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On a Rational Linear Approximation of Fourier Series
for Smooth Functions
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The Fourier series of a smooth function on a compact interval usually has slow
convergence due to the Gibbs phenomena. A class of Fourier-Pade approxima-
tions is introduced and studied for performing a boundary correction. Addi-
tional acceleration is achieved by applying Fourier-Bernoulli scheme.
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1. INTRODUCTION
It is well known that for fe Ly(—1,1)

° . 1 r! .
fx)= Z S, fnZE/_I fx)e ™ dx (1.1)

n=—oo
by Lj-norm
172

1
I1f1l= L | f(x)|Pdx

For practical purposes, approximations are obtained by using only a finite
number of Fourier coefficients {f,}, |n| < N. As is well known [26], when
we approximate f by truncated Fourier series (partial sum)

N
SN(F) =) fue™, (1.2)
n=—N
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the involved error is strongly dependent on the smoothness of f. Approxi-
mation of an 2-periodic f € C°°(R) function by Sy (N> 1) is highly effec-
tive. When the approximated function has a point of discontinuity, this
truncation procedure leads to the Gibbs phenomena. The “oscillations”
caused by this phenomena are typically propagated into regions away from
the singularity and degrade the quality of partial sum approximation.

Different ways of curing this deficiency have been suggested in the
literature. Increasing the convergence rate of the Fourier series by sub-
tracting a polynomial representing the discontinuities in the function and
some of its derivatives was suggested by Krylov in 1933 [19] and later by
Lanczos [20] (see also [2] with references). In Lanczos’s work the poly-
nomial is a linear combination of Bernoulli polynomials with “jumps” in
coefficients. The key problem is the determination of the singularity ampli-
tudes. As formulated by Gottlieb [14] the pointwise values of a piece-
wise smooth function can be found from its first N Fourier coefficients.
This idea has been realized by Eckhoff in a series of papers [5-8]. There
the “jumps” are determined by the corresponding system of linear equa-
tions. Further we shall refer to this approach as Krylov—Gottlieb—Eckhoff
(KGE) method (see also [3,13,15,21,23,24] for multidimensional case).
Exponential convergence has been derived in Geer and Banerjee [11] by
utilization of trigonometric “basis” functions which have certain “built-in”
singularities.

In a series of papers, Gottlieb and Shu [16-18] exploit the Gegenbauer
polynomials and for analytic but not periodic function exponential conver-
gence in the maximum norm was derived.

The idea to construct Pade approximations based on series representa-
tion of functions other than the classical power series [1] has been suggested
and studied by several investigators. For example, Maehly [22] has suggested
an approach to determine the coefficients in rational approximations based
on Chebyshev series (see also [9]). The general form of Fourier-Pade rep-
resentation has been suggested by Cheney [4], but he does not discuss any
algorithm for the computation of coefficients, rates of convergence, etc Geer
[12] introduced and studied a class of approximations to a periodic func-
tion f which uses the ideas of Pade, or rational approximations. Although
these approximations do not “eliminate” the Gibbs phenomena, they do
mitigate its effect. For elimination of the Gibbs phenomena an algorithm
is described and studied in Driscoll and Fornberg [10] based on Pade-type
approximations and utilizing the logarithmic function. The resulting “Sin-
gular Fourier—Pade” approximations are quite accurate anyway, except near
the jumps.

We shall limit our discussion to functions which are smooth on
[—1, 1] with discontinuities only at the endpoints of the interval. A class
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of rational linear approximations {S, xv(f)}, p=1,2,...; N — oo based
on ideas Fourier-Pade is introduced. Unknown parameters are determined
by asymptotic Ly-errors from the corresponding minimization problems.
Thus, the complexity of the resulting approximations are identical to
Fourier partial sums with more efficient boundary correction compared
to Fourier—Pade. The results are discussed in the context of Fourier—Pade
approximations [12]. Additional acceleration was derived by combination
with KGE method. The theory is further illustrated with several numeri-
cal examples.

2. Preliminaries
2.1. Main Approximation Formula

Consider a finite sequence of complex numbers 6 := {Qk}ﬁd:l’ p=1
and denote

ANO)= fu, ANO) =237 O0) +Osenin Al ysqneny @) k=1, 2.1)

where sgn(n)=1 if n>0 and sgn(n)=—1 if n <O0.
From (1.1) and (1.2), we get

Ry(f):=f(x)=Sn(f)=RL(F)+Ry(f),

—N-1

o0
R; (f) — Z fnemnx7 R;,(f) — Z fnemnx.
n=N+1 n=—00
It can easily be checked that for |6;|#1
01 f eijr(N—H)x 1 00 | .
Ry(f)=~ —— + : AL @™
v 1+6em 1 46eim~ n:ZNH n®)

Reiteration of this transformation up to p times leads to the following
expansion (|6¢|£1,k=1,..., p)

p k—1
Ry(f) = —gmviey KAy @
N - .
k=1 H§=1(1 +6;er)
oo

1

b 3 AL
p
[Te; (14 6ke™) "

