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An exponential estimate for the cubic partial sums

of multiple Fourier series

G. A. Karagulyan and H. A. Mkoyan

Abstract. We prove an exponential integral estimate for the cubic partial
sums of multiple Fourier series on sets of large measure. This estimate
yields some new properties of Fourier series.
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§ 1. Introduction

Put T = R/2π and let Td denote the d-dimensional torus. For every function
f ∈ L1(Td) we consider the multiple Fourier series and its conjugate:

∑

n=(n1,...,nd)∈Zd

anein·x, (1)

∑

n=(n1,...,nd)∈Zd

( d∏

k=1

(−i · sign nk)

)
anein·x, (2)

where

n = (n1, . . . , nd), x = (x1, . . . , xd), n · x = n1x1 + · · · + ndxd,

an =
1

(2π)d

∫

Td

f(x)e−in·xdx.

Denote the rectangular and cubic partial sums of the series (1) by

Snf(x) =
∑

−ni6ki6ni

akeik·x, n ∈ Zd,

Snf(x) =
∑

−n6ki6n

akeik·x, n ∈ N,

and let S̃n and S̃n be their conjugates.

We shall consider the Orlicz class of functions corresponding to the logarithmic
function

Logk(u) = |u|max{0, logk |u|}, k = 1, 2, . . . . (3)
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This is the Banach space of functions

Logk(L)(Td) =

{
f ∈ L1(Td) :

∫

Td

Logk(f) < ∞

}

with the Luxemburg norm

‖f‖Logk(L) = inf

{
λ : λ > 0,

∫

Td

Logk

(
f

λ

)
6 1

}
< ∞.

It is well known that the rectangular partial sums of the d-dimensional Fourier
series of any function f ∈ Logd−1(L)(Td) converge in measure (see [1], [2]), that is,

lim
min(n)→∞

∣∣{x ∈ Td : |Snf(x) − f(x)| > ε}
∣∣ = 0 (4)

for every ε > 0, where
min(n) = min

16i6d
ni.

On the other hand, Konyagin [3] and Getsadze [4] established that Logd−1(L) is
the largest Orlicz space whose elements satisfy (4).

The following problem was considered in [5], [6]. Find an exact estimate for
the growth of a function Φ: R+ → R+ with limt→0 Φ(t) = 0 such that for every
function f ∈ Logd−1(L)(Td) and every number ε > 0 one can find a set Ef,ε ⊂ Td,
|Ef,ε| > (2π)d − ε, satisfying the condition

lim
min(n)→∞

∫

Ef,ε

Φ
(
|Snf(x) − f(x)|

)
dx = 0. (5)

The expected sharp bound for the growth of such functions is

lim sup
t→∞

log Φ(t)

t1/d
< ∞. (6)

One can observe that (5) implies convergence in measure and, moreover, it gives
a quantitative characterization of the convergence rate.

This problem was considered in [6] in the one-dimensional case. The following

estimate for the conjugate function f̃ was proved there:

∫

T

exp

(
c1

f̃(x)

Mf(x)

)
dx < c2, (7)

where Mf(x) is the Hardy–Littlewood maximal function. It then was used to derive
the following exponential estimate for the one-dimensional partial sums of Fourier
series, which in its turn yields (5) in the one-dimensional case.

Theorem A (see [6]). For every f ∈ L1(T) we have

∫

T

exp

(
c1
|Snf(x)| + |S̃nf(x)|

Mf(x)

)
dx 6 c2, n = 1, 2, . . . , (8)

where c1 and c2 are absolute constants.
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The sharpness of the exponent in (8) (and hence in (5)) was proved by Oskolkov[7].

The relation (5) in the two-dimensional case with a function Φ satisfying (6)
was established in [5]. The case d > 3 of this problem remains open, and so is the
problem of the sharpness of (6) in the two-dimensional case.

Analogous estimates for the one-dimensional Walsh system and rearranged Haar
systems were established in [8]. In [9], a similar problem was considered for general
orthogonal L2-series.

In this paper we consider a similar problem for cubic partial sums. Our main
result is the following theorem.

