (1.3), since the A2

bound is very easy to establish for the sparse operators ([24], [14],
[28], [29]). A domination of the classical Calderón-Zygmund operators
on Rn by sparse operators was discovered by Lerner [24]. Applying
this domination he gave a simpli�ed proof of Hytönen A2 theorem.
Lacey [21] proved a pointwise domination theorem for more general ω-
Calderón-Zygmund operators (see (7.17)-(7.20)) with ω satisfying the
Dini condition

(1.4)

∫ 1

0

ω(t)

t
dt <∞,

deriving weighted bound (1.3) for such operators too. Lacey's re-
sult was a stronger version of another pointwise bound independently
proved by Conde-Alonso, Rey [5] and Lerner-Nazarov [26]. Moreover,
Lacey's inequality only assumes the Dini condition, while prior ap-
proaches [5, 26] require 1/t in the Dini integral be replaced by (log 2/t)/t.
Hytönen, Roncal and Tapiola [17] elaborated the proof of Lacey [21]
to get a precise linear dependence of the domination constant on the
characteristic numbers of the operator. Lerner [25] gave a simple proof
of Lacey-Hytönen-Roncal-Tapiola theorem.
Anderson and Vagharshakyan [1] provedA2 theorem for the Calderón-

Zygmund operators in general spaces of homogeneous type with mod-
ulus of continuity ω(t) = tα, α > 0.
In late 1970's, several authors considered also martingale analogs

of the Ap theory. For instance, Izumisawa-Kazamaki [18], proved a
variant of the Muckenhoupt maximal function result [27] in this set-
ting. When it came to martingale transforms, the distinction between
the homogeneous and non-homogeneous cases was already recognized
by these authors. Nevertheless, norm inequalities for martingale trans-
forms were proved by Bonami-Lépingle [2]. The A2 theorem for martin-
gale transform was proved recently by Thiele, Treil and Volberg [34].
Lacey [21] gave a self-contained, short and elementary proof of this
theorem. Moreover, he established a pointwise domination theorem for
martingale transforms too.
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Grafakos-Martell-Soria [8] and Di Plinio-Lerner [6] considered weighted
estimates for maximal modulations of Calderón-Zygmund operators on
Rn, in particular, for Carleson or Walsh-Carleson operators. The paper
[8] establishes weighted norm control of the Carleson operators by the
maximal function. In [6] the authors proved weighted norm estimates
of Carleson and Walsh-Carleson operators with explicit dependence of
the constants on Ap-characteristics of the weight.
In this paper we introduce so called BO (bounded oscillation) oper-

ators on abstract measure spaces. Those operators unify the Calderón-
Zygmund operators and maximal functions in general homogeneous
spaces, martingale transforms (non-homogeneous case) and Carleson
operators. The de�nition of BO operators is motivated by the papers
[19], [20], where some exponential estimates for Calderón-Zygmund and
other related operators were proved. We shall prove that those oper-
ators have pointwise domination by sparse operators and then satisfy
the bound (1.3). We derive variety of other properties of BO operators
signi�cant for their further investigations.
To de�ne BO operators we introduce a concept of ball-basis for an

abstract measure space, which is a family of measurable sets holding
some common properties of d-dimensional balls on Rd and their ana-
logues in related theories (martingales, dyadic analysis).

De�nition 1.1. Let (X,M, µ) be a measure space. A family of sets
B ⊂M is said to be a ball-basis if it satis�es the following conditions:

B1) 0 < µ(B) <∞ for any ball B ∈ B.
B2) For any points x, y ∈ X there exists a ball B 3 x, y.
B3) If E ∈ M, then for any ε > 0 there exists a �nite or in�nite

sequence of balls Bk, k = 1, 2, . . ., such that

µ

(
E 4

⋃
k

Bk

)
< ε.

B4) For any B ∈ B there is a ball B∗ ∈ B (called hull of B)
satisfying the conditions⋃

A∈B:µ(A)≤2µ(B), A∩B 6=∅

A ⊂ B∗,(1.5)

µ(B∗) ≤ Kµ(B),(1.6)

where K is a positive constant.

One can easily check that the family of Euclidean balls in Rn forms
a ball-basis. Moreover, we will see below (see Theorem 7.1) that if
the family of metric balls in spaces of homogeneous type satis�es the
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density condition (see De�nition 3.1), then it is a ball-basis too. The
martingale basis considered in Section 8 is an example of ball-bases
having non-doubling property.

De�nition 1.2. Let 1 ≤ r < ∞, (X,M, µ) be a measure space and
L0(X) be the linear space of functions (include non-measurable func-
tions) on X. An operator

T : Lr(X)→ L0(X)

is said to be subadditive if

|T (λ · f)(x)| = |λ| · |Tf(x)|, λ ∈ R,
|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|.

Remark 1.1. As we will see below in the de�nitions of some oper-
ators (maximal function, T ∗) some non-measurable functions can ap-
pear. To apply the results of the paper for such operators we allow
non-measurably of the images in the de�nition of general subadditive
operators. The de�nitions of Lp (weak-Lp) norms and some standard
inequalities that we need for non-measurable functions will be stated in
the next section.

Let 1 ≤ r < ∞ be a �xed number in Sections 1-4. For f ∈ Lr(X)
and B ∈ B we set

〈f〉B,r =

(
1

µ(B)

∫
B

|f |r
)1/r

, 〈f〉∗B,r = sup
A∈B:A⊃B

〈f〉A,r.

In the case r = 1 for those quantities it will be used the notations 〈f〉B
and 〈f〉∗B respectively (Sections 5-8).

De�nition 1.3. We say that a subadditive operator T is a bounded
oscillation operator with respect to a ball-basis B if

T1) (Localization) for every B ∈ B we have

(1.7) sup
x,x′∈B, f∈Lr(X)

|T (f · IX\B∗)(x)− T (f · IX\B∗)(x′)|
〈f〉∗B,r

≤ L1 = L1(T ) <∞,

T2) (Connectivity) for any A ∈ B (A∗ 6= X) there exists a ball
B ) A (i.e. B ⊃ A, B 6= A) such that

(1.8) sup
x∈A, f∈Lr(X)

|T (f · IB∗\A∗)(x)|
〈f〉B∗,r

≤ L2 = L2(T ) <∞,
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where L1 and L2 are the least constants satisfying (1.7) and (1.8) re-
spectively. The family of all bounded oscillation operators with respect
to a ball-basis B will be denoted by BOB or simply BO.

It will be proved below (Theorem 4.4) that if the ball-basis B sat-
is�es the doubling condition, then the localization property implies
connectivity.

De�nition 1.4. A collection of balls S ⊂ B is said to be sparse or γ-
sparse if for any B ∈ S there is a set EB ⊂ B such that µ(EB) ≥ γµ(B)
and the sets {EB : B ∈ S} are pairwise disjoint, where 0 < γ < 1 is a
constant.

Given family of balls S we associate the operator

AS,rf(x) =
∑
A∈S

〈f〉A,r · IA(x).

If S is a sparse collection of balls, then we say AS,r is a sparse operator.
In the case r = 1 we will simply write AS. Further, positive constants
depending on K (see (1.6)) will be called admissible constants and the
relation a . b will stand for a ≤ c · b, where c > 0 is admissible. We
write a ∼ b if the relations a . b and b . a hold at the same time.

Theorem 1.1. Let an operator T ∈ BOB(X) satisfy weak-Lr inequal-
ity. Then for any function f ∈ Lr(X) and a ball B ∈ B there exists a
family of balls S, which is a union of two γ-sparse collections and

(1.9) |Tf(x)| . (L1 + L2 + ‖T‖Lr→Lr,∞) ·AS,rf(x), a.e. x ∈ B,
where L1 and L2 are the constants (1.7), (1.8) and 0 < γ < 1 is an
admissible constant.

De�nition 1.5. For T ∈ BOB de�ne

T ∗f(x) = sup
B∈B:x∈B

|T (f · IX\B∗)(x)|.

We shall prove below (Theorem 4.3) that if T ∈ BOB satis�es weak-
Lr estimate, then T ∗ ∈ BOB and satis�es weak-Lr bound too. So from
Theorem 1.1 we will immediately get

Theorem 1.2. If T ∈ BOB(X) satis�es weak-Lr inequality, then for
any function f ∈ Lr(X) and a ball B ∈ B there exists a family of balls
S, which is a union of two γ-sparse collections and

|T ∗f(x)| . (L1(T ) + L2(T ) + ‖T‖Lr→Lr,∞) ·AS,rf(x), a.e. x ∈ B.

Theorem 8.3, Theorem 8.1 and Theorem 7.5 below prove that the
ω-Calderón-Zygmund operators on spaces of homogeneous type, the
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martingale transforms and the maximal functions are BO operators
and so they all satisfy the estimate (1.9). Moreover, combining (1.9)
with the weighted bounds for sparse operators, we obtain A2 theorems
for all these operators. Hence Theorem 1.1 and Theorem 1.2 cover the
above stated results concerning the weighted bounds and the domi-
nation by sparse operators. Lacey-Hytönen-Roncal-Tapiola ([21], [17])
theorem is a version of Theorem 1.2 for the ω-Calderón-Zygmund oper-
ators on Rn with the Dini condition. Lacey [21] domination theorem for
martingale transforms is another case of inequality (1.9). In Rn and in
general spaces of homogeneous type, where a doubling condition holds,
the proofs of such dominations are based on dyadic decomposition the-
orems ([14], [10]). In the case of martingale transforms ([34]) instead of
dyadic decomposition the properties of martingale basis is essentially
used. Since a general ball-basis does not always satisfy the doubling
condition (the typical example is the martingale basis), there is no
dyadic decomposition in general. So our method of proof of Theorem
1.1 is di�erent. It is direct and partially based on the papers [19] and
[20].
In the last sections we prove several weighted bounds for sparse op-

erators to get A2 theorems for some BO operators. The method of
proofs of such theorems are based on a duality argument developed in
the papers [25], [5], [14], [21].
Note that Theorem 1.1 also imply exponential integrability results

of our papers [19], [20] proved for the Calderón-Zygmund operators on
Euclidean spaces and for the partial sums of Walsh-Fourier series.
Applying Theorem 1.1 for the maximal function corresponding to a

general ball-basis, we do not get the full weighted estimate (1.2), which
is known to be optimal for the maximal function in Euclidean spaces
([3]). In the general case the optimality only occurs when 1 < p ≤ 2.
So (1.9) do not cover some estimates that has the maximal function.
The reason is that the maximal function has some extra properties that
the general BO operators do not have. An example of such a property
is L∞-bound.
In the last section we prove that the maximal modulation of a BO

operator is also BO operator, deriving pointwise sparse domination for
maximal modulated BO operators too.
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2. Outer measure and Lp-norms of non-measurable
functions

Let (X,M, µ) be a measure space. De�ne the outer measure of a set
E ⊂ X by

µ∗(E) = inf
F∈M:F⊃E

µ(F ).

We say two sets A,B ⊂ X (not necessarily measurable) satisfy the
relation A ∼ B if

µ∗(A4B) = 0.

Denote by M̄ the family of sets in X, which are equivalent to a mea-
surable set. It is clear that M̄ is σ-algebra. For a given set E ⊂ X we
de�ne

Ē =
⋂

F∈M:F⊃E

F.

Observe that

Ē ∈ M̄, µ∗(Ē) = µ∗(E).

For any function f ∈ L0(X) we denote

Gf (t) = {x ∈ X : |f(x)| > t},
λf (t) = µ∗ (Gf (t)) .

Observe that the function

f̄(x) = inf{t ≥ 0 : x ∈ Gf (t)}

is positive, M̄-measurable and |f(x)| ≤ f̄(x). Besides, f̄ is the smallest
M̄-measurable positive function dominating |f |. Namely, if g(x) is M̄-
measurable and satis�es |f(x)| ≤ g(x), then f̄(x) ≤ g(x). For arbitrary
f ∈ L0(X) we de�ne

‖f‖Lp = ‖f̄‖Lp =

(
p

∫ ∞
0

tp−1λf (t)dt

)1/p

,

‖f‖Lp→Lp,∞ = ‖f̄‖Lp→Lp,∞ = sup
t>0

t(λf (t))
1/p.

De�nition 2.1. We say a subadditive operator T satis�es weak-Lp or
strong-Lp estimate if

‖T‖Lp→Lp,∞ = sup
t>0, f∈Lp(X)

t · (λTf (t))1/p

‖f‖Lp

<∞,

‖T‖Lp = sup
f∈Lp(X)

‖Tf‖Lp

‖f‖Lp

<∞,

respectively.
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One can easily check that the standard triangle and Hölder inequal-
ities as well as the Marcinkiewicz interpolation theorem hold in such
setting of Lp norms. We will need the following case of the interpolation
theorem.

Theorem 2.1 (Marcinkiewicz interpolation theorem, [36], ch. 12.4). If
a subadditive operator T satis�es the weak-L1 estimate and the strong-
L∞ estimate, then for 1 < p <∞ it holds

‖T‖Lp ≤ cp(‖T‖L1→L1,∞)1/p × (‖T‖L∞)1/q.

3. Some properties of ball-basis

Let B be a ball-basis for the measure space (X,M, µ). From B4)
condition it follows that if balls A,B satisfy µ(A) ≤ 2µ(B), then A ⊂
B∗. This property will be called two balls relation. Hull levels of a
given ball B ∈ B will be denoted by

B[0] = B, B[n+1] =
(
B[n]

)∗
.

By property B4) we have µ(B[n+1]) ≤ Kµ(B[n]). Applying this inequal-
ity consecutively, we get

(3.1) µ(B[n]) ≤ Knµ(B), n ≥ 0.

We say a set E ⊂ X is bounded if E ⊂ B for some B ∈M.

Lemma 3.1. Let (X,M, µ) be a measure space and the family of sets
B ⊂M satisfy B4)-condition. If E ⊂ X is bounded and G is a family
of balls with

E ⊂
⋃
G∈G

G,

then there exists a �nite or in�nite sequence of pairwise disjoint balls
Gk ∈ G such that

(3.2) E ⊂
⋃
k

G
[1]
k .

Proof. The boundedness implies E ⊂ B for some B ∈ B. If there is a
ball G ∈ G so that G ∩ B 6= ∅ and µ(G) > µ(B), then by two balls
relation we have E ⊂ B ⊂ G[1]. Thus the desired sequence can be
formed by a single element G. Hence we can suppose that any element
G ∈ G satis�es the conditions G∩B 6= ∅ and µ(G) ≤ µ(B). Therefore
we get ⋃

G∈G

G ⊂ B[1].
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Take G1 to be a ball from G satisfying

µ(G1) >
1

2
sup
G∈G

µ(G).

Then, suppose by induction we have already chosen elementsG1, . . . , Gk

from G . Take Gk+1 ∈ G disjoint with the balls G1, . . . , Gk and satisfy-
ing

µ(Gk+1) >
1

2
sup

G∈G :G∩Gj=∅, j=1,...,k
µ(G).

