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On Weyl multipliers of the rearranged trigonometric system

G. A. Karagulyan

Abstract. We prove that the condition
∑∞

n=1 1/(nw(n)) < ∞ is necessary
for an increasing sequence of numbers w(n) to be an almost everywhere
unconditional convergence Weyl multiplier for the trigonometric system.
This property was known long ago for Haar, Walsh, Franklin and some
other classical orthogonal systems. The proof of this result is based on
a new sharp logarithmic lower bound on L2 for the majorant operator
related to the rearranged trigonometric system.
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§ 1. Introduction

Let Φ = {φn : n = 1, 2, . . . } ⊂ L2(0, 1) be an orthonormal system. Recall that
a sequence of positive numbers w(n) ↗ ∞ is said to be an a.e. convergence Weyl
multiplier (a C-multiplier for short) if every series

∞∑
n=1

anφn(x) (1.1)

with coefficients satisfying the condition

∞∑
n=1

a2nw(n) <∞, (1.2)

is a.e. convergent (see [8] or [7]). The Menshov-Rademacher classical theorem
(see [10] and [19]) states that the sequence log2 n is a C-multiplier for any orthonor-
mal system. The sharpness of log2 n in this statement was established by Menshov
in the same paper [10], proving that any sequence w(n) = o(log2 n) fails to be
a C-multiplier for some orthonormal system.

The following definitions are well known in the theory of orthogonal series.

Definition 1.1. A sequence of positive numbers w(n) ↗ ∞ is said to be an
a.e. convergence Weyl multiplier for the rearrangements (an RC-multiplier) of an
orthonormal system Φ if it is a C-multiplier for any rearrangement of Φ.
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Definition 1.2. A sequence of positive numbers w(n) ↗ ∞ is said to be an a.e.
unconditional convergence Weyl multiplier (a UC-multiplier) for an orthonormal
system Φ if under condition (1.2) the series (1.1) converges almost everywhere after
any rearrangement of its terms.

For a given orthonormal system Φ, we denote by RC(Φ) and UC(Φ) the families
of RC- and UC-multipliers, respectively. Observe that according to the Menshov-
Rademacher theorem we have log2 n ∈ RC(Φ) for any orthonormal system Φ, and
a counterexample of Menshov tells us that log2 n is optimal in this statement. The
following two theorems provide a necessary and sufficient condition for a sequence
to be a UC-multiplier for all orthonormal systems.

Theorem A (Orlicz; see [17]). If an increasing sequence of positive numbers λ(n)
satisfies

∞∑
n=1

1

nλ(n) log n
<∞, (1.3)

then w(n) = λ(n) log2 n is a UC-multiplier for any orthonormal system.

Theorem B (Tandori; see [21]). If an increasing sequence of positive numbers λ(n)
does not satisfy (1.3), then there exists an orthonormal system for which the
sequence w(n) = λ(n) log2 n fails to be a UC-multiplier.

In particular, these results imply that the sequence log2 n(log log n)1+ε, ε > 0, is
a UC-multiplier for any orthonormal system, while log2 n log logn is not a UC-mul-
tiplier for some orthonormal systems.

The study of RC- and UC-multipliers of classical orthonormal systems is an old
issue in the theory of orthogonal series. It is well known that the sequence w(n) ≡ 1
is a C-multiplier for trigonometric, Walsh, Haar and Franklin systems, while it fails
to be an RC-multiplier for these systems. Kolmogorov [9] was the first who observed
that the sequence w(n) ≡ 1 is not an RC-multiplier for the trigonometric system.
However, he never published the proof of this fact. A proof of this assertion was
later given by Zahorski [31]. Afterwards developing Zahorski’s argument, Ul’yanov
(see [23] and [24]) established such a property for the Haar and Walsh systems.
Using the Haar functions technique, Olevskii [16] succeeded in proving that such
a phenomenon may also occur for arbitrary complete orthonormal systems.

Later on Ul’yanov (see [25], [27]) found the optimal growth of the RC- and
UC-multipliers of the Haar system. Moreover, his technique of the proof became
a key argument in the study of the analogous problems for other classical systems.

Theorem C (Ul’yanov; see [26]). The sequence log n is an RC-multiplier for the
Haar system and any sequence w(n) = o(log n) is not.

Theorem D (Ul’yanov; see [26]). The sequence w(n) is a UC-multiplier for the
Haar system if and only if the bound

∞∑
n=1

1

nw(n)
<∞

holds.
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In his famous overview [28] of 1964 Ul’yanov raised two problems (see [28], § 11),
and these have been further recalled several times in different papers of that author
(see [27], [29], [30]):

1) find an optimal sequence w(n) to be an RC-multiplier for the trigonometric
(Walsh) system;

2) characterize the UC-multipliers of the trigonometric (Walsh) system.
The following result somehow clarifies the relationship between these two prob-

lems in terms of the Orlicz ‘extra factor’ λ(n) (see (1.3)). It also tells us that the
Orlicz theorem can be deduced from the Menshov-Rademacher theorem.

Theorem E (Ul’yanov and Poleshchuk; see [26], [18]). If w(n) is an RC-multiplier
for an orthonormal system Φ = {φn(x)} and λ(n) is an increasing sequence of
positive numbers satisfying (1.3), then the sequence λ(n)w(n) is a UC-multiplier
for Φ.

Relating to problem 1), we first note that the Menshov-Rademacher theorem
implies that log2 n is an RC-multiplier for the trigonometric and Walsh systems,
and second, no RC-multiplier w(n) = o(log2 n) is known for these systems. Simi-
larly, the only known UC-multipliers of trigonometric and Walsh systems are the
sequences λ(n) log2 n coming from the result of Orlicz for the general orthonormal
systems.

The lower estimates for RC- and UC-multipliers of the Walsh system were studied
in [1], [14], [15] and [22]. The best result at this moment, proved independently by
Bochkarev (see [2] and [1]) and Nakata (see [14]), says that if an increasing sequence
w(n) satisfies

∞∑
n=1

1

nw(n)
= ∞, (1.4)

then it is not a UC-multiplier for the Walsh system.
For the trigonometric system analogous bounds were studied in [11]–[13], [21], [5].

The most general result is due to Galstyan [5] (1992), who proved that under the
condition

∞∑
n=1

1

n log log nw(n)
= ∞ (1.5)

the sequence w(n) fails to be a UC-multiplier for the trigonometric system. In con-
trast to the Haar and Walsh systems, in the trigonometric case we see an extra
log log n factor in (1.5). Corollary 1.3 stated below tells us that the factor log log n
can be removed also in the case of the trigonometric system.

Note that the following inequality is the key part of the proof of the Menshov-
Rademacher theorem.

Theorem F (Menshov and Rademacher; see [10], [19] and also [8]). For any ortho-
normal system {φk : k = 1, 2, . . . , n} ⊂ L2(0, 1) and any coefficients ak∥∥∥∥ max

1⩽m⩽n

∣∣∣∣ m∑
k=1

akφk

∣∣∣∣ ∥∥∥∥
2

⩽ c log n

∥∥∥∥ n∑
k=1

akφk

∥∥∥∥
2

, (1.6)

where c > 0 is an absolute constant.
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Similarly, the counterexample of Menshov is based on the following result.

Theorem G (Menshov; see [10]). For any natural number n ∈ N there exists an
orthogonal system φk , k = 1, 2, . . . , n, such that∥∥∥∥ max

1⩽m⩽n

∣∣∣∣ m∑
k=1

φk

∣∣∣∣ ∥∥∥∥
2

⩾ c log n

∥∥∥∥ n∑
k=1

φk

∥∥∥∥
2

,

for an absolute constant c > 0.

To state the results of the present paper let us introduce some notation. For two
positive quantities a and b the notation a ≲ b will stand for the inequality a < cb,
where c > 0 is an absolute constant, and we write a ∼ b whenever a ≲ b ≲ a.
Let ΣN denote the family of one-to-one mappings (permutations) on {1, 2, . . . , N}.
We will consider the trigonometric system on the torus T = R/Z. For a given integer
N ⩾ 1 and σ ∈ ΣN , we consider the operator Tσ,N : L2(T) → L2(T) defined by

Tσ,Nf(x) = max
1⩽m⩽N

∣∣∣∣ m∑
k=1

cσ(k)e
2πiσ(k)x

∣∣∣∣, where ck =

∫
T
f(x)e−2πikx dx.

Our main result is the following.

Theorem 1.1. For any integer N > 1 there exists a permutation σ ∈ ΣN such
that

∥Tσ,N∥L2→L2 ∼ logN. (1.7)

We note that the upper bound in (1.7) follows from the Menshov-Rademacher
inequality (1.6). Recall the weak L2-norm of an operator T : L2 → L2, defined by

∥T∥L2→L2,∞ = sup
∥f∥2⩽1, λ>0

λ(|{|Tf(x)| > λ}|)1/2.

From the lower bound of (1.7), applying Lemma 8.1, we easily deduce also a lower
estimate for the weak L2-norm of the operator Tσ,N . Namely, the following holds.