Theorem 1. For every f ∈ Logd−1(L)(Td) there is a measurable function F (x)> 0
on Td such that

|{x ∈ Td : F (x) > λ}| .
‖f‖Logd−1(T

d)

λ
, (9)

∫

Td

exp

(
|Snf(x)| + |S̃nf(x)|

F (x)

)
dx . 1, n = 1, 2, . . . . (10)

Here and in what follows, the relation a . b stands for the inequality a 6 c · b,
where c is a constant depending only on the dimension d.

Corollary 1. For every f ∈ Logd−1(L)(Td) and every ε > 0 there is a set E =
Ef,ε ⊂ Td such that

|Ef,ε| > (2π)d − ε, (11)
∫

Ef,ε

exp

(
γε

|Snf(x)| + |S̃nf(x)|

‖f‖Logd−1(T
d)

)
dx . 1, n = 1, 2, . . . , (12)

where γ > 0 is a constant depending only on d.

Corollary 2. For every f ∈ Logd−1(L)(Td) and every ε> 0 there is a set Ef,ε ⊂Td

satisfying (11) and such that the relations

lim
n→∞

∫

Ef,ε

(
exp

(
A|Snf(x) − f(x)|

)
− 1

)
dx = 0, (13)

lim
n→∞

∫

Ef,ε

(
exp

(
A|S̃nf(x) − f̃(x)|

)
− 1

)
dx = 0 (14)

hold for any A > 0, where f̃ is the d-dimensional conjugate function of f .

Remark 1. The method used in our proof of Theorem 1 is also applicable to the
mixed partial sums of multiple Fourier series defined by the formula

SB
n

f(x) =
∑

−ni6ki6ni

(∏

s∈B

(−i · signns)

)
akeik·x, n ∈ Zd,

where B ⊂ {1, 2, . . . , d} (see [10], Ch. 8). Namely, given any f ∈ Logd−1(L)(Td),
one can find a function F (x) > 0 satisfying (9) and

∫

Td

exp

(
|SB

n f(x)|

F (x)

)
dx . 1, n = 1, 2, . . . .
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To avoid technical difficulties in the proofs, we consider only the typical cases when
B = ∅ or {1, 2, . . . , d} (Theorem 1).

Remark 2. The counterexamples of Konyagin [3] and Getsadze [4] show that
Logd−1(L)(Td) is the largest Orlicz class where such properties hold.

Remark 3. We prove Theorem 1 by reducing it to the one-dimensional case. This
well-known approach was first used by Sjölin [11] to prove a multidimensional ver-
sion of Carleson’s theorem.

The authors are grateful to the referee for valuable comments.

§ 2. Notation and lemmas

By Theorem 9.5 in Ch. 2 of [12], the Luxemburg norm satisfies the relations

‖f‖Logk(L) 6 1 =⇒

∫

Td

Logk(f) 6 ‖f‖Logk(L), (15)

‖f‖Logk(L) > 1 =⇒

∫

Td

Logk(f) > ‖f‖Logk(L). (16)

In fact, these inequalities hold not only for logarithmic but also for general Luxem-
burg norms. Using (15) and (16), one can easily check that

‖f‖Logk(L) . 1 +

∫

Td

Logk(f) (17)

for every f ∈ Logk(Td). Clearly, if ‖f‖Logk(L) = 1, then we have both upper and
lower bounds

1 +

∫

Td

Logk(f) . ‖f‖Logk(L) = 1 . 1 +

∫

Td

Logk(f). (18)

The one-dimensional conjugate function of f ∈ L1(T) is defined as

f̃(x) = p.v.
1

π

∫

T

f(x + t)

2 tan(t/2)
dt = lim

ε→0

1

π

∫

ε<|t|<π

f(x + t)

2 tan(t/2)
dt. (19)

It is well known that f̃(x) is defined a.e. for every Lebesgue integrable function and
satisfies the inequality

∫

T

Logk−1(f̃) . 1 +

∫

T

Logk(f), k = 1, 2, . . . (20)

(see [13], Ch. 7). We shall need this inequality in the following form.