=N+1
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Similar expansion of R (f) reduces to the following approximation

S (f) ZN: f iTnx ir(N+1)x Zp: ekAll{Vil(e)
p.N L= n€ —¢€ -
n=—AN k=1 Hf:l(l +65e)

e im(N+Dx i - ekakal (93. 2.2)
=T (1 +6-geim)
with an error
Rp,N(f)IZf(X)—Sp,N(f)ZR;N(f)-FR;,N(f)» (2.3)
where
+ ) ! o P +imnx
R, n(f)= 7 (T ome) n§+1 AL, (©)e= ™, (2.4)
If 6 is the solution of a system
Al@®)=0, n=—N—-p,...,—=N—1,N+1,...,N+p, (2.5

then approximation S, nx(f) coincides with Fourier-Pade approximation
[N+p/ply ([12]).

In this paper we introduce an alternative approach for determin-
ing the parameters 6, by asymptotic Lj-errors (see Theorem 3.2) from
the corresponding minimization problems (see Sec. 4.1 and Table I for
optimal values of parameters in dependence of the smoothness of the
approximated function for the cases p=1, 2, 3,4). We investigate these ap-
proach theoretically in the context of Ly-norm and illustrate the theory by
numerical examples. In the last section we discuss the application of KGE
approximation for additional acceleration of S, n(f).

2.2. Auxillary Lemmas
In order to prove the main theorem, we need several lemmas.
Lemma 2.1. Let

k
Ok = Z Ci(=1)’s™, 0<m<k, (2.6)
s=0
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k!
where C}; = ——— then
sk —s)!
0, m<k,
a)k,m={(_1)kk! - (2.7)
Proof. Denote
k
00@) =1+2"=)"Ciz". gm@) =20 ,_ ). m>1
s=0
and note that
@k.m(—1) = o m.
The remaining is obvious. |

We say that f e C9[—1,1] if £ is continuous in [—1, 1]. By defini-
tion, put

A= fOM) - O, k=0,....q.
By v (p), k=0, ..., p, we denote the coefficients of the polynomial

p P

[Ta+mn=3 npa". (2:8)

k=1 k=0

Lemma 2.2. Suppose f € CitP[—1,1], ¢ >0, p > 1, fatrth ¢
Li[-1,1] and A;(f)=0 for j=0,...,g—1.If

T
bp=0_1=1——, k=1,...,p, 2.9
k k N P 2.9

then the asymptotic expansion holds as N — oo, |[n| >N +1

(=D (g + p =N =D ye(p)

+omn— 9Py,
21! 2= NE— e+ —kr—k O )

AL ©)=Aq(f)
(2.10)

Proof. Ifin (2.1) 6y =1, |k|=1,..., p, we put Ak :=Ak(6). Notice
that AX are classical finite differences.
It is not hard to prove by induction that

Pk
Aﬁ(@):Z%ﬁj. .11
k=0
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Again by induction

k
, , k!
Ay = 2(:) Ci fanl-jrsgnems C = k= (2.12)
j:

Now we need asymptotic expansion of Fourier coefficients. By p +¢ + 1-
fold integration by parts in (1.1), we have the following

(D A
2 = (imn)s+! 2(171}1)1!’“4‘1

fn:

/ f(p+q+1)(x)e—mnxdx
(2.13)

where the second term is o(n~?~4~1) as n — oo according to the well-
known Riemann-Lebesgue theorem ([26]). Combining this with (2.12), we
get

+o(n P17y (2.14)

(R A
An_ 2 = (iTL’n)‘H_l Z k

NS+l
(1- |n|)
as n— o0 and 0 <k < p.
Then we put gs(x)=(1—x)"*"! and proceed by Taylor expansion and
Lemma 2.1

k i k (m)

S (=1)) Q)
ZCJL = uwk m +0(n7k)
2N T 2l
j=0 (—m) m=0

k)=

T +0(n_k), n— o0o.
slin|

Substituting this in (2.14), we obtain

(_l)n+k+l (q +k)'

k_ —k—q—1
An_Aq(f) 2(i7‘rn)‘1+1q!|n|k +o(n ), n—oo.
This together with (2.11) completes the proof. U
Lemma 2.3. Let ¢, k=1,..., p be complex numbers such that 7; #

7; for i #j. Denote

(q+m—1)!2p: 7T 1)k+1Vk(17)

q' l_[l l(rl j) k=0 /
i#j ’

by = (2.15)

Jj=l1
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then

=D o m=1
bm—{a "2, (2.16)

Proof. Let R> max |t|. Evidently,
1<k<p
P dt

T 17
o=k T[T (ti — 1) @-17)

(@+m=DI"CN
mF—EEF—Zen Ve (p)
’ k=0

In the case m >2 the integral on the right-hand side of (2.17) tends to zero
as R— oo for all 0<<k < p—m. This proofs the second part of (2.16).