Corollary 1.1. For any integer N > 1 one can find a permutation σ ∈ ΣN such
that

∥Tσ,N∥L2→L2,∞ ≳
√
logN. (1.8)

Applying (1.8) we prove the following results.

Corollary 1.2. Any increasing sequence of positive numbers w(n), satisfying

w(n) = o(log n), (1.9)

fails to be an RC-multiplier for the trigonometric system. Moreover, there are
coefficients an satisfying (1.2) such that the series

∞∑
n=1

ane
2πiσ(n)x

is almost everywhere divergent for some permutation σ .
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Corollary 1.3. If an increasing sequence of positive numbers w(n) satisfies (1.4),
then it is not a UC-multiplier for the trigonometric system. Namely, there are
coefficients an satisfying (1.2) such that the series

∞∑
n=1

ane
2πinx (1.10)

can be rearranged into an almost everywhere divergent series.

Remark 1.1. Corollaries 1.2 and 1.3 can be stated in terms of real trigonometric
series, by considering

∞∑
n=1

an cos(nx+ ρn)

instead of the series (1.10). In fact, using an elementary argument, one can deduce
the real trigonometric versions of Corollaries 1.2 and 1.3 from their complex ana-
logues.

Remark 1.2. We do not know whether the reverse inequality to (1.8) holds for every
permutation σ, that is,

max
σ∈ΣN

∥Tσ,N∥L2→L2,∞ ≲
√
logN.

Remark 1.3. An estimate like (1.8) is not known for the Walsh system. Note that
our proof of (1.8) is based on a specific argument which works only for the trigono-
metric system and it is not applicable in the case of the Walsh system. Namely,
we use a logarithmic lower bound due to Demeter [3] for the directional Hilbert
transform on the plane.

Remark 1.4. Recall the following problem posed by Kashin [20], which has become
more interesting after the result of Theorem 1.1: is there a sequence of positive
numbers γ(n) = o(log n) such that for any orthonormal system φn on (0, 1) the
inequality (∫ 1

0

∫ 1

0

max
1⩽m⩽n

∣∣∣∣ m∑
k=1

φk(x)φk(y)

∣∣∣∣2 dx dy)1/2

⩽ γ(n)
√
n (1.11)

holds?

Remark 1.5. Finally, we note that the result analogous to Theorem D for the
Franklin system was proved by Gevorkyan [4]. In a recent paper of this author [6]
the analogues of Theorems C and D were proved for the orthonormal systems of
nonoverlapping martingale-difference (in particular, Haar) polynomials.

§ 2. Directional Hilbert transform and Demeter’s example

The starting point for our construction is an example given by Demeter [3] for
the directional Hilbert transform. To state it we need the notation

B(a, b) = {x ∈ R2 : a ⩽ ∥x∥ < b}, 0 ⩽ a < b ⩽ ∞
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and
Γθ = {x = (x1, x2) ∈ R2 : x1 cos θ + x2 sin θ ⩾ 0}.

For a rapidly decreasing function f and a unit vector (cos θ, sin θ), θ ∈ [0, 2π),
we define

Hθf(x) = p.v.
1

π

∫
R

f(x− t(cos θ, sin θ))

t
dt, x = (x1, x2) ∈ R2,

which is the one-dimensional Hilbert transform corresponding to the direction θ.
It is well known that this operator can be extended to a bounded operator
on L2(R2). For the collection of uniformly distributed unit vectors

Θ =

{
θk =

πk

N
, k = 1, 2, . . . , N

}
,

consider the operator
H∗

Θf(x) = sup
θ∈Θ

|Hθf(x)|.

The result of [3] is the lower bound ∥H∗
Θ∥2→2 ≳ logN . We find it appropriate to

give a detailed proof of this result.

Lemma 2.1 (Demeter; see [3]). For any integer N > N0 , where N0 is an absolute
constant, the function

f(x) =
1

∥x∥
1B(10N−9,N−8)(x) (2.1)

satisfies the inequality
∥H∗

Θ(f)∥2 ≳ logN∥f∥2. (2.2)

Proof. A change of variable allows us to prove (2.2) for the function

h(x) =
1

∥x∥
1B(10,N)(x)

instead of f . Fix a point x in the upper half-plane R2
+ satisfying

105 ⩽ ∥x∥ ⩽
N

3
(2.3)

and consider the unit vector u = x/∥x∥ = (cos θ, sin θ). Clearly, there is a unit
vector uk = (cos θk, sin θk) such that

∥uk − u∥ ⩽
π

N
. (2.4)

A geometric argument shows that the line x − tuk, t ∈ R, has four points of
intersection with the boundary of B(10, N). Moreover, we have

E = {t ∈ R : x− tuk ∈ B(10, N)} = (A, a] ∪ [b, B), (2.5)
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where the numbers A < a < b < B satisfy

∥x−Auk∥ = ∥x−Buk∥ = N, ∥x− auk∥ = ∥x− buk∥ = 10, (2.6)
t ∈ (a, b) ⇐⇒ ∥x− tuk∥ < 10, (2.7)
t /∈ [A,B] ⇐⇒ ∥x− tuk∥ > N.

For any t ∈ E we have

|t| ⩽ ∥x∥+ ∥x− tuk∥ ⩽
N

3
+N =

4N

3
. (2.8)

Based on (2.4), (2.6) and (2.8), we claim that

∥x∥ − 15 ⩽ a ⩽ ∥x∥ − 5, (2.9)
∥x∥+ 5 ⩽ b ⩽ ∥x∥+ 15, (2.10)

||A| −N | ⩽ N

3
, (2.11)

||B| −N | ⩽ N

3
. (2.12)

Indeed, observe first that t = ∥x∥ /∈ E, since∥∥x− ∥x∥uk
∥∥ ⩽

∥∥x− ∥x∥u
∥∥+ ∥x∥ ∥u− uk∥ = ∥x∥ ∥u− uk∥ ⩽ 2.

So from (2.7) we conclude that a < ∥x∥ < b. Thus, using also the inequality∣∣10− |∥x∥ − a|
∣∣ = ∣∣∥x− auk∥ − ∥x− au∥

∣∣ ⩽ |a| ∥u− uk∥ ⩽ 5,

we easily get (2.9). Similarly, we have (2.10). From∣∣|A| −N
∣∣ = ∣∣∥Auk∥ − ∥x−Auk∥

∣∣ ⩽ ∥x∥ ⩽
N

3

and the same bound for B we obtain (2.11) and (2.12), respectively. If t ∈ E, then
by (2.4) and (2.8) we have∣∣∥x∥ − t

∣∣ = ∥x− tu∥ ⩾ ∥x− tuk∥ − |t|∥u− uk∥ ⩾ 10− 5 = 5,

and therefore

∥x− tuk∥ ⩾ ∥x− tu∥ − |t|∥u− uk∥ ⩾
∣∣∥x∥ − t

∣∣− 4.8 ⩾

∣∣∥x∥ − t
∣∣

25
.

Thus we get∣∣∣∣ 1

∥x− tu∥
− 1

∥x− tuk∥

∣∣∣∣ ⩽ |t|∥u− uk∥
∥x− tu∥∥x− tuk∥

⩽
25π|t|

N
∣∣t− ∥x∥

∣∣2 ,
and hence, using also (2.5), (2.9) and (2.10),∣∣∣∣πHθkh(x)− p.v.

∫
E

1

t∥x− tu∥
dt

∣∣∣∣
⩽

25π

N

∫
E

1

|t− ∥x∥|2
dt ⩽

50π

N

∫ ∞

5

1

t2
dt =

10π

N
. (2.13)
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On the other hand,

p.v.
∫
E

1

t∥x− tu∥
dt = p.v.

∫ a

A

dt

t∥x− tu∥
+ p.v.

∫ B

b

dt

t∥x− tu∥

= p.v.
∫ a

A

dt

t(∥x∥ − t)
+ p.v.

∫ B

b

dt

t(t− ∥x∥)

= p.v.
1

∥x∥

∫ a

A

(
1

∥x∥ − t
+

1

t

)
dt+

1

∥x∥

∫ B

b

(
1

t− ∥x∥
− 1

t

)
dt

=
1

∥x∥
(
log

∣∣∥x∥ −A
∣∣− log

∣∣∥x∥ − a
∣∣+ log |a| − log |A|

)
+

1

∥x∥
(
log

∣∣B − ∥x∥
∣∣− log

∣∣b− ∥x∥
∣∣+ log |b| − log |B|

)
.