If for some n we will not be able to determine Gn+1 the process will
stop and we will get a �nite sequence G1, G2, . . . , Gn. Otherwise our
sequence will be in�nite. We shall consider the in�nite case of the
sequence (the �nite case can be done similarly). Since the balls Gn are
pairwise disjoint and Gn ⊂ B[1], we have µ(Gn)→ 0. Take an arbitrary
G ∈ G such that G 6= Gk, k = 1, 2, . . .. Let m be the smallest integer
such that

µ(G) >
1

2
µ(Gm+1).

Observe that we have
G ∩Gj 6= ∅

for some minimal 1 ≤ j ≤ m , since otherwise G had to be chosen
instead of Gm+1. Besides, we have µ(G) ≤ 2µ(Gj), which implies

G ⊂ G
[1]
j . Since G ∈ G was taken arbitrarily, we get (3.2). �

Lemma 3.2. Let (X,M, µ) be a measure space with a ball-basis B. If
balls B ∈ B, Gk ∈ B, k = 1, 2, . . ., satisfy the relation

(3.3) Gk ∩B 6= ∅, µ(Gk)→ r = sup
A∈B

µ(A),

then
X ⊂

⋃
k

G
[1]
k .

Moreover, for any ball A ∈ B we have A ⊂ G
[1]
k for some k ≥ k0.

Proof. Since by B2)-condition every point x ∈ X is in some ball, it is
enough to prove the second part of the theorem. So let A ∈ B. Chose
points x ∈ A, y ∈ B. According to B2)-condition there is C ∈ B
such that x, y ∈ C. Let G be one of the balls A,B and C, which has a
biggest measure. Applying two ball relation twice, one can easily check
that

A ∪B ∪ C ⊂ G[2].

From (3.3) we �nd an integer k0 such that µ(Gk) > µ(G[2])/2 for k > k0.

Therefore, since Gk ∩G[2] 6= ∅, we get A ⊂ G[2] ⊂ G
[1]
k , k > k0. �
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De�nition 3.1. For a set E ∈M a point x ∈ E is said to be density
point if for any ε > 0 there exists a ball B such that

µ(B ∩ E) > (1− ε)µ(B).

We say a measure space (X,M, µ) satis�es the density property if for
any measurable set E almost all points x ∈ E are density points.

Lemma 3.3. Let (X,M, µ) be a measure space. If a family of measur-
able sets B satis�es the density property and B4)-condition, then for
any bounded measurable set E, µ(E) > 0, and ε > 0 there is a sequence
of balls {Bk} such that

(3.4) µ

(⋃
k

Bk \ E

)
< ε, µ

(
E \

⋃
k

Bk

)
< αµ(E)

where 0 < α < 1 is an admissible constant.

Proof. Applying the density property, one can �nd a family of balls B
satisfying

E ⊂
⋃
B∈B

B a.s.,

µ(B ∩ E) > (1− δ)µ(B), B ∈ B,

where

δ = min

{
ε

2µ(E)
, 1/2

}
.

Then, apply Lemma 3.1 we get a subfamily of pairwise disjoint balls
Bk with (3.2). Thus we have

µ

(⋃
k

Bk \ E

)
=
∑
k

µ(Bk \ E)

<
δ

1− δ
∑
k

µ(Bk ∩ E) ≤ 2δµ(E) ≤ ε.
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On the other hand

µ

(
E \

⋃
k

Bk

)
= µ(E)−

∑
k

µ (E ∩Bk)

≤ µ(E)− (1− δ)
∑
k

µ (Bk)

≤ µ(E)− 1− δ
K

µ

(⋃
k

B
[1]
k

)

≤ µ(E)− 1

2K
µ

(⋃
B∈B

B

)

≤ µ(E)− 1

2K
µ(E)

=

(
1− 1

2K

)
µ(E).

So conditions (3.4) are satis�ed with a constant α = 1− 1/2K. �

Observe that if B3)-condition holds for the bounded measurable sets,
then it holds for all the measurable sets. Indeed, according Lemma 3.2,
there is a sequence of balls Gk such that X = ∪kGk. This implies that
any measurable set E can be written as a countable union of bounded
measurable sets E = ∪kEk. Apply B3)-condition to each set Ek with an
approximation number ε/2k. The union of all obtained approximating
balls will give an ε-approximation of E.

Lemma 3.4. Let (X,M, µ) be a measurable set. If a family of measur-
able sets B satis�es B4)-condition, then it will satisfy B3)-condition if
and only if the density condition holds.

Proof. LetB satisfy B4) and density conditions and E be a measurable
set. The remark stated before the lemma allows us to suppose that E
is bounded. Applying Lemma 3.3 consecutively, we can �nd sequences
of balls Bk, k = 1, 2, . . . , such that

µ

( ⋃
B∈Bk

B \ E

)
<

ε

2k
, k ≥ 1,(3.5)

µ

E \ ⋃
B∈∪kj=1Bj

B

 < αµ

E \ ⋃
B∈∪k−1

j=1Bj

B

 , k ≥ 1,(3.6)
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where in the case k = 1 the right hand side of (3.6) is assumed to be
E. Then we denote B = ∪∞j=1Bj. From (3.6) it easily follows that

E ⊂
⋃
B∈B

B a.s.,

while from (3.5) we obtain

µ

((⋃
B∈B

B

)
\ E

)
≤

∞∑
k=1

µ

(( ⋃
B∈Bk

B

)
\ E

)
< ε.

To prove the second part of lemma letB satisfy B4) and B3) conditions.
Suppose to the contrary B does not have the density property. That
is, there exists a number α, 0 < α < 1, a set E ∈M together with its
subset F ⊂ E, µ∗(F ) > 0, such that for any x ∈ F and B ∈ B with
x ∈ B we have

(3.7) µ(B \ E) > αµ(B).

By B3)-condition for any ε > 0 it can be found a sequence of balls Bk,
k = 1, 2, . . ., such that

(3.8) µ

(
F̄ 4

⋃
k

Bk

)
< ε.

We can suppose that µ(Bk∩F̄ ) > 0 for each Bk. Observe that it implies
Bk ∩ F 6= ∅. Indeed, suppose to the contrary Bk0 ∩ F = ∅. Then we
get F ⊂ F̄ \Bk0 and so a contradiction µ∗(F ) ≤ µ∗(F̄ \Bk0) < µ∗(F̄ ).
Thus by (3.7) we get

(3.9) µ(Bk \ F̄ ) ≥ µ(Bk \ E) > αµ(Bk), k = 1, 2, . . . .

Applying Lemma 3.3, we �nd a subsequence of pairwise disjoint balls
B̃k, k = 1, 2, . . ., such that

µ

(
F̄ \

⋃
k

B̃
[1]
k

)
< ε.

Thus, applying B4)-condition, (3.8) and (3.9), we obtain

µ∗(F̄ ) ≤ µ

(⋃
k

B̃
[1]
k

)
+ ε ≤ K

∑
k

µ(B̃k) + ε ≤ K

α

∑
k

µ(B̃k \ F̄ ) + ε

=
K

α
µ

(
F̄ 4

⋃
k

Bk

)
+ ε < ε

(
K

α
+ 1

)
.

Choosing enough small ε, we get µ∗(F ) = µ∗(F̄ ) = 0 and so a contra-
diction.
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�

We say a measurable set E is almost surely subset of a measurable
set F if µ(E \ F ) = 0. We denote this relation by

E ⊂ F a.s..

Lemma 3.5. For any bounded measurable set E ∈ M there exists a
sequence of balls Bk, k = 1, 2, . . . , such that

E ⊂
⋃
k

Bk a.s.(3.10) ∑
k

µ(Bk) ≤ 2Kµ(E).(3.11)

Proof. Then observe that applying B3)-condition consecutively, for a
given measurable set E and ε > 0 one can �nd a countable family of
balls A such that

E ⊂
⋃
A∈A

A a.s.(3.12)

µ

(⋃
A∈A

A

)
< (1 + ε)µ(E).(3.13)

Applying Lemma 3.1, we �nd a pairwise disjoint collection {Aj} ⊂ A
such that

E ⊂
⋃
j

Aj
[1] a.s. .

The B4)-condition and (3.13) yield

∑
j

µ
(
Aj

[1]
)
≤ K

∑
j

µ (Aj) = Kµ

(⋃
j

Aj

)

≤ Kµ

(⋃
A∈A

A

)
< 2Kµ(E).

De�ne Bk = A
[1]
k , one can easily check that (3.10) and (3.11) are satis-

�ed. �

We denote by #A the cardinality of a �nite set A.
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Lemma 3.6. Let A ∈ B and G be a family of pairwise disjoint balls
such that each G ∈ G satis�es the relations

G[1] ∩ A 6= ∅,(3.14)

0 < c1 ≤ µ(G) ≤ c2,(3.15)

with some positive constants c1, c2. Then the number of elements in G

is �nite and satis�es the bound

#G ≤ min{K3c2,Kµ(A)}
c1

.

Remark 3.1. One can easily check that this lemma implies a similar
lemma with the condition G[2] ∩ A 6= ∅ instead of (3.14).

Proof. Suppose G1, G2, . . . , GN are some elements from G . We can
assume that

(3.16) µ(G
[1]
1 ) ≥ µ(G

[1]
i )

for each 1 ≤ j ≤ N . If µ(A) ≥ µ(G
[1]
1 ), then from (3.14) and B4)-

condition we get ⋃
1≤j≤N

Gk ⊂
⋃

1≤j≤N

G
[1]
j ⊂ A[1].

Thus, since Gk are pairwise disjoint, from (3.15) we obtain

N · c1 ≤ µ

( ⋃
1≤j≤N

Gk

)
≤ µ(A[1]) ≤ Kµ(A)

that is

(3.17) N ≤ Kµ(A)

c1
.

In the case µ(A) < µ(G
[1]
1 ) we get A ⊂ G

[2]
1 and therefore by (3.14),

G
[1]
j ∩G

[2]
1 6= ∅, 1 ≤ j ≤ N.

Thus, applying two balls relation and (3.16), we obtain⋃
1≤j≤N

G
[1]
j ⊂ G

[3]
1 .

Then, again using (3.15) and (3.1), we get

(3.18) N · c1 ≤ µ

(⋃
k

Gk

)
≤ µ(G

[3]
1 ) ≤ K3µ(G1) ≤ K3c2.

Combination of (3.17) and (3.18) completes the proof of lemma. �
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4. Preliminary properties of bounded oscillation

operators

In this section we derive some preliminary properties of BO oper-
ators. Let (X,M, µ) be a measure space with a ball-basis B and
1 ≤ r < ∞. We will need weak-Lr inequality of the maximal oper-
ator

(4.1) Mrf(x) = sup
B∈B:x∈B

(
1

µ(B)

∫
B

|f(t)|rdµ(t)

)1/r

associated with a ball-basis B. The maximal operator corresponding
to r = 1 will be denoted by M .

Theorem 4.1. The maximal operator (4.1) satis�es weak-Lr inequal-
ity. Moreover, we have

(4.2) ‖Mr‖Lr→Lr,∞ ≤ K1/r.

Proof of Theorem 4.1. Denote

E = {x ∈ X : Mrf(x) > λ}.

Note that E can be non-measurable. For any x ∈ E there exists a ball
B(x) ⊂ X such that

x ∈ B(x),
1

µ(B(x))

∫
B(x)

|f |r > λr.

We have E = ∪x∈EB(x). Given B ∈ B consider the collection of balls
{B(x) : x ∈ E ∩ B}. Applying Lemma 3.1, we �nd a sequence of
pairwise disjoint balls {Bk} taken from this collection such that

E ∩B ⊂
⋃
k

B
[1]
k = Q(B).

We have Q(B) is measurable and

µ(Q(B)) ≤
∑
k

µ(B
[1]
k )(4.3)

≤ K
∑
k

µ(Bk)

≤ K

λr

∑
k

∫
Bk

|f(t)|rdt

≤ K

λr

∫
X

|f(t)|rdt.
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According to Lemma 3.2 there is a sequence of balls Gk such that

X =
⋃
n≥1

⋂
k≥n

Gk,

and so we get

E ⊂
⋃
n≥1

⋂
k≥n

Q(Gk).

Hence we obtain

µ∗(E) = µ

(⋃
n≥1

⋂
k≥n

Q(Gk)

)
≤ K

λr

∫
X

|f(t)|rdt

and so (4.2). �

Theorem 4.2. If a subadditive operator T satis�es T1)-condition and
the weak-Lr inequality, then T ∗ satis�es weak-Lr inequality too. More-
over, we have

‖T ∗‖Lr→Lr,∞ . L1 + ‖T‖Lr→Lr,∞ .

Proof. Given λ > 0 consider the set

E = {x ∈ X : T ∗f(x) > λ},
which can be non-measurable. For any x ∈ E there is a ball B(x) ∈ B
such that

(4.4) x ∈ B(x), |T (f · IX\B[1](x))(x)| > λ.

One can check that E = ∪x∈EB(x). Given ball B apply Lemma 3.1, we
�nd a sequence xk ∈ E such that the balls {Bk = B(xk)} are pairwise
disjoint and

(4.5) E ∩B ⊂
⋃
k

B
[1]
k = Q(B).

Since T satis�es T1)-condition, we have

|T (f · I
X\B[1]

k
)(xk)− T (f · I

X\B[1]
k

)(x)| ≤ L1 · 〈f〉∗Bk,r
, x ∈ Bk.

Thus, one can easily conclude from (4.4) that

|T (f · I
X\B[1]

k
)(x)| ≥ |T (f · I

X\B[1]
k

)(xk)|(4.6)

− |T (f · I
X\B[1]

k
)(xk)− T (f · I

X\B[1]
k

)(x)|

≥ λ− L1 · 〈f〉∗Bk,r
, x ∈ Bk.

Given β > 0 de�ne

(4.7) B̃k = {x ∈ Bk : |T (f · I
B

[1]
k

)(x)| < β · 〈f〉∗Bk,r
}.
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Using weak-Lr inequality of the operator T , the measure of the com-
plement of B̃k is estimated by

µ∗(B̃c
k) ≤

‖T‖rLr→Lr,∞

(β · 〈f〉∗Bk,r
)r
·
∫
B

(1)
k

|f |r ≤
(
‖T‖Lr→Lr,∞

β

)r
µ(B

(1)
k )

.

(
‖T‖Lr→Lr,∞

β

)r
µ(Bk)

and so for an appropriate constant β ∼ ‖T‖Lr→Lr,∞ we have

µ∗(B̃k) ≥ µ(Bk)− µ∗(Bk \ B̃k) ≥ µ(Bk)− µ∗(B̃c
k) ≥

1

2
µ(Bk).

If

x ∈ B̃k \ {Mrf(x) > δλ},
then, using subadditivity of T together with relations (4.7), (4.6), we
obtain

|Tf(x)| ≥ |T (f · I
X\B[1]

k
)(x)| − |T (f · I

B
[1]
k

)(x)|

≥ λ− L1 · 〈f〉∗Bk,r
− β · 〈f〉∗Bk,r

≥ λ− (L1 + β) ·Mrf(x)

≥ λ− (L1 + β)δλ

≥ λ/2,

where the last inequality can be satis�ed for

(4.8) δ = 1/2(L1 + β) ∼ (L1 + ‖T‖Lr→Lr,∞)−1.

