
CAM: 113557 Model 3G pp. 1–11 (col. fig: nil)

Journal of Computational and Applied Mathematics xxx (xxxx) xxx

a

b

1

2
3
4
5
6
7
8
9

10
11

e 12
t 13

14
o 15
r 16
s 17

18
19
20
21
22

h
0

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Recovery of bivariate functions from the values of its Radon
transform using Laplace inversion
Robert M. Mnatsakanov a,∗, Rafik H. Aramyan b

Department of Mathematics, West Virginia University, P.O. Box 6310, Morgantown, WV 26506, USA
Russian-Armenian University, 123 Hovsep Emin Str., Yerevan 0051, Armenia

a r t i c l e i n f o

Article history:
Received 25 February 2020
Received in revised form 9 March 2021

Keywords:
Approximation of Laplace transform
inversion
Approximation of Radon transform
inversion
Estimation of the Radon transform

a b s t r a c t

The problems of recovering a multivariate function f from the scaled values of its
Laplace and Radon transforms are studied, and two novel methods for approximating
and estimating the unknown function are proposed. Moreover, using the empirical
counterparts of the Laplace transform of the underlying function, a new estimate of
the Radon transform itself is obtained. Under smoothed conditions on the underlying
function the uniform convergence of the proposed constructions are established, and
their accuracy is illustrated graphically with several simple examples.
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1. Introduction

The Radon transform and its inverse play a central role in Computed Tomography (CT). Such an inversion is required in
problems of thermo- and photo-acoustic tomography, ultrasound reflection tomography, radar imaging, and other areas.
Note that, in CT the data represents integrals (projections) of the underlying function over lines, circles, or spheres, based
on which the medical image should be reconstructed (see, for example, [1–4], among many others). Thus, in all the above
mentioned applications the only available data, provided by the detectors, consists of the values of the Radon transform
of the underlying function computed over lines, curves or surfaces.

It is well known that the inverse of the Radon transform is not a continuous operator, and there exist different
numerical methods for its approximation, including the very well known filtered back-projection, as well as iterative, and
variational approaches. See for example, [2,5–7], and the references therein. Some approximations are based on using the
relationship between the moments of the Radon transform Rf and the moments of the underlying function f , see for
xample, [6,8], and [9]. In [10], a generalized Radon transform on the sphere was considered and a new method to invert
his transform was proposed.

In this paper we suggest a method that is based on the relationship between the values of univariate Laplace transform
f Rf and the values of the bivariate Laplace transform L(2)

f of f (the Central Slice Theorem). The approach based on
ecovering the moments of the unknown function f from the values of its Radon transform is very helpful when the
upport of f is a compact. See, for example, [9,11,12], and [8]. In the case when the support of f is unbounded we suggest
a technique based on the inversion of the Laplace transform instead of recovering a function from its moments. Therefore,
we do not need to solve the system of equations that relate the moments of the underlying functions to the moments of
its Radon transform; we only need to approximate the inverse of the bivariate Laplace transform of f .

The proposed approach has three main advantages: (a) it provides a computationally stable approximation and is
based on a finite number of the scaled values of Laplace and Radon transforms; (b) the suggested approximations admit

∗ Corresponding author.
E-mail address: Robert.Mnatsakanov@mail.wvu.edu (R.M. Mnatsakanov).
Please cite this article as: R.M. Mnatsakanov and R.H. Aramyan, Recovery of bivariate functions from the values of its Radon transform using Laplace
inversion, Journal of Computational and Applied Mathematics (2021) 113557, https://doi.org/10.1016/j.cam.2021.113557.

ttps://doi.org/10.1016/j.cam.2021.113557
377-0427/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2021.113557
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:Robert.Mnatsakanov@mail.wvu.edu
https://doi.org/10.1016/j.cam.2021.113557


CAM: 113557

R.M. Mnatsakanov and R.H. Aramyan Journal of Computational and Applied Mathematics xxx (xxxx) xxx

1
2
3
4

a5

6

w7
s8
R9
v10

11
t12
u13
S14
a15
m16
(17
w18
b19
c20

221

22
t23
e24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39
40

41
a closed form expression; (c) a regularization procedure is not required as in the case of ill-posed inverse problems (see,
for example, [13]).