Using (2.3), (2.11) and (2.12) we can say that

log
∣∣∥x∥ −A

∣∣, log
∣∣B − ∥x∥

∣∣, log |A| and log |B|

are equal to logN + c for different constants c ∈ [log(1/3), log(5/3)]. From (2.9)
and (2.10) we get log

∣∣∥x∥− a
∣∣, log∣∣b−∥x∥

∣∣ ∈ [log 5, log 15]. On the other hand, for
log |a| and log |b| we have a lower bound by log(∥x∥/2) in view of (2.3). All these
imply that

p.v.
∫
E

1

t∥x− tu∥
dt ⩾

2 log(10−5∥x∥)
∥x∥

. (2.14)

Combining (2.13) and (2.14), we obtain

πH∗
Θh(x) ⩾ π|Hθkh(x)| ⩾

log(10−5∥x∥)
∥x∥

− 5π

N

for all x ∈ R2
+ satisfying (2.3). Thus, simple integration shows that

∥H∗
Θ(h)∥22 ≳

∫
B(105,N/3)∩R2

+

|Hθk(h)|2

≳
∫ N/3

105

(
log2(10−5r)

r
− 10π log(10−5r)

N
+

25π2

N2
r

)
dr ≳ log3N

and ∥h∥2 ≲
√
logN for N > N0. This implies (2.2).

Lemma 2.1 is proved.

§ 3. Smooth modification of the function f

Since the one-dimensional Hilbert transform is the multiplier operator of i signx,
for any direction θ = (cos θ, sin θ) we have

Ĥθf(x) = i sign(x1 cos θ + x2 sin θ)f̂(x).

Recall the multiplier operator TD corresponding to a region D ⊂ R2 and defined by

T̂D(f) = 1Df̂ .
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One can check that

TΓθ
(f) =

f − iHθf

2
. (3.1)

We denote
T ∗f = sup

θ∈Θ
|TΓθ

f |.

So the bound (2.2) is equivalent to the inequality

∥T ∗(f)∥2 ≳ logN∥f∥2, (3.2)

which will be used in the next sections. In this section we examine some properties
of the function (2.1).

Lemma 3.1. The function (2.1) satisfies the relations

∥f∥1 ∼ N−8, ∥f∥2 ∼
√
logN (3.3)

and

ω2(δ, f) = sup
∥h∥<δ

(∫
R2

|f(x+ h)− f(x)|2 dx
)1/2

≲ N5
√
δ (3.4)

for any 0 < δ < N−10 .

Proof. Equations (3.3) are results of a simple integration. Fix a vector h, ∥h∥ < δ.
Observe that

x ∈ B(10N−9 + δ,N−8 − δ) (3.5)

implies that x+ h ∈ B(10N−9, N−8) and so

|f(x+ h)− f(x)| =
∣∣∣∣ 1

∥x+ h∥
− 1

∥x∥

∣∣∣∣ ⩽ ∥h∥
∥x+ h∥ ∥x∥

⩽ N18δ.

Using this we get∫
B(10N−9+δ,N−8−δ)

|f(x+ h)− f(x)|2 dx

≲ |B(10N−9 + δ,N−8 − δ)|N36δ2 ≲ N20δ2. (3.6)

If
x ∈ B(10N−9 − δ, 10N−9 + δ) ∪B(N−8 − δ,N−8 + δ), (3.7)

then |f(x+ h)− f(x)| ⩽ 2∥f∥∞ ≲ N9 and so∫
B(10N−9+δ,10N−9−δ)∪B(N−8−δ,N−8+δ)

|f(x+ h)− f(x)|2 dx ≲ N10δ. (3.8)

If x is outside the regions that we have in (3.5) and (3.7), then f(x+h) = f(x) = 0.
So combining (3.6) and (3.8) we obtain (3.4).

The lemma is proved.
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It is well known that there exists a spherical function K ∈ L∞(R2) satisfying
the relations ∫

R2

K(t) dt = 1, (3.9)

supp K̂ ⊂ B(0, 1) (3.10)

and
0 < K(x) ⩽

c

|x|50
, (3.11)

where c > 0 is a constant. Indeed, choose a spherical function φ ∈ C∞(R2) with
suppφ ⊂ B(0, 1/2) and define K(x) by K̂ = c1(φ ∗ φ). Clearly, we have (3.10), as
well as (3.11) for any power instead of 50 in the denominator. The relation (3.9)
will be satisfied after a suitable choice of the constant c1. We are going to replace
the function (2.1) by the function

g(x) =

∫
R2

f(x− t)K (t) dt, (3.12)

where
K (x) = N30K(N15x).

Lemma 3.2. For N large enough, the function (3.12) is spherical and satisfies the
relations

supp ĝ ⊂ B(0, N15), (3.13)

∥g − f∥2 ≲
1

N2
(3.14)

and
∥T ∗(g)∥2 ≳ logN∥g∥2. (3.15)

Proof. The function g is spherical since f and K are spherical. Applying the
Fourier transform to the convolution (3.12) we get

ĝ(x) = f̂(x)K̂ (x) = f̂(x)K̂

(
x

N15

)
, (3.16)

so (3.10) immediately implies (3.13). Write g in the form

g(x) =

∫
R2

f(x− t)K (t) dt1B(0,1)(x) +

∫
R2

f(x− t)K (t) dt1B(1,∞)(x)

= I1(x) + I2(x).

Applying (3.3) and (3.11), we can roughly estimate

|I2(x)| ≲
1B(1,∞)(x)

N2∥x∥
,

then after a simple integration we get

∥I2∥2 ≲
1

N2
. (3.17)
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Choosing δ = N−14, for every x ∈ B(0, 1) we can write

|I1(x)− f(x)| ⩽
∫
R2

|f(x− t)− f(x)|K (t) dt

=

∫
B(0,δ)

|f(x− t)− f(x)|K (t) dt+

∫
B(δ,∞)

|f(x− t)− f(x)|K (t) dt

= I11(x) + I12(x).

From (3.4) and (3.9) it follows that

∥I11∥2 ⩽

(∫
B(0,δ)

K (t)

∫
R2

|f(x− t)− f(x)|2 dx dt
)1/2

⩽ ω2(δ, f) ≲ N5
√
δ ⩽

1

N2
. (3.18)

Applying (3.11) and the bound ∥f∥∞ < N9, the second integral can again be
roughly estimated as follows:

|I12(x)| ⩽ 2N30∥f∥∞
∫
B(δ,∞)

K(N15t) dt

≲ N39

∫
B(δ,∞)

1

(N15|t|)50
dt ≲

1

N2
,

and so
∥I121B(0,1)∥2 ≲

1

N2
. (3.19)

From (3.17)–(3.19) we obtain (3.14). Finally, having (3.14), (3.2) and (4.1), we get

∥T ∗(g)∥2 ⩾ ∥T ∗(f)∥2 − ∥T ∗(g − f)∥2

⩾ ∥T ∗(f)∥2 −
N∑
k=1

∥∥TΓθk
(g − f)

∥∥
2
⩾ ∥T ∗(f)∥2 − c ≳ logN∥g∥2.

This completes the proof of the lemma.

§ 4. A basic sequence of orthogonal functions

In the sequel we always suppose N to be a large enough integer. For the functions
f and g introduced in the previous sections we will often use the relation

∥g∥2 ∼ ∥f∥2 ∼
√
logN, (4.1)

which easily follows from (3.3) and (3.14).

Lemma 4.1. Let f ∈ L2(R) and supp f ⊂ B(0, δ). Then for any direction θ and
number A ⩾ 2δ the inequality

∥TΓθ
(f)1B(A,∞)∥2 ≲

√
δ

A
∥f∥2 (4.2)

holds.
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Proof. In light of (3.1) and the conditions of the lemma we have

∥TΓθ
(f)1B(A,∞)∥2 =

1

2
∥Hθ(f)1B(A,∞)∥2,

so it is enough to prove (4.2) for Hθ instead of the operator TΓθ
. Without loss of

generality we can suppose that θ = 0. So we have

Hθf(x) =
1

π

∫
R

f(x1 − t, x2)

t
dt =

1

π

∫ δ

−δ

f(t, x2)

t− x1
dt.

Observe that
Hθf(x) = 0, |x2| > δ,

and

|Hθf(x)| ≲
1

|x1|

∫ δ

−δ
|f(t, x2)| dt, |x2| ⩽ δ, |x1| > 1.6δ.

Thus, using A ⩾ 2δ and a simple geometric argument, we obtain

∥Hθ(f)1B(A,∞)∥22 ≲ 2

∫ δ

−δ

∫ ∞

0,8A

1

|x1|2

(∫ δ

−δ
|f(t, x2)| dt

)2

dx1 dx2

≲
1

A

∫ δ

−δ

(∫ δ

−δ
|f(t, x2)| dt

)2

dx2 ≲
δ

A
∥f∥22,

and so (4.2) holds.
Lemma 4.1 is proved.

Denote

S(α, β) = Γβ \ Γα = {x ∈ R2 : x1 cosβ + x2 sinβ ⩾ 0, x1 cosα+ x2 sinα < 0},

which is a sectorial region.

Lemma 4.2. Let 0 < δ < 1/16, f ∈ L2(R) and supp f ⊂ B(0, δ). Then for any
directions α and β the inequality

∥TS(α,β)(f)1B(1/2,∞)∥2 ≲
4
√
δ∥f∥2

holds.

Proof. Observe that
TS(α,β) = TΓβ

◦ TΓπ+α
.

Consider the functions

f1 = TΓπ+α
(f)1B(0,

√
δ) and f2 = TΓπ+α

(f)1B(
√
δ,∞).