Hence we conclude

(4.9)
⋃
k

B̃k ⊂ {Mrf(x) > δλ}
⋃
{|Tf(x)| > λ/2}.

Since the maximal function Mr and the operator T satisfy weak-Lr

bound, from (4.5), (4.8) and (4.9) we get

µ(Q(B)) ≤
∑
k

µ(B
[1]
k )

≤ K ·
∑
k

µ(Bk)

≤ 2K ·
∑
k

µ∗(B̃k)

. µ∗{Mrf(x) > δλ}+ µ∗{|Tf(x)| > λ/2}

. (L1 + ‖T‖Lr→Lr,∞)r
1

λr

∫
X

|f |r.
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The same argument used at the end of the proof of Theorem 4.1 implies

µ∗(E) . (L1 + ‖T‖Lr→Lr,∞)r
1

λr

∫
X

|f |r,

and so the theorem is proved. �

De�nition 4.1. Let T be a subadditive operator. Given balls A and B
with A ⊂ B we denote

∆(A,B) = ∆T (A,B) = sup
x∈A, f∈Lr(X)

|T (f · IB[1]\A[1])(x)|
〈f〉B[1],r

.

Notice that T2)-condition for a subadditive operator T means that
for any A ∈ B there exists a ballB such that A ( B and ∆(A,B) ≤ L2.

Lemma 4.1. If T is an arbitrary subadditive operator, then for any
balls A,B and C satisfying A ⊂ B ⊂ C we have

(4.10) ∆(A,B) ≤ ∆(A,C).

Proof. Given function f ∈ Lr(X) denote

g(x) = f(x) · IB[1](x).

Then we get the estimate

sup
x∈A
|T (f · IB[1]\A[1])(x)| = sup

x∈A
|T (g · IC[1]\A[1])(x)|

≤ ∆(A,C) · 〈g〉C[1],r

= ∆(A,C) ·
(

1

µ(C [1])

∫
B[1]

|f |r
)1/r

≤ ∆(A,C) · 〈f〉B[1],r,

which implies (4.10). �

Lemma 4.2. Let a subadditive operator T satisfy T1)-condition and
the weak-Lr bound. Then for any balls A, B satisfying A ⊂ B we have

(4.11) ∆(A,B) . (L1 + ‖T‖Lr→Lr,∞)

(
µ(B)

µ(A)

)1/r

.

Proof. Applying the weak-Lr estimate, we get

µ∗

{
x ∈ A : |T (f · IB[1]\A[1])(x)| > ‖T‖Lr→Lr,∞

(
2

µ(A)

∫
B[1]

|f |r
)1/r

}
≤ µ(A)

2
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and so we �nd a point x0 ∈ A such that

|T (f · IB[1]\A[1])}(x0)| ≤ ‖T‖Lr→Lr,∞

(
2

µ(A)

∫
B[1]

|f |r
)1/r

(4.12)

. ‖T‖Lr→Lr,∞ ·
(
µ(B)

µ(A)

)1/r

· 〈f〉B[1],r.

According to T1)-condition, for any x ∈ A we have

(4.13) |T (f ·IB[1]\A[1])}(x)−T (f ·IB[1]\A[1])}(x0)| ≤ L1 ·〈f ·IB[1]\A[1]〉∗A,r.

By the de�nition of 〈f〉∗A,r there is a ball C ⊃ A such that

〈f · IB[1]\A[1]〉∗A,r = 〈f · IB[1]\A[1]〉C,r.

If µ(C) ≤ µ(B[1]), then we have C ⊂ B[2] and therefore

〈f · IB[1]\A[1]〉C,r ≤
(
µ(B[2])

µ(C)

)1/r

〈f · IB[1]\A[1]〉B[2],r(4.14)

=

(
µ(B[2])

µ(C)

)1/r

〈f · IB[1]\A[1]〉B[1],r

.

(
µ(B)

µ(A)

)1/r

· 〈f〉B[1],r.

In the case of µ(C) > µ(B[1]), we have B[1] ⊂ C [1]. Hence we get

〈f · IB[1]\A[1]〉C,r ≤
(
µ(C [1])

µ(C)

)1/r

〈f · IB[1]\A[1]〉C[1],r(4.15)

. 〈f · IB[1]\A[1]〉C[1],r

≤ 〈f · IB[1]\A[1]〉B[1],r

≤ 〈f〉B[1],r.

The estimates (4.14) and (4.15) imply the inequality

〈f · IB[1]\A[1]〉∗A,r .
(
µ(B)

µ(A)

)1/r

· 〈f〉B[1],r,

which together with (4.12) and (4.13) gives

|T (f · IB[1]\A[1])}(x)| . (L1 +‖T‖Lr→Lr,∞)

(
µ(B)

µ(A)

)1/r

〈f〉B[1],r, x ∈ A.

The last inequality completes the proof of lemma. �
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Lemma 4.3. If a subadditive operator T satis�es T1)-condition and
the weak-Lr bound, then for any balls A,B and C satisfying A ⊂ B ⊂ C
we have

(4.16) ∆(A,C) .

(
µ(C)

µ(B)

)1/r

· (L1 + ‖T‖Lr→Lr,∞ + ∆(A,B)).

Proof. According to Lemma 4.2 we have

∆(B,C) . (L1 + ‖T‖Lr→Lr,∞)

(
µ(C)

µ(B)

)1/r

.

Thus, taking f ∈ Lr(X) and x ∈ A, we obtain
|T (f ·IC[1]\A[1])(x)|

≤ |T (f · IC[1]\B[1])(x)|+ |T (f · IB[1]\A[1])(x)|
≤ ∆(B,C)〈f〉C[1],r + ∆(A,B)〈f〉B[1],r

. (L1 + ‖T‖Lr→Lr,∞)

(
µ(C)

µ(B)

)1/r

〈f〉C[1],r + ∆(A,B)〈f〉B[1],r

≤ (L1 + ‖T‖Lr→Lr,∞)

(
µ(C)

µ(B)

)1/r

〈f〉C[1],r

+ ∆(A,B)

(
µ(C [1])

µ(B[1])

)1/r

〈f〉C[1],r

. 〈f〉C[1],r

(
µ(C)

µ(B)

)1/r

· (L1 + ‖T‖Lr→Lr,∞ + ∆(A,B))

and so we get (4.16). �

Inequality (3.1) and Lemma 4.3 immediately yield

Lemma 4.4. Let an operator T ∈ BOB and satisfy the weak-Lr bound.
Then for any balls A,B ∈ B with A ⊂ B we have

∆(A,B[n]) . Kn/r(L1 + ‖T‖Lr→Lr,∞ + ∆(A,B)).

Theorem 4.3. If an operator T ∈ BOB satis�es weak-Lr estimate,
then the operator T ∗ ∈ BOB and satis�es weak-Lr inequality. More-
over, we have

L1(T
∗) . L1(T ) + ‖T‖Lr→Lr,∞ ,

L2(T
∗) = L2(T ).

Proof. One can easily check that for any balls A,B satisfying A ⊂ B
we have the equality

∆T ∗(A,B) = ∆T (A,B).
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If balls A and B satisfy T2)-condition for the operator T , then the
same conditions will hold also for T ∗ with L2(T

∗) = L2(T ). To prove
T1)-condition, let B ∈ B and f ∈ Lr(X) satisfy

(4.17) supp f ∈ X \B[1].

Take arbitrary points x, x′ ∈ B and estimate |T ∗f(x) − T ∗f(x′)|. If
T ∗f(x) = T ∗f(x′), then the estimation is trivial. So we can suppose
that T ∗f(x) > T ∗f(x′). Using the de�nition of T ∗f(x), we �nd a ball
A ∈ B with x ∈ A such that

(4.18)
T ∗f(x) + T ∗f(x′)

2
< |T (f · IX\A[1])(x)|.

Denote

A′ =

{
B if µ(A) < µ(B),
A[1] if µ(A) ≥ µ(B).

(4.19)

Since x, x′ ∈ B, from Lemma 4.2 and (4.17) it follows that

|T (f · IB[2]\A[1])(x)| = |T (f · IB[2]\A[1] · IB[2]\B[1]))(x)|

(4.20)

≤ ∆(B,B[1])〈f · IB[2]\A[1]〉B[2],r

≤ ∆(B,B[1])〈f〉B[2],r

.

(
µ(B[1])

µ(B)

)1/r

(L1(T ) + ‖T‖Lr→Lr,∞)〈f〉∗B,r,

. (L1(T ) + ‖T‖Lr→Lr,∞)〈f〉∗B,r,

and similarly

(4.21) |T (f · IB[2]\A′[1](x
′)| . (L1(T ) + ‖T‖Lr→Lr,∞)〈f〉∗B,r.

One can easily check that from (4.19) it follows that B ⊂ A′ and so
x′ ∈ A′. This implies

T ∗f(x′) ≥ |T (f · IX\A′[1])(x′)|,

which together with (4.18) yields

|T ∗f(x)− T ∗f(x′)| = T ∗f(x)− T ∗f(x′)

(4.22)

≤ 2|T (f · IX\A[1])(x)| − 2T ∗f(x′)

≤ 2

(
|T (f · IX\A[1])(x)| − |T (f · IX\A′[1])(x′)|

)
.
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In the case µ(A) < µ(B) we get A ⊂ B[1] and therefore

A′[1] = B[1] ⊂ B[2], A[1] ⊂ B[2].

Thus, applying T1)-condition for T , from (4.20), (4.21) and (4.22) we
conclude

|T ∗f(x)− T ∗f(x′)| ≤ 2

(
|T (f · IX\B[2])(x)|+ |T (f · IB[2]\A[1])(x)|

− |T (f · IX\B[2])(x′)|+ |T (f · IB[2]\A′[1])(x
′)|
)

. |T (f · IX\B[2])(x)− T (f · IX\B[2])(x′)|
+ (L1(T ) + ‖T‖Lr→Lr,∞)〈f〉∗B,r

. (L1(T ) + ‖T‖Lr→Lr,∞)〈f〉∗B,r.

If µ(A) ≥ µ(B), then by (4.19) we have A′ = A[1] and so x, x′ ∈ B ⊂
A[1], A′[1] = A[2]. Thus, applying Lemma 4.2 and (4.22), we get

|T ∗f(x)− T ∗f(x′)| ≤ 2

(
|T (f · IX\A[1])(x)| − |T (f · IX\A[2])(x′)|

)
≤ 2

(
|T (f · IX\A[2])(x)| − |T (f · IX\A[2])(x′)|

)
+ 2|T (f · IA[2]\A[1])(x)|

. L1(T )〈f〉∗A[1],r + (L1(T ) + ‖T‖Lr→Lr,∞)〈f〉A[2],r

≤ (L1(T ) + ‖T‖Lr→Lr,∞)〈f〉∗B,r,

and �nally, T1)-condition. Weak-Lr bound of T ∗ follows from Theorem
4.2. �

We say that a ball-basis B in a measure space satis�es the doubling
condition if there is a constant η > 1 such that for any ball A ∈ B,
A[1] 6= X, one can �nd a ball B satisfying

(4.23) A ( B, µ(B) ≤ η · µ(A).

Theorem 4.4. Let the ball-basis B satisfy the doubling condition. If a
subadditive operator T satis�es T1)-condition and the weak-Lr bound,
then T ∈ BOB. Moreover, we have

L2(T ) . η1/r(L1 + ‖T‖Lr→Lr,∞),

where η is the doubling constant from (4.23).
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Proof. We need to check T2)-condition. If balls A and B satisfy con-
ditions (4.23), then applying Lemma 4.2, we get

∆(A,B) . (L1 + ‖T‖Lr→Lr,∞)

(
µ(B)

µ(A)

)1/r

≤ η1/r(L1 + ‖T‖Lr→Lr,∞).

Thus we get L2(T ) . η1/r(L1 + ‖T‖Lr→Lr,∞) <∞. �

5. Proof of main theorems

Lemma 5.1. If a subadditive operator T satis�es T1)-condition and
the weak-Lr bound, then for any B ∈ B there exists a ball B′ such that

B[2] ⊂ B′,(5.1)

∆(B[2], B′) . L1 + ‖T‖Lr→Lr,∞ ,(5.2)

and we either have

(5.3) B′[1] = B′ or µ(B′) ≥ 2µ(B).

Proof. Letting

A = {A ∈ B : A ∩B 6= ∅},
we denote

a = sup
A∈A:µ(B)≤µ(A)≤2µ(B)

µ(A) ≤ 2µ(B),(5.4)

b = inf
A∈A:µ(A)>2µ(B)

µ(A) ≥ 2µ(B).(5.5)

Observe that there is no ball A ∈ A with a < µ(A) < b and there exist
balls G1, G2 ∈ A such that

a

2
< µ(G1) ≤ a,

b ≤ µ(G2) < 2b.

If b ≤ K2a, then we de�ne B′ = G
[3]
2 . Since B ∩ G2 6= ∅ and µ(B) ≤

a ≤ b ≤ µ(G2), we get B ⊂ G
[1]
2 and therefore B[2] ⊂ G

[3]
2 = B′. Thus

we get (5.1). Taking into account the inequalities

µ(B′) = µ(G
[3]
2 ) ≤ K3µ(G2) ≤ K3 · 2b ≤ 2aK5,

µ(B[2]) ≥ µ(B) ≥ a

2
,

from Lemma 4.2 it follows that

∆(B[2], B′) .

(
µ(B′)

µ(B[2])

)1/r

(L1 + ‖T‖Lr→Lr,∞) . L1 + ‖T‖Lr→Lr,∞ .
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Hence we obtain (5.2). Then by (5.5) we have

(5.6) µ(B′) ≥ µ(G2) ≥ b ≥ 2µ(B)

and so we get the second relation in (5.3). Now suppose we have

b > K2a. De�ne B′ = G
[1]
1 ∈ A. We have

µ(B′[1]) ≤ K2µ(G1) ≤ aK2 < b.

Since there is no ball from A with a measure in the interval (a, b), we
get µ(B′[1]) ≤ a. Thus we get

B′[1] ∩G1 6= ∅, µ(B′[1]) ≤ 2µ(G1).

These relations imply B′[1] ⊂ G
[1]
1 = B′, that means B′[1] = B′ and we

get the �rst relation in (5.3). On the other hand by (5.4) we have

µ(B) ≤ a ≤ 2µ(G1) ≤ 2µ(B′) ≤ 2a ≤ 4µ(B).

That means B ⊂ B′[1] = B′ and therefore B[2] ⊂ B′[2] = B′. Hence we
obtain (5.1). Using Lemma 4.2 and (5.6), we get

∆(B[2], B′) .

(
µ(B′)

µ(B[2])

)1/r

(L1 + ‖T‖Lr→Lr,∞) . L1 + ‖T‖Lr→Lr,∞ ,

that gives (5.2). Lemma is proved. �

Lemma 5.2. Let T ∈ BOB satisfy weak-Lr estimate and for a ball
B ∈ B we have B[1] = B. Then there exists a ball B′ satisfying (5.1)
and

∆(B[2], B′) ≤ L2,(5.7)

µ(B′) > 2µ(B).(5.8)

Proof. Applying T2)-condition, we �nd a ball B′ ) B such that

(5.9) ∆(B,B′) ≤ L2.

From B[1] = B we get B[2] = B ⊂ B′ that is (5.1). Then, applying
(5.9), we get (5.7). Observe that (5.8) holds. Indeed, otherwise by
two balls relation we will have B′ ⊂ B[1] = B, which contradicts the
condition B′ ) B. �

Lemma 5.3. If T ∈ BOB satis�es weak-Lr estimate, then for any
B ∈ B there exists a sequence of balls B = B0, B1, B2, . . . such that⋃

k

Bk = X,(5.10)

B
[2]
k−1 ⊂ Bk, k ≥ 1,(5.11)

sup
k≥1

∆(B
[2]
k−1, Bk) . L1 + L2 + ‖T‖Lr→Lr,∞ , k ≥ 1.(5.12)
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Proof. We construct a sequence of balls {Bk} satisfying (5.11), (5.12)
and the relation

(5.13) µ(Bk) > 2µ(Bk−2), k ≥ 2.

We do it by induction. Take B0 = B and suppose we have already
de�ned Bk for k = 0, 1, . . . l satisfying the conditions (5.11), (5.12) and

(5.13) for k ≤ l. If B
[1]
l = Bl, then applying Lemma 5.2, we get a ball

Bl+1 = B′ such that

B
[2]
l ⊂ Bl+1,(5.14)

∆(B
[2]
l , Bl+1) ≤ L2,

µ(Bl+1) ≥ 2µ(Bl).

In the case of B
[1]
l 6= Bl we use Lemma 5.1. At this time the ball

Bl+1 = B′ will satisfy (5.14) and the conditions

∆(B
[2]
l , Bl+1) . L1 + ‖T‖Lr→Lr,∞ ,

µ(Bl+1) ≥ 2µ(Bl).(5.15)

Applying this process, we get a sequence satisfying the conditions (5.11)
and (5.12). Besides, one can easily observe that at least for one of any
two consecutive integers k we will have µ(Bk+1) ≥ 2µ(Bk). So the
condition (5.13) will also be satis�ed. �

Lemma 5.4. Let T be a BOB operator satisfying weak-Lr inequality.
If

(5.16) λ ≥ 3K4,

then for every measurable set F ⊂ X and a ball A ∈ B with

(5.17) F ∩ A 6= ∅, µ(F ) ≤ µ(A)/λ,

there exists a family of balls G ⊂ B satisfying the conditions

F ∩ A[1] ∩G 6= ∅ if G ∈ G ,(5.18)

F ∩ A[1] ⊂
⋃
G∈G

G a.s.(5.19)

µ

(⋃
G∈G

G[1]

)
.
µ(A)

λ
.(5.20)
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Besides, for each G ∈ G there is a ball G̃ (not necessarily in G ) such
that

G̃ 6⊂ F.(5.21)

G[2] ⊂ G̃ ⊂ A[1],(5.22)

∆(G[2], G̃) . L1 + L2 + ‖T‖Lr→Lr,∞ .(5.23)

Proof. Applying Lemma 3.5 for the set E = F ∩ A[1] we �nd a family
of balls P ⊂ B such that

F ∩ A[1] ∩B 6= ∅, B ∈ P,(5.24)

F ∩ A[1] ⊂
⋃
B∈P

B a.s.(5.25) ∑
B∈P

µ(B) < 2Kµ(F ∩ A[1]).(5.26)

Take an arbitrary element B ∈ P. Applying Lemma 5.3, we �nd a
sequence of balls Bk ∈ B, k = 0, 1, 2, . . ., B = B0, with conditions
(5.10)-(5.12). To B ∈ P we can attach a ball G = Bm, where m ≥ 0 is
the least index satisfying the relation

(5.27) B
[1]
m+1 6⊂ F.

The collection of all such G de�nes the family G . If G ∈ G is generated
by B ∈ P, then combining the relation

(5.28) B ⊂ B
[2]
0 ⊂ Bm = G

with (5.24) we obtain (5.18). From (5.28) we also get

⋃
G∈G

G ⊃
⋃
B∈P

B,

which together with (5.25) implies (5.19). Then, according to the def-
inition of the integer m (see (5.27)) we have either G[1] ⊂ F or G ∈ P

(the second relation holds only if m = 0). This remark together with
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(5.26) implies

µ

(⋃
G∈G

G[1]

)
≤ µ(F ) + µ

(⋃
B∈P

B[1]

)
(5.29)

≤ µ(F ) +
∑
B∈P

µ
(
B[1]

)
≤ µ(F ) + K

∑
B∈P

µ(B),

≤ (2K2 + 1)µ(A[1])

λ
,

≤ 3K2µ(A)

λ
,

and we get (5.20). Now de�ne

(5.30) G̃ =

{
A[1] if µ(B

[1]
m+1) > µ(A),

B
[1]
m+1 if µ(B

[1]
m+1) ≤ µ(A).

According to (5.17), we have µ(A[1]) > µ(F ) and so A[1] 6⊂ F . This
together with (5.27) and (5.30) implies (5.21). To check condition
(5.22) notice that form (5.16) and (5.29) it follows that

µ(G[2]) ≤ K2 · µ(G) ≤ K2 · 3K2µ(A)

λ
≤ µ(A).

Thus, since G ∩ A 6= ∅, we conclude

(5.31) G[2] ⊂ A[1].

If µ(B
[1]
m+1) > µ(A), then by (5.30) we have G̃ = A[1] and using (5.31)

we get (5.22). If µ(B
[1]
m+1) ≤ µ(A), then since B

[1]
m+1 ∩ A 6= ∅, we have

B
[1]
m+1 ⊂ A[1]. Hence from (5.11) and (5.30) we obtain

G[2] = B[2]
m ⊂ B

[1]
m+1 = G̃ ⊂ A[1]

and so (5.22). To prove (5.23) �rst we suppose that µ(B
[1]
m+1) ≤ µ(A)

and so G̃ = B
[1]
m+1. Applying Lemma 4.4 and (5.12), we get

∆(G[2], G̃) = ∆(B[2]
m , B

[1]
m+1)

.

(
µ(B

[1]
m+1)

µ(Bm+1)

)1/r

(L1 + ‖T‖Lr→Lr,∞ + ∆(B[2]
m , Bm+1))

. L1 + L2 + ‖T‖Lr→Lr,∞ .
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In the case µ(B
[2]
m+1) > µ(A[1]) we have G̃ = A[1] ⊂ B

[3]
m+1 and therefore

G̃[1] ⊂ B
[4]
m+1. Once again applying Lemma 4.4, we obtain

∆(G[2], G̃) ≤ ∆(B[2]
m , B

[3]
m+1)

.

(
µ(B

[2]
m+1)

µ(Bm+1)

)1/r

(L1 + L2 + ‖T‖Lr→Lr,∞ + ∆(B[2]
m , Bm+1))

. L1 + L2 + ‖T‖Lr→Lr,∞ ,

which completes the proof of lemma. �

De�nition 5.1. We say a set of balls A is a family-tree if

F1) there is an element A0 ∈ A called grandparent of A,
F2) to each A ∈ A except the grandparent A0 a unique parent pr(A) ∈

A is attached,
F3) for each A ∈ A, A 6= A0 we have A0 = prn(A) = pr(pr(. . . pr(A) . . .))

for some n ∈ N.

Given ball A ∈ A we denote

Chn(A) = {B ∈ A : prn(B) = A}, n = 1, 2, . . .

Gen(A) =
∞⋃
n=1

Chn(A),

where M is the maximal operator (4.1). The family Ch(A) = Ch1(A)
is said to be the children of A and Gen(A) is the generation of A.
The notation n � m (n � m) for two integers n,m denotes n <

m− 1 (n > m+ 1) and n � m stands for the condition |m− n| ≤ 1.

Proof of Theorem 1.1. Let an operator T ∈ BOB satisfy weak-Lr in-
equality. De�ne

Γf(x) = max {|Tf(x)|, T ∗f(x),L ·Mrf(x)} ,
where

L = L1 + L2 + ‖T‖Lr→Lr,∞ .

Applying Theorem 4.1 and Theorem 4.2, we conclude that the operator
Γ satisfy weak-Lr estimate and besides

(5.32) ‖Γ‖Lr→Lr,∞ . L1 + L2 + ‖T‖Lr→Lr,∞ .

Denote

(5.33) T ∗∗f(x) = sup
B∈B, x∈B

|T (f · IB[1])(x)|.

Subadditivity of T implies

(5.34) T ∗∗f(x) ≤ T ∗f(x) + |Tf(x)| ≤ 2Γf(x), x ∈ X.
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Let f ∈ Lr(X) and B be the ball from the statement of theorem.
Clearly we can chose a ball A0 such that

(5.35) B[1] ⊂ A0,

∫
A0

|f | > ‖f‖1
2

.

Let λ > 0 satisfy (5.16). We shall construct a family-tree A ⊂ B with
the grandparent A0 such that

1) If G ∈ Ch(A), then A[1] ∩G 6= ∅.
2) We have

(5.36) µ

 ⋃
G∈Ch(A)

G[1]

 . µ(A)

λ
.

3) If G ∈ Ch(A), then there exist a ball G̃ and a point ξ ∈ G̃ such
that

G[2] ⊂ G̃ ⊂ A[1],(5.37)

ΓfA(ξ) . Lλ · 〈f〉A[3],r,(5.38)

|T (f · IG̃[1]\G[3])(x)| . Lλ · 〈f〉A[3],r, x ∈ G[2],(5.39)

where

(5.40) fA =

{
f · IA[3] if A 6= A0,
f if A = A0.

4) We have

|ΓfA(x)| . Lλ · 〈f〉A[3],r,(5.41)

for almost all x ∈ A[1] \
⋃

G∈Ch(A)

G, if A 6= A0.

The elements of A will be determined inductively by an increasing order
of generations levels. The �rst element of A is A0. Then we suppose
inductively that we have already de�ned all the members of⋃

1≤n≤l

Chn(A)

such that any member

A ∈
⋃

1≤n≤l−1

Chn(A)

satis�es the conditions 1)-4). To de�ne the members of Chl+1(A0) we
take an arbitrary A ∈ Chl(A0) and de�ne the children of A as follows.
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Take a measurable set F = FA such that

F ⊃ {x ∈ X : ΓfA(x) > β · 〈f〉A[3],r},(5.42)

µ(F ) = µ∗{x ∈ X : ΓfA(x) > β · 〈f〉A[3],r}.(5.43)

Suppose that F 6= ∅. Using (5.32), for any A (include the case A = A0)
we will have

µ(F ) ≤ 2µ(A[3])

βr
‖Γ‖rLr→Lr,∞

≤ 2K3 · µ(A)

βr
‖Γ‖rLr→Lr,∞

≤ µ(A)

λ
,

for a suitable constant

β ∼ Lλ

since r ≥ 1 and we have (5.32). Not that in the case A = A0 one needs
additionally use the inequality (5.35). Thus, applying Lemma 5.4 for A
and F = FA, we get a family G satisfying the conditions of the lemma.
The family G will form the children collection of A, that is

Ch(A) = G .

The relations 1) and 2) are immediate consequences of (5.18) and (5.20)
respectively, while (5.37) follows from condition (5.22) of Lemma 5.4.
From (5.21) it follows the existence of ξ ∈ G̃ \ F and by the de�nition
(5.42) we get (5.38) ((5.57) if A = A0). Since ξ ∈ G̃, using (5.22),(5.23)
and (5.38), for f ∈ Lr(X) we get the inequality

sup
x∈G[2]

|T (f · IG̃[1]\G[3])(x)| = sup
x∈G[2]

|T (f · IA[3] · IG̃[1]\G[3])(x)|

≤ ∆(G[2], G̃) · 〈f · IA[3]〉G̃[1],r

. L〈f · IA[3]〉∗G̃,r
≤ LMr(f · IA[3])(ξ)

≤ Γ(f · IA[3])(ξ) = ΓfA(ξ)

≤ β · 〈f〉A[3],r

. Lλ · 〈f〉A[3],r,

which implies (5.39). From (5.19) we get

µ

F⋂
A[1] \

⋃
G∈Ch(A)

G

 = 0,
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therefore by the de�nition of F we have (5.41). Hence, the properties
of the family A are satis�ed.
Now we construct a sparse subfamily S ⊂ A consisting of countable

collection of balls, which will satisfy the conditions of the theorem. We
will do that by removing some elements of A. As we will see below,
removing an element A ∈ A, we also remove all the elements of its
generation Gen(A). Thus one can easily check that the properties 1)-
3) will hold during the whole process.
To start the description of the process we let R = K2, where K > 1

is the constant from (1.6). For B ∈ B denote

r(B) = [logR µ(B)]

Observe that the collections of balls

Ak = {B ∈ A : r(B) = k}
=
{
B ∈ A : Rk ≤ µ(B) < Rk+1

}
, k ≤ k0,

gives a partition of A, i.e. we have A = ∪k≤k0Ak, where k0 = r(A0)
and Ak0 = {A0}. The reduction of the elements of A will be realized
in di�erent stages. The content of Ak0 will not be changed. In the
n-th stage only the contents of the families Ak with k ≤ k0 − n can be
changed. Besides, at the end of the n-th stage Ak0−n will be �xed and
remain the same till the end of the process. Suppose by induction the
l-th stage of reduction has been already �nished and so the families Ak,
k = k0, k0−1, k0−2, . . . , k0− l have already �xed. In the next (l+1)-th
stage we will apply the following two procedures consecutively:

Procedure 1. Remove any element G ∈ Ak0−l−1 together with all the
elements of his generation Gen(G) if there exists a B ∈ A satisfying
the conditions

G[2] ∩B 6= ∅,(5.44)

r(prk(G))� r(B)� r(prk+1(G)),(5.45)

for some integer k ≥ 0.

Remark 5.1. Observe that if an element G is removed because of a
ball B satisfying the conditions (5.44) and (5.45) of Procedure 1, then
we should have

r(G)� r(B)� r(pr(G))

that means (5.45) can hold only with k = 0. Indeed, the left inequality
immediately follows from (5.45). To prove the right one, suppose to
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the contrary in (5.45) we have k ≥ 1. Denote

G′ = prk(G) ∈
l⋃

j=0

Ak0−j.

Since G′[2] ⊃ G[2] (see (5.37)), we have G′[2]∩B 6= ∅. On the other hand
(5.45) can be written by r(G′) � r(B)� r(pr(G′)). We thus conclude
that G′ satis�es the conditions of the Procedure 1, so G′ together with
his generation Gen(G′) (include G) had to be removed in one of the
previous stages of the process, when B was already �xed. This is a
contradiction and so k = 0.

Procedure 2. Apply Lemma 3.1 to the rest of the elements Ak0−l−1
having after Procedure 1. The application of lemma removes some el-
ements of Ak0−l−1. If an element A is removed, then the generation
Gen(A) will also be removed.

Remark 5.2. After the Procedure 2 the elements of Ak0−l−1 become
pairwise disjoint. Besides, we will have

(5.46)
⋃

G∈Ak0−l−1(before Procedure 2)

G ⊂
⋃

G∈Ak0−l−1(after Procedure 2)

G[1].

After these two procedures the family Ak0−l−1 will be �xed. Hence,
�nishing the induction process, we get the �nal state of A which will
be denoted by D. Since after Procedure 2 in n-th stage Ak0−n gets
countable number of balls so the family D will also be countable at the
end of whole process.
Now we shall prove that for an admissible constant λ > 0 the family

D is a union of two 1/2-sparse collections of balls. For A ∈ D de�ne

(5.47) E(A) = A \
⋃

G∈D: r(G)�r(A)

G = A \
⋃

G∈D:G∩A 6=∅, r(G)�r(A)

G.

Observe that

(5.48) E(A) ∩ E(B) = ∅, if r(A) 6� r(B) or r(A) = r(B).

Indeed, take arbitrary A,B ∈ D. If r(A) = r(B), then the balls A,B
are result of the application of Procedure 2 (Lemma 3.1). That means
we have A ∩ B = ∅ and therefore according to (5.47) it follows that
E(A) ∩ E(B) = ∅. If r(A) � r(B), then E(A) ∩ B = ∅ immediately
follows from the de�nition (5.47) and so we will get again E(A) ∩
E(B) = ∅. To prove

(5.49) µ(E(A)) ≥ µ(A)/2
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take an arbitrary A ∈ D and denote

P = {P ∈ D : r(P ) � r(A), P [2] ∩ A 6= ∅}.
We have

(5.50) R−3 · µ(A) ≤ µ(P ) ≤ R3 · µ(A), P ∈ P.

On the other hand
P ⊂ Al−1 ∪ Al ∪ Al+1,

where l = r(A). Hence P consists of three families of pairwise disjoint
balls. Thus, applying the remark after the Lemma 3.6, we get

(5.51) #P . 1.

Suppose that G ∈ D satis�es

r(G)� r(A), G ∩ A 6= ∅,
and so G[2] ∩ A 6= ∅. Since G was not removed by Procedure 1, we
have r(prk(G)) � r(A) for some integer k ≥ 1. Denote P = prk(G).
We have r(P ) � r(A) and P [2] ⊃ G[2] by (5.37) and so P [2] ∩ A 6= ∅.
This implies that P ∈ P and G ∈ Gen(P ). Hence, from (5.47), (5.36),
(5.51) and (5.50) it follows that

µ(A \ EA) ≤ µ

 ⋃
G∈D:G∩A 6=∅, r(G)�r(A)

G


≤ µ

⋃
P∈P

⋃
G∈Gen(P )

G

 ≤∑
P∈P

∞∑
k=1

µ

 ⋃
G: prk(G)=P

G


.
∑
P∈P

∞∑
k=1

µ(P )

λk
.
µ(A)

λ
.

Thus for an admissible constant λ we get (5.49). From (5.48) and (5.49)
we conclude that two families

D1 = {A ∈ D : r(A) is odd }, D2 = D \D1,

are sparse. Further for an A ∈ D we will need the bound

|ΓfA(x)| . Lλ〈f〉A[3],r,(5.52)

for a.a. x ∈ A[1] \
⋃

G∈D: r(G)<r(A)

G[1],

which is based on the inequality (5.41). It is enough to prove that

A[1] \
⋃

B∈D: r(B)<r(A)

B[1] ⊂ A[1] \
⋃

G∈A:G∈Ch(A)

G
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or equivalently

(5.53) D =
⋃

B∈D: r(B)<r(A)

B[1] ⊃
⋃

G∈A:G∈Ch(A)

G.

Take A ∈ A and arbitrary G ∈ Ch(A). We have r(G) < r(A). In the
case G ∈ D, that is G has not been removed during the Procedures 1
and 2, G is an element of the left union of (5.53) and so G ⊂ D. If
G 6∈ D, then G has been removed during the removal process. If G
was removed by an application of Procedure 1, then there exists a ball
B ∈ D such that G[2] ∩ B 6= ∅ and r(G) � r(B) � r(pr(G)) = r(A)
(see remark after the Procedure 1). From the inequality R ≥ K3 it
follows that

µ(G[2]) ≤ K2µ(G) ≤ K2 · µ(B)

K2
= µ(B).

Thus we get G ⊂ G[2] ⊂ B[1], which means G ⊂ D. If G was removed
by an application of Procedure 2, then according to (5.46) we have

G ⊂ ∪kB[1]
k for a family of balls Bk satisfying r(Bk) = r(G) < r(A) and

so B
[1]
k ⊂ D. This again implies G ⊂ D and so we get (5.52). To prove

the theorem we need to prove

|Tf(x)| . Lλ ·AS,rf(x)(5.54)

= Lλ ·
∑
S∈S

〈f〉S,r · IS(x) a.e. x ∈ X,

where S = {S[3] : S ∈ D} clearly is a union of two sparse collections.
Observe that the set

E =
⋂
k≤k0

⋃
G∈D: r(G)≤k

A[1]

has zero measure, since D consists of countable number of balls with
bounded sum of their measures. Besides we can �x a set F of zero
measure such that for each A ∈ D inequality (5.52) holds for any

x ∈

A[1] \
⋃

G∈D: r(G)<r(A)

G[1]

 \ F.
Hence, it is enough to prove the bound (5.54) for arbitrary x ∈ A0 \
(E ∪ F ). Observe that for such x there exists a ball A ∈ D such that

x ∈

A[1] \
⋃

G∈D: r(G)<r(A)

G[1]

 ,
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and so from (5.52) we conclude

(5.55) |TfA(x)| ≤ |ΓfA(x)| . Lλ〈f〉A[3],r.

According to the property 1) one can �nd a unique sequence of balls
A0, A1, A2, . . . Ak = A in D such that Aj = pr(Aj+1). According to

the properties (5.37)-(5.39) there exist balls Ãj and points ξj, j =
0, 1, . . . , k − 1, such that

A
[3]
j+1 ⊂ Ã

[1]
j+1 ⊂ A

[2]
j ,(5.56)

ΓfA(ξj) . Lλ〈f〉
A

[3]
j ,r

, ξj ∈ Ãj+1,(5.57)

|T (f · I
Ã

[1]
j+1\A

[3]
j+1

)(t)| . Lλ〈f〉
A

[3]
j ,r

, t ∈ A[2]
j+1.(5.58)

Since

x ∈ A[1] = A
[1]
k ⊂ A

[2]
j+1,

the condition (5.58) holds for t = x. Thus, we get

(5.59) T (f · I
Ã

[1]
j+1\A

[3]
j+1

)(x)| . Lλ · 〈f〉
A

[3]
j
.

We claim that

(5.60) |TfAj
(x)| ≤ CLλ · 〈f〉

A
[3]
j ,r

+ |TfAj+1
(x)|,

where C > 1 is an admissible constant. Indeed, by T1)-condition and
(5.57), we will have

(5.61)
∣∣∣T (fAj

· I
X\Ã[1]

j+1
)(x)− T (fAj

· I
X\Ã[1]

j+1
)(ξj)

∣∣∣ . L〈fAj
〉∗
Ãj+1,r

≤ LMrfAj
(ξj) ≤ ΓfAj

(ξj) . Lλ · 〈f〉
A

[3]
j ,r

.

Besides, from (5.59) we get∣∣∣T (fAj
· I
Ã

[1]
j+1\A

[3]
j+1

)(x)
∣∣∣ =

∣∣∣T (f · I
Ã

[1]
j+1\A

[3]
j+1

)(x)
∣∣∣(5.62)

. Lλ · 〈f〉
A

[3]
j ,r

.

From the de�nition of fAj
(see (5.40)) and (5.56) it follows that

(5.63) fAj
· I
X\Ã[1]

j+1
= f · I

A
[3]
j \Ã

[1]
j+1

= f · I
A

[3]
j
− f · I

Ã
[1]
j+1
.
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Thus, applying (5.34), (5.61), (5.57), (5.62) and (5.63), we conclude∣∣TfAj
(x)
∣∣ =

∣∣TfAj
(x)
∣∣

≤
∣∣∣T (fAj

· I
X\Ã[1]

j+1
)(x)

∣∣∣+
∣∣∣T (fAj

· I
Ã

[1]
j+1

)(x)
∣∣∣

≤
∣∣∣T (fAj

· I
X\Ã[1]

j+1
)(x)− T (fAj

· I
X\Ã[1]

j+1
)(ξj)

∣∣∣+
∣∣∣T (fAj

· I
X\Ã[1]

j+1
)(ξj)

∣∣∣
+
∣∣∣T (fAj

· I
Ã

[1]
j+1\A

[3]
j+1

)(x)
∣∣∣+
∣∣∣T (fAj

· I
A

[3]
j+1

)(x)
∣∣∣

≤ CLλ · 〈f〉
A

[3]
j ,r

+
∣∣TfAj

(ξj)
∣∣

+
∣∣∣T (f · I

Ã
[1]
j+1

)(ξj)
∣∣∣+
∣∣TfAj+1

(x)
∣∣

≤ CLλ · 〈f〉
A

[3]
j ,r

+ 2T ∗∗fAj
(ξj) +

∣∣TfAj+1
(x)
∣∣

≤ CLλ · 〈f〉
A

[3]
j ,r

+ 4ΓfAj
(ξj) +

∣∣TfAj+1
(x)
∣∣

≤ CLλ · 〈f〉
A

[3]
j ,r

+
∣∣TfAj+1

(x)
∣∣ ,

where C > 0 is an admissible constant that can vary in the above in-
equalities. Thus we get (5.60). Applying (5.60) for each j = 0, 1, 2, . . . , k−
1, (5.40) and (5.55), we get

|Tf(x)| = |TfA0(x)| ≤ CLλ ·
k−1∑
j=0

〈f〉
A

[3]
j ,r

+ |T (f · IA[3])(x)|

. L ·
k∑
j=0

〈f〉
A

[3]
j ,r

. L ·AS,rf(x).

completing the proof of Theorem 1.1. �

Proof of Theorem 1.2. Theorem 1.2 immediately follows from Theorem
1.1, Theorem 4.2 and Theorem 4.3, �

6. Weighted estimates in abstract measure spaces

6.1. The general case. Let w satisfy Ap-condition. We denote q =
p
p−1 and let σ = w−

1
p−1 be the dual weight of w. Note that if w ∈ Ap,

then σ = w1/(1−p) ∈ Aq and

(6.1) [σ]Aq = [w]
1/(p−1)
Ap

.
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Besides we have

[w]Ap = sup
B∈B

w(B)

µ(B)

(
σ(B)

µ(B)

)p−1
.

The notation dw in the integrals will stand for wdµ, where µ is the
basic measure. Any weight w de�nes a measure on the basic measurable
space (X,M) and the w-measure of a set E is de�ned as w(E) =

∫
E
dw.

Everywhere below we denote by cp di�erent constants depending only
on 1 < p < ∞. In this section we shall consider maximal functions
with respect to di�erent measures. So we denote the maximal function
associated to a measure β by

Mβf(x) = sup
B∈B:x∈B

1

µ(B)

∫
B

|f(t)|dβ(t).

Recall that AS denotes the sparse operator corresponding to the case
of r = 1.

Lemma 6.1. Let (X,M, µ) be a measure space with a ball-basis B. If
S ⊂ B is a γ-sparse collection (0 < γ < 1) and the weight w satis�es
the Ap condition for 1 < p ≤ 2, then
(6.2)

‖AS‖Lp(w)→Lp(w) ≤ γ−1[w]
1/(p−1)
Ap

‖Mw‖1/(p−1)Lp(w)→Lp(w) · ‖Mσ‖Lp(σ)→Lp(σ).

Proof. Applying the Hölder inequality, for a measurable E ∈ M we
have

µ(E) =

∫
E

w1/p · w−1/pdµ(6.3)

≤
(∫

E

wdµ

)1/p

·
(∫

E

w−
1

p−1dµ

)1/q

= (w(E))1/p(σ(E))1/q.
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Now suppose S is a sparse collection of balls and f ∈ Lp(w) is positive.
Using the inequality (

∑
ak)

p−1 ≤
∑
ap−1k for 1 < p < 2, we obtain

‖ASf‖pLp(w) =

∫
X

(
(ASf)p−1

) p
p−1 wdµ(6.4)

=

∫
X

(∑
B∈S

〈f〉B · IB

)p−1
q

wdµ

≤
∫
X

(∑
B∈S

〈f〉p−1B · IB

)q

wdµ

=

∥∥∥∥∥∑
B∈S

〈f〉p−1B · IB

∥∥∥∥∥
q

Lq(w)

.

There is a function g ∈ Lp(w) with ‖g‖Lp(w) = 1 such that

∥∥∥∥∥∑
B∈S

〈f〉p−1B · IB

∥∥∥∥∥
Lq(w)

=

∫
X

∑
B∈S

〈f〉p−1B · IBgwdµ

=
∑
B∈S

(
1

µ(B)

∫
B

fdµ

)p−1 ∫
B

gdw

=
∑
B∈S

(
1

σ(B)

∫
B

fdµ

)p−1
×

× 1

w(B)

∫
B

|g|dw · w(B)

µ(B)

(
σ(B)

µ(B)

)p−1
· µ(B).
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Thus, applying (6.3), Ap-condition and Hölder's inequality, we get

∥∥∥∥∥∑
B∈S

〈f〉p−1B · IB

∥∥∥∥∥
Lq(w)

(6.5)

≤ γ−1[w]Ap

∑
B∈S

(
1

σ(B)

∫
B

fdµ

)p−1
× 1

w(B)

∫
B

|g|dw · µ(EB)

≤ γ−1[w]Ap

∑
B∈S

(
1

σ(B)

∫
B

fdµ

)p−1
(σ(EB))1/q×

× 1

w(B)

∫
B

|g|dw · (w(EB))1/p

≤ γ−1[w]Ap

(∑
B∈S

(
1

σ(B)

∫
B

fσ−1dσ

)p
σ(EB)

)1/q

×

×

(∑
B∈S

(
1

w(B)

∫
B

|g|dw
)p
· w(EB)

)1/p

.

The last two factors can be estimated by the maximal functions Mσ

and Mw respectively. Namely, for the second one we have

(∑
B∈S

(
1

w(B)

∫
B

|g|dw
)p
· w(EB)

)1/p

≤ ‖Mwg‖Lp(w)

(6.6)

≤ ‖Mw‖Lp(w)→Lp(w) · ‖g‖Lp(w)

= ‖Mw‖Lp(w)→Lp(w).

Similarly, the �rst factor is estimated by(∑
B∈S

(
1

σ(B)

∫
B

fσ−1dσ

)p
σ(EB)

)1/q

(6.7)

≤ ‖Mσ‖p/qLp(σ)→Lp(σ) · ‖fσ
−1‖p/qLp(σ)

= ‖Mσ‖p/qLp(σ)→Lp(σ) ·
(∫

X

fpσ−pσdµ

)1/q

= ‖Mσ‖p/qLp(σ)→Lp(σ) ·
(∫

X

fpdw

)1/q

= ‖Mσ‖p/qLp(σ)→Lp(σ) · ‖f‖
p/q
Lp(w).
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From (6.4), (6.5), (6.6) and (6.7) we immediately get (6.2). �

Lemma 6.2. Let (X,M, µ) be measure space with a ball-basis B, 1 <
p, q <∞ and p−1 + q−1 = 1. If S is a sparse collection and the weight
w satis�es the Ap condition, then

(6.8) ‖AS‖Lp(w)→Lp(w) = ‖AS‖Lq(σ)→Lq(σ),

where σ is the dual weight of w.

Proof. We have

‖AS‖Lp(w)→Lp(w) = sup
f∈Lp(w), g∈Lq(w)

∫
X

ASf · gdw.

By the duality argument for f ∈ Lp(w) and g ∈ Lq(w) we get the
estimate∫
X

ASf · gdw =

∫
X

ASf · gwdµ =
∑
B∈S

1

µ(B)

∫
B

fdµ

∫
B

gwdµ

=

∫
X

AS(gw) · fdµ =

∫
X

AS(gw)

w
· fwdµ =

∫
X

AS(gw)

w
· fdw

≤
∥∥∥∥AS(gw)

w

∥∥∥∥
Lq(w)

‖f‖Lp(w) =

(∫
X

(AS(gw))qw−qdw

)1/q

· ‖f‖Lp(w)

=

(∫
X

(AS(gw))qσdµ

)1/q

· ‖f‖Lp(w)

≤ ‖AS‖Lq(σ)→Lq(σ)‖gw‖Lq(σ)‖f‖Lp(w)

= ‖AS‖Lq(σ)→Lq(σ)

(∫
X

(gw)qσdµ

)1/q

‖f‖Lp(w)

= ‖AS‖Lq(σ)→Lq(σ)‖g‖Lq(w)‖f‖Lp(w),

which implies ‖AS‖Lp(w)→Lp(w) ≤ ‖AS‖Lq(σ)→Lq(σ). Similarly we have
the reverse inequality and so (6.8). �

Lemma 6.3. Let (X,M, µ) be a measure space with a ball-basis B and
w be a weight satisfying the Ap-condition, 1 < p < ∞, with respect to
the measure µ. Then for any balls A,B with A ⊂ B we have

(6.9)
w(B)

w(A)
≤ 2p · [w]Ap ·

(
µ(B)

µ(A)

)p
.

Proof. Denote

(6.10) a =
1

µ(A)

∫
A

wdµ =
w(A)

µ(A)
.
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By Chebishev's inequality we �nd

µ{t ∈ A : w ≤ 2a} > µ(A)

2
.

Thus we get

(6.11)

(∫
B

w1/(1−p)
)p−1

≥
(
µ(A)

2
(2a)1/(1−p)

)p−1
=

(µ(A))p

2pw(A)

and then by (1.1) and (6.11) we obtain

[w]Ap ≥
1

µ(B)

∫
B

w ·
(

1

µ(B)

∫
B

w1/(1−p)
)p−1

≥ w(B)

(µ(B))p
·
(∫

B

w1/(1−p)
)p−1

≥ 2−p · w(B)

w(A)
· (w(A))p

(µ(B))p

and so (6.10). �

Lemma 6.4. Let (X,M, µ) be a measure space with a ball-basis B
and w be a weight, satisfying the Ap-condition, 1 < p < ∞. Then the
maximal function associated to the measure w satis�es the inequalities

‖Mw‖L1(w)→L1,∞(w) ≤ (2K)p · [w]Ap ,(6.12)

‖Mw‖Lp′ (w)→Lp′ (w) ≤ c(p, p′) ·Kp/p′ [w]
1/p′

Ap
, 1 < p′ <∞.(6.13)

where the constant c(p, p′) depends on p and p′.

Proof. Denote

E = {x ∈ B : Mwf(x) > λ}.

For any x ∈ E there exists a ball B(x) ⊂ X such that

x ∈ B(x),
1

w(B(x))

∫
B(x)

|f |dw > λ.

Given ball B ∈ B consider the collection of balls {B(x) : x ∈ E ∩B}.
Apply Lemma 3.1, we �nd a sequence of pairwise disjoint balls {Bk}
taken from this collection satisfying

E ∩B ⊂
⋃
k

B
[1]
k .
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Note that B
[1]
k as usual is de�ned with respect to the measure µ. From

Lemma 6.3 we easily get w(B
[1]
k ) ≤ (2K)p · [w]Apw(Bk) and hence

w
(
∪kB[1]

k

)
≤
∑
k

w(B
[1]
k )

≤ (2K)p · [w]Ap

∑
k

w(Bk)

≤ (2K)p · [w]Ap

1

λ

∑
k

∫
Bk

|f |dw

≤
(2K)p · [w]Ap

λ

∫
X

|f |dw.

Similarly as in the proof of Theorem 4.1, thus we conclude

w∗(E) ≤
(2K)p · [w]Ap

λ

∫
X

|f |dw

and so (6.12). Applying Theorem 2.1 (Marcinkiewicz interpolation
theorem), we then get (6.13). �

Theorem 6.1. If S is a γ-sparse collection and the weight w satis�es
the Ap condition for some 1 < p < ∞, then the corresponding sparse
operator satis�es the bound

(6.14) ‖ASf‖Lp(w)→Lp(w) ≤ c(p,K) · γ−1[w]
max{ p+2

p(p−1)
, 3p−2

p }
Ap

.

Proof. First we suppose that 1 < p ≤ 2. Applying Lemma 6.1, Lemma
6.4 and (6.1), we obtain

‖AS‖Lp(w)→Lp(w) ≤ c(p,K)γ−1[w]
1/(p−1)
Ap

· [w]
1/p(p−1)
Ap

· [σ]
1/p
Aq

= c(p,K)γ−1[w]
p+2

p(p−1)

Ap

and so (6.14). If 2 < p <∞, then by Lemma 6.2 and (6.1) we obtain

‖ASf‖Lp(w)→Lp(w) = ‖ASf‖Lq(σ)→Lq(σ)

≤ c(q,K)γ−1[σ]
q+2

q(q−1)

Aq
= c(p,K)γ−1[w]

3p−2
p

Ap
.

Theorem is proved. �

Combining Theorem 1.1 with Theorem 6.1, we obtain

Theorem 6.2. If (X,M, µ) is a measure space with a ball-basis B and
the operator T ∈ BOB(X) satis�es weak-L1 inequality, then

‖Tf‖Lp(w)→Lp(w) ≤ c(p,K)(L1 + L2 + ‖T‖L1→L1,∞)[w]
max{ p+2

p(p−1)
, 3p−2

p }
Ap

.
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6.2. The case of Besicovitch condition.

De�nition 6.1. Let B be a family of sets of an arbitrary set X. We
say B satis�es the Besicovitch D-condition with a constant D ∈ N, if
for any collection A ⊂ B one can �nd a subscollection A′ ⊂ A such
that ⋃

A∈A

A =
⋃
A∈A′

A,∑
A∈A′

IA(x) ≤ D.

We say B is martingale system if D = 1.

Theorem 6.3. Let (X,M, µ) be a measure space and the collection of
measurable sets B ⊂M satisfy the Besicovitch D-condition. Then the
maximal operator Mµ satis�es the bounds

‖Mµ‖L1(µ)→L1,∞(µ) ≤ D,(6.15)

‖Mµ‖Lp(µ)→Lp(µ) ≤ cp ·D1/p, 1 < p <∞.

Proof. De�ne

E = {x ∈ X : Mµf(x) > λ}.
For any x ∈ E there exists a set B(x) ⊂ B such that

(6.16)
1

w(B(x))

∫
B(x)

|f |dw > λ, x ∈ B(x).

According to the Besicovitch condition there is a subcollection A ⊂
{B(x) : x ∈ E} such that ⋃

A∈A

A =
⋃
x∈E

B(x),∑
A∈A

IA(x) ≤ D.

Thus we get

µ∗(E) ≤
∑
A∈A

µ(A) ≤ 1

λ

∑
A∈A

∫
A

|f | ≤ D

λ

∫
X

|f |dµ.

The second inequality immediately follows from (6.15), according to
Marcinkiewicz interpolation theorem (Theorem 2.1). �

The following theorem gives a sharp weighted estimate in general
measure spaces with a ball basis satisfying the Besicovitch condition.
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Theorem 6.4. Let B be a family of sets in a measure space (X,M, µ)
satisfying the Besicovitch D-condition. If S is a γ-sparse collection and
the weight w satis�es the Ap condition for 1 < p <∞, then

(6.17) ‖ASf‖Lp(w)→Lp(w) . cpγ
−1Dmax{1/(p−1),p−1} · [w]

max{1,1/(p−1)}
Ap

.

Proof. First suppose that 1 < p ≤ 2. Applying Lemma 6.1 and Theo-
rem 6.3 we obtain

‖AS‖Lp(w)→Lp(w) ≤ cpγ
−1[w]

1/(p−1)
Ap

·D1/p(p−1) ·D1/p

= cpγ
−1[w]

1/(p−1)
Ap

·D1/(p−1)

and so (6.17). In the case 2 < p <∞ we use the same argument as in
the proof of Theorem 6.1. �

Applying Theorem 1.1 and Theorem 6.4 we immediately get the
following

Theorem 6.5. Let a family of measurable sets B in a measure space
(X,M, µ) satisfy the Besicovitch D-condition and w be a Ap weight
with 1 < p < ∞. Then if an operator T ∈ BOB(X) satisfy weak-L1

inequality, then

‖T‖Lp(w)→Lp(w) . C(L1 + L2 + ‖T‖L1→L1,∞) · [w]
max{1,1/(p−1)}
Ap

,

where C is a constant depending on p and the Besicovitch constant.

7. Bounded oscillation operators on spaces of

homogeneous type

De�nition 7.1. A quasimetric on a set X is a function ρ : X ×X →
[0,∞) satisfying the conditions
1) ρ(x, y) ≥ 0 for every (x, y) ∈ X and ρ(x, y) = 0 if and only if

x = y,
2) ρ(x, y) = ρ(y, x) for every x, y ∈ X,
3) ρ(x, y) ≤ D(ρ(x, z) + ρ(z, y)) for every x, y, z ∈ X, where D > 1

is a �xed constant.

De�ne the ball of a center x and a radius r by

B(x, r) = {y ∈ X : ρ(x, y) < r}, x ∈ X, 0 < r <∞
and denote by U(ρ) the family of all such balls, calling them ρ-balls.
Quasimetric de�nes a topology, for which the ρ-balls form a base.
In general, the balls need not to be open sets in this topology. For
B ∈ U(ρ) denote by c(B) and r(B) respectively the center and the
radius of B. For any t > 0 we set tB = B(c(B), tr(B)). We de�ne
also an enlarged family of balls U′(ρ) as follows: if µ(X) = ∞, then
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U′(ρ) coincides with U(ρ), in the case µ(X) < ∞ we include in U′(ρ)
additionally the set X.

De�nition 7.2. Let ρ be a quasimetric on X and µ be a positive mea-
sure de�ned on a σ-algebra M of subsets of X, containing the ρ-open
sets and the ρ-balls. The collection (X, ρ,M, µ) is said to be a space of
homogeneous type if

(7.1) µ(2B) ≤ H · µ(B)

for any ball B ∈ U(ρ).

Note that (7.1) implies a more general inequality. Namely,

(7.2) µ(a ·B) ≤ H(a) · µ(B), a > 0,

where H(a) is a constant depending on a and H. From property 3)
of quasimetric it easily follows that for any B ∈ U(ρ) it holds the
inequality

diamB = sup
x,y∈B

ρ(x, y) ≤ 2D · r(B).

In this section the notation a . b will stand for a ≤ c · b, where
c > 0 is a constant depending on the constants H and D of the space
homogeneous type .

Theorem 7.1. Let (X, ρ,M, µ) be a space of homogeneous type such
that U(ρ) satis�es the density condition. Then the enlarged family of
balls U′(ρ) forms a ball-basis for the measure space (X,M, µ) and satis-
�es the doubling condition. Besides, the hull ball of any B = B(x0, r) ∈
U(ρ) has the form B∗ = B(x0, R), 2r ≤ R ≤ ∞.

The proof of the theorem is based on the following lemmas.

Lemma 7.1. If (X, ρ,M, µ) is a space of homogeneous type, then for
any point x0 ∈ X and ball G ∈ U(ρ) we have

(7.3) G ⊂ B(x0, 2D
2(dist(x0, G) + r(G))).

Proof. Fix a point y ∈ G with ρ(x0, y) < 2dist(x0, G). For arbitrary
x ∈ G we have

ρ(x, x0) ≤ D(ρ(x, y) + ρ(y, x0))

≤ D(2Dr(G) + 2dist(x0, G)) ≤ 2D2(dist(x0, G) + r(G))

that means x belongs to the right side of (7.3). �
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Lemma 7.2. If (X, ρ,M, µ) is a space of homogeneous type and the
balls B ∈ U(ρ), Gk ∈ U(ρ), k = 1, 2, . . ., satisfy the relations

B ∩Gk 6= ∅,(7.4)

r(Gk)→∞ as k →∞,
then

µ(X) . lim sup
k→∞

µ(Gk).

Proof. Without loss of generality we can suppose that

r(Gk) > r(B).

From (7.4) it follows that dist(c(Gk), B) < r(Gk). Thus, applying
Lemma 7.1, we get

B(c(B), r(Gk)) ⊂ B(c(Gk), 2D
2(dist(c(Gk), B) + r(Gk)))

⊂ B(c(Gk), 4D
2r(Gk)),

and therefore by (7.2) we obtain

µ(B(c(B), r(Gk))) ≤ H(4D2) · µ(Gk).

On the other hand, since r(Gk)→∞, we have X = ∪kB(c(B), r(Gk)).
Therefore we get

µ(X) = lim
k→∞

µ(B(c(B), r(Gk)) . lim sup
k→∞

µ(Gk).

�

Lemma 7.3. Let (X, ρ,M, µ) be a space of homogeneous type. Then
for any B = B(x0, r) ∈ U(ρ) there exists a ball B∗ = B(x0, R) with
2r ≤ R ≤ ∞ such that

µ(B∗) . µ(B),(7.5) ⋃
A∈U(ρ):µ(A)≤2µ(B), A∩B 6=∅

A ⊂ B∗.(7.6)

Proof. For a given B ∈ U(ρ) let A be the family of balls A ∈ U(ρ)
satisfying

A ∩B 6= ∅, µ(A) ≤ 2µ(B).

First suppose that
γ = sup

A∈A
r(A) <∞.

Applying Lemma 7.1, for an arbitrary A ∈ A we get

A = B(c(A), r(A)) ⊂ B(c(B), 2D2(r(B) + r(A)))

⊂ B(c(B), 4D2γ).
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It is clear that B∗ = B(c(B), 4D2γ) satis�es (7.6). Take a ball G ∈ A
such that r(G) > γ/2. Again applying Lemma 7.1, we get

B∗ = B(c(B), 4D2γ) ⊂ B(c(G), 2D(r(G) + 4D2γ))

⊂ B(c(G), 10D3γ)) ⊂ B(c(G), 20D3r(G))

= 20D3 ·G.
Thus we conclude

µ(B∗) ≤ µ(20D3 ·G) ≤ H(20D3)µ(G) . µ(B)

that is just (7.5). Now consider the case γ = ∞. There is a sequence
of balls Gk ∈ A such that r(Gk)→∞. Applying Lemma 7.2, we get

µ(X) . lim sup
k→∞

µ(Gk) ≤ 2µ(B).

Obviously B∗ = B(x0,∞) = X satis�es (7.5) and (7.6). �

Proof of Theorem 7.1. We need to check conditions B1)-B4) of the def-
inition of ball-basis. The conditions B1) and B2) immediately follows
from the axioms of quasi-metric space and B4) follows from Lemma
7.3 and moreover for B = B(x0) ∈ U(ρ) the hull ball B∗ has the form
B(x0, R). The B3)-condition follows from the density property, since
by Lemma 3.4 those are equivalent. In order to prove the doubling
condition, take a ball A = B(x0, r) such that A∗ = B(x,R) 6= X.
Denote

R′ = sup
r′≥R:B(x′0)=B(x0,R)

r′.

Since B(x0, R) 6= X, one can check that R′ <∞ and

A∗ = B(x0, R) = B(x0, R
′) ( B(x0, 2R

′).

Thus de�ning B = B(x0, 2R
′), we get A ( B and

µ(B) = µ(B(x0, 2R
′)) . µ(B(x0, R

′)) = µ(A∗) . µ(A),

that proves the doubling condition. �

Theorem 7.2. Let (X, ρ,M, µ) be a space homogeneous type satisfying
the density condition. If S ⊂ U(ρ) is a sparse collection of balls and
the weight w satis�es the Ap-condition for 1 < p <∞ (with respect to
the family U(ρ)), then the corresponding sparse operator satis�es the
bound

(7.7) ‖ASf‖Lp(w)→Lp(w) . cp[w]
max{1,1/(p−1)}
Ap

.

The proof of this theorem is based on the Hytönen-Kairema [10]
dyadic decomposition theorem, which reduces Theorem 7.2 to its mar-
tingale version (the case of D = 1 in Theorem 6.4).
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De�nition 7.3. Let (X,M, µ) be a measure space. For two families
of measurable sets B and B′ we write B ≺ B′ if for any B ∈ B there
exists B′ ∈ B′ such that

B ⊂ B′, µ(B′) ≤ γµ(B),

where γ > 0 is a constant. The minimum value of such constants γ
will be denoted by γ(B ≺ B′). If the relations B ≺ B′ and B′ ≺ B
hold simultaneously, then we write B ∼ B′ and denote

γ(B ∼ B′) = max{γ(B ≺ B′), γ(B′ ≺ B)}.

Remark 7.1. One can verify that if for two families of measurable sets
in (X,M, µ) we have B ∼ B′, then the Ap characteristics with respect
these families are equivalent. That is

0 < c1 <
supB∈B

(
1
|B|

∫
B
w
)(

1
|B|

∫
B
w−1/(p−1)

)p−1
supB∈B′

(
1
|B|

∫
B
w
)(

1
|B|

∫
B
w−1/(p−1)

)p−1 < c2,

for some constants c1 and c2 depending on γ(B ∼ B′).

Theorem 7.3 (Hytönen-Kairema [10]). If (X, ρ,M, µ) is a space ho-
mogeneous type, then there exist martingale systems Bk ⊂ M, k =
1, 2, . . . , l, such that

U(ρ) ∼ B =
l⋃

j=1

Bj.

where l and γ(U(ρ) ∼ B) are constants depending on H and D.

Proof of Theorem 7.2. Apply Theorem 7.3. For every B ∈ U(ρ) there
exists a set Q(B) ∈ B such that

(7.8) B ⊂ Q(B), µ(Q(B)) . µ(B).

We shall consider the sparse operators

Akf(x) =
∑

B∈S:Q(B)∈Bk

〈f〉Q(B)IQ(B)(x), k = 1, 2, . . . , l.



AN ABSTRACT THEORY OF SINGULAR OPERATORS 49

From (7.8) it follows that

ASf(x) =
∑
B∈S

〈f〉BIB(x) .
∑
B∈S

〈f〉Q(B)IQ(B)(x)(7.9)

≤
l∑

k=1

∑
B∈S:Q(B)∈Bk

〈f〉Q(B)IQ(B)(x)

=
l∑

k=1

Akf(x).

Since each Bk is martingale system, by Theorem 6.4 (for D = 1) we
conclude that

‖Akf‖Lp(ω) . cp[ω]
max{1,1/(p−1)}
Ap

.

Combining this and (7.9), we get (7.7). �

Let (X, ρ,M, µ) be a space of homogeneous type and K(x, y) : X ×
X → R be a measurable function. Given ball B ∈ U(ρ) de�ne the
function

φB(t) = sup
x,x′∈B, y∈X\B(c(B),t)

|K(x, y)−K(x′, y)|, if t ≥ 2r(B),(7.10)

φB(t) = φB(2r(B)) if 0 ≤ t < 2r(B),(7.11)

which is clearly decreasing on [0,∞). Denote

R = sup
B∈B

∫
X

φB (ρ(y, c(B))) dµ(y),(7.12)

dB = sup
x∈B, y∈X\2B

|K(x, y)|.

(7.13)

De�nition 7.4. An operator T : L1(X) → L0(X) is said to be of
Calderón-Zygmund type if for any B ∈ U(ρ) it admits the representa-
tion
(7.14)

Tf(x) =

∫
X

K(x, y)f(y)dµ(y) whenever x ∈ B, supp f ⊂ X \ 2B,

where the kernel K(x, y) satis�es the conditions

(7.15) R <∞, dB <∞ for any B ∈ U(ρ).

Theorem 7.4. If (X, ρ,M, µ) is a space of homogeneous type such
that U(ρ) satis�es the density condition, then any Calderón-Zygmund
type operator (7.14) is BO operator with respect to the ball-basis U′(ρ).
Moreover we have L1(T ) ≤ R, where R is (7.12).
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Proof. First note that Theorem 7.1 implies that U′(ρ) is a ball basis
having the doubling property and for B = B(x0, r) ∈ U(ρ) the hull
ball B∗ has the form B(x0, R), 2r ≤ R < ∞. Since U′(ρ) satis�es the
doubling condition, according to Theorem 4.4, we need to verify only
T1)-condition. Since φB(t) is decreasing, we can prove

(7.16)

∫
X

φB(ρ(y, c(B)))|f(y)|dµ(y) ≤ R · 〈f〉∗B.

Indeed, one can easily �nd a step function ψ(t) on [0,∞) such that

φB(t) ≤ ψ(t) =
∞∑
k=1

akI[0,rk](t), ak > 0, 2r(B) = r1 < r2 < . . . ,∫
X

ψ (ρ(y, c(B))) dµ(y) <

∫
X

φB (ρ(y, c(B))) dµ(y) + δ ≤ R + δ,

where δ > 0 can be enough small. We have∫
X

φB(ρ(y, c(B)))|f(y)|dµ(y) ≤
∫
X

ψ(ρ(y, c(B)))|f(y)|dµ(y)

=
∞∑
k=1

ak

∫
B(c(B),rk)

|f(y)|dµ(y)

≤ 〈f〉∗B
∞∑
k=1

akµ(B(c(B), rk))

= 〈f〉∗B
∫
X

ψ (ρ(y, c(B))) dµ(y)

≤ 〈f〉∗B(R + δ).

Since δ > 0 is small enough, we get (7.16). Now take B ∈ U(ρ),
f ∈ L1(X) and suppose that x, x′ ∈ B. From (7.10) it follows that

|K(x, y)−K(x′, y)| ≤ φB(ρ(y, c(B)))| whenever y ∈ X \ 2B.

Thus, using (7.16) and the relation B∗ ⊃ 2B, we get the bound

|T (f · IX\B∗)(x)− T (f · IX\B∗)(x′)|

=

∣∣∣∣∫
X\B∗

(K(x, y)−K(x′, y))f(y)dµ(y)

∣∣∣∣
≤
∫
X\2B

|K(x, y)−K(x′, y)||f(y)|dµ(y)

≤
∫
X

φB(ρ(y, c(B)))|f(y)|dµ(y)

≤ R · 〈f〉∗B,
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which gives T1)-condition. �

Let (X, ρ,M, µ) be a space of homogeneous type and ω : [0,∞) →
[0,∞) be an increasing function satisfying ω(t + s) ≤ ω(t) + ω(s),
ω(0) = 0, and the Dini condition

(7.17) C1 =

∫ 1

0

ω(t)

t
dt <∞.

An operator T : L1(X) → L0(X) is said to be ω-Calderón-Zygmund
operator if it has the representation (7.14) and for any ball B ∈ U(ρ)
we have

sup
x∈B, y∈X\B(c(B),t)

|K(x, y)| ≤ C2

µ(B(c(B), t))
,(7.18)

sup
x,x′∈B, y∈X\B(c(B),t)

|K(x, y)−K(x′, y)| ≤
ω
(
r(B)
t

)
µ(B(c(B), t))

,(7.19)

sup
y,y′∈B, x∈X\B(c(B),t)

|K(x, y)−K(x, y′)| ≤
ω
(
r(B)
t

)
µ(B(c(B), t))

,(7.20)

where all these inequalities hold for any t > 2r(B).

Theorem 7.5. Let (X, ρ,M, µ) be a space of homogeneous type such
that U(ρ) satis�es the density condition. If T is a ω-Calderón-Zygmund
operator, then it is a BO operator with respect to the ball-basis U′(ρ).
Moreover, we have the estimates

(7.21) L1(T ) . C1, L2(T ) . C2.

Proof. Taking into account (7.19) and the de�nition of function φB in
(7.10), (7.11), for every B = B(x0, r) ∈ U(ρ) we have

φB(t) ≤ ω

(
r(B)

t

)
1

µ(B(c(B), t))
if t ≥ 2r(B),

φB(t) ≤ ω

(
1

2

)
1

µ(2B)
if 0 ≤ t < 2r(B).
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Thus, applying doubling property (7.1), (7.17) and the subadditivity
of ω, we get∫
X

φB (ρ(y, c(B))) dµ(y) =

∫
2B

φB (ρ(y, c(B))) dµ(y)

+
∞∑
k=1

∫
(2k+1B)\(2kB)

φB (ρ(y, c(B))) dµ(y)

≤ ω

(
1

2

)
+
∞∑
k=1

ω
(
2−k
) µ(2k+1B)− µ(2kB)

µ(2kB)

.
∞∑
k=1

ω(2−k) . C1.

Since this inequality holds for any ball B, applying Theorem 7.4, we
get the �rst estimate in (7.21). To estimate L2(T ) take a ball A =
B(x0, r) ∈ U(ρ) with A∗ 6= X. According to Theorem 7.1, A∗ =
B(x0, R), R ≥ 2r. Denote

L = sup
r′≥R:B(x0,r′)=B(x0,R)

r′,

and let B = B(x0, 2L). Since B(x0, R) 6= X, we have L <∞ and

A∗ = B(x0, R) = B(x0, L) ( B(x0, 2L) = B.

Thus we get A ( B and

(7.22) µ(B∗) . µ(B(x0, 2L)) ≤ Hµ(B(x0, L)) = Hµ(A∗).

Since r(A∗) ≥ 2r(A), from (7.18) we obtain

sup
x∈A, y∈X\A∗

|K(x, y)| ≤ C2

µ(A∗)
.

Thus, using also (7.22), for any point x ∈ A we get

|T (f · IB∗\A∗)(x)| ≤
∫
B∗\A∗

|K(x, y)||f(y)|dy

≤ C2

µ(A∗)

∫
B∗
|f(y)|dy

. C2〈f〉B∗ .

Hence we obtain L2(T ) . C2 completing the proof of theorem. �

Combining Theorem 1.1, Theorem 7.2 and Theorem 7.5, we imme-
diately get
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Theorem 7.6. Let (X, ρ,M, µ) be a space of homogeneous type such
that U(ρ) satis�es the density condition. If T is a ω-Calderón-Zygmund
operator and the weight w satis�es Ap condition with respect to the ball-
basis U(ρ), 1 < p <∞, then we have

(7.23) ‖T‖Lp(w)→Lp(w) ≤ cp(C1 + C2 + ‖T‖L1→L1,∞)[w]
max{1,1/(p−1)}
Ap

.

It is well known that any ω-Calderón-Zygmund operator, which is
bounded on L2(X) satis�es the bound

‖T‖L1→L1,∞ . ‖T‖L2→L2 .

So in (7.23) ‖T‖L1→L1,∞ can be replaced by ‖T‖L2→L2 . Note that the
Hytönen-Roncal-Tapiola [17] inequality is the case of (7.23) for the
ω-Calderón-Zygmund operators on Rn. Besides, (7.23) is a stronger
version of the Anderson-Vagharshakyan [1] inequality, where the case
of ω(t) = tδ was considered.

8. Other examples of BO operators

Theorem 8.1. If (X,M, µ) is a measure space with a ball-basis B,
then the maximal operator M corresponding to r = 1 in (4.1) is BO
operator with respect to B.

Proof. In order to establish T1) condition we let B be an arbitrary ball.
Take two points x, x′ ∈ B and a nonzero function f ∈ L1(X) with

(8.1) supp f ∈ X \B[1].

Suppose that

(8.2) Mf(x) ≥Mf(x′).

We have 〈f〉∗B > 0. Thus, by the de�nition of maximal operator we get

(8.3) Mf(x) ≤ 1

µ(A)

∫
A

|f |+ 〈f〉∗B

for some ball A 3 x. If µ(A) ≤ µ(B), then by two balls relation we
have A ⊂ B[1] and so by (9.4) we get

1

µ(A)

∫
A

|f | = 0.

Therefore according to (9.5) and (9.6) we have

|Mf(x)−Mf(x′)| = Mf(x)−Mf(x′) ≤ 〈f〉∗B.
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If µ(A) > µ(B), then we get B ⊂ A[1] and so

Mf(x)−Mf(x′) ≤ 1

µ(A)

∫
A

|f |+ 〈f〉∗B

.
1

µ(A[1])

∫
A[1]

|f |+ 〈f〉∗B . 〈f〉∗B.