Lemma 1. If f ∈ Logk(L)(Td), k = 0, 1, . . . , then the function

g(x1, x2, . . . , xd) = p.v.

∫

T

f(x1 + t, x2 + t, x3, . . . , xd)

tan(t/2)
dt

is defined a.e. on Td and satisfies the bound
∫

Td

Logk−1(g) . 1 +

∫

Td

Logk(f).
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We define the d-dimensional conjugate of a function f ∈ Logd−1(T
d) as an

iterated integral:

f̃(x) = p.v.
1

πd

∫

Td

f(x + t)
d∏

k=1

1

2 tan(tk/2)
dt1 . . . dtd

= p.v.
1

π

∫

T

(
. . .

(
p.v.

1

π

∫

T

f(x + t)

d∏

k=1

1

2 tan(tk/2)
dtd

)
. . .

)
dt1,

where the variables of integration are taken in the reverse order td, td−1, . . . , t1.
Note that the d-dimensional conjugate f̃ is defined a.e. for f ∈ Logd−1(T

d). In
what follows we understand all integrals in the sense of the principal value and omit
the symbol p.v. before them. The two-dimensional case of the following lemma was
proved in [14]. This lemma enables us to use the modified partial sums

S∗
nf(x) =

1

πd

∫

Td

d∏

k=1

sin ntk
2 tan(tk/2)

f(x + t) dt,

S̃∗
nf(x) =

1

πd

∫

Td

d∏

k=1

cosntk − 1

2 tan(tk/2)
f(x + t) dt

in the proof of the theorem.

Lemma 2. If f ∈ Logd−1(L)(Td), then

∫

Td

sup
n

|Snf(x) − S∗
nf(x)| dx . ‖f‖Logd−1(L)(Td), (21)

∫

Td

sup
n

|S̃nf(x) − S̃∗
nf(x)| dx . ‖f‖Logd−1(L)(Td). (22)

Proof. One can clearly assume that

‖f‖Logd−1(L)(Td) = 1. (23)

We shall only prove (21). (22) can be proved similarly. We have

Snf(x) =
1

πd

∫

Td

d∏

k=1

Dn(tk)f(x + t) dt, (24)

where

Dn(x) =
sin(n + 1/2)x

2 sin(x/2)
=

sin nx

2 tan(x/2)
+

1

2
cosnx (25)

is the Dirichlet kernel. Substituting (25) into (24), we see that the difference
Snf(x) − S∗

nf(x) is the sum of several integrals of the form

1

(2π)d

∫

Td

∏

k∈A

sin ntk
tan(tk/2)

∏

k∈Ac

cos(ntk) · f(x + t) dt, (26)
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where A ( {1, 2, . . . , d} is a subset of integers. Applying the product formulae for
trigonometric functions, we split each integral (26) into a sum of integrals of the
form

1

(2π)d

∫

Td

φ(n(±t1 ± t2 ± · · · ± td))

2d−1
∏

k∈A tan(tk/2)
f(x + t) dt, (27)

where the function φ is either the sine or cosine. This reduces the proof of the
lemma to an estimation of the integrals (27). When A = ∅, the desired estimate is

1

(2π)d

∫

Td

|f(x + t)| dt =
‖f‖L1

(2π)d
. ‖f‖L logd−1 L.

When A 6= ∅, the integrals (27) are estimated in a similar way. Therefore we
estimate only the integral

Inf(x) =

∫

Td

sin n(t1 + t2 + · · · + td)∏d
k=l+1 tan(tk/2)

f(x + t) dt, (28)

which corresponds to A = {1, . . . , l}, l > 1. After the change of variables

u1 = t1 + t2 + · · · + td, u2 = t2, . . . , ud = td (29)

we obtain from (28) that

|Inf(x)| =

∣∣∣∣
∫

Td

sinnu1∏d
k=l+1 tan(uk/2)