Applying Lemma 4.1 for A =
√
δ, we obtain

∥f2∥2 = ∥TΓπ+α(f)1B(
√
δ,∞)∥2 ≲

√
δ√
δ
∥f∥2 =

4
√
δ∥f∥2, (4.3)
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and so
∥TΓβ

(f2)∥2 ⩽ ∥f2∥2 ≲
4
√
δ∥f∥2.

Once again applying Lemma 4.1 for A = 1/2 we get

∥TΓβ
(f1)1B(1/2,∞))∥2 ≲

4
√
δ∥f1∥2 ⩽

4
√
δ∥f∥2. (4.4)

Finally, combining (4.3) and (4.4) we obtain

∥TS(α,β)(f)1B(1/2,∞)∥2 = ∥TΓβ
(TΓ(π+α)(f))1B(1/2,∞)∥2

⩽ ∥TΓβ
(f1)1B(1/2,∞)∥2 + ∥TΓβ

(f2)∥2 ≲
4
√
δ∥f∥2.

The lemma is proved.

Denote

S+
k = S(θk, θk−1), S−

k = S(θk−1, θk) and Sk = S+
k ∪ S−

k ,

and consider the functions

gk = TS+
k
(g)− TS−

k
(g), k = 1, 2, . . . , N, (4.5)

where g is (3.12).

Lemma 4.3. The sequence of functions (4.5) satisfies the bound∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

gk

∣∣∣∣∥∥∥∥
2

≳ logN

∥∥∥∥ N∑
k=1

gk

∥∥∥∥
2

= logN∥g∥2. (4.6)

Proof. One can check that

TΓm(g) = TΓ0(g) +

m∑
k=1

gk,

∥∥∥∥ N∑
k=1

gk

∥∥∥∥
2

= ∥g∥2.

So from (3.15) we obtain∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

gk

∣∣∣∣∥∥∥∥
2

⩾

∥∥∥∥ max
1⩽m⩽N

∣∣∣∣TΓ0(g) +

m∑
k=1

gk

∣∣∣∣∥∥∥∥
2

− ∥TΓ0(g)∥2

=
∥∥∥ max
1⩽m⩽N

|TΓm
(g)|

∥∥∥
2
− ∥TΓ0

(g)∥2 ⩾ ∥T ∗(g)∥2 − ∥g∥2 ≳ logN∥g∥2.

Lemma 4.3 is proved.

Now denote

D+
k = B(5N4, N15) ∩ S

(
θk −

1

N4
, θk−1 +

1

N4

)
,

D−
k = B(5N4, N15) ∩ S

(
θk−1 +

1

N4
, θk −

1

N4

)
and

Dk = D+
k ∪D−

k

and consider the functions

fk = TD+
k
(g)− TD−

k
(g), k = 1, 2, . . . , N. (4.7)
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Lemma 4.4. We have the inequality

∥fk − gk∥2 ≲
∥g∥2
N2

, k = 1, 2, . . . , N. (4.8)

Proof. First observe that, since g and so ĝ are spherical functions, we have

∥TS(α,β)(g)∥22 = ∥ĝ 1S(α,β)∥22 =
|α− β|
2π

∥ĝ∥22 =
|α− β|
2π

∥g∥22. (4.9)

In view of (3.13), (4.5) and (4.7) it follows that

supp(f̂k − ĝk) ⊂ B(0, 5N4) ∪
( 4⋃
j=1

Uj

)
,

where

U1 = S(θj −N−4, θj), U2 = S(θj−1 +N−4, θj−1),

U3 = S(θj , θj −N−4), U4 = S(θj−1, θj−1 +N−4).

In addition, according to (3.16) we have

∥ĝ∥∞ ⩽ ∥f̂∥∞∥K̂∥∞ ≲ ∥f̂∥∞ ⩽ ∥f∥1 ≲ N−8. (4.10)

Thus, using (4.9) and (4.1) we get

∥fk − gk∥2 = ∥f̂k − ĝk∥2 ⩽ ∥ĝ 1B(0,5N4)∥2 +
4∑
k=1

∥ĝ 1Uk
(g)∥2

≲ ∥ĝ∥∞N4 +N−2∥g∥2 ≲ N−4 +N−2∥g∥2 ≲ N−2∥g∥2.

The lemma is proved.

Lemma 4.5. The inequality

∥fk1B(1/2,∞)∥2 ≲
∥g∥2
N2

(4.11)

holds.

Proof. Letting

g1 = TB(5N4,∞)(g) and g2 = TB(0,5N4)(g),

we write

g = g2 + g1 = g2 + g11B(0,N−8) + g11B(N−8,∞) = g2 + U + V.

Using (3.13) and the definitions of the domains D+
k and D−

k , one can write

TD+
k
(g)− TD−

k
(g) = TD+

k
(g1)− TD−

k
(g1) = TG+

k
(g1)− TG−

k
(g1)

= TG+
k
(U)− TG−

k
(U) + TG+

k
(V )− TG−

k
(V ), (4.12)
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where

G+
k = S

(
θk −

1

N4
, θk−1 +

1

N4

)
and G−

k = S

(
θk−1 +

1

N4
, θk −

1

N4

)
.

By (4.10) we have

∥g2∥2 = ∥ĝ 1B(0,5N4)∥2 ≲
1

N8
∥1B(0,5N4)∥2 ≲

1

N4
.

Combining supp f ⊂ B(0, N−8) with inequality (3.14) implies that

∥TG+
k
(V )− TG−

k
(V )∥2 ⩽ ∥V ∥2 = ∥(f − g1)1B(N−8,∞)∥2

⩽ ∥f − g1∥2 ≲ ∥f − g∥2 + ∥g2∥2 ≲ N−2. (4.13)

Then, applying Lemma 4.2 with δ = N−8 and taking into account that suppU ⊂
B(0, N−8) we obtain

∥(TG+
k
(U)− TG−

k
(U))1B(1/2,∞)∥2 ≲

∥U∥2
N2

⩽
∥g∥2
N2

. (4.14)

From (4.7), (4.12), (4.13), (4.14) and (4.1) we obtain

∥fk1B(1/2,∞)∥2 = ∥(TD+
k
(g)− TD−

k
(g))1B(1/2,∞)∥2

⩽ ∥(TG+
k
(V )− TG−

k
(V ))1B(1/2,∞)∥2 + ∥(TG+

k
(U)− TG−

k
(U))1B(1/2,∞)∥2 ≲

∥g∥2
N2

,

and so (4.11) follows.
The lemma is proved.

Lemma 4.6. There exists a sequence of functions rk ∈ L2(R2), k = 1, 2, . . . , N ,
such that

supp(rk) ⊂
(
−1

2
,
1

2

)
×
(
−1

2
,
1

2

)
, (4.15)

∥r̂k1R2\Dk
∥2 ≲

∥g∥2
N2

(4.16)

and ∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

rk

∣∣∣∣∥∥∥∥
2

≳ logN

∥∥∥∥ N∑
k=1

rk

∥∥∥∥
2

∼ logN∥g∥2. (4.17)

Proof. Set
rk(x) = fk(x)1B(0,1/2)(x).

We immediately have (4.15). From (4.11) it follows that

∥rk − fk∥2 ≲
∥g∥2
N2

,

and in light of (4.8) we get ∥rk − gk∥2 ≲ ∥g∥2/N2. Thus, taking (4.6) into account
we get (4.17). Since

rk = fk − fk1B(1/2,∞),
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and supp f̂k ⊂ Dk, by (4.11) and (4.1) we get

∥r̂k1R2\Dk
∥2 = ∥f̂k1B(1/2,∞)1R2\Dk

∥2 ⩽ ∥f̂k1B(1/2,∞)∥2

= ∥fk1B(1/2,∞)∥2 ≲
∥f∥2
N2

and so (4.16) holds.
The lemma is proved.

§ 5. Double trigonometric polynomials

The following lemma is a version of Lemma 4.6 for double trigonometric sums.

Proposition 5.1. There exist two-dimensional nonoverlapping trigonometric poly-
nomials

pk(x) =
∑
n∈Gk

ane
2πin·x, k = 1, 2, . . . , N, (5.1)

such that
Gk ⊂ B(0.4N15) ∩ Z2

+

and ∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

pk

∣∣∣∣ ∥∥∥∥
2

≳ logN

∥∥∥∥ N∑
k=1

pk

∥∥∥∥
2

. (5.2)

Proof. Let u be a fixed vector. In light of (4.15) the function

rk(u,x) = e−2πiu·xrk(x) (5.3)

as a function of x can be continued periodically and considered as a function
in L2(T2) with the Fourier representation

rk(u,x) =
∑
n∈Z2

r̂k(n+ u)e2πin·x.

For any n = (n1, n2) ∈ Z2 we denote ∆n = [n1, n1 + 1)× [n2, n2 + 1) and let

Uk = {n ∈ Z2 : ∆n ∩Dk ̸= ∅} ⊂ B(0, 2N15).

From the definition of Dk it follows that

Dk ⊂
⋃

n∈Uk

∆n ⊂ B(0, 2N15). (5.4)

A simple geometric argument shows that dist(Dk,R2 \ Sk) > 2, which implies that⋃
n∈Uk

∆n ⊂ Sk = S+
k ∪ S−

k ,

so the Uk are pairwise disjoint. Consider the functions

pk(u,x) =
∑
n∈Uk

r̂k(n+ u)e2πin·x
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and
qk(u,x) =

∑
n∈Z2\Uk

r̂k(n+ u)e2πin·x.

For fixed u the polynomials pk(u,x) are nonoverlapping since Uk ⊂ Sk. Clearly,

rk(u,x) = pk(u,x) + qk(u,x), (5.5)

and by (4.16) and (5.4) we obtain∫
T2

∥qk(u, · )∥22 du =

∫
T2

∑
n∈Z2\Uk

|r̂k(n+ u)|2 du =
∑

n∈Z2\Uk

∫
∆n

|r̂k(t)|2 dt

⩽ ∥r̂k1R2\Dk
∥22 ≲

∥g∥22
N4

and so
N∑
k=1

∫
T2

∥qk(u, · )∥22 du ≲
∥g∥22
N3

.

This inequality produces u = u0 such that

N∑
k=1

∥qk(u0, ·)∥22 ≲
∥g∥22
N3

,

and by Hölder’s inequality we get

N∑
k=1

∥qk(u0, · )∥2 ⩽
√
N

( N∑
k=1

∥qk(u0, · )∥22
)1/2

≲
∥g∥2
N

. (5.6)

Finally, we can define the polynomials

pk(x) = e2πi2(N
15x1+N

15x2)pk(u0,x), x = (x1, x2),

with the nonoverlapping spectra

Gk = Uk + (2N15, 2N15) ⊂ B(0.4N15) ∩ Z2
+.

Combining (4.17), (5.3), (5.5) and (5.6) we get∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

pk

∣∣∣∣∥∥∥∥
2

=

∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

pk(u0, · )
∣∣∣∣∥∥∥∥

2

⩾

∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

rk(u0, · )
∣∣∣∣∥∥∥∥

2

−
N∑
k=1

∥qk(u0, · )∥2

⩾

∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

rk

∣∣∣∣∥∥∥∥
2

− c2
∥g∥2
N

⩾ c1 logN

∥∥∥∥ N∑
k=1

rk

∥∥∥∥
2

− c2
∥g∥2
N

.

(5.7)
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Likewise, using (4.1) one can show that∣∣∣∣ ∥∥∥∥ N∑
k=1

rk

∥∥∥∥
2

−
∥∥∥∥ N∑
k=1

pk

∥∥∥∥
2

∣∣∣∣ ≲ ∥g∥2
N

. (5.8)

From (4.17), (5.7) and (5.8) one can easily get (5.2).
Proposition 5.1 is proved.

§ 6. Equivalence of discrete trigonometric systems

Let {fk : k ∈ A} and {gk : k ∈ B} be families of measurable complex-valued
functions defined on measure spaces (X,µ) and (Y, ν), respectively. We say that
these sequences are equivalent if there is a one-to-one mapping σ : A→ B such that
the equality

µ{fαj
∈ Bj , j = 1, 2, . . . ,m} = ν{gσ(αj) ∈ Bj , j = 1, 2, . . . ,m}

holds for any choice of indices αj ∈ A and open balls Bj ⊂ R2, j = 1, 2, . . . ,m.
For an integer l ⩾ 1 we denote Nl = {1, 2, . . . , l}. The discrete trigonometric system
of order l on [0, 1) is defined by

T (l) =

{
t(l)n (x) =

l∑
k=1

exp

(
2πi

nk

l

)
1
δ
(l)
k

(x), n ∈ Nl
}
,

where δ(l)k = [(k−1)/l, k/l). The tensor product of the two one-dimensional systems
of orders p and q is the collection of functions

T (p) × T (q) =
{
(t(p)n1

× t(q)n2
)(x) = t(p)n1

(x1)t
(q)
n2

(x2), n ∈ Np × Nq
}
.

Notice that

(t(p)n1
× t(q)n2

)(x) =

p∑
u1=1

q∑
u2=1

exp

(
2πi

(
n1u1
p

+
n2u2
q

))
1
δ
(p)
u1

×δ(q)u2

(x). (6.1)

We prove the following.

Proposition 6.1. If p and q are coprime integers, then the systems T (pq) and
T (p) × T (q) are equivalent.

Lemma 6.1. For any coprime numbers p and q , there are two one-to-one mappings
φ and ψ acting from Np × Nq to Npq such that{

n1u1
p

+
n2u2
q

}
=

{
φ(n)ψ(u)

pq

}
, (6.2)

where {a} denotes the fractional part of a real number a.

Proof. According to the Chinese remainder theorem, for every pair (n1, n2) of inte-
gers n1 ∈ Np and n2 ∈ Nq one can find a unique l ∈ Npq such that

l = n1 mod p and l = n2 mod q
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and this defines a one-to-one mapping τ from Np×Nq to Npq such that τ(n1, n2) = l.
For our further convenience we extend τ over the whole of Z2

+ periodically by
τ(n1, n2) = τ(n1 + pk, n2 + qj) for any pair of positive integers k, j. Define

φ(n) = τ(n1, n2) and ψ(u) = τ(u1,−u2)(q − p) mod∗ pq,

where

m mod∗ n =

{
n, m modn = 0,

m modn, m modn ̸= 0.
(6.3)

Clearly, φ and ψ determine one-to-one mappings from Np × Nq to Npq. Moreover,{
φ(n)ψ(u)

pq

}
=

{
τ(n1, n2)τ(u1,−u2)(q − p)

pq

}
=

{
τ(n1, n2)τ(u1,−u2)

p
− τ(n1, n2)τ(u1,−u2)

q

}
=

{
n1u1
p

+
n2u2
q

}
.

Proof of Proposition 6.1. Let φ and ψ be mappings taken from Lemma 6.1. Then
φ produces a one-to-one correspondence

t(p)n1
× t(q)n2

→ t
(pq)
φ(n),

while ψ produces a one-to-one correspondence

δ(p)u1
× δ(q)u2

→ δ
(pq)
ψ(u1,u2)

.

In light of (6.1) and (6.2) one can see that each function t(p)n1 × t
(q)
n2 takes the same

value on δ(p)u1 × δ
(q)
u2 as t(pq)φ(n1,n2)

on δ(pq)ψ(u1,u2)
. This obviously implies the equivalence

of the systems T (pq) and T (p) × T (q).
The proposition is proved.

§ 7. The main lemma

Lemma 7.1. If functions f, g ∈ L2(T) satisfy the strong orthogonality condition∫
T
f(x)g(h− x) dx = 0 for any h ∈ R, (7.1)

then they have nonoverlapping Fourier series.

Proof. Condition (7.1) implies that

f̂(n)ĝ(n) = (f̂ ⋆ g)(n) = 0.

So for each n ∈ Z either f̂(n) = 0 or ĝ(n) = 0. This completes the proof.

Now we are able to prove the main lemma.
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Lemma 7.2. There exists a sequence of one-dimensional trigonometric polynom-
ials

Qk(x) =
∑
n∈Uk

ane
2πinx, k = 1, 2, . . . , N,

with nonoverlapping spectra Uk such that

Uk ⊂ [1, N70] (7.2)

and ∥∥∥∥ max
1⩽m⩽N

∣∣∣∣ m∑
k=1

Qk

∣∣∣∣∥∥∥∥
2

≳ logN

∥∥∥∥ N∑
k=1

Qk

∥∥∥∥
2

. (7.3)

Proof. For the coprime numbers p = N31 and q = N31 +1 we consider the discrete
double trigonometric system T (p) × T (q). It is easy to see that

∣∣e2πin·x − (t(p)n1
× t(q)n2

)(x)
∣∣ ≲ 1

N16
, x ∈ T2, n = (n1, n2) ∈ B(0.4N15) ∩ Z+.

(7.4)
Consider the nonoverlapping double discrete trigonometric polynomials

Pk(x) =
∑
n∈Gk

an(t
(p)
n1

× t(q)n2
)(x), k = 1, 2, . . . , N,

with the same coefficients as in (5.1), where Gk ⊂ Np × Nq. According to Propo-
sition 6.1 the systems T (pq) and T (p) × T (q) are equivalent. So the sequence of
double polynomials Pk generates a one-dimensional sequence of nonoverlapping
polynomials Rk ∈ T (pq), k = 1, 2, . . . , N . Both sequences share the same logarith-
mic bound (5.2) for the pk, since it follows from (7.4) that

∥Pk − pk∥2 ≲
1

N

( ∑
n∈Gk

a2n

)1/2

⩽
1

N

∥∥∥∥ N∑
k=1

pk

∥∥∥∥
2

.

The disjointness of the spectra of Rk as polynomials in T (pq) implies that∫
T
Rk(x)Rm(h− x) dx = 0 for any h ∈ R, k,m ∈ Npq, k ̸= m.

Thus, according to Lemma 7.1, the functions Rk ∈ L2(T) have nonoverlapping spec-
tra of Fourier series. Moreover, they are step functions with intervals of constancy
having length (pq)−1 ∼ N−62. Let

Qk(x) = e2πi(N
66+1)xσN66(x,Rk),
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where σn(x, f) denotes the nth-order (C, 1)-mean of the function f . Clearly, we
have (7.2). Recall the approximation property of the (C, 1)-means:

∥σn(f)− f∥2 ⩽

(∫
T

∫
T
Kn(t)|f(x+ t)− f(x)|2 dt dx

)1/2

⩽

(∫ δ

−δ
Kn(t)

∫
T
|f(x+ t)− f(x)|2 dx dt

)1/2

+

(∫
δ<|t|<π

Kn(t)

∫
T
|f(x+ t)− f(x)|2 dx dt

)1/2

≲ ω2(δ, f) + ∥f∥2
(∫ ∞

δ

1

nt2
dt

)1/2

≲ ω2(δ, f) +
∥f∥2√
nδ
.

Using this inequality for f = Rk, n = N66 and δ = N−64, as well as the easily
checked bound ω2(δ,Rk) ≲ ∥Rk∥2/N , one can obtain∥∥Qk(x)− exp(2πi(N66 + 1)x)Rk(x)

∥∥
2
≲

∥Rk∥2
N

.

The latter immediately yields the logarithmic bound (7.3), since we have the same
bound for Rk.

Lemma 7.2 is proved.

§ 8. Proof of the main theorem and Corollary 1.1

Lemma 8.1. Let T be a sublinear operator satisfying

∥T∥L2→L2,∞ ⩽ c
√
logN, ∥T∥L2→L∞ ⩽ N

and c logN ⩾ 1. Then
∥T∥L2→L2 ≲ c logN.

Proof. For a given function f ∈ L2(T), ∥f∥2 ⩽ 1, we have ∥T (f)∥∞ ⩽ N . Denote

φ(λ) = |{x : |Tf(x)| > λ}|.

Then we have φ(λ) = 0, λ > N,

φ(λ) ⩽
∥T∥2L2→L2,∞

λ2
⩽
c2 logN

λ2
, λ > 0,

and so

∥T (f)∥22 = 2

∫ ∞

0

λφ(λ) dλ = 2

∫ N

0

λφ(λ)dλ ⩽ 2 + 2

∫ N

1

λφ(λ) dλ ≲ c2 log2N.

The lemma is proved.

Proof of Theorem 1.1. The upper bound in (1.7) follows from the Menshov-
Rademacher inequality. The lower bound

max
σ

∥Tσ,N∥L2→L2 ≳ logN

easily follows from Lemma 7.2.
Theorem 1.1 is proved.
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Proof of Corollary 1.1. A combination of Lemma 8.1 and the lower bound in (1.7)
implies (1.8).

§ 9. Proof of Corollary 1.2

The next lemma is based on (1.8). Denote by PN the family of one-dimensional
trigonometric polynomials of the form

N∑
k=1

ake
2πik,

where the ak are complex numbers.

Lemma 9.1. For any N > N0 there exists a polynomial P ∈ PN and a rearrange-
ment σ ∈ ΣN such that ∥P∥2 ∼ 1 and∣∣{x ∈ T : Tσ,N (x, P ) >

√
logN

}∣∣ ≳ 1. (9.1)

Proof. Let M = [
√
N ] + 1. According to (1.8) there is a polynomial Q ∈ PM with

∥Q∥2 = 1 and a rearrangement τ ∈ ΣM such that

|E| =
∣∣{x ∈ T : Tτ,M (x,Q) > λ0}

∣∣ ⩾ c logM

λ20

for some λ0 > 0. Since |T| = 1, we have λ0 ⩾
√
c logM and from ∥Q∥2 = 1 it

follows that 0 < λ0 ⩽
√
M . Putting l = [λ20/c logM ] we have

1 ⩽ l ⩽
M

c logM
⩽
M

2
and |E| > 1

l + 1
,

for N > N0. Using a well-known argument (see [32], Ch. 13, Lemma 1.24) one can
find a sequence of points xk ∈ T, k = 0, 1, . . . , l − 1, such that

|F | =
∣∣∣∣ l−1⋃
k=0

(E + xk)

∣∣∣∣ ⩾ 1− (1− |E|)l ⩾ 1− (1− (l + 1)
−1

)l ≳ 1.

Then we consider the polynomial

G(x) =
1√
l

l−1∑
k=0

Qk(x), where Qk(x) = Q(x− xk)e
2πikMx.

Clearly, G ∈ PlM ⊂ PN since lM ⩽ N . Define a rearrangement σ ∈ ΣN by

σ(n) =

{
τ(n−Mk) +Mk, Mk < n ⩽M(k + 1), k = 0, 1, . . . , l − 1,

n, lM < n ⩽ N.

One can check that ∥G∥2 = 1. Any partial sum of the σ-rearrangement of the
polynomial Qk/

√
l can be written as a difference of two partial sums of G. This

implies that

Tσ,N (x,G) ⩾
1

2
√
l
Tτ,M (x− xk, Q), x ∈ T.
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Thus, for any x ∈ E + xk we have

Tσ,N (x,G) ⩾
1

2
√
l
Tτ,M (x− xk, Q) >

λ0

2
√
l
⩾

√
c logM

2
≳

√
logN.

Hence Tσ,N (x,G) ≳
√
logN whenever x ∈ F . Since |F | ≳ 1, a polynomial

P (x) = cG(x) with a suitable absolute constant c may become our desired poly-
nomial.

The lemma is proved.

Proof of Corollary 1.2. Using (1.9) one can define integers Nk ⩾ 1, k = 1, 2, . . . ,
such that

Nk+1 > 2Nk, w(2Nk) ⩽
logNk
k2

, k = 1, 2, . . . .

Applying Lemma 9.1, we find polynomials Pk ∈ PNk
and rearrangements σk ∈ ΣNk

such that ∥Pk∥2 ∼ 1 and the sets

Ek =
{
x ∈ T : Tσk

(x, Pk) >
√
logNk

}
satisfy |Ek| > c > 0. It is well known that this condition provides a sequence tk ∈ T
such that ∣∣∣∣⋂

k⩾1

⋃
n⩾k

(En + tn)

∣∣∣∣ = 1

(see [32], Ch. 13, Lemma 1.24). Consider the trigonometric series

∞∑
k=1

1

k
√
w(2Nk)

Pk(x− tk)e
2πiNkx =

∞∑
n=1

cne
2πinx. (9.2)

We have
∞∑
n=1

|cn|2w(n) ⩽
∞∑
k=1

∥Pk∥22
k2

<∞. (9.3)

Define a permutation σ of N as follows:

σ(n) =

{
σk(n−Nk) +Nk, Nk < n ⩽ 2Nk, k = 1, 2, . . . ,

n, n /∈
⋃
k⩾1(Nk, 2Nk].

If x ∈
⋂
k⩾1

⋃
n⩾k(En+ tn), then x ∈ Ek+ tk for infinitely many k. For x ∈ Ek+ tk

we have

max
Nk<m⩽2Nk

∣∣∣∣ m∑
n=Nk+1

cσ(n)e
2πiσ(n)x

∣∣∣∣ ⩾ Tσk
(x− tk, Pk)

k
√
w(2Nk)

⩾

√
logNk

k
√
w(2Nk)

> 1.

Thus we get that the series (9.2) is almost everywhere divergent. Combining this
with (9.3) we complete the proof.

The corollary is proved.
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§ 10. Proof of Corollary 1.3

Lemma 10.1. Let fk , k = 1, 2, . . . , n, be a sequence of complex-valued functions
on an interval ∆. Then for any λ > 0 we have the inequality∣∣∣∣{x ∈ ∆: max

1⩽m⩽n

(
Re

m∑
k=1

αfk(x)

)
>

λ√
2

}∣∣∣∣
⩾

1

4

∣∣∣∣{x ∈ ∆: max
1⩽m⩽n

∣∣∣∣ m∑
k=1

fk(x)

∣∣∣∣ > λ

}∣∣∣∣
for some α = eπis/2 , s = 0, 1, 2, 3.

Proof. One can check that

max
1⩽m⩽n

∣∣∣∣ m∑
k=1

fk(x)

∣∣∣∣ > λ

yields at least one of the following four inequalities

max
1⩽m⩽n

(
Re

m∑
k=1

fk(x)

)
>

λ√
2
, min

1⩽m⩽n

(
Re

m∑
k=1

fk(x)

)
< − λ√

2
,

max
1⩽m⩽n

(
Im

m∑
k=1

fk(x)

)
>

λ√
2
, min

1⩽m⩽n

(
Im

m∑
k=1

fk(x)

)
< − λ√

2
.

This immediately gives the required inequality for some α.
The lemma is proved.

The spectrum of a trigonometric polynomial

U(x) =

n∑
k=m

ake
2πikx

will be denoted by spec(U) = {k : ak ̸= 0}.

Lemma 10.2. Let ∆ ⊂ T be an arbitrary interval and let the integer N > N0

satisfy
1√
N

⩽ |∆|. (10.1)

Then for any positive integer l there exists a sequence of nonoverlapping trigono-
metric polynomials Un , n = 1, 2, . . . , N , such that

spec(Un) ⊂ (l, l +N5],∥∥∥∥ N∑
n=1

Un

∥∥∥∥
L2(T)

≲
√
|∆|,

N∑
n=1

|Un(x)| ≲
1

N
, x ∈ T \∆,
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and ∣∣∣∣{x ∈ ∆: max
1⩽m⩽N

Re

( m∑
n=1

Un(x)

)
>

√
logN

}∣∣∣∣ ≳ |∆|.

Proof. Suppose ∆ = [a, b]. In view of (10.1) we consider the polynomial

R(x) = RN (x) =
1

π

∫ b−1/(4
√
N)

a+1/(4
√
N)

K[N3/3](x− t) dt =

[N3/3]∑
k=−[N3/3]

cke
2πikx,

where Kn is the Fejér kernel of order n. The standard properties of the Fejér kernel
imply that

0 ⩽ R(x) ≲
1

N2
, x ∈ T \∆, (10.2)

1 ⩾ R(x) ⩾
1

2
, x ∈ ∆̃ =

[
a+

1

3
√
N
, b− 1

3
√
N

]
, (10.3)

and
1 ⩾ R(x) ⩾ 0, x ∈ ∆ \ ∆̃,

where (10.3) holds for N large enough. Applying Lemma 9.1, we find a polynomial

P (x) =

N∑
n=1

bne
2πinx

satisfying the conditions in that lemma. In light of (10.1), from (9.1) it easily
follows that∣∣∣∣{x ∈ ∆̃ : max

1⩽m⩽N

∣∣∣∣ m∑
n=1

bσ(n)e
2πiσ(n)N3x

∣∣∣∣ >√
logN

}∣∣∣∣ ≳ |∆|, (10.4)

where σ is the permutation in (9.1). Consider the polynomials

pn(x) = 4e2πilxR(x)bσ(n)e
2πiσ(n)N3x, n = 1, 2, . . . , N,

whose spectra lie in (l, l + N5] and are nonoverlapping. Using (10.2) and (10.3)
we conclude that∥∥∥∥ N∑

n=1

pn

∥∥∥∥
L2(T)

≲ ∥P (N3x)∥L2(∆) +
1

N2
≲ ∥P∥2

√
|∆| ≲

√
|∆|.

Using (10.2) and
∑N
n=1 |bn| ⩽

√
N∥P∥2 ≲

√
N we get

N∑
n=1

|pn(x)| ≲
√
N |R(x)| ≲ 1

N
for all x ∈ T \∆.

Then we have

max
1⩽m⩽N

∣∣∣∣ m∑
n=1

pn(x)

∣∣∣∣ = 4R(x)max
m

∣∣∣∣ m∑
n=1

bσ(n)e
2πiσ(n)N3x

∣∣∣∣,
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and therefore, by (10.3) and (10.4) we get∣∣∣∣{x ∈ ∆: max
1⩽m⩽N

∣∣∣∣ m∑
n=1

pn(x)

∣∣∣∣ > 2
√
logN

}∣∣∣∣
⩾

∣∣∣∣{x ∈ ∆̃ : max
1⩽m⩽N

∣∣∣∣ m∑
n=1

bσ(n)e
2πiσ(n)N3x

∣∣∣∣ >√
logN

}∣∣∣∣ ≳ |∆|.

According to Lemma 10.1 the polynomials Un(x) = ±eπis/2pn(x) with an appropri-
ate choice of s = 0, 1, 2, 3 and the sign ± can serve as the desired sequence. Clearly,
they satisfy the conditions of the lemma.

Lemma 10.2 is proved.

In the rest of the paper we consider the sequence

ν0 = 1, νk = 250
k

, k = 1, 2, . . . . (10.5)

Lemma 10.3. If an increasing sequence of numbers w(n) satisfies (1.4), then there
exists a set of integers G ⊂ N such that

w(νk+1) < 100w(νk), k ∈ G, (10.6)∑
k∈G

50k

w(νk)
= ∞, (10.7)

where νk is the sequence (10.5).

Proof. First observe that it follows from (1.4) that
∞∑
k=1

50k

w(νk)
= ∞. (10.8)

Let G be the set of integers k satisfying (10.6). If∑
k∈N\G

50k

w(νk)
<∞, (10.9)

then (10.7) immediately follows from (10.8) and the lemma is proved. So we can
suppose that the series in (10.9) is divergent. Clearly, G is infinite and the set N\G
can be written in the form

N \G =
⋃
j

{m2j + 1,m2j + 2, . . . ,m2j+1}

where m2j ∈ G for any j = 1, 2, . . . . We have

w(νk+1) ⩾ 100w(νk) for all k = m2j + 1,m2j + 2, . . . ,m2j+1,

which implies that
m2j+1∑

k=m2j+1

50k

w(νk)
⩽

50m2j+1

w(νm2j+1)

(
1

2
+

1

22
+ · · ·

)
⩽

50m2j+1

w(νm2j )
.
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Thus we get

∑
k∈G

50k

w(νk)
⩾

∞∑
j=1

50m2j

w(νm2j )
⩾

1

50

∑
k∈N\G

50k

w(νk)
= ∞.

The lemma is proved.

One can find the following lemma in [8], Ch. 9, in the proof of Theorem 6.

Lemma 10.4. If Ek ⊂ (0, 1) are stochastically independent sets such that |Ek| >
c > 0 and the sequence bk > 0 satisfies

∑∞
k=1 bk = ∞, then

∞∑
k=1

bk1Ek
(x) = ∞ almost everywhere. (10.10)

Proof. Let 0 < ck ⩽ bk satisfy
∑
k ck = ∞ and

∑
k c

2
k <∞. Observe that φk(x) =

1Ek
(x) − |Ek| form a stochastically independent system of orthogonal functions.

It is well known that any series

∞∑
k=1

ckφk(x) with
∑
k

c2k <∞

in such a system is almost everywhere convergent (see [8], Ch. 2, Theorem 9).
Combining this with the relation

∑∞
k=1 ck|Ek| = ∞, we get the divergence of∑∞

k=1 ck1Ek
(x) almost everywhere and so (10.10).

The lemma is proved.

Lemma 10.5. If P ∈ PN is a polynomial of degree N and ∆ ⊂ T is an interval,
then

OSC∆(P ) = sup
x,y∈∆

|P (x)− P (y)| ≲ N3/2|∆| ∥P∥2.

Proof. Suppose

P (x) =

N∑
k=1

ake
2πikx.

Applying Hölder’s inequality, for x, y ∈ ∆ we get

|P (x)− P (y)| ⩽
( N∑
k=1

|ak|2
)1/2( N∑

k=1

|e2πikx − e2πiky|2
)1/2

≲ N3/2|∆| ∥P∥2.

The lemma is proved.

Proof of Corollary 1.3. Applying Lemma 10.3 we find a set of indices G ⊂ N satisfy-
ing (10.6) and (10.7). For the sake of simplicity and without loss of generality we can
suppose that G = N. Indeed, considering the general case when G = {rk}, one just
needs to replace everywhere the sum

∑∞
k=1 by

∑
k∈G and

∑∞
k=k0

by
∑
k∈G∩[k0,∞).
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The integers rk will also appear in indices in some places. So we suppose that
G = N. Clearly there is a sequence of positive numbers qk ↗ ∞ such that

50k

qkw(νk)
⩽ 1, (10.11)

∞∑
k=1

50k

qkw(νk)
= ∞

and
∞∑
k=1

50k

q2kw(νk)
<∞. (10.12)

Consider the intervals

∆k,j =

[
j − 1

νk
,
j

νk

)
, 1 ⩽ j ⩽ νk, k = 1, 2, . . . .

