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1 Introduction

It is well known that, for f ∈ L2(−1, 1), the series

f(x) =
∞∑

n=−∞
fneiπnx, fn =

1

2

∫ 1

−1

f(x)e−iπnxdx (1)

is convergent by L2-norm

||f || =

(∫ 1

−1

|f(x)|2dx

)1/2

.

For practical purposes, approximations are obtained by using only a finite number of

Fourier coefficients {fn}, |n| ≤ N < ∞. As is also well known [32], when we approximate

f by truncated Fourier series (partial sums)

SN(f) :=
N∑

n=−N

fne
iπnx (2)
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or by trigonometric interpolation

IN(f) :=
N∑

n=−N

f̂ne
iπnx, f̂n =

1

2N + 1

N∑

k=−N

f(xk)e
−iπnxk , xk =

2k

2N + 1
, (3)

the resulting error is strongly dependent on the smoothness of f . Approximating a 2-

periodic f ∈ C∞(R) function by SN or IN (N >> 1) is highly effective. When the

approximated function has a point of discontinuity, the above mentioned approximations

lead to the Gibbs phenomenon. The ”oscillations” caused by this phenomenon are typ-

ically propagated into regions away from the singularity and degrade the quality of the

approximations.

Different ways of treating this deficiency have been suggested in the literature (see,

for example, [14–17]). The idea of increasing the convergence rate of Fourier series by

subtracting a polynomial that represents the discontinuities in the function and some of

its first derivatives was suggested by A.Krylov in 1906 [19] and later, in 1964, by Lanczos

[20, 21] (see also [2, 23] and [18, with references]). The key problem lies in determining

the singularity amplitudes. As formulated by Gottlieb [12], these amplitudes could be

found from the first N Fourier coefficients. This idea has been realized by Eckhoff in a

series of papers [5–8] where the values of the ”jumps” are solutions of the corresponding

system of linear equations. Let us refer to this approach as the Krylov-Gottlieb-Eckhoff

(KGE) method (see also [3, 11, 13, 22] and, for the multidimensional case, [25, 28]).

Application of Pade approximants [1] to Fourier series has been studied by several

investigators. The general form of Fourier-Pade representation has been suggested by

Cheney [4], but he does not discuss algorithms for computing coefficients, rates of con-

vergence, and so forth. Geer [10] introduced and studied a class of approximations to a

periodic function f that uses the ideas of Pade (rational approximations). While these

approximations do not ”eliminate” the Gibbs phenomenon, they do mitigate its effect.

For eliminating the Gibbs phenomenon, algorithms based on Pade-type approximations

were described and studied in [9, 26, 29, 30].

In [24], Pade approximants are applied to the asymptotic expansion of coefficients of

Fourier series for piecewise smooth functions, leading to a new kind of approximation.

In [27], the corresponding asymptotic estimates of errors of these approximations are

investigated. Here, we extend the method to trigonometric interpolations.

The proposed approximations are exact for a system of quasipolynomials while the

KGE-method is exact for a subsystem of polynomials. Thus, we obtain a generaliza-

tion of the latter. The quasipolynomial approach is nonlinear while the KGE-method is

(given the exact jumps) linear. If the jumps and Fourier coefficients of the approximated

function are known, then the KGE-method can be constructed without any additional

calculations. However, for the quasipolynomial method, we also need the values of some

parameters that can be determined from a nonlinear system of equations with jumps

in the coefficients. This additional complexity in calculation yields round off errors of

the approximations that are more precise and more stable. Theorems and numerical

examples are presented. Moreover, comparisons between the quasipolynomial and the
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KGE-method are made.

We expect that the proposed approximations, especially insofar as they are derived

by a tool as flexible as the system of quasipolynomials, should result in new algorithms

of increased precision and robustness.

2 KGE-method

We say that f ∈ Cq[−1, 1], q ≥ 0 if f (q) is continuous in [−1, 1]. Denote

Ak(f) = f (k)(1) − f (k)(−1), k = 0, · · · , q.