In the case m =1 the integral on the right-hand side of (2.17) tends
to zero as R— oo only for k> 0. If k=0, we have

1 P Mdt

“DPhi=—5— | =
27i |t|=R H,P:l(ti —‘L’)

—153;¢q(r)=:L

This concludes the proof.

3. ASYMPTOTIC L,-CONSTANTS

The following result is obvious from asymptotic expansion of f, (see
(2.13)).

Theorem 3.1. Suppose f € C[—1,1], ¢ >0, f4*D e L|[-1,1] and
A;(f)=0for j=0,...,g—1; then the following estimate (see (1.2)) holds

Jim NI IR (N1 =144 (Hle(@).  cl@)= (3.1)

1
7+l 2g+1

Now we are interested in a similar result for S, y(f).

Theorem 3.2. Suppose f € CItP[—1,1], ¢ >0, p > 1, fatrth ¢
Li[-1,1] and A;(f)=0 for j=0,...,¢g—1.If

Gk:Q_kzl—%, k=1,....p, w>0, t;#75, j#i; (3.2)
then the following holds

i N’”%IIR,;,N(J")II =1A4(Hlep(q), (3.3)
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where
2 \1/2
CP(Q):#( | bp.g @) dt) ;
(3.9
—1P
$p.g (1) ="
1 & emteh 2 P
—;Z e Zyk(p)( DN @+ p—k—m—Dll. (3.5)
Cj=1 i=1 it m=0
i#]

Proof. Note that for sufficiently large N we have 0 <6; <1, j=
1,..., p and hence from (2.4) we derive

00 00 p
REV(= Y AROE™™ - (=)™ by, (3.6)

n=N+1 m=0 k=1
nNr=1gP!
where the numbers ;= #/) are defined by the identity
i=1\li — T
i#j

p
Hk 1(1+9kemx) :](2:: +9ke1nx

From (3.6) we have

IR}y (NI =2 Z Z AL©O) (=1 Zﬁke

n=N+1 |s=N+1

Taking into account Lemma 2.2, we derive as N — oo

|Aq ()

2g+1 +
NZTIR, N(f)|| = 22212(g1)2N3

gn—s+p—l

e (q+p—m!(=D"y(p)
x Z Z Z v m)q+p —m+1 Z]—[{’;(ri—ﬁc)

n=N+1|s=N+1m=0 k=1

+o(1). (3.7)
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Tending N to infinity and replacing the sums in (3.7) by corresponding
integrals we get

hm N2’1+1||R+ (HIP= | q(f)|2/ [ (1) |* dr (3.8)
N 2 2g+2 1 ’ :
where
P
= m e .m .
0! kz; l(n_r)Zy km (1) (3.9)
2k
and
_ w(@+p—m)! [ e w0
Lim (@) :=(=1) p /lxq+p_m+ldx. (3.10)

The passage from (3.7) to (3.8) is well-founded as integrand in (3.10) is
continuous and enough decreasing as t — oo

t/2 efrk(tfx) t efrk(tfx)
|1k m(l)| const ‘/; de +[/2 W—_mﬂdx
< const (eif"l/2 + F]) .

Integrating by parts, we derive

_1ym+1 p—m=1 —m—s— D
(=D e~ Tk(—x) Z T}g(quP m—s )

]k,m(t) = o
(]! = x4+p—m—s el
p—m tefrk(tfx)
mp—
+(_1) Tk -/; qudX
According to definition of b, (see Lemma 2.3) we have
P
bm
V() = Z prEe
m=1
o Tk(I— 1) P +11’ —m=1
-H" (g+p—m—s—1)!
s=0
t#J
—rk(t—x) P m
Ym(=1)
+ dx _ 3.11
Z P 1(.[1 _Tj) f xq+l ,,;) Tlin ( )

1#1
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The last term in (3.11) vanishes according to (2.8) and the first term
can be simplified according to Lemma 2.3. This ends the proof as similar
estimate is valid for R;’ N(D- |

4. NUMERICAL RESULTS
4.1. Minimization of L;-constants

In this section we solve the minimization problem of the errors
IRy, N (DI, p=1,...,4 numerically for determining the unknown param-
eters 7; in approximation S, ny(f) according to Theorem 3.2. In other
words we minimize the integral on the right hand side of (3.4) by
appropriate choice of parameters t;. Calculations are carried down by
the global minimization possibilities of the package MATHEMATICA 5
([25]) and the corresponding results are presented in Table I where the
ratio c(gq)/cp(g) describes effectiveness of optimal rational approximation
Sp,n(f) compared to Sy(f). Further, under S, y(f) we mean the approx-
imation (2.2) with optimal choice of parameters 7; as in Table I. We see
that, for example when ¢ =3, the approximations S, n(f),p=1,...,4
are more precise (N > 1) than the approximation Sy(f) correspondingly
12,82,411 and 1704 times.

Results in Table I are asymptotical (N > 1) and it is interesting to
look at the numerical behavior of approximations for small and moderate
numbers N. It is also important to compