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Abstract: In a vast majority of cases, remediation of IT issues encoded into domain-specific or
user-defined alerts occurring in cloud environments and customer ecosystems suffers from accurate
recommendations, which could be supplied in a timely manner for recovery of performance degra-
dations. This is hard to realize by furnishing those abnormality definitions with appropriate expert
knowledge, which varies from one environment to another. At the same time, in many support cases,
the reported problems under Global Support Services (GSS) or Site Reliability Engineering (SRE)
treatment ultimately go down to the product teams, making them waste costly development hours on
investigating self-monitoring metrics of our solutions. Therefore, the lack of a systematic approach to
adopting AI Ops significantly impacts the mean-time-to-resolution (MTTR) rates of problems/alerts.
This would imply building, maintaining, and continuously improving/annotating a data store of
insights on which ML models are trained and generalized across the whole customer base and
corporate cloud services. Our ongoing study aligns with this vision and validates an approach that
learns the alert resolution patterns in such a global setting and explains them using interpretable
AI methodologies. The knowledge store of causative rules is then applied to predicting potential
sources of the application degradation reflected in an active alert instance. In this communication,
we share our experiences with a prototype solution and up-to-date analysis demonstrating how
root conditions are discovered accurately for a specific type of problem. It is validated against the
historical data of resolutions performed by heavy manual development efforts. We also offer experts
a Dempster–Shafer theory-based rule verification framework as a what-if analysis tool to test their
hypotheses about the underlying environment.

Keywords: automated troubleshooting; real-time product activity detection; problem root cause
analysis; machine learning; explainable AI; proactive SaaS support

1. Introduction

With the intensive evolution of IT ecosystems, such as the cloud computing infrastruc-
tures and the Internet of Things (IoT), in complexity and sophistication, automated manage-
ment methods are becoming increasingly important for the industry. Performance surveil-
lance and root cause analysis (RCA) of issues using traditional monitoring tools, dash-
boarding of such environments, and operator-driven correlation of occurring atomic events
for inference are not sufficient to effectively derive sources of misbehaviors. Providers
of cloud services, including VMware, are continuously researching novel solutions and
product features with machine intelligence to address this challenge. It concerns the di-
agnosis of customer data centers and the products managing those assets. In particular,
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when a problem has been detected (reflected in an alert with related symptoms) within
an application service, in most cases, it is not self-explainable in terms of its underlying
reasons. Whether it comes from a machine learning (ML) module that senses an atypical
or anomalous behavior (in a performance metric or a super-metric representing its health
status) or user-defined conditions, identifying the potential causes of such an event among
a lot of other co-occurring events remains a hard task to be delegated to another ML en-
gine. There are no generic resolutions to this challenge in the cloud space because of the
diversities and specificities in those applications with various constraints and limitations,
especially when it comes to the issue of unavailability of annotated datasets for supervised
learning purposes. Approaches vary on a use case basis, some of which are outlined in the
related discussion in Section 2. In this regard, our goal in the current study is to design an
interpretable ML approach and related system for identifying conditions of occurrence of
major performance problems in the service with simple rules that are easily comprehensible
for human operators. For such a goal, therefore, we have to deal with a supervised ML
while finding sources of labels associated with the performance issue. In this scenario, each
problem type has its special RCA model.

Currently, Problem/Alert troubleshooting or RCA in cloud services remains a perma-
nent headache for product engineers despite the extensive efforts, developed concepts,
and toolsets, including Aria management platform [1–4] authors working towards its
enhancement with AI Ops capabilities.

Figure 1 shows a typical chain (shared with us by the partner colleagues in the relevant
department) of activities that a product engineer faces across his/her troubleshooting journeys:

a. Aria Ops (former vR Ops) generates a mission-critical alert, and a customer/user
cannot diagnose or even understand the situation.

b. Site Reliability Engineering (SRE) or Global Support Services (GSS) teams are involved
in the issue resolution.

c. If the issue necessitates, development teams are included in the process.
d. Development spends hours and days performing root cause analysis.
e. Development provides the fix for the problem.
f. Participating engineers gain valuable domain knowledge/expertise.
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At the same time, because of such intensive efforts, the knowledge gained during this
process largely remains unsystematized for faster and more machine-based facilitation of
handling the next cases to save critically important development resources and relocating
them to the delivery of the core solutions/features in the roadmap of off-the-shelf product
releases. Of course, in specific cases, when domain expertise is well developed and available,
just by inspecting some performance metrics (time series) and log messages, it is quite
straightforward to fix the problem with such a manual RCA. Our SRE partners in this study
exemplify such situations from their experience. However, from the product perspective,
the development teams have no mechanism for automatic knowledge sharing and RCA,
which eventually could help the customer to quickly resolve the issue without involvement
of third parties.

Our proposal is motivated by the above-mentioned traditional and inefficient ways
of problem troubleshooting in such real-time services of business-critical importance and
addresses the related lack of capabilities with a recommendation engine (ProbRCA), which
is AI-driven and explainable for human operators. Users can easily approve/decline
those recommendations for action frameworks and/or enrich related alert definitions with
resolution recipes.

This paper focuses on an explainable AI Ops approach [5] (see also survey [6] on RCA
methods) to automatically identify conditions that recommend the roots of a specific type of
problem occurring across the customer base. Thus, separate ML models need to be trained
and continuously improved with additional factual data for trending issues within the
provider services. This will allow providers to fix the problems in a timely manner, and even
automatically, within a global analytics service/recommender system, especially where
the software-as-a-service (SaaS) delivery model is concerned (with the related opportunity
to generalize cross-customer patterns based on available self-monitoring metrics of the
cloud product). As previously mentioned, human ground truths are unavailable in our
use case. Therefore, explainable ML methodologies become attainable with a self-labeling
technique we adopt in our research while using system performance indicators (which
might be a time series metric) as sources of generating labels. We recently validated this
kind of self-supervised learning in the data center administration contexts in other research
initiatives on cloud observability tasks (based also on log and trace data).

We also incorporate into our study a rule validation mechanism based on the Dempster–
Shafer theory (DST) of evidence [7] with uncertainty modeling, which essentially provides
a “what-if” analysis framework for diagnosing the underlying system and its phenomena.
This allows cloud users or developers of services to rigorously verify their hypotheses
about the system behavior using a recently proposed interpretable classifier [8] with expert
encoded rule conditions on system features. It enables owners/experts of the cloud infras-
tructure or application services to build a troubleshooting knowledge base that systemizes
their professional wisdom with scientifically grounded theory and explainable ML mecha-
nisms for more effective and automated diagnosis of business-critical software for which
they are responsible for healthy availability. This is another novelty aspect we incorporate
into our study since, as stated in the survey [6], no specific learning algorithm was found
in the literature on DST.

2. Related Research

As noted in the introduction, real-time diagnostics of offered services remains a
challenge. Assistive frameworks, such as Troubleshooting Workbench (TW) by Aria Op-
erations [1], which provide intelligent event/alert consolidation methods of guessing the
origin of issues, target this critical task from different angles. TW relies on discovery of
important and relevant changes occurring within a delta time-and-topology scope of the
cloud infrastructure hierarchy that might provide evidence about the source of the problem,
while the alert grouping concepts rely on helping users to focus on the larger incidents
to make inference of the root issues easier, as well as helping to look into the problem in
relation to co-occurring events across time and infra/app topology axes. However, all
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these methods are too inherently limited in automation capacities and intelligence power
to perform deep and targeted RCA for alerts.

Other event management vendors, such as Big Panda (Redwood City, CA, USA) [9],
Moogsoft (San Francisco, CA, USA) [10], and Pager Duty (San Francisco, CA, USA) [11],
have adopted the consolidated insight and incident discovery strategy but also built a
vision of human-driven guidance of alerts and incidents consisting of those atomic events
for training supervised RCA models. An important related approach in the industry is
represented by InfoSight (Miami Lakes, FL, USA) [12] by HPE, an AI-powered autonomous
operations service applying analytics from global learning with a self-managing, self-
healing, and self-optimizing vision for cloud applications. In this regard, ProbRCA was
proposed to realize self-support for cloud management offerings with explainable fea-
tures. It applies cross-customer user and developer feedback and trains accurate models
over time to use them to recommend problem resolutions while interpreting/justifying
those measures.

In various research initiatives (see [13]), ML methods underly the automation of the
management of complex data center applications (built upon many networked objects
such as virtual machines (VMs), hosts, datastores, etc.) based on large volumes of data
measured from those environments for complete monitoring and observability. At the
same time, cloud services must be furnished with efficient self-diagnostics capabilities for
business continuity and availability to avoid/eliminate time-consuming analysis of issues
by product support specialists. This is a critical problem within self-driving data centers [14].
Moreover, interpretable models (see [15,16]) in RCA are preferable compared to their black-
box versions to produce justified recommendations to users and mitigate potential impacts
and risks induced by those recommendations. There are specific use cases (e.g., [17–20])
recently modeled by researchers in the domain of intelligent cloud applications relevant
to our current study. In some related areas, such as cellular networks [21] and cloud
databases [22], authors perform domain-specific modeling for similar problem solutions,
which, in our use cases, are not readily achievable because of many factors, including a
lack of labeled/annotated datasets, which are hard to obtain for cloud infrastructures. In
this regard, we investigate more universal ways to build RCA models while adopting
self-supervised strategies in training those models.

3. Materials and Methods for ProbRCA

As an automation solution to the resource-expensive issue of managing problems
in product troubleshooting, we suggest ProbRCA, an analytics system with AI Ops that
builds and maintains ML models capable of learning explainable and causative patterns
(remediation rules) for alert/problem types. In the Aria Ops integration scenario, this
approach can automatically check the existence of those rules and proactively provide
appropriate recommendations for the resolution of a problem that is not even reported
yet or reflected in the alerts stream. As a result, a user quickly obtains valuable data for
comprehending the problem and its possible fix, without including additional resources
and avoiding the need for time-intensive investments. ProbRCA essentially supports the
pipeline in Figure 2 with the building blocks summarized in the following items (reflected
in the process diagram of Figure 3):

a. Aira Ops generates mission-critical alerts.
b. ProbRCA sets its general scope to the alert-related other impacted key performance

indicators (KPIs) and their monitoring data for trainings.
c. Related time series metrics preprocessing, e.g., smoothing, min/max normalization,

thus making the data ready for an accurate analysis.
d. Executing rule induction learning.
e. Discovered rules are added to the library of rules.
f. Relevant rules are tracked and recommended for alert resolution.
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Within the SaaS offering model, the self-monitoring metrics for Aria Ops compo-
nents are owned and managed by the provider, which means that there is a huge and
extremely valuable dataset from different customers to be utilized for training the ML
models underlying ProbRCA and delivering real-time troubleshooting.

However, Figure 3 can make an expression in which our goal is to design a system
that will automatically detect and remediate all types of IT issues. Unfortunately, that is not
feasible in general. The same KPI degradations may correspond to totally different IT issues,
especially in different customer environments. Figure 4 indicates that the main goal of our
system is to generalize, explain, and store the experience of experts for a specific problem
and with specific KPI behavior, and automate the process of the proactive detection of
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similar issues for potentially impacted customers with similar cloud environments. Our
system also supports the knowledge transfer from experienced experts who worked for
specific customer escalations and stores this information in Knowledge Datastores for
further utilization by other specialists.
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This also means that even without the most advanced AI-driven intelligence, ProbRCA
may still represent problem solving, a common knowledge sharing/extraction system
leveraging cross-customer insights, and a troubleshooting center relying on the basic
conceptual and architectural components, as depicted in Figure 5, where reactive and
proactive problem resolution depends on the availability of relevant ML models trained
on the datasets identified according to the above-mentioned items and the pipeline in
Figures 3 and 4.
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Analysis of specific issues by developers at a serviced cloud eco-system with the Aria
Ops management solution and the objective of finding their root causes have resulted in
the following interesting lessons:

• Aria Ops collects and stores data with some monitoring intervals. The traditional
monitoring interval is 5 min. This means that Aria Ops averages the available values
of a metric within this interval and stores them with a time stamp corresponding to
the end of that interval. As a result, the average can vary from the actual value corre-
sponding to that specific time stamp, and the difference may be very large, especially
in the case of many outliers. We noticed that due to these random fluctuations, some
correlated metrics are no longer detectable by the correlation analytics in Aria Ops
based on the Pearson coefficient. Hence, this effect makes the correlation engine of the
product unfairly useless.

• This synchronization problem can only be resolved by the application of proper
data-smoothing techniques. In our experiments, we apply a well-known min–max
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smoothing technique that Aria Ops uses in UI for visualizing many data points on a
small window. It takes a time window (say, 6 h), finds the minimum and maximum
values of a metric, and puts them in the middle and at the end of that interval in the
same order as they appeared in that interval. For example, if the minimum occurred
earlier than the maximum, then the value of the minimum should be put in the middle
and the value of the maximum at the end. Then, it shifts the window by 6 h and
reiterates the procedure until the end of the metric.

• Aria Ops collects a vast number of metrics from cloud infrastructures and a num-
ber of self-generated metrics constructed by domain experts. The final monitored
datasets contain thousands of metrics with highly correlated subsets describing the
same process. As a result, the metric correlation engine, or TW, can detect hundreds
of other metrics with the same behavior. However, it will be very hard to separate
the metrics that describe the same process from the metrics related to different ones
for the detection of possible causations. This problem can be resolved only by users
with some expertise. They need to manually separate the possible domains of inter-
relations and skip analysis within the same areas. That is why we work separately
with three different datasets below, thus manually decreasing the total number of
possible correlations.

• Alerts/alarms are another source of uncertainty in Aria Ops. Many alerts are not
directly connected to a problem, as user-defined ones are not always sufficiently
indicative. Conversely, many problems have appeared without proper alert generation.
In our example below, the problem is not connected to a known alert–the “Remote
Collector Down” metric does not trigger any alert due to its fast oscillations. We found
that a problem analysis always starts from the corresponding KPI and its behavior.
Even if the problem description starts from an alert, the set of appropriate KPI metrics
should be identified and described.

• Finally, as we mentioned before, the expert knowledge of Aria Ops engineers remains
hidden in internal departments among a small number of specialists. As a rule,
this knowledge is not systemized, not shared appropriately, and cannot be used for
consistent and proactive management or a fast resolution of similar issues, especially
in cross-customer mode.

4. Trending Problem Scenarios

Let us describe a specific trending problem for a period that has impacted many user
environments (within several weeks, leading to multiple customer excavations):

Customers did not configure their firewall for Aria Ops Cloud Proxy [23] properly, which
means ensuring outgoing traffic to various sub-services.

vR Ops Cloud Proxy is a primary component for data collection. In the case of the
SaaS offering, it is the only appliance deployed in the customer environments and the only
means of data collection. Because of this, over time, a big set of different functionalities
were added to it. All this means is that whenever there is a problem with Cloud Proxy-to-vR
Ops cluster communication, the data collection, alerts stream, etc., are all stopped to be
serviced; in other words, vR Ops actually is not available.

Cloud Proxy basically contains two major services: the collector service, which is
responsible for the collection of data from the endpoints and sending them to the vR
Ops cluster, and CaSA (cluster and slice administration), which is responsible for the
management of the Cloud Proxy, i.e., initial deployment, upgrade, configuration, etc.
For both, as well as for the CP VM, vR Ops collects self-monitoring metrics. All the
communication from Cloud Proxy to the vR Ops cluster goes out from HAproxy.

From the engineers’ experience, whenever there is a problem on the customer side, e.g.,
deployment was not performed properly, or the network and firewall were not configured
properly, tremendous efforts are required to root out the cause of the situation and validate
the resolution. This is especially true in cases related to the firewall, as they require the
involvement of different departments and third parties, the customer’s network team, the
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security team, the firewall support team, and development. This results in exhausting
communication back and forth and time-consuming activities. We omit listing here SRs
that provide evidence for this and contain private information.

In all these cases, the situation is rather simple. It takes time until a customer notices
the issue. Then GSS becomes involved, and later, developers join the investigations. Finally,
it becomes clear that the cause is the customer’s firewall configuration. In the best case,
according to our SRE partners’ estimate, it takes a week to identify and fix it, but there
were cases when it took longer. Additionally, it requires much effort to prove and convince
the customer that the problem is not vR Ops-related. This is a common story in practice.
Furthermore, in all these cases, Cloud Proxy goes down periodically, and the cloud proxies
deployed within the same network and firewall act with the same periodicity. Another
observation is that a service can have issues sending the data to the vR Ops cluster in the
case of a product bug. In this use case scenario, the developer’s investigations lead to the
discovery of a common sequence of patterns:

a. An issue with the collector service in the cloud proxy is reported;
b. The CaSA service is also not sending self-metrics;
c. However, whenever the cluster starts receiving (self-monitoring) metrics data, it is

found that the cloud proxy VM was not down during the span of the issue;
d. These patterns happen periodically and synchronously.

It is then becoming clear that the problem is network-/firewall-related. We collected
datasets on the problem instances of cloud proxy failures detailed above to train and
validate interpretable ML algorithms capable of discovering the conditions or causes of
those failures (which are already established by the developers as the ground truth of such
poor performance).

5. Experiments and Discussions

According to the system diagram of ProbRCA, we conducted initial research on the
above-mentioned trending problem and related identification of impacted KPIs. The status
of cloud proxy down was chosen. We identified the periodicity and the same behavior
for the KPI metrics in case cloud proxies share the same network and firewall. Later,
we identified components that can be useful to include in our analysis with their self-
monitoring metrics (i.e., collector, CaSA, and Cloud Proxy).

5.1. Data

We utilize three different datasets synchronized by the time stamps. The first dataset
contains the metrics from CaSA. It has 36 metrics (columns) and 7530 metric values (rows)
with a 5 min monitoring interval. Some of the metrics are “API Calls Avg Response Time”,
“Free Physical Memory”, “Garbage Collector PS Scavenge Collection Time”, “Max Heap
Size”, and “System Attributes Original Total Alert Count”.

The second dataset contains the metrics of the collector, with 138 columns and
7530 rows (5 min monitoring interval). Engineers removed some of the redundant met-
rics. This dataset is composed of metrics such as “Control To Collector Task Action Status
Elapsed Time Summary”, “Controller To Collector Perform Action Tasks Receive”, “Collec-
tor To Controller Get Adapter Ids Elapsed Time Summary”.

The third dataset is a collection of cloud proxy metrics with 151 columns and 7530 rows
(5 min monitoring interval). Some of the names of metrics are “Net TCP CP Close Wait”,
“Data Receiving Status”, “Disk File System Storage DB Files Free”, “Disk File System Write
Bytes”, “Net All Inbound Total”.

5.2. Specific Results

According to our general planning, we start with identifying the KPI. For this specific
problem, the corresponding alert is missing, but the “Remote Collector Down” KPI has
a typical behavior shown in Figure 6. It started to oscillate, going up and down rather
frequently, indicating a problem. The same behavior of the same KPI has been detected for
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a series of customers with totally independent cloud environments. We apply min–max
smoothing with a 6 h time interval before applying more intelligent solutions. Figure 7
confirms the oscillating behavior of the KPI after the smoothing. It reduces the number of
metric values from 7530 to 208.
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We separately analyze connections between the KPI and other indicative metrics for
CaSA, collector, and Cloud Proxy. Since our research focuses on interpretable ML strategies,
we apply the classification rule-induction system RIPPER (see the related literature [24,25]),
which reveals rules containing the names of important metrics with some thresholds
combined in conditions. The labeling of datasets is performed via the values of KPI
(labels = 0, 1), where label = 1 indicates the “down” status of the cloud proxy. We detected
44 down conditions from 208 available data points.

Applying RIPPER to the CaSA dataset exposed the following rule (Rule 1):

(CaSA API Calls Total Requests ≤ 0.1) and
(CaSA Garbage Collector Aggregated Coll. Time ≥ 0.03) → KPI = Down (23/1).

The fraction at the end of the rule characterizes the importance. The number 23
shows how often the rule has been fired, and the denominator indicates the number of
misclassifications. The coverage of the rule is

22/44× 100% = 0.5%

and the accuracy is
22/23× 100% = 96%
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Applying RIPPER to the collector dataset detects the second rule (Rule 2):

(Collector To Controller Lookup Resource Elapsed Time Summary ≥ 0.002)
→ KPI = Down (42/5)

This rule has 84% coverage and 88% confidence.
Applying RIPPER to the Cloud Proxy dataset returns the third rule (Rule 3):

(Net TCP Listen = 0) → KPI = Down (47/9)

which has 86% coverage and 80% accuracy.
These rules and the KPI’s specific behavior can be stored as the knowledge that can be

used to identify and quickly resolve similar issues. Aria Ops engineers have verified Rules
1–3, which, in combination, indicate firewall problems.

5.3. Experimental Setup

The explainability of predictions (KPI = Up/Down) is critically important for systems
owned/managed by experts. AI recommendations must be transparent and trusted, allow-
ing experts to validate and adopt the solutions. Explainable AI (XAI) has many powerful
methods with internal (built-in) and external interpretability capabilities. These can reveal
the important set of features and sometimes also unveil the ranges of those features, pro-
viding a more detailed understanding of specific predictions. These recommendations,
given as a set of rules, are known to provide the highest level of explainability that can
be easily consumed by domain experts. Modern rule-learning methods contain several
powerful classifiers. Two well-known classical approaches known as C5 rules and RIPPER
are the state-of-the-art rule induction. RIPPER is especially powerful for large and noisy
datasets as it scales linearly with the number of observations. However, we can equally
apply both approaches as our datasets are rather small. In those cases, they show similar
performance. The selection of RIPPER is simply connected with its efficient implementa-
tion in WEKA 3 machine learning software (https://www.cs.waikato.ac.nz/ml/weka/,
accessed on 29 November 2023). The corresponding implementation is known as JRip
(Java RIPPER).

Let us show how JRip provides the recommendations. We apply it to the first dataset
(CaSA) and obtain a set of rules, as in Figure 8. The first two rules explain the positive class
(KPI is Down), and the final one labels all the remaining observations from the negative
class (KPI is Up). RIPPER rules have hierarchical importance. The first has the largest
coverage. After removing the observations (negative and positive) that fire the first rule, we
can use the second rule to explain the labels of the remaining instances. Then, we remove
the observations that fire the second rule, and all the remaining instances are labeled from
the negative class. Our experiments showed only the first rules, although the others can be
stored as relevant. We see that RIPPER is very fast for such small datasets. It generated
those three rules in 0.03 s.

JRip’s output also reveals the classification measures in Figure 9. The accuracy is 86.2%
for the first dataset. The corresponding evaluation is very important, as we cannot rely
on the rules that eventually result in small accuracy. Similar analysis we performed for
all three datasets evaluates the models’ performance, calculates the precisions and recalls
of the rules, and enables an expert validation if the corresponding scores are acceptable.
We cannot control the number of rules. These rules can be simple or complex. Moreover,
the experts can reject even very confident rules if the conclusions are frustrating or if they
cannot validate them.

https://www.cs.waikato.ac.nz/ml/weka/
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5.4. Rule Validation with Dempster-Shafer Theory

To generalize expert views or knowledge gained over larger contexts and measured
data horizons related to various scales of product ecosystems and the workloads they
manage, we alternatively study a special rule verification framework and the corresponding
classifier proposed in [8]. This takes expert hypotheses as rules defined on features (and
their combinations) to assess their quality, thus realizing an interpretable what-if analysis
for further utilization in the knowledge store and real-time remedial executions. This
framework utilizes DST of evidence or plausibility as additional assistance to help experts
validate their observations about the environmental conditions in the classification setting.
Thus, if their experience tells them that some patterns or behaviors of specific features
within particular ranges might lead to the system misbehaving, they plug those hypotheses
(in other words, rules) into the DS classifier and obtain validation of their quality, including
uncertainty estimates to account for. Moreover, the classical rule induction algorithms
and DS rule verification approach can be leveraged and combined, while feeding the
automatically learned rules from the first strategy to be estimated with the second. In
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particular, Rule 1, discovered by RIPPER, obtains a low uncertainty estimate through DS
rule testing:

(CaSA API Calls Total Requests ≤ 0.1) and
(CaSA Garbage Collector Aggregated Collection Time ≥ 0.03)

with a probability of positive class 0.943 and uncertainty 0.057.
For Rules 2 and 3 learned by RIPPER, DST results in the following estimates:

Collector To Controller Lookup Resource Elapsed Time Summary ≥ 0.002

with a probability of positive class 0.861 and uncertainty 0.139; and

Net TCP Listen = 0

with a probability of positive class 0.763 and uncertainty 0.237. In the above, we see a
higher uncertainty in the last rule compared to the previous ones, which indicates that
there is less evidence for such a condition leading to a KPI breach.

The user of this framework can simply break value ranges (rule intervals) of all the
data frame features to verify how they can be indicative, standalone, or in any combination.
Here is a set of rules validated with splitting features into two ranges, which in several
cases surprisingly results in high-quality rules:

CaSA API Calls Total Requests < 0.424,

with a probability of positive class 0.998 and uncertainty 0.002;

CaSA Threads = 0.5,

with a probability of positive class 0.993 and uncertainty 0.067;

CaSA Free Physical Memory > 0.397,

with a probability of positive class 0.859 and uncertainty 0.141;

CaSA Garbage Collector PS Mark Sweep collection Time > 0.218,

with a probability of positive class 0.857 and uncertainty 0.143.
Another complex rule enforced by the user obtains the following estimate:

(CaSA GarbageCollector PS MarkSweep Collection Count = 1) and
(CaSA GarbageCollector PS Scavenge Collection Count = 0),

with a probability of positive class 0.973 and uncertainty 0.027.
The two-interval split is just motivated by the simplicity of rules that experts can expect

from the DS rule verification. It also has cheap performance in terms of the algorithm
execution. The probability of the positive class and the uncertainty level in the rule
estimated by the DST are the main factors the expert user could take into account in
approving it for the Knowledge Base and linking it to the troubleshooting procedures
and action frameworks. As an expert tool, the DST rule verification allows users to
discover patterns/conditions that affect the KPI state, thus guiding them to focus on the
corresponding attributes of the environment in root cause identification or prevention of
potential misbehaviors. In one of the above rules obtained by DST rule induction, we
observe that a free physical memory attribute above some level (0.397) leads to “KPI down”
with high probability; thus, the user needs to take care of its tuning accordingly in order to
prevent reoccurrence of the issue.
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6. Evaluation of Results

We apply available knowledge to an unknown issue in our further evaluation analysis.
Aria Ops detected similar problems in other customer environments. We analyze one of
those problems. The “Remote Collector Down” KPI inspection showed the same behavior
as in Figures 6 and 7. We detected 46 cases when the cloud proxy was down. Verification of
rules showed that in the case of Rule 1, the rule was correctly fired in 31 of the cases. In the
case of Rule 2, the rule was correctly fired in 32 of the cases. In the case of Rule 3, the rule
was correctly fired in 38 of the cases. We can confirm the matching of the problem pattern
stored in the rules’ library. These highly accurate results on unseen data demonstrate the
feasibility of the chosen approach and the quality of the explainable ML models trained.
Figures 10 and 11 present the behavior of some of the metrics that participated in the rules
in combination with the “Remote Collector Down” KPI after min–max smoothing to clarify
the correlations.
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7. Conclusions and Future Work

Our study proposes an explainable ML framework for automated troubleshooting of
cloud services, validating it for several trending problem use cases. It incorporates rule
induction methods to learn conditions or sources of anomalous behaviors for application
KPIs. Machine-detected causality conditions can enrich the alert definitions in cloud
operations services, thus enhancing their event management capabilities with AI-driven
problem resolution assistance as an easily achievable implication of this work. We also
described our larger vision of building a real-time self-diagnostic system and RCA tool
based on global learning across the customer eco-systems within the SaaS cloud delivery
model. Our method demonstrated accurate predictions of the root causes of those problem
types. We plan to extend our analysis to other problem types and derive insights and
quality metrics from larger experimental test beds.

Architecting an end-to-end ProbRCA service requires substantial development work.
Within this study, our objective was to prove the viability of such a system from a data
science perspective. There are several aspects to work on for a consistent benchmarking
solution design, improvement, and evaluation. Continuously retraining ML models for
problem types while performing the relevant data labeling in a pipeline, performance
analysis of rule induction methods for real-time recommendations, and their validation
over time with user feedback mechanisms or indirect means of tracking their actions are
several of those aspects. We also plan to put effort into adopting DST-based approaches to
better understand this theory’s frontiers and its practical significance as an apparatus for
characterizing and comprehending managed services.

This communication relates to and builds upon our prior research [26,27] on various
specific tasks in cloud diagnostics and administration comprising time series forecasting,
anomaly and change detection in not only such structured data, but also in logs and traces,
as well as abnormality root cause inference from these types of information sources. Based
on these solutions, our outlook for the future of intelligent cloud management includes
designing comprehensive AI-driven systems for self-driving data centers.

8. Patents
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