To describe our construction, let us use the following notation: let ξξξ θ = (cos θ, sin θ )′, 0 ≤ θ ≤ 2π , be a unit
vector in R2, and ⟨x, ξξξ θ ⟩ — the inner product of the vectors ξξξ θ and x = (x, y) ∈ R2. The Radon transform g = Rf of
square-integrable function f : R2

→ R+ is defined as the collection of line integrals

Rf (ξξξ θ , t) =

∫
{x: ⟨x, ξξξθ ⟩=t}

f (x) dm(x) , (θ, t) ∈ (0, 2π ] × R+, (1)

here dm is the arc length measure on the line ⟨ξξξ θ , x⟩ = t . Note that in [14] the convergence rate of the estimate of
o-called empirical Radon transform and its inversion are derived from knowledge of projections in all directions ξξξ θ in
3. In our construction one needs to know the projections for a finite number of directions (specified by the number of
alues of the Laplace or Radon transforms used in the constructions).
The article is organized as follows. In Section 2 we present the well known Central Slice Theorem in terms of the Laplace

ransform. In Section 3, we obtain a new result regarding uniform convergence for approximated bivariate functions fa
sing the scaled values of Laplace transform (cf. with [15] and [8] in the case when the support of f is a compact). In
ection 4, two novel approximants as well as estimates of the Radon transform inverse and the Radon transform itself
re proposed. It is worth noting that our constructions are based on the scaled values of Laplace transform and provide
ore accurate approximations compared to the ones that use the values of Laplace transform with an integer argument

cf. with [15]). In Section 5, several simple examples are considered to illustrate the accuracy of the approximations. Here
e assumed f to be the probability density of a bivariate distribution F with support in R2

+
, although all statements

elow are valid for any continuous and bounded function on R2
+
. Finally, in Section 6, several advantages of the proposed

onstructions are outlined.

. The central slice theorem in Rd

In this section we use the following notation: by Rd we denote the d-dimensional Euclidean plane, R := R1, and by Sd−1

he (d − 1)th dimensional unit sphere centered at the origin. In addition, the following parametrization of a hyperplane
in Rd, is used: e = (ξξξ, p), where p (p > 0) is the distance from the origin O to e, and ξξξ ∈ Sd−1 is the directional normal

vector to e. Also by ξξξ⊥
= {x ∈ Rd

: ⟨x, ξξξ⟩ = 0} we denote the subspace of Rd orthogonal to ξξξ .

Definition 1. The multidimensional Laplace transform of f : Rd
+

→ R is defined as follows:

L(d)
f (s) =

∫
Rd

+

e−⟨s, x⟩f (x) dx, s = (s1, s2, . . . , sd) ∈ Rd
+

:= (0, ∞)d. (2)

Definition 2. The Radon transform of f : Rd
→ R is defined as follows:

Rf (ξξξ, t) =

∫
{x:⟨x, ξξξ⟩=t}

f (x) dm(x) =

∫
ξξξ⊥

f (tξξξ + y)dy, t ∈ R, (3)

where y = (y1, y2, . . . , yd−1) ∈ ξξξ⊥, x = (x1, x2, . . . , xd), and dm represents the Lebesgue measure on the hyperplane
⟨x, ξξξ⟩ = t .

Assuming that the support of f is a subset of Rd
+

one can prove

Theorem 1 (Central Slice Theorem). For any σ ∈ (0, ∞) and ξξξ ∈ Sd−1, we have

L(1)
Rf (ξξξ,·)(σ ) = L(d)

f (σ ξξξ ). (4)

Proof. After substitution, we have

L(1)
Rf (ξξξ,·)(σ ) =

∫
∞

0
e−σuRf (ξξξ, u) du =

∫
∞

0
e−σu

∫
ξξξ⊥

f (uξξξ + y) dy du. (5)

Consider the mapping (u, y) := (u, y1, y2, . . . , yd−1) → (x1, x2, . . . , xd) := x defined by the following system

uξξξ + y = x.

Note that the Jacobian of this transform is J = 1, hence, after changing variables in the multiple integrals and taking into
account that u = ⟨ξξξ, x⟩, we get

L(1)
Rf (ξξξ,·)(σ ) =

∫
∞

0

∫
ξξξ⊥

e−σ ⟨ξξξ, x⟩f (x)dx = Lf (d) (σ ξξξ ). □ (6)
2
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Remark 1. A theorem similar to the Central Slice Theorem but expressed in terms of the Fourier transform is also known
s the Projection Theorem (see, for example, [2], Theorem 2.1).

In the sequel we restrict ourselves to the case when d = 2, although the proposed constructions are valid for
d ≥ 3 as well. The main problem in the latter case is connected to the computational aspect of evaluating the multiple
sums presented in the constructions similar to (9). The asymptotic behavior of corresponding approximations will be
investigated in a separate paper by applying parallel computing methods.