The idea of the KGE-method is to split the given function f ∈ Cq[−1, 1] into two

parts

f(x) = F (x) +

q−1∑

k=0

Ak(f)Bk(x), (4)

where F is a relatively smooth function and Bk(x) are 2-periodic Bernoulli polynomials

with Fourier coefficients

Bk,n =

⎧
⎪⎨

⎪⎩

0, n = 0

(−1)n+1

2(iπn)k+1 , n = ±1,±2, ...
(5)

Approximating the function F by truncated Fourier series leads to the KGE-approximation

SN,q(f) =
N∑

n=−N

Fne
iπnx +

q−1∑

k=0

Ak(f)Bk(x), (6)

where the coefficients Fn can be expressed by fn and Bk,n from (1), (4), and (5).

Similarly, approximating the function F by trigonometric interpolation leads to KGE-

interpolation (see (3))

IN,q(f) =
N∑

n=−N

F̂ne
iπnx +

q−1∑

k=0

Ak(f)Bk(x), (7)

where the discrete coefficients F̂n can be expressed by f̂n and (B̂k)n from (4).

Theorem 2.1. Suppose f ∈ Cq[−1, 1], q ≥ 1, f (q+1) ∈ L1(−1, 1). Then

RN,q(f) := f(x) − SN,q(f) = Aq(f)
∑

|n|>N

(−1)n+1

2(iπn)q+1
eiπnx + o(N−q), N → ∞. (8)

Proof. By q-fold integration by parts in (1), we have that

fn =
(−1)n+1

2

q−1∑

k=0

Ak(f)

(iπn)k+1
+

1

2(iπn)q

∫ 1

−1

f (q)(x)e−iπnxdx. (9)
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Therefore,

RN,q(f) =
∑

|n|>N

Fneiπnx, (10)

where

Fn =
(−1)n+1

2

Aq(f)

(iπn)q+1
+

1

2(iπn)q+1

∫ 1

−1

f (q+1)(x)e−iπnxdx. (11)

Note that, according to the well-known Riemann-Lebesgue theorem [32], the second term

is o(n−q−1) as n → ∞. This concludes the proof. �

Similarly, we prove the following result:

Theorem 2.2. Suppose f ∈ Cq[−1, 1], q ≥ 1, f (q+1) ∈ L1(−1, 1). Then

rN,q(f) := f(x) − IN,q(f) = Aq(f)×
(∑

|n|>N

(−1)n+1eiπnx

2(iπn)q+1
+

N∑

n=−N

∞∑

s=−∞
s �=0

(−1)n+s+1eiπnx

2(iπ)q+1(n + s(2N + 1))q+1

)
+o(N−q), N → ∞. (12)

Proof. Just note that, from (11), we have at least Fn = O(n−2), n → ∞, and so

F̂n =
∞∑

s=−∞
Fn+s(2N+1).

�

3 Quasipolynomial (QP-) method

3.1

The essential features of quasipolynomial approximation [24] are both the application of

Pade approximants to the asymptotic expansion of fn (see 9) and the solution of the

corresponding system of nonlinear equations (a system that arises in the theory of Pade

approximations).

Consider a finite sequence of complex numbers θ := {θk}m
k=1, m ≥ 1, and denote

Δ0
n(θ) = An(f), Δk

n(θ) = Δk−1
n (θ) + θkΔ

k−1
n−1(θ), k ≥ 1.

If n < 0, we set Δk
n(θ) = 0.