G(x,u) du

∣∣∣∣

=

∣∣∣∣
∫

Tl

sin nu1

(∫

Td−l

G(x,u)
∏d

k=l+1 tan(uk/2)
dul+1 . . . dud

)
du1 . . . dul

∣∣∣∣

6

∫

Tl

∣∣∣∣
∫

Td−l

G(x,u)
∏d

k=l+1 tan(uk/2)
dul+1 . . . dud

∣∣∣∣ du1 . . . dul,

where
G(x,u) = f(x1 + u1 − u2 − · · · − ud, x2 + u2, . . . , xd + ud). (30)

The inner integral may be regarded as a function of the variables xk, k = 1, 2, . . . , d,
and uj , j = 1, 2, . . . , l. Moreover, applying Lemma 1 (d − l) times, we have

∫

Td

sup
n

|In(x)| dx

6

∫

Td+l

∣∣∣∣
∫

Td−l

G(x,u)
∏d

k=l+1 tan(uk/2)
dul+1 . . . dud

∣∣∣∣ du1 . . . dul dx1 . . . dxd

. 1 +

∫

Td+l

Logd−l (|G(x, u1, . . . , ul, 0, . . . , 0)|) du1 . . . dul dx1 . . . dxd

= 1 + (2π)l

∫

Td

Logd−l(f) . ‖f‖Logd−1(L)(Td) = 1,

which yields (21). Here we have used the inequality (18), which holds under the
condition (23). �
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§ 3. Proofs of the main results

Proof of Theorem 1. We first prove the estimate (10) for the operators

Unf(x) =
1

πd

∫

Td

d∏

k=1

φk(tk)f(x + t) dt, (31)

where each φk is one of the four functions

sin nt

2 tan(t/2)
,

cosnt

2 tan(t/2)
, (32)

sinnt, cosnt. (33)

We call them operators of type U . When all the φk are of the form (33), the estimate
(10) for Un holds trivially. One can take F (x) ≡ c · ‖f‖1 with an appropriate
absolute constant c > 0. It is also easy to prove (10) in the case when only one
function of the form (32) occurs in (31). Indeed, we can assume without loss of
generality that

Unf(x) =
1

πd

∫

Td

sin ntd
2 tan(td/2)

d−1∏

k=1

sin ntk · f(x + t) dt. (34)

Observe that

Unf(x) =
1

π

∫

T

sin n(td − xd)

2 tan((td − xd)/2)
g(x1, . . . , xd−1, td) dtd,

where

g(x1, . . . , xd−1, td)

=

∫

Td−1

d−1∏

k=1

sin ntk · f(x1 + t1, . . . , xd−1 + td−1, td) dt1 . . . dtd−1.

Then we can write

Unf(x) =
cosnxd

π

∫

T

sin ntd · g(x1, . . . , xd−1, td)

2 tan((td − x)/2)
dtd

−
sinnxd

π

∫

T

cosntd · g(x1, . . . , xd−1, td)

2 tan((td − x)/2)
dtd.

Let Mdg(x) be the maximal function of g(x) with respect to the variable xd. It
follows easily from (7) that

∫

Td

exp

(
c1
|Unf(x)|

Mdg(x)

)
dx < c2.

Since the maximal functions satisfies the weak L1 inequality, the operators (34) and
the function F (x) = Mdg(x) satisfy (10) and (9), as required.
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To prove this for the general operators (31), we use induction on the dimension d.
According to the approach above, the required assertion holds when d = 1. To
make the induction step, we assume that the exponential estimate holds for all
operators (31) in dimension d − 1 > 1. Take a function f ∈ Logd−1(T

d) such that

‖f‖Logd−1(L)(Td) = 1. (35)

According to the approach above, we can assume that at least two functions φk of
type (32) occur in (31). Hence there is no loss of generality in assuming that

Unf(x) =
1

πd

∫

Td

d−2∏

k=1

φk(tk)
sin(ntd−1)

2 tan(td−1/2)

sin(ntd)

2 tan(td/2)
f(x + t) dt.

Thus we obtain

Unf(x) =
1

2πd

∫

Td

d−2∏

k=1

φk(tk)
cosn(td−1 − td)

4 tan(td−1/2) tan(td/2)
f(x + t) dt

−
1

2πd

∫

Td

d−2∏

k=1

φk(tk)
cosn(td−1 + td)

4 tan(td−1/2) tan(td/2)
f(x + t) dt

= U (1)
n f(x) − U (2)

n f(x).

We estimate only the first integral U
(1)
n f(x). The second can be estimated in

a similar way. By making the change of variables

u1 = t1, u2 = t2, . . . , ud−2 = td−2, ud−1 = td−1 − td, ud = td

in the expression for U
(1)
n f(x), we obtain

U (1)
n f(x) =

1

2πd

∫

Td

d−2∏

k=1

φk(uk)
cosnud−1

4 tan((ud−1 + ud/2)) tan(ud/2)
G(x,u) du,

where

G(x,u) = f(x1 + u1, . . . , xd−2 + ud−2, xd−1 + ud−1 + ud, xd + ud). (36)

Using the identity

1

tan(u + v) tan v
=

1

tan u tan v
−

1

tan u tan(u + v)
− 1,

we obtain that

U (1)
n f(x) =

1

2πd

∫

Td

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

1

2 tan(ud/2)
G(x,u) du

−
1

2πd

∫

Td

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

1

2 tan((ud−1 + ud)/2)
G(x,u) du

−
1

2πd

∫

Td

d−2∏

k=1

φk(uk) cos nud−1 G(x,u) du

= U (1,1)
n f(x) − U (1,2)

n f(x) − U (1,3)
n f(x).



An exponential estimate for cubic partial sums 9

For each i = 1, 2, 3 we shall find a function F (i)(x) > 0 such that

|{x ∈ Td : F (i)(x) > λ}| .
‖f‖Logd−1(T

d)

λ
, (37)

∫

Td

exp

(
|U

(1,i)
n f(x)|

F (i)(x)

)
dx . 1. (38)

Case i = 1. Consider the operator

U ′
ng(x1, . . . , xd) =

1

2πd−1

∫

Td−1

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

× g(x1 + u1, . . . , xd−1 + ud−1, xd) du1 . . . dud−1

acting on the function

g(x1, . . . , xd) =
1

π

∫

T

f(x1, . . . , xd−2, xd−1 + t, xd + t)

2 tan(t/2)
dt. (39)

In view of (36), we get

U (1,1)
n f(x) =

1

2πd−1

∫

Td−1

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

×

(
1

π

∫

T

1

2 tan(ud/2)
G(x,u) dud

)
du1 . . . dud−1

=
1

2πd−1

∫

Td−1

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

× g(x1 + u1, . . . , xd−1 + ud−1, xd) du1 . . . dud−1

= U ′
ng(x1, . . . , xd−1, xd). (40)

For every fixed xd we may regard U ′
n as a (d − 1)-dimensional operator (31) of

type U . Thus, by the induction hypothesis, for every xd ∈ T there is a function
Fxd

(x1, . . . , xd−1) = F (1)(x1, . . . , xd) such that

|{(x1, . . . , xd−1) ∈ Td−1 : Fxd
(x1, . . . , xd−1) > λ}| .

‖gxd
‖Logd−2(T

d−1)

λ
, (41)

∫

Td−1

exp

(
c|U ′

ngxd
(x1, . . . , xd−1)|

Fxd
(x1, . . . , xd−1)

)
dx1 . . . dxd−1 . 1, n = 1, 2, . . . . (42)

Here gxd
is the function g(x1, . . . , xd) regarded as a function of the variables

x1, . . . , xd−1. On the other hand, it follows from Lemma 1 that

∫

Td

Logd−2(g) . 1 +

∫

Td

Logd−1(f) . ‖f‖Logd−1(T
d) = 1. (43)
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Applying (17), (18), (43) and (41), we obtain

|{x ∈ Td : F (1)(x) > λ}| .
1

λ

∫

T

‖gxd
‖Logd−2(T

d−1) dxd

.
1

λ

∫

T

(
1 +

∫

Td−1

Logd−2(g) dx1 . . . dxd−1

)
dxd

.
1

λ

(
1 +

∫

Td

Logd−2(g)

)

.
1

λ

(
1 +

∫

Td

Logd−1(f)

)

.
‖f‖Logd−1(T

d)

λ
.

Using (40) and integrating the inequality (42) with respect to xd, we get

∫

Td

exp

(
c|U

(1,1)
n f(x)|

F (1)(x)

)
dx . 1.

This yields (37) and (38) when i = 1.

Case i = 2. The estimate for U
(1,2)
n f(x) can be proved in a similar way. We have

U (1,2)
n f(x) =

1

2πd−1

∫

Td−1

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

×

(
1

π

∫

T

G(x,u)

2 tan((ud−1 + ud)/2)
dud

)
du1 . . . dud−1.

The change of the variable t = ud + ud−1 in the inner integral yields that

1

π

∫

T

G(x,u)

2 tan((ud−1 + ud)/2)
dud

=
1

π

∫

T

f(x1 + u1, . . . , xd−2 + ud−2, xd−1 + t, xd − ud−1 + t)

2 tan(t/2)
dt

= g(x1 + u1, . . . , xd−2 + ud−2, xd−1, xd − ud−1),

where g is again the function (39). Thus we obtain

U (1,2)
n f(x) = U ′′

ng(x1, . . . , xd−1, xd) =
1

2πd−1

∫

Td−1

d−2∏

k=1

φk(uk)
cosnud−1

2 tan(ud−1/2)

× g(x1 + u1, . . . , xd−2 + ud−2, xd−1, xd − ud−1) du1 . . . dud−1.

For every fixed xd−1, we may regard this as a (d − 1)-dimensional operator of
type U acting on the function g of the remaining variables x1, . . . , xd−2, xd. By the
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induction hypothesis, as in the case when i = 1, we obtain a function F (2)(x)
satisfying (37) and (38) when i = 2.

Case i = 3. Observe that U
(1,3)
n is also a (d − 1)-dimensional operator of type U

acting on the function (36). As in the previous cases, we can then easily obtain
(37) and (38) when i = 3.

Thus we have established the desired estimate for Un.

Since S∗
n is an operator of type U , we can find a function F1(x) such that

|{x ∈ Td : F1(x) > λ}| .
‖f‖Logd−1(T

d)

λ
(44)

∫

Td

exp

(
|S∗

nf(x)|

F1(x)

)
dx . 1, n = 1, 2, . . . . (45)

As to S̃∗
n, we have the bound

|S̃∗
nf(x)| 6 |Unf(x)| + G(x),

where

Unf(x) =
1

πd

∫

Td

d∏

k=1

cosntk
2 tan(tk/2)

f(x + t) dt,

G(x) =
1

πd

∣∣∣∣p.v.

∫

Td

f(x + t)
∏d

k=1 2 tan(tk/2)
dt

∣∣∣∣.

It is well known that G(x) satisfies

|{G(x) > λ}| .
‖f‖Logd−1(T

d)

λ
. (46)

Since Un is an operator of type U , there is a function F2(x) such that

|{x ∈ Td : F2(x) > λ}| .
‖f‖Logd−1(T

d)

λ
, (47)

∫

Td

exp

(
|Unf(x)|

F2(x)

)
dx . 1, n = 1, 2, . . . . (48)

Finally, by Lemma 2 we have

|Snf(x)| + |S̃nf(x)| 6 |S∗
nf(x)| + |S̃∗

nf(x)| + F3(x)

6 |S∗
nf(x)| + |Unf(x)| + G(x) + F3(x),

where the function F3(x) > 0 satisfies

‖F3‖L1(Td) . ‖f‖Logd−1(L)(Td). (49)
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We claim that all the conclusions of Theorem 1 hold for F = 4(F1 + F2 + F3 + G).
Indeed, (9) follows immediately from (44), (46), (47) and (49) (using Chebyshev’s
inequality for F3). To prove (10), observe that

exp

(
|Snf(x)| + |S̃nf(x)|

F (x)

)
6 exp

(
|S∗

nf(x)| + |Unf(x)| + G(x) + F3(x)

F (x)

)

6 exp

(
4|S∗

nf(x)|

F (x)

)
+ exp

(
4|Unf(x)|

F (x)

)
+ exp

(
4
G(x)

F (x)

)
+ exp

(
4
F3(x)

F (x)

)

6 exp

(
|S∗

nf(x)|

F1(x)

)
+ exp

(
|Unf(x)|

F2(x)

)
+ 2e.