3. Bivariate Laplace transform inversion

Assume that d = 2, x = (x1, x2) and t = (t1, t2). Consider the bivariate Laplace transform of function f scaled by ln b:

L(2)
f (t ln b) =

∫
R2

+

e−⟨t ln b, x⟩f (x) dx, for some b > 1. (7)

In the sequel we will use the following notations L(2)
f ,b(t) := L(2)

f (t ln b) and a = (α, α′), with α, α′
∈ N+ = {1, 2, . . .}. Also,

we write a → ∞ to mean that α → ∞ and α′
→ ∞.

Introducing ϕ(x) = (φ(x1), φ(x2)), where φ(x) = b−x for each x ∈ R+, let us rewrite (7) in terms of the exponential
moments when t = (j + 1, k + 1). Multiplying the latter value by (ln b)2, we define

mϕ(j, k) := (ln b)2 L(2)
f ,b(t)|t=(j+1,k+1)= (ln b)2

∫
∞

0

∫
∞

0

[
φ(x1)

]j+1[
φ(x2)

]k+1 f (x1, x2) dx1dx2, (8)

for each (j, k) ∈ Nα × Nα′ , where Nα := {0, 1, . . . , α}. Consider the following approximation fa :=
(
B−1
a mϕ

)
◦ ϕ of f with((

B−1
a mϕ

)
◦ ϕ

)
(x) :=

Γ (α + 2)Γ (α′
+ 2)

Γ ([αφ(x1)] + 1)Γ ([α′φ(x2)] + 1)

×

α−[αφ(x1)]∑
j=0

α′
−[α′φ(x2)]∑

k=0

(−1)j+kmϕ

(
j + [αφ(x1)], k + [α′φ(x2)]

)
j!k!(α − [αφ(x1)] − j)!(α′ − [α′φ(x2)] − k)!

, x ∈ R2
+
, (9)

(cf. with [15], Corollary 4 (iii)). Here, and in a similar formula below, we denote by [x] the largest integer that is less or
equal to x. Our goal now is to recover f , given the values of exponential moments mϕ := {mϕ(j, k), (j, k) ∈ Nα × Nα′}.

In the proof of the main statement below we suggest the following two-step procedure: in the first step we construct
the approximation of a function defined on unit square, and then, in the next step, after a change of variables, we go back
to the original function f : R2

+
→ R. In what follows, the symbol ‘‘

u
→ " is used to denote uniform convergence. One can

prove the following statement.

Theorem 2. If the function f is continuous and bounded, then fa
u

→ f as a → ∞.

Proof. Given the values of mϕ(j, k), (j, k) ∈ Nα × Nα′ , let us recover f using the two-step procedure outlined before
Theorem 2. Namely, let us apply the result from [15] and assume that we are given the sequence of moments m :=

{m(j, k), (j, k) ∈ Nα × Nα′} of some continuous bivariate density function g : [0, 1]2 → R+ with:

m(j, k) :=

∫ 1

0

∫ 1

0
t jsk g(t, s)dt ds. (10)

Now, for each u = (u, v) ∈ [0, 1]2, consider the approximation ga := B−1
a m of g:

ga(u) := (B−1
a m)(u) =

Γ (α + 2)Γ (α′
+ 2)

Γ ([αu] + 1)Γ ([α′v] + 1)

×

α−[α u]∑
j=0

α′
−[α′ v]∑
l=0

(−1)j+lm(j + [α u], l + [α′ v])
j!l!(α − [α u] − j)!(α′ − [α′ v] − l)!

. (11)

n Theorem 2 [15] it is proved that ga converges to g uniformly as a → ∞, under the smooth conditions on g , i.e., when
, α′

→ ∞. Hence, changing variables under the integral in (8) with b−x1 = u and b−x2 = v, gives

mϕ(j, k) =

∫ 1

0

∫ 1

0
uj+1vk+1 g(u, v)

du
u

dv
v

=

∫ 1

0

∫ 1

0
ujvk g(u, v)du dv := m(j, k), (12)

here

g(u, v) = f
(
φ−(u), φ−(v)

)
. (13)

ere φ− denotes the inverse function of φ.
 31

3
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Now, combining (10)–(13), from the uniform convergence ga
u

→ g it follows:

fa(x) = ga(φ(x1), φ(x2))
u

→ g(φ(x1), φ(x2)) = f (x) as a → ∞. □ (14)

Remark 2. To derive the rate of approximation one needs additional smooth conditions on f . In particular, assuming
that the partial derivatives of f up to the second order are bounded and continuous, and the underlying function has a
compact support in R2

+
, the rate of convergence was derived in [8]. A similar rate of approximation can be also derived

when support of f is unbounded. This question will be a subject of investigation in a separate article.

Remark 3. To approximate the inverse Laplace transform in the univariate case, consider the following scaled values of
the Laplace transform

mφ(j) := (ln b)L(1)
f ,b(t)|t=j+1= (ln b)

∫
∞

0

[
φ(x1)

]j+1 f (x1) dx1, for j = 0, 1, . . . , α. (15)

The approximation is defined as follows:

fα(x1) :=

((
B−1

α mφ

)
◦ φ

)
(x1) =

Γ (α + 2)
Γ ([αφ(x1)] + 1)

α−[αφ(x1)]∑
j=0

(−1)jmφ

(
j + [αφ(x1)]

)
j! (α − [αφ(x1)] − j)!

, x1 ∈ R+. (16)

Furthermore, the following statement is valid:

orollary 1. If the univariate function f is continuous and bounded, then fα
u

→ f as α → ∞.

emark 4. Note that the constructions (8)–(9) and (15)–(16) are slightly different if compared to ones derived in [15],
ee Corollary 4 (iii) and Remark 1 in [16], respectively. Namely, in (8) and (15) the arguments of the values of Laplace
ransforms are shifted by 1. This enables us to avoid using the factors φ(x) and φ(y) presented before the summation signs
n similar approximations from [15] and [16].

. Approximating the Radon transform and its inversion

In this section we consider the problem of approximating the bivariate function f from its projections in R2
+
. Namely,

sing the results from the previous sections we describe the methodology of constructing the approximants and estimates
f the Radon transform and its inverse. Their graphical illustrations are provided in Section 5.

.1. Approximating the inverse of Radon transform

In this section we denote the directional normal vector ξξξ by ξξξ θ = (cos θ, sin θ ) for some 0 ≤ θ ≤
π
2 .

In [8], the connection between the values of the moments of the Radon transform and the moments of the underlying
ivariate function f was used to recover an unknown function f from its mollified Radon transform. In this section we
pply the Laplace transform technique instead of the one based on the moments. This approach provides stable and very
ccurate approximations.
To approximate the inverse of the Radon transform, we use the property (see Theorem 1) connecting the Laplace

ransform of the Radon transform Rf (θ, t) (with respect to the second argument) and the values of the bivariate Laplace
ransform of f (see also, [2]). In particular, for the scaled Laplace transform of Rf , we have

L(1)
Rf (θ,·),b(σ ) = L(2)

f ,b(σ cos θ, σ sin θ ), for 0 ≤ θ ≤ 2π and σ > 0. (17)

e then carry out the following steps: For fixed two nonnegative integers, (j,m) ∈ N2
0, we evaluate the value of scaled

aplace transform L(1)
Rf (θ,·),b(σ ) of Rf (θ, ·), when the pair (θ, σ ) represents solution of the following system of equations:{

[σ cos θ ] = j + 1
[σ sin θ ] = m + 1.

(18)

n other words, we can describe out construction of the Radon inverse as follows:
tep 1: For each fixed (j,m), let (σj,m, θj,m) be the solution of (18), i.e.,

σj,m =

√
(j + 1)2 + (m + 1)2

θj,m = arctan
(m + 1

j + 1

)
. (19)

tep 2: Evaluate the left hand side of (17) with (θ, σ ) = (θ , σ ), i.e., L(1) (σ ).
j,m j,m Rf (θj,m,·),b j,m

4



CAM: 113557

R.M. Mnatsakanov and R.H. Aramyan Journal of Computational and Applied Mathematics xxx (xxxx) xxx

1
2

3

4
5

6

7
8
9

10
11
12
13
14
15

16

r 17

18

B 19
i 20

21

22

23
24
25

26

27
28
29

30

31
32

33

34

35

f 36

T 37

38

P 39
R 40
Step 3: Apply (9) with mϕ(j,m) = (ln b)2 L(1)
Rf (θj,m,·),b(σj,m), yielding the approximation of the inverse Radon transform R−1:

fa(x) =

((
B−1
a mϕ

)
◦ ϕ

)
(x), x = (x1, x2) ∈ R2

+
. (20)

Indeed, according to (17)–(19), we have mϕ(j,m) = (ln b)2 L(2)
f ,b(j + 1,m + 1), and after substituting mϕ(j,m) into (9), and

applying the bivariate Laplace transform inversion we obtain the approximation fa of f .

4.2. Estimation of the probability density function given the projected data-set

Let Xi, i = 1, . . . , n, be a sequence of i.i.d. random vectors with probability density function (pdf) f . Suppose we are
given only the projections ⟨Xi, ξξξ θ ⟩, i = 1, . . . , n, in the directions ξξξ θ ∈ S2. In [14] the uniform convergence rate of the
empirical Radon transform and the rate in the L2 -norm of its inversion were derived. In their approach, the authors first
estimated the Radon transform g = Rf , and then the target pdf f based on the knowledge of ⟨Xi, ξξξ θ ⟩, i = 1, . . . , n, for all
directions ξξξ θ ∈ S2 on the unit sphere in R3. They avoid the regularization procedure for recovering the inverse operator
R−1 by assuming f to be a member of a class of rapidly decreasing C∞-functions on R3 with unbounded support. In the
case of d = 2, when f has a compact support in R2, the singular value decomposition was applied in [5].

In this section, to estimate the Radon transform, consider the empirical Laplace transform of the data-set ⟨Xi, ξξξ θ ⟩, i =

1, . . . , n:

L̂(1)
⟨X, ξξξθ ⟩,b(σ ) :=

1
n

n∑
i=1

e−σ (ln b)⟨Xi, ξξξθ ⟩ (21)

epresenting the empirical counterpart of L(1)
Rf (·,θ ),b(σ ), that is, according to (17) , equal to

L(1)
Rf (θ,·),b(σ ) = L(2)

f ,b(σ cos θ, σ sin θ ), for 0 ≤ θ ≤ 2π and σ > 0. (22)

y substitution of the empirical Laplace transform L̂(1)
⟨X, ξξξθ ⟩,b(σ ) with σ = σj,m and θ = θj,m (defined according to (19))

nto (20), where m̂ϕ(j,m) = (ln b)2 L̂(1)
⟨X, ξξξθj,m ⟩,b(σj,m), is used instead of mϕ(j,m), we obtain the empirical version of Radon

transform inversion:

f̂a(x) =

((
B−1
a m̂ϕ

)
◦ ϕ

)
(x), x = (x1, x2) ∈ R2

+
, (23)

In other words, according to our approach, we skip the step of estimating the Radon transform g = Rf , and use only
the scaled values of the empirical Radon transform of the data-set ⟨Xi, ξξξ θ ⟩, i = 1, . . . , n, evaluated for several directions
θ ∈ {θj,m, (j,m) ∈ Nα × Nα′}.

4.3. Approximating the Radon transform given the scaled values of L(2)
f

Assume θ is a fixed direction. Application of (17) in the opposite direction in combination with (16) and Corollary 1
leads to recovering the Radon transform Rf (θ, ·) itself. To be more specific, assume that the values of L(2)

f ,b are known.
Evaluate its values L(2)

f ,b(σ cos θ, σ sin θ ) with σ = j + 1, for each j = 0, 1, . . . , α. From (17) it follows that

L(2)
f ,b((j + 1) cos θ, (j + 1) sin θ ) = L(1)

Rf (θ,·),b(j + 1) (24)

Hence, from the knowledge of L(1)
Rf (θ,·),b(j + 1) one can recover the Radon transform Rf itself by applying the univariate

Laplace transform inversion as stated in Corollary 1, where

mφ(j) = (ln b)L(2)
f ,b((j + 1) cos θ, (j + 1) sin θ ). (25)

The approximation of the Radon transform is constructed as follows:

Rfα(θ, t) =
(ln b)Γ (α + 2)
Γ ([αφ(t)] + 1)

α−[αφ(t)]∑
j=0

(−1)jL(2)
f ,b

(
(j + 1 + [αφ(t)]) cos θ, (j + 1 + [αφ(t)]) sin θ

)
j!(α − [αφ(x1)] − j)!

, (26)

or each θ ∈ (0, 2π ), t > 0, and φ(t) = b−t .

heorem 3. If for each θ ∈ (0, 2π ), the function Rf (θ, ·) is continuous and bounded, then

Rfα(θ, ·)
u

→ Rf (θ, ·) as α → ∞.

roof. The statement of theorem follows by combining (24)–(26) with (16) and Corollary 1, where instead of f we have
f (θ, ·). □
5
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4.4. Two new estimates of the Radon transform

Some asymptotic properties of the kernel type estimate (the so-called empirical Radon transform) of Rf have been
tudied in [14]. Here we suggest two new estimates. The first one could be used when the model is observed directly:
ssume that Xi, i = 1, . . . , n, is a sequence of i.i.d. random vectors in R2 having an unknown pdf f . The second estimate
f Rf is defined when only the projections of Xi’s are available. In both cases our goal is to estimate the Radon transform
f f .
Consider the empirical bivariate Laplace transform of the sample Xi, i = 1, . . . , n that is scaled by c = ln b:

L̂(2)
X,b(t) =

1
n

n∑
i=1

e−⟨ct,Xi⟩, t = (t1, t2). (27)

Taking into account Eqs. (24)–(26), where the empirical version of the bivariate Laplace transform L̂(2)
X,b is used instead of

L(2)
f ,b, one derives the following estimate of the Radon transform:

R̂fα,I (θ, t) =
(ln b)Γ (α + 2)
Γ ([αφ(t)] + 1)

α−[αφ(t)]∑
j=0

(−1)jL̂(2)
X,b

(
(j + 1 + [αφ(t)]) cos θ, (j + 1 + [αφ(t)]) sin θ

)
j!(α − [αφ(x1)] − j)!

, (28)

s α, n → ∞.
Now, assume that the following data is given: {⟨Xi, ξξξ θ ⟩}

n
i=1, i.e., the projections of the Xi’s in direction ξξξ θ are known.

f we substitute, instead of L(1)
f ,b(σ ), the empirical Laplace transform of the data L̂(1)

⟨X, ξξξθ ⟩,b(σ ) defined in (21), into (15) and
16), we obtain the second estimate of the Radon transform:

R̂fα,II (θ, t) =
(ln b)Γ (α + 2)
Γ ([αφ(t)] + 1)

α−[αφ(t)]∑
j=0

(−1)jL̂(1)
⟨X, ξξξθ ⟩,b

(
(j + 1 + [αφ(t)])

)
j!(α − [αφ(x1)] − j)!

. (29)

n the other hand, substituting the values of the empirical Laplace transform of the data L̂(1)
f ,b into (29) and changing the

rder of summations yields another representation of the estimate:

R̂fα,B(θ, t) =
1
n

n∑
i=0

(ln b)Γ (α + 2)φ
(
⟨Xi, ξξξ θ ⟩

)[αφ(t)]+1(1 − φ(⟨Xi, ξξξ θ ⟩)
)α−[αφ(t)]

Γ ([αφ(t)] + 1)Γ (α − [αφ(t)] + 1)
. (30)

his estimate R̂fα,B represents the asymmetric kernel density construction when the kernels are specified by the Beta
ensities.

emark 5. Note that when data represents the observations Xi, i = 1, . . . , n, sampled directly from f , then the estimates,
introduced in (28) and (29) coincide. Indeed, it is sufficient to note that the empirical version of Eq. (24), written in terms
of the empirical counterparts L̂(2)

f ,b and L̂(1)
<X, ξξξθ >,b is also valid.

5. Numerical implementation

In this section we demonstrate the performance of the approximated and estimated inversions of the Laplace and the
Radon transforms for several bivariate distributions and functions. The plots of the recovered Radon transform Rf are
provided as well.

Example 1. Let X = (X, Y ) be a bivariate vector with independent components exponentially distributed with rates
β1 = 2 and β2 = 2, respectively. The bivariate scaled Laplace transform is

L(2)
f (s ln b, t ln b) =

β1

β1 + s ln b
×

β2

β2 + t ln b
. (31)

Fig. 1 shows the true density function f and its approximation fa. We set α = α′
= 32, b = 1.35. The functions were

evaluated on the grid

(xi, yj) =

[
1

ln b
ln

(
α

α − i + 1

)
,

1
ln b

ln
(

α′

α′ − j + 1

)]
; i = 1, . . . , α and j = 1, . . . , α′.

Example 2. Let X = (X, Y ) be a random vector with independent components distributed according to the Gamma
distributions: X ∼ Gamma (a1, β1) and Y ∼ Gamma (a2, β2). The bivariate scaled Laplace transform of (X, Y ) is given by

L(2)
f (s ln b, t ln b) =

(
1

)a1 (
1

)a2
. (32)
β1s ln b + 1 β2t ln b + 1
6
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Fig. 1. (a) The true density f when X ∼ 4e−(2x+2y); and (b) Approximation fa with α = α′
= 32, b = 1.35.

Fig. 2. (a) The true density of X ∼ Gamma(2, 1) × Gamma(2.5, 0.4); and (b) Approximation fa with α = 50, α′
= 60, b = 1.35.

ubstitution of (32) into (9) provides the approximate the joint density function of (X1, X2):

fa(x, y) =
ln2 bΓ (α + 2)Γ (α′

+ 2)
Γ ([αφ(x)] + 1)Γ ([α′φ(y)] + 1)

×

α−[αφ(x)]∑
m=0

α′
−[α′φ(y)]∑
l=0

(−1)m+l

m!l!(α − [αφ(x)] − m)!(α′ − [α′b−y] − l)!
×(

1
β1(m + 1 + [αφ(x)]) ln b + 1

)a1 (
1

β2(l + 1 + [α′φ(y)]) ln b + 1

)a2
.

onsider the case where {a1 = 2, β1 = 1, a2 = 2.5, β2 = 0.4}. We set-up α = 50, α′
= 60 and b = 1.35. From Fig. 2 we

can say that our approximation is quite close to the true f .

Example 3. Assume that a random vector X follows the Downton Bivariate Exponential distribution — DBVE(µ1, µ2, ρ)
ntroduced by Downton [17]. The corresponding density function is given by

f (x, y) =
µ1µ2

1 − ρ
exp

(
−

µ1x + µ2y
1 − ρ

)
I0

(
2
√

ρµ1µ2xy
1 − ρ

)
, (x, y) ∈ R2

+
,

here I0(·) is the Bessel function of the first kind, µ1, µ2 ≥ 0, and 0 ≤ ρ ≤ 1. The bivariate scaled Laplace transform of
X, Y ) is given by

L(2)
f (s ln b, t ln b) =

µ1µ2
2 .
(µ1 + s ln b)(µ2 + t ln b) − ρ s t ln b
7
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Fig. 3. The true density f of X ∼ DBVE(1/2, 2, 1/4) and approximated fa; (a) with α = α′
= 50, b = exp(1); (b) with α = α′

= 50, b = 1.25; and (c)
ith α = α′

= 100, b = 1.25.

Fig. 4. (a) The true pdf f of X ∼ DBVE(2, 1/2, −1/4); and (b) approximated pdf fa with α = α′
= 32, b = 1.45.

gain, the approximated joint density function of (X, Y ) is obtained by substituting the bivariate scaled Laplace transform
nto (9).

We studied the behavior of the approximation fa(x, y) with different values of parameters involved in this construction.
or illustration, two cases with parameter choices {µ1 = 1/2, µ2 = 2, ρ = 1/4} and {µ1 = 2, µ2 = 1/2, ρ = −1/4} are

considered. The first case is borrowed from [18]. Corresponding approximations with two different values of parameters
α = α′ and with the same b value of b = 1.25, are displayed in Fig. 3, see plots (b) and (c).

It is worth mentioning that a comparison of the construction, similar to (9), where the parameter b = exp(1), was
conducted in [18]. They established that the method based on the Laguerre polynomial expansion technique produces a
slightly better approximation if compared to (9) when b = exp(1). Our simulation study justifies the observation that
taking the values of b > 1 closer to 1 produces more accurate approximation of f if it has a heavy tail on the right.

In other words, by introducing an extra parameter 1 < b ≤ exp(1) our method provides more accurate approximations
when compared to the one based on the fixed value of b = exp(1). See Fig. 3(a), where we set-up α = α′

= 50
and b = exp(1) and compare it with plot (b), where b = 1.25. This phenomena was also observed in other examples
considered below, where we evaluated corresponding approximations with b < exp(1). For example, Fig. 4 displays the
surfaces of true and approximated densities with α = α′

= 32 and b = 1.45. Comparing the true joint density functions
with their approximates, we see that the approximations are relatively close to the true distributions.

Example 4. Let us approximate the Radon transform of the function f (x, y) = x y , (x, y) ∈ R2
+
, given the scaled values of

its Laplace transform. Recall that

L(2)
f (s ln b, t ln b) =

1
(s ln b)2

×
1

(t ln b)2

nd

Rf (θ, t) =
2 t3

, (θ, t) ∈ (0, π/2) × R+.

3 sin(2 θ )

8
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Fig. 5. (a) The true Radon transform Rf (θ, t) when f (x, y) = xy; (b) Approximated Rfα(θ, t) when α = 100, b = 2.15, and (θ, t) ∈ (0, π/2) × (0, 3).

Fig. 6. (a) True function f (x, y) = xy; (b) Approximated Radon transform inversion fa(x, y) when α = α′
= 60, b = 1.95 and (x, y) ∈ [0, 3]2 .

ccording to (22), the scaled value of the Laplace transform of Rf (θ, ·) is related to L(2)
f (·, ·). Hence, to recover Rf , we

an apply (26) with

(ln b)L(1)
Rf (θ,·),b(j + 1) = (ln b)L(2)

f ,b((j + 1) cos θ, (j + 1) sin θ ) =
ln b

((j + 1) ln b cos θ )2
·

1
((j + 1) ln b sin θ )2

.

See Fig. 5, where the Radon transform Rf (θ, t) of the function f (x, y) = xy, introduced in Example 4, as well as its
pproximation Rfα(θ, t) are plotted when α = 100, b = 2.15. Now, let us recover the function f (x, y) = xy, given the
alues of its Radon transform Rf . Namely, let us evaluate the values of Radon transform in the direction θj,m and the
alues of Laplace transform of Rf with argument σj,m, specified according to (19). We obtain the approximation fa (see
20)). Fig. 6 displays the approximation fa(x, y) when α = α′

= 60, b = 1.95 and (x, y) ∈ [0, 3]2.

xample 5. Let us estimate the Radon transform of the function f (x, y) = e−x−y, (x, y) ∈ R2
+
, given the sample

Xi, Yi), i = 1, . . . , n, of size n = 1000 of i.i.d. random vectors from f . See Fig. 7, where the curves of the estimated
ensity f̂a(x, y) and the target function f (x, y) = e−x−y are displayed. Here, α = α′

= 30, b = 1.95. Note that in this
xample,

Rf (θ, t) =
1

cos θ − sin θ

[
e−

t
cos θ − e−

t
sin θ

]
, for (θ, t) ∈ (0, π/2) × R+.

The Radon transform Rf (θ, t) of the function f (x, y) = e−x−y is plotted in Fig. 8(a), while in Fig. 8(b) the approximated
Rfα(θ, t) defined in (26) is displayed when α = 60, b = 1.95125. In Fig. 9 we plotted two estimates: for R̂fα,II (θ, t), see
lot (a), and for R̂fα,B(θ, t), see plot (b), respectively. In both plots we took (θ, t) ∈ (0, π/2) × (0, 4). To evaluate the
stimates R̂fα,II and R̂fα,B, we set-up n = 1000, α = 30, b = 1.95. We can see that all four surfaces are very similar to
ach other.
9
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Fig. 7. (a) Estimated function f̂a(x, y) based on the Radon transform inversion (23), when n = 1000 and α = α′
= 30, b = 1.95, and (x, y) ∈ [0, 1]2;

(b) Estimated f̂a(x, y) and the true function f (x, y) = e−x−y .

Fig. 8. (a) The Radon transform Rf (θ, t) of f (x, y) = e−x−y; (b) Approximated Radon transform Rf α(θ, t) defined by (26) when α = 60, b = 1.95125.
n both cases (θ, t) ∈ (0, π/2) × (0, 4).

Fig. 9. (a) The estimates of Rf (θ, t) by (a) R̂f α,II (θ, t) defined in (29); and (b) R̂f α,B(θ, t) defined in (30). In both cases n = 1000, α = 30, b = 1.95,
nd (θ, t) ∈ (0, π/2) × (0, 4).

. Conclusion

Two new approximations, as well as estimates, of the underlying function, obtained from the scaled values of its Laplace
nd Radon transforms are proposed.
Our Methods have at least three advantages: (a) they are based on the knowledge of a finite number of the scaled values

f Laplace and Radon transforms when the arguments of transforms are chosen from the lattice { (j + 1,m + 1) ln b, 0 ≤

≤ α, 0 ≤ m ≤ α′
}, and from a finite number of directions in the case of Radon transform inversion; (b) the proposed

onstructions admit very simple and closed form expressions; and (c) approximates are computationally stable without
pplying a regularization procedure. The parameters α ∈ N and α′

∈ N specify the total number of values of Laplace
+ +

10
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or Radon transforms used in the proposed constructions. From the simulation study we conclude that increasing α and
′ leads to better approximations. The choice of parameter b depends on the tail behavior of the underlying function: for
unctions with heavy tails smaller value of b > 1 is recommended. Finally, it is worth mentioning that the estimates of
he Laplace and Radon transform inversions are obtained by substituting the empirical counterparts of the corresponding
ransforms. The problem of specifying the parameter a = (αn, α

′
n) as a function of the sample size n → ∞ requires

onducting deeper analysis, and will be studied in a separate article.
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ppendix A. Supplementary data

In Section 5, to evaluate the approximations of the Laplace and Radon transforms inverses, as well as the Radon
ransform Rf itself (defined in (9), (20), and (26), respectively), the package of Wolfram Mathematica has been used.
n particular, to reproduce the plots from Figs. 4–6, the codes in Supplementary data are presented.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cam.2021.113557.
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