It is easy to verify that, for x 	= −1/θ1,

q−1∑

k=0

Akx
k = xq Aq−1θ1

1 + θ1x
+

1

1 + θ1x

q−1∑

k=0

(Ak + θ1Ak−1)x
k. (13)
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Note that, for θ1 = 0, the sum on the left side of (13) remains unchanged. Iterat-

ing this transformation up to m times yields the following formula (x 	= −1/θk; k =

1, · · · ,m; m ≤ q − 1):

q−1∑

k=0

Akx
k = xq

m∑

k=1

θkΔ
k−1
q−1(θ)∏k

s=1(1 + θsx)
+

1∏m
s=1(1 + θsx)

q−1∑

k=0

Δm
k (θ)xk. (14)

Suppose f ∈ Cq[−1, 1]. Applying transformation (14) to the first term of (9) with

(iπn)−1 instead of x, we derive

fn = Qn + Pn, n 	= 0, (15)

where

Qn =
(−1)n+1(iπn)m

2
∏m

s=1(iπn + θs)

q−m−1∑

k=0

Δm
k (θ)

(iπn)k+1
(16)

and

Pn =
(−1)n+1

2(iπn)q+1

m∑

k=1

θkΔ
k−1
q−1(θ)(iπn)k

∏k
s=1(iπn + θs)

+

+
(−1)n+1(iπn)m

2
∏m

k=1(iπn + θk)

q−1∑

k=q−m

Δm
k (θ)

(iπn)k+1
+

1

2(iπn)q

∫ 1

−1

f (q)(t) e−iπntdt. (17)

Inasmuch as (15) holds, we can split the function f into two parts

f(x) = Q(x) + P (x), (18)

where

Q(x) =
∞∑

n=−∞
n�=0

Qne
iπnx, P (x) =

∞∑

n=−∞
Pne

iπnx, P0 = f0. (19)

Approximating P by the truncated Fourier series leads to

SN,q,m(f) = Q(x) +
N∑

n=−N

(fn − Qn)eiπnx (20)

and approximating P by trigonometric interpolation leads to

IN,q,m(f) = Q(x) +
N∑

n=−N

(f̂n − Q̂n)eiπnx. (21)

It is important to note that, for θ1 = θ2 = · · · = θm = 0, approximations SN,q,m(f) and

IN,q,m(f) coincide with the KGE-approximation and the KGE- interpolation, respectively.

Approximation properties of SN,q,m and IN,q,m are strongly connected with the smooth-

ness of the function P or, put another way, with the rate of convergence of Pn to zero.

This condition leads to the following system of nonlinear equations (see the second term

in (17)) for the unknown vector θ:

Δm
k (θ) = 0, k = q − m, · · · , q − 1. (22)
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Note that, if θ is a solution of (22) and f ∈ Cq[−1, 1], f (q+1) ∈ L1(−1, 1), then Pn =

O(n−q−1), n → ∞. We call approximations (20) and (21), together with (22), QP-

approximation and QP-interpolation, respectively. Actually, we apply the Pade approxi-

mation [q+m-1/m] to the sum on the left side of (14) [1].

3.2

We are interested in the asymptotic behavior of

RN,q,m(f) := f(x) − SN,q,m(f) and rN,q,m(f) := f(x) − IN,q,m(f).

By γk(m), k = 0, · · · ,m we denote the coefficients of the polynomial

m∏

k=1

(1 + θkx) ≡
m∑

k=0

γk(m)xk.

Note that

Δm
k (θ) = Ak(f) +

m∑

s=1

γs(m)Ak−s(f).

Hence, the system (22) can be written in the form

m∑

s=1

γs(m)Ak−s+q−m−1(f) = −Ak+q−m−1(f), k = 1, · · · ,m. (23)

Denote

Um
r = [Ak−s+r(f)], k, s = 1, · · · ,m.

Theorem 3.1. [27] Suppose f ∈ Cq[−1, 1], q ≥ 1, f (q+1) ∈ L1[−1, 1] and

detUm
q−m−1 	= 0.