This gives T1)-condition. To prove T2)-condition �x a ball B and set

A = {A ∈ B : A ∩B 6= ∅, µ(A) > µ(B)},
γ = inf

A∈A
µ(A).

There exist a ball A ∈ A such that

γ ≤ µ(A) < 2γ.

De�ne B′ = A[1]. One can check that

(8.4) B ( A[1] = B′.

On the other hand for any function f ∈ L1(X) and any point x ∈ B
we have

(8.5) M(f · IB′[1]\B[1])(x) =
1

µ(C)

∫
C

|f | · IB′[1]\B[1] + δ,

for some ball C 3 x and a number δ > 0 that can be taken arbitrarily
small. We can suppose that µ(C) > µ(B), since otherwise we should
have C ⊂ B[1], which will imply

1

µ(C)

∫
C

|f | · IB′[1]\B[1] = 0.

Hence, since we also have C ∩ B 6= ∅, we get C ∈ A. Thus we obtain
µ(C) ≥ γ and therefore

µ(C) >
µ(A)

2
≥ µ(A[2])

2K2
=
µ(B′[1])

2K2
.

Hence we have

(8.6)
1

µ(C)

∫
C

|f | · IB′[1]\B[1] .
1

µ(B′[1])

∫
B′[1]
|f | = 〈f〉B′[1] .

Combining (9.7) and (8.6), we get

M(f · IB′[1]\B[1])(x) . 〈f〉B[1]

and so T2)-condition is proved. �

Thus, applying Theorem 1.1, we get
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Theorem 8.2. Let (X,M, µ) be a measure space with a ball-basis B
and w be a Ap weight with 1 < p < ∞. Then the maximal function
(4.1) satis�es the bound

‖M‖Lp(w)→Lp(w) . [w]
max{ p+2

p(p−1)
, 3p−2

p }
Ap

.

If in addition B satis�es the Besicovitch condition, then

‖M‖Lp(w)→Lp(w) . [w]
max{1,1/(p−1)}
Ap

.

Remark 8.1. Theorem 8.2 does not give the full weighted estimate
like (1.2), which is known to be optimal for the maximal function in
Euclidean spaces ([3]). In the general case the optimality only occurs
when 1 < p ≤ 2. The Buckley [3] argument can be applied to get full
bound (1.2) in the case of Besicovitch condition.

Another example of BO operator is the martingale transform. Let
(X,M, µ) be a measure space, and let {Bn : n ∈ Z} be a collections
of measurable sets such that

(1) Each Bn is a �nite or countable partition of X.
(2) For each n and A ∈ Bn the set A is the union of sets from

Bn+1.
(3) The collection B = ∪n∈ZBn generates the σ-algebra M.
(4) For any points x, y ∈ X there is a set A ∈ X such that x, y ∈ A.

For a given A ∈ B let pr(A) (parent of A) be the minimal element
of B satisfying A ( pr(A). One can easily check that B satis�es the
ball-basis conditions B1)-B4). Moreover, for A ∈ B we can de�ne

(8.7) A∗ =

{
A if µ(pr(A)) > 2µ(A),

prn(A) if µ(prn(A)) ≤ 2µ(A) < µ(prn+1(A)),

and take K = 2. Consider a function f ∈ L1(X). The martingale
di�erence associated with A ∈ B is

∆Af(x) =
∑

B: pr(B)=A

(
1

µ(B)

∫
B

f − 1

µ(A)

∫
A

f

)
IB(x).

The martingale transform operator is de�ned by

Tf(x) =
∑
A∈B

εA∆Af(x),

where εA = ±1 are �xed.

Lemma 8.1. Any martingale transform T satis�es T1)-condition and
moreover, L1(T ) = 0.
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Proof. Take a function f ∈ L1(X) with

supp f ∈ X \ A∗

and two points x, x′ ∈ A. Observe that
∆Bf(x) = ∆Bf(x′), if B ⊃ A∗,

∆Bf(x) = ∆Bf(x′) = 0, if B ⊆ A∗ or B ∩ A∗ = ∅.

Thus we have ∆Bf(x) = ∆Bf(x′) for any ball B ∈ B and so Tf(x) =
Tf(x′). This implies L1(T ) = 0. �

Lemma 8.2. If T is a martingale transform, then for any ball A ∈ B
we have

(8.8) sup
x∈A, f∈L1(X)

|T (f · Ipr(A)\A)(x)|
〈f〉pr(A)

≤ 2.

Proof. Take a function f ∈ L1(X) with

supp f ⊂ pr(A) \ A.
Consider the sequence Ak, k = 1, 2, . . ., de�ned by A0 = A, Ak+1 =
pr(Ak). For every point x ∈ A we have

∆Ak
f(x) =

(
1

µ(Ak−1)
− 1

µ(Ak)

)∫
pr(A)

f if k > 1,

∆Bf(x) = 0, if B ⊆ A,

∆A1f(x) = − 1

µ(A1)

∫
pr(A)

f.

Hence we get

|Tf(x)| ≤
∑
k≥1

|∆kf(x)| ≤ 1

µ(A1)

∫
pr(A)

|f |+
∑
k>1

(
1

µ(Ak−1)
− 1

µ(Ak)

)∫
pr(A)

|f |

≤ 2

µ(pr(A))

∫
pr(A)

|f |

= 2〈f〉pr(A)
Lemma is proved. �

Lemma 8.3. If T is a martingale transform, then T satis�es T2)-
condition and L2(T ) is bounded by an absolute constant.

Proof. We need to prove the inequality

(8.9) sup
x∈A, f∈L1(X)

|T (f · Ipr(A)∗\A∗)(x)|
〈f〉pr(A)∗

≤ c,
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where c > 0 is an absolute constant (see the de�nition of T2)-condition).
If µ(pr(A)) ≤ 2µ(A), then applying Lemma 4.2 and Lemma 8.1, the
left hand side of (8.9) can be estimated by c ·‖T‖L1→L1,∞ . Since K = 2,
we can say that here c > 0 is an absolute constant. It is well-known
that ‖T‖L1→L1,∞ is estimated by an absolute constant too. This implies
(8.9). In the case µ(pr(A)) > 2µ(A), applying K = 2, we obtain

sup
x∈A, f∈L1(X)

|T (f · Ipr(A)∗\A∗)(x)|
〈f〉pr(A)∗

≤ sup
x∈A, f∈L1(X)

|T (f · Ipr(A)\A∗)(x)|
〈f〉pr(A)∗

+ sup
x∈A, f∈L1(X)

|T (f · Ipr(A)∗\pr(A))(x)|
〈f〉pr(A)∗

≤ 2 sup
x∈A, f∈L1(X)

|T (f · Ipr(A)\A)(x)|
〈f〉pr(A)

+ sup
x∈A, f∈L1(X)

|T (f · Ipr(A)∗\pr(A))(x)|
〈f〉pr(A)∗

.

The �rst terms in the last sum is estimated by (8.8). Now let us
estimate the second term. Applying weak-L1 inequality, for a λ > 0 we
can write

µ{x ∈ pr(A) : |T (f · Ipr(A)∗\pr(A))(x)| > λ〈f〉pr(A)∗}

≤ ‖T‖L
1→L1,∞

λ · 〈f〉pr(A)∗

∫
pr(A)∗

|f |

=
‖T‖L1→L1,∞ · µ(pr(A)∗)

λ
≤ µ(pr(A))

2
,

where the last inequality is obtained with a suitable absolute constant
λ > 0. This implies that the inequality

(8.10) |T (f · Ipr(A)∗\pr(A))(x)| ≤ λ〈f〉pr(A)∗

holds for some point x ∈ pr(A). Observe that the function T (f ·
Ipr(A)∗\pr(A))(x) is constant on pr(A) and it can be shown likewise the
proof of Lemma 8.1. Hence we will have (8.10) for any x ∈ pr(A). Thus
we will give a bound of the second term by an absolute constant. �

Lemma 8.1 and Lemma 8.3 immediately imply

Theorem 8.3. The martingale transform is a BO operator with respect
to the ball-basis B. Moreover, L1(T ) = 0 and L2(T ) is bounded by an
absolute constant.
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Applying Theorem 1.1, Theorem 6.4 and Theorem 8.3 we deduce the
following results:

Theorem 8.4 (Lacey [21]). Let T be a martingale transform. If B ∈ B
and f ∈ L1(X), then there is a sparse operator A such that

|Tf(x)| ≤ C ·Af(x), x ∈ B,

where C is an absolute constant.

Theorem 8.5 (Thiele, Treil and Volberg [34]). If T is a martingale
transform and the weight w satis�es Ap condition with respect to the
ball-basis B, 1 < p <∞, then we have

‖T‖Lp(w)→Lp(w) ≤ cp[w]
max{1,1/(p−1)}
Ap

.

9. Bounded oscillation of Carleson operators

Let {Tα} be a family of BO operators. In this section we prove that
if the characteristic constants of operators Tα are uniformly bounded,
then the domination operator

(9.1) Tf(x) = sup
α
|Tαf(x)|

is also BO operator. More precisely, we have

Theorem 9.1. If (X,M, µ) is a measure space with a ball-basis B.
If a BO-family of operators {Tα} satis�es weak-Lr inequality, then the
operator (9.1) satis�es the bounds

L1(T ) . sup
α

L1(Tα),(9.2)

L2(T ) . sup
α

L1(Tα) + sup
α

L2(Tα) + sup
α
‖Tα‖Lr→Lr,∞ .(9.3)

Proof. Let A ∈ B be an arbitrary ball. Take two points x, x′ ∈ A and
a nonzero function f ∈ Lr(X) with

(9.4) supp f ⊂ X \ A[1].

Suppose that

(9.5) Tf(x) ≥ Tf(x′).

According to the de�nition of T , for any δ > 0 there exists an index α
such that

(9.6) Tf(x) ≤ |Tαf(x)|+ δ.
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On the other hand for the same α we have Tf(x′) ≥ |Tαf(x′)|. Thus,
applying (9.5), (9.6) and the localization property of Tα, we obtain

|Tf(x)− Tf(x′)| = Tf(x)− Tf(x′)

≤ |Tαf(x)|+ δ − |Tαf(x′)|
≤ |Tαf(x)− Tαf(x′)|+ δ

≤ L1(Tα)〈f〉∗A,r + δ.

Since δ > 0 can be taken enough small, we get (9.2).
To prove (9.3) �x a ball A (A∗ 6= X) and consider the number

γ = inf
B∈B:B)A

µ(B).

Since A 6= X, from Lemma 3.2 it easily follows that the set of balls B
satisfying B ) A is nonempty. So there exists a ball B ) A such that

γ ≤ µ(B) < 2γ.

Take f ∈ Lr(X) and a point x ∈ A. We have

(9.7) T (f · IB[1]\A[1])(x) = |Tα(f · IB[1]\A[1])(x)|+ δ,

for an index α, where δ > 0 can be arbitrarily small. Since Tα satis�es
T2)-condition, there exists a ball C ) A such that

(9.8) Tα(g · IC[1]\A[1])(x) . L2(Tα)〈g〉C[1],r

holds for any g ∈ Lr(X). Consider the function g = f · IB[1]\A[1] . If

µ(C) > µ(B), then we have B ⊂ C [1] and so B[1] ⊂ C [2]. Thus,
applying (9.8) and Lemma 4.2, we obtain

|Tαg(x)| = |Tα(g · IC[2]\A[1])(x)

(9.9)

≤ |Tα(g · IC[1]\A[1])(x) + |Tα(g · IC[2]\C[1])(x)

≤ L2(Tα)〈g〉C[1],r + sup
x∈C, u∈Lr(X)

|Tα(u · IC[2]\C[1])(x)|
〈u〉C[2],r

· 〈g〉C[2],r

. L2(Tα)

(
1

µ(C [1])

∫
B[1]

|f |r
)1/r

+ (L1(Tα) + ‖Tα‖Lr→Lr,∞)

(
µ(C [1])

µ(C)

)1/r (
1

µ(C [2])

∫
B[1]

|f |r
)1/r

. sup
α

(L2(Tα) + L1(Tα) + ‖Tα‖Lr→Lr,∞) · 〈f〉B[1],r.
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In the case µ(C) ≤ µ(B) we have C ⊂ B[1], and since C ) A, we
obtain

µ(B) & µ(B[1]) ≥ µ(C) ≥ γ ≥ µ(B)

2
.

Thus, again applying Lemma 4.2 and (9.8), we conclude

|Tα(g)(x)| ≤ |Tα(g · IB[2]\C[1])(x)|+ |Tα(g · IC[1]\A[1])(x)|

(9.10)

≤ sup
x∈C, u∈Lr(X)

|Tα(u · IB[2]\C[1])(x)|
〈u〉B[2],r

· 〈g〉B[2],r + L2(Tα)〈g〉C[1],r

. (L1(Tα)) + ‖Tα‖Lr→Lr,∞)〈g〉B[2],r + L2(Tα)〈g〉C[1],r

. sup
α

(L1(Tα)) + ‖Tα‖Lr→Lr,∞ + L2(Tα)) · 〈f〉B[1],r.

Observe that the admissible constants used in (9.9) and (9.10) do not
depend on f , point x the number δ from (9.7). Hence, since δ can be
taken arbitrarily small, from (9.7), (9.9) and (9.10) we get the inequal-
ity

sup
x∈A, f∈Lr(X)

T (f · IB[1]\A[1])(x)

〈f〉B[1],r

. L1(Tα)) + L2(Tα) + ‖Tα‖Lr→Lr,∞ ,

which implies (9.3). �

Let T be a BO operator and G = {gα} ⊂ L∞(X) be a family of
functions such that

(9.11) β = sup
α
‖gα‖∞ <∞, ‖T‖Lr→Lr,∞ <∞.

One can easily check that the operators

(9.12) Tαf(x) = T (gα · f)(x),

are BO operator. Moreover, we have
(9.13)
L1(Tα) ≤ βL1(T ), L2(Tα) ≤ βL2(T ), ‖Tα‖Lr→Lr,∞ ≤ β‖T‖Lr→Lr,∞ .

De�ne the maximal modulation of the operatorT by

(9.14) T G f(x) = sup
α
|Tαf(x)|.

According to Theorem 9.1 and relations (9.13), we conclude that T G is
also BO operator. Hence, applying Theorem 1.1, we obtain
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Theorem 9.2. If T ∈ BOB(X) satis�es (9.11), then for any function
f ∈ Lr(X) and a ball B ∈ B there exists a family of balls S, which is
a union of two sparse collections and

|T G f(x)| . sup
α
‖gα‖∞(L1(T ) + L2(T ) + ‖T G ‖Lr→Lr,∞) ·AS,rf(x),

for a.e. x ∈ B.

Weighted estimates of the maximal modulations of Calderón-Zygmund
operators on Rn (in particular Carleson or Walsh-Carleson operators)
were considered in the papers [6, 8]. Theorem 9.2 implies a pointwise
sparse domination of such operators, which is the strongest version of
the weighted norm domination of Carleson operators by sparse opera-
tors proved in [6].
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