Combining this with (45) and (48), we complete the proof of the theorem. �

Proof of Corollary 1. Suppose that f ∈ Logd−1(L)(Td) and let F (x) be the function
provided by Theorem 1. We define

Ef,ε =

{
x ∈ Td : F (x) 6

‖f‖Logd−1(T
d)

γε

}
,

where γ is a constant. By (9), there is a constant γ (depending only on d) such
that |(Ef,ε)

c| < ε. This yields (11). Moreover, it follows from (10) that

∫

Ef,ε

exp

(
γε

|Snf(x)| + |S̃nf(x)|

‖f‖Logd−1(T
d)

)
dx 6

∫

Td

exp

(
|Snf(x)| + |S̃nf(x)|

F (x)

)
dx . 1,

so that (12) holds. �

Proof of Corollary 2. Suppose that f ∈ Logd−1(L)(Td). It is well known that the
(C, 1)-means σnf of the Fourier series (1) of f and its conjugate (2) converge almost

everywhere to f and f̃ respectively. There is also the convergence in norm

lim
min(n)→∞

‖σnf − f‖Logd−1(T
d) = 0.

Using this, one can find a set G ⊂ Td and a d-dimensional trigonometric polynomial
Pk such that

|G| > (2π)d −
ε

2
, (50)

‖f − Pk‖L∞(G) <
1

2k
, (51)

‖f̃ − P̃k‖L∞(G) <
1

2k
, (52)

‖f − Pk‖Logd−1(T
d) <

γεk

2k
. (53)

Applying Corollary 1 with εk = ε/2k+1, we find sets Ek ⊂ Td with

|Ek| > (2π)d − εk, k = 1, 2, . . . , (54)

∫

Ek

exp

(
γεk

|Sn(f − Pk)| + |S̃n(f − Pk)|

‖f − Pk‖Logd−1(T
d)

)
6 c, n = 1, 2, . . . . (55)



An exponential estimate for cubic partial sums 13

Define

Ef,ε = G ∩

(⋂

k

Ek

)
.

Then (11) follows from (50) and (54). Put φ(t) = exp t − 1. We easily see that
φ(ab) 6 aφ(b) for 0 < a < 1 and b > 0. Thus, using (51), (53) and (55), we get

lim
n→∞

∫

Ef,ε

(
exp(A|Snf − f |) − 1

)

= lim
n→∞

∫

Ef,ε

(
exp

(
A|Sn(f − Pk) − (f − Pk)|

)
− 1

)

6
A

k
sup

n

∫

Ef,ε

(
exp

(
k(|Sn(f − Pk)| + |f − Pk|)

))

6
A

k

(
sup

n

∫

Ef,ε

exp
(
2k|Sn(f − Pk)|

)
+

∫

Ef,ε

exp
(
2k|f − Pk|

))

6
A

k

(
sup

n

∫

Ef,ε

exp

(
γεk|Sn(f − Pk)|

‖f − Pk‖Logd−1(T
d)

)
+

∫

Ef,ε

exp(2k|f − Pk|)

)
.

A

k
.

Since the last quantity can be arbitrarily small, we obtain (13). In a similar way,
we arrive at the inequalities

lim
n→∞

∫

Ef,ε

(
exp(A|S̃nf − f̃ |) − 1

)

6
A

k

(
sup

n

∫

Ef,ε

exp

(
γεk|S̃n(f − Pk)|

‖f − Pk‖Logd−1(T
d)

)
+

∫

Ef,ε

exp(2k|f̃ − P̃k|)

)
.

A

k

and, therefore, at (14). �
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