Then, with θ from (22), the following holds:

RN, q,m(f) = (−1)m detUm+1
q−m

detUm
q−m−1

∑

|n|>N

(−1)n+1eiπnx

2(iπn)q+1
+ o(N−q), N → ∞. (24)

Proof. From (18) and (20), we have

RN, q,m(f) =
∑

|n|>N

Pneiπnx, (25)

where (see (17))

Pn =
(−1)n+1

2(iπn)q+1

(
Aq(f) +

m∑

k=1

θkΔ
k−1
q−1(θ)∏k

s=1

(
1 + θs

iπn

)
)

+ o(n−q−1), n → ∞. (26)
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It now follows that

RN,q,m(f) = Δm
q (θ)

∑

|n|>N

(−1)n+1

2(iπn)q+1
eiπnx + o(N−q), N → ∞. (27)

Here, we use the fact that

Δm
q (θ) = Δm−1

q (θ) + θmΔm−1
q−1 (θ) = Δm−2

q (θ) + θm−1Δ
m−2
q−1 (θ)+

+θmΔm−1
q−1 (θ) = Δ0

q(θ) +
m∑

k=1

θkΔ
k−1
q−1(θ) = Aq(f) +

m∑

k=1

θkΔ
k−1
q−1(θ).

According to Cramer’s rule,

γs(m) =
Ms

detUm
q−m−1

, s = 1, · · · ,m,

where {Ms} are the corresponding minors. Consequently,

Δm
q (θ) = Aq(f) +

m∑

s=1

γs(m)Aq−s(f) =

= Aq(f) +
1

detUm
q−m−1

m∑

s=1

MsAq−s(f) = (−1)m detUm+1
q−m

detUm
q−m−1

.

�

Theorem 3.2. Suppose f ∈ Cq[−1, 1], q ≥ 1, f (q+1) ∈ L1[−1, 1], and detUm
q−m−1 	= 0.

Then, for θ from (22), the following holds:

rN, q,m(f) = (−1)m detUm+1
q−m

detUm
q−m−1

×
⎛

⎜⎝
∑

|n|>N

(−1)n+1eiπnx

2(iπn)q+1
+

N∑

n=−N

∞∑

s=−∞
s �=0

(−1)n+s+1eiπnx

2(iπ)q+1(n + s(2N + 1))q+1

⎞

⎟⎠+ o(N−q), N → ∞.

(28)

Proof. Using the relation (at least Pn = O(n−2), n → ∞)

P̂n =
∞∑

s=−∞
Pn+s(2N+1),

we obtain

rN,q,m(f) =
∑

|n|>N

Pneiπnx −
N∑

n=−N

eiπnx

∞∑

s=−∞
s �=0

Pn+s(2N+1).

Proceeding as in the proof of theorem 3.1, this concludes the proof. �
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3.3

For a practical realization of the QP-method, we need the explicit form of the function

Q(x).

Consider the case m + 1 ≤ q ≤ 2m and θs 	= 0, θs 	= θk, s, k = 1, · · · ,m. Given the

relation

(iπn)m−k−1

∏m
s=1(iπn + θs)

=
m∑

j=1

(−1)m−k−1θm−k−1
j

(iπn + θj)
∏m

s=1
s �=j

(θs − θj)
, k = 0, · · · , q − m − 1,

we expand Qn into simple fractions

Qn =
(−1)n

2

m∑

j=1

1

(iπn + θj)
∏m

s=1
s �=j

(θs − θj)

q−m−1∑

k=0

Δm
k (θ)(−1)m−kθm−k−1

j . (29)

According to the representation

∞∑

n=−∞

(−1)neiπnx

iπn + θj

=
1

shθj

e−θjx

from (29), for the case m + 1 ≤ q < 2m, we derive

Q(x) =
m∑

j=1

e−θjx

2 sh(θj)
∏m

s=1
s �=j

(θs − θj)

q−m−1∑

k=0

Δm
k (θ)(−1)m−kθm−k−1

j . (30)

If q = 2m, then

Q(x) =
Δm

m−1(θ)

2
∏m

k=1 θk

+
m∑

j=1

e−θjx

2sh θj

∏m
s=1
s �=j

(θs − θj)

m−1∑

k=0

Δm
k (θ)(−1)m−kθm−k−1

j . (31)

The explicit form of Q(x) in other cases can be calculated similarly. In general, we have

the following representation:

Lemma 3.3. [24]. Let {αs} , s = 1, ..., , 1 ≤ < ∞ , be a finite set of complex numbers

and Υ ⊆ {αs} a subset of integers. Then

∞∑

k=−∞
k/∈Υ

(−1)k+1p(k)eiπkx

∏
s=1(k − αs)βs

= π
∑

r=1

Res
z=αr

p(z)eiπzx‡

sin(πz)
∏

s=1(z − αs)βs
,

where {βs}, s = 1, ..., is a set of positive integers, p(z) is a polynomial of degree less than∑
s=1 βs − 1, and x‡ = (x + 1) (mod2) − 1, −1 < x‡ < 1.

Now it follows that, in general, Q(x) is a quasipolynomial of the form

Q(x) =
∑

k

akx
pkeiωkx,
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where ωk ∈ C and where {pk} is a set of nonnegative integers.

We have calculated the explicit form of Q(x) for specific cases. Calculations are

carried out using the MATHEMATICA software package [31]. For a given q and m,

denote Qq,m(x) = Q(x). Some of them are

Q2,1(x) =
A0

2θ1

− A0

2 sh θ1

e−θ1x,

Q3,1(x) = − A1

2θ2
1

+ x
A1 + A0θ1

2θ1

+
A1

2 θ1 sh θ1

e−θ1x,

Q3,2(x) = − A0θ1

2 (θ1 − θ2) sh θ1

e−θ1x +
A0θ2

2 (θ1 − θ2) sh θ2

e−θ2x,

Q4,1(x) = −A1θ
3
1 + A2(θ

2
1 − 6)

12θ3
1

+
x

2

(
A0 − A2

θ2
1

)
+ x2 A2 + A1θ1

4θ1

− A2

2 θ2
1 sh θ1

e−θ1x,

Q4,2(x) =
A1 + A0θ2

2 (θ1 − θ2) sh θ1

e−θ1x − A1 + A0θ1

2 (θ1 − θ2) sh θ2

e−θ2x +
A1 + A0(θ1 + θ2)

2θ1θ2

,

Q4,3(x) = − A0θ
2
1

2 (θ1 − θ2)(θ1 − θ3) sh θ1

e−θ1x − A0θ
2
2

2 (θ2 − θ1)(θ2 − θ3) sh θ2

e−θ2x−

− A0θ
2
3

2 (θ3 − θ1)(θ3 − θ2) sh θ3

e−θ3x.

Similar calculations can be carried out for multiple θ. For example, when θ1 = θ2 = θ,

q = 3,m = 2, we have

Q3,2(x) =
A0

2sh θ
(2θcth θ − 1 + 2xθ)e−θx.

If θ1 = θ2 = θ3 = θ, q = 4,m = 3, we derive

Q4,3(x) =
A0e

−θx

4sh θ
(2xθ(5 − 3θcth θ) − 3x2θ2 − 6θ2cth2 θ + 3θ2 + 10θcth θ − 2).

For m = 1, system (22) can easily be solved symbolically. In particular, the explicit

forms of some of the quasipolynomials are derived to be

Q2,1(x) =
A0

2shA1

A0

e
A1
A0

x − A2
0

2A1

,

Q3,1(x) = − A3
1

2A2
2

+ x

(
A0

2
− A2

1

2A2

)
+

A2
1

2A2sh
A2

A1

e
A2
A1

x
,

Q4,1(x) = −A1

12
− A4

2

2A3
3

+
A2

2

12A3

+ x

(
A0

2
− A3

2

2A2
3

)
+ x2

(
A1

4
− A2

2

4A3

)
+

A3
2e

A3
A2

x

2A2
3sh

A3

A2

.
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4 Numerical results

For a given f , q, and m, we put

aq,m(f) =

∣∣∣∣Aq

det(Um
q−m−1)

det(Um+1
q−m )

∣∣∣∣ . (32)

The constant aq,m(f) describes the effectiveness of the QP-approximation (Theorem 3.1)

compared to the KGE-approximation (Theorem 2.1) as well as the effectiveness of the

QP-interpolation (Theorem 3.2) compared to the KGE-interpolation (Theorem 2.2) when

N >> 1. Let us consider two typical examples. All calculations are carried out using

MATHEMATICA software on a Pentium 4 computer.

First, consider the Bessel function

f(x) = J0(14x − 1). (33)

In Figure 1, the graphics of aq,m(f) for (33) are represented when q = 8, 9, 10 and 1 ≤
m ≤ q−1. We observe that the QP-method is more precise than the KGE-method almost

250 times for q = 8; m = 4 and more than 300 times for q = 10; m = 4, 6. Figure 1 also

shows the optimal values of m when parameter q is fixed.

1 4 7
m

50

250

a8,m

1 4 5 8
m

50

250

a9,m

1 5 9
m

50

300

a10,m

Fig. 1 Graphics of aq,m(f) for (33) when q = 8, 9, 10 and 1 ≤ m ≤ q − 1.

Results in Figure 1 are asymptotic (N � 1). It is interesting to see the numerical

behavior of the QP-method for both small and moderate values of N . We illustrate

the results for just the QP-interpolation because our experiments show that, in general,

the behavior of the QP-approximation (see [24] and [27] for details) is very similar to

that of the QP-interpolation. The actual effectiveness (in a uniform metric) of the QP-

interpolation compared to the KGE-interpolation can be represented by the ratio

aN,q,m(f) =
max|x|≤1 |rN,q(f)|

max|x|≤1 |rN,q,m(f)| . (34)

In Table 1, approximate values of aN,8,4 are shown for (33). Calculations are carried

out with 64 digits of precision.

Comparison with the theoretical value a8,4 = 271.1 shows that experimental and

theoretical estimates are rather close for N ≥ 32. In Figure 2, the uniform errors are

scaled logarithmically. Here, we compare the QP- and the KGE-interpolations for q = 8
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Table 1 Approximate values of aN,8,4 for different N while interpolating the function

(33).

N 8 16 32 64 128 256 512

aN,8,4 97 206 250 264 269 270 271
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Fig. 2 Uniform errors in log scale, f defined by (33), q = 8,m = 4, N ≤ 512. Left: with

64 digits of precision, Right: with standard precision.

and m = 4. The left figure corresponds to calculations with 64 digits of precision; the

right figure we obtain from standard MATHEMATICA precision calculations.

We see that, even in standard machine precision, the QP-interpolation is much more

precise than the KGE-interpolation. For N ≥ 100, the QP-method is nearly 103 (compare

this with the theoretically-predicted value of 271) times more precise than the KGE-

method. Furthermore, the QP-method is less sensitive to round-off errors.

Now consider the second example

f(x) =
1

1.1 − x
. (35)

This function has the greatest increase of Ak jumps within the class of analytic functions in

the neighborhood of the interval [−1, 1]. In Figure 3, the graphics of aq,m are represented.

Approximate values of aN,8,4 are displayed in Table 2.

For this example, when N ≥ 256, experimental results aN,8,4 are close to the theoretical

estimate a8,4 = 72.9.

Table 2 Approximate values of aN,8,4 for different N while interpolating the function

(35).

N 8 16 32 64 128 256 512 1024

aN,8,4 3414 433 237 62 44 62 68 71

In Figure 4, the logarithms of the uniform errors are represented. The left figure cor-

responds to calculations with 64 digits of precision; the right figure is obtained from stan-
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Fig. 3 The graphs of aq,m for fixed values of q (q = 8, 9, 10) and 1 ≤ m ≤ q when (35) is

approximated.
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Fig. 4 Uniform errors in log scale, f defined by (35), q = 8,m = 4, N ≤ 512. Left: with

64 digits of precision, Right: with standard precision.

dard precision calculations. With standard precision and N ≥ 200 the QP-interpolation

is 105 times more precise than the KGE-interpolation.

For practical application of the QP-method, the numerical values of jumps Ak(f) are

also needed. These values can be recovered from Fourier coefficients or from discrete

Fourier coefficients as shown in [5–8]. Numerical experiments show [24] that the appli-

cation of this procedure to the QP-method is acceptable and, in general, maintains all

characteristic features.
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