Applying Lemma 10.2 with N = (νk)
2 and ∆ = ∆k,j , k ⩾ k0, we find a sequence

of nonoverlapping polynomials Uk,j,n(x), n = 1, 2, . . . , (νk)
2, such that

spec(Uk,j,n) ⊂ (j(νk)
10, (j + 1)(νk)

10], (10.13)
(νk)

2∑
n=1

∥Uk,j,n∥2L2(T) ≲ |∆k,j | =
1

νk
, (10.14)

(νk)
2∑

n=1

|Uk,j,n(x)| ≲
1

(νk)2
, x ∈ T \∆k,j , (10.15)

and∣∣∣∣{x ∈ ∆k,j : max
1⩽m⩽(νk)2

Re

( m∑
n=1

Uk,j,n(x)

)
>

√
50k

}∣∣∣∣ ≳ |∆k,j | =
1

νk
. (10.16)

Observe that if

∆k+1,i ∩
{
x ∈ ∆k,j : max

1⩽m⩽(νk)2
Re

( m∑
n=1

Uk,j,n(x)

)
>

√
50k

}
̸= ∅, (10.17)

then one can find an integer m = m(k + 1, j) such that 1 ⩽ m ⩽ (νk)
2 and

Re

(m(k+1,i)∑
n=1

Uk,j,n(x)

)
>

√
50k

2
for all x ∈ ∆k+1,i, (10.18)

since by (10.13) any sum
∑m
n=1 Uk,j,n is a polynomial of degree at most (νk)15 and,

using Lemma 10.5, its oscillation on ∆k+1,i can roughly be estimated by∥∥∥∥ m∑
n=1

Uk,j,n

∥∥∥∥
2

(νk)
45/2|∆k+1,i| ⩽ 1.
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This and (10.17) immediately imply (10.18). From (10.16) it follows that the
measure of the union of all the intervals ∆k+1,i satisfying (10.17) has a lower bound
c|∆k,j |, where 0 < c < 1 is an absolute constant. Thus one can determine a set
Ek,j(⊂ ∆k,j) which is a union of some intervals ∆k+1,i satisfying (10.17) and such
that

|Ek,j | = dk|∆k,j |, 0 < c1 < dk < 1,

where c1 is another absolute constant, while the constant dk is common for all the
indices j = 1, 2, . . . , νk. Thus, the sets

Ek =
⋃

1⩽j⩽νk

Ek,j , k ⩾ k0,

are stochastically independent, and applying Lemma 10.4 we get

∞∑
k=k0

50k

qkw(νk)
1Ek

(x) = ∞ almost everywhere.

Using this, one can choose an increasing sequence of integers k0 < k1 < k2 < · · ·
such that ∣∣∣∣{x ∈ T :

ks+1∑
k=ks+1

50k

qkw(νk)
1Ek

(x) > s

}∣∣∣∣ > 1− 1

s
.

Hence, for almost every x ∈ T the relation

ks+1∑
k=ks+1

50k

qkw(νk)
1Ek

(x) > s (10.19)

holds for infinitely many s. Our desired trigonometric series is

∞∑
k=k0

√
50k

qkw(νk)

νk∑
j=1

(νk)
2∑

n=1

Uk,j,n(x), (10.20)

where each Uk,j,n is considered in its trigonometric form. Note that some of the
coefficients of the above trigonometric series are zeros. Let us show that the coef-
ficients of this series satisfy condition (1.2). Indeed, in light of (10.6) and (10.13)
we have w(s) ⩽ 100w(νk) for any s ∈ spec(Uk,j,n) ⊂ (νk, νk+1]. Thus (1.2) may be
easily deduced from (10.14), (10.12) and the bound

∞∑
k=k0

( √
50k

qkw(νk)

)2

w(νk)

νk∑
j=1

(νk)
2∑

n=1

∥Uk,j,n∥22 ≲
∞∑

k=k0

50k

q2kw(νk)
<∞.

We construct an appropriate rearrangement of the series (10.20) as follows. The
collections of trigonometric terms of our series (10.20) which are contained in the
groups

Uk,j,n, ks < k ⩽ ks+1, 1 ⩽ j ⩽ νk, 1 ⩽ n ⩽ (νk)
2, (10.21)
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are arranged in increasing order with respect to s. We just need to determine the
location of each polynomial Uk,j,n within the group. We do it using induction with
respect to the index k in (10.21). We leave the first group of polynomials

{Uks+1,j,n : 1 ⩽ j ⩽ νks+1, 1 ⩽ n ⩽ (νks+1)
2}

in its original order. Then suppose we have already rearranged all the poly-
nomials Uk,j,n corresponding to indices k = ks + 1, ks + 2, . . . , l − 1, so that
the polynomials Ul−1,j,n, n = 1, 2, . . . , (νl−1)

2, are arranged consecutively. We
describe the procedure of how to locate the polynomials in the next collection
{Ul,j,n : 1 ⩽ j ⩽ νl, 1 ⩽ n ⩽ (νl)

2}. Denote by ∆l−1,j the unique (l − 1)st-order
interval containing the given interval ∆l,j of order l. The following two cases are
possible.

1) If ∆l,j ⊂ ∆l−1,j \ El−1,j , then we locate the polynomials Ul,j,n, n =

1, 2, . . . , (νl)
2, immediately after Ul−1,j,(νl−1)2

.
2) If ∆l,j ⊂ El−1,j , then by the definition of El−1,j and by (10.17) and (10.18)

for some m = m(l, j) we have

Re

(m(l,j)∑
n=1

Ul−1,j,n(x)

)
>

√
50l−1

2
, x ∈ ∆l,j . (10.22)

In this case we locate the polynomials Ul,j,n, n = 1, 2, . . . , (νl)
2, immediately

after Ul−1,j,m. This completes the induction procedure and so the construction
of the required rearrangement. It remains to prove the a.e. divergence of the
series (10.20) after the described rearrangement of the terms. For a given point
x ∈ T there is a unique decreasing sequence of intervals ∆k,jk(x) containing x.
Hence our series (10.20) can be split into two subseries

∞∑
k=k0

√
50k

qkw(νk)

(νk)
2∑

n=1

Uk,jk(x),n(x) +

∞∑
k=k0

√
50k

qkw(νk)

νk∑
j=1

(νk)
2∑

n=1

Uk,j,n(x)1T\∆k,j
(x).

(10.23)
From (10.11) and (10.15) it follows that

∞∑
k=k0

√
50k

qkw(νk)

νk∑
j=1

(νk)
2∑

n=1

|Uk,j,n(x)|1T\∆k,j
(x) ⩽

∞∑
k=k0

1

νk
<∞.

Thus we conclude that the second series in (10.23) converges absolutely for any
x ∈ T. Our rearrangement of the basic series produces a rearrangement of the
first subseries in (10.23), and it remains to prove that for almost every x ∈ T such
a rearranged series diverges. Denote

As(x) = {k ∈ N : ks < k ⩽ ks+1, x ∈ Ek,jk(x)}

and

Bs(x) = {k ∈ N : ks < k ⩽ ks+1, x ∈ ∆k,jk(x) \ Ek,jk(x)}
= {ks + 1, ks + 2, . . . , ks+1} \As(x).
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According to the construction of the rearrangement, one can observe that there is
a ‘restricted’ partial sum (a sum of the form

∑q
p) of the rearranged first subseries

of (10.23) which contains completely all sums of the forms
√
50k

qkw(νk)

m(k+1,jk+1(x))∑
n=1

Uk,jk(x),n(x), k ∈ As(x), (10.24)

and √
50k

qkw(νk)

(νk)
2∑

n=1

Uk,jk(x),n(x), k ∈ Bs(x), (10.25)

and contains no other terms. If (10.19) holds, then according to (10.22), for the
sum of the elements (10.24) we obtain

Re

( ∑
k∈As(x)

√
50k

qkw(νk)

m(k+1,jk+1(x))∑
n=1

Uk,jk(x),n(x)

)

⩾
1

2

ks+1∑
k=ks+1

50k

qkw(νk)
1Ek

(x) >
s

2
. (10.26)

As for the elements (10.25), they form an a.e. absolutely convergence series. Indeed,
we have a pointwise bound

∞∑
k=k0

√
50k

qkw(νk)

∣∣∣∣(νk)
2∑

n=1

Uk,jk(x),n(x)

∣∣∣∣ = ∞∑
k=k0

√
50k

qkw(νk)

∣∣∣∣(νk)
2∑

n=1

Uk,jk(x),n(x)

∣∣∣∣1∆k,jk(x)
(x)

⩽
∞∑

k=k0

√
50k

qkw(νk)

νk∑
j=1

∣∣∣∣(νk)
2∑

n=1

Uk,j,n(x)

∣∣∣∣1∆k,j
(x) =

∞∑
k=k0

Rk(x), (10.27)

and then using (10.11), (10.14) and an orthogonality argument we obtain

∞∑
k=k0

∥Rk∥2 =

∞∑
k=k0

√
50k

qkw(νk)

∥∥∥∥ νk∑
j=1

∣∣∣∣(νk)
2∑

n=1

Uk,j,n(x)

∣∣∣∣1∆k,j
(x)

∥∥∥∥
2

=

∞∑
k=k0

√
50k

qkw(νk)

( νk∑
j=1

∥∥∥∥(νk)
2∑

n=1

Uk,j,n(x)1∆k,j
(x)

∥∥∥∥2
2

)1/2

⩽
∞∑

k=k0

√
50k

qkw(νk)

( νk∑
j=1

∥∥∥∥(νk)
2∑

n=1

Uk,j,n

∥∥∥∥2
2

)1/2

≲
∞∑

k=k0

√
50k

qkw(νk)
=

∞∑
k=k0

1√
50k

50k

qkw(νk)
⩽

∞∑
k=k0

1√
50k

<∞

which implies the a.e. convergence of the series (10.27). Combining (10.26) with the
a.e. absolute convergence of the series consisting of the terms (10.25), we conclude
that the first subseries in (10.23) diverges for a.e. x ∈ T. This completes the proof
of Corollary 1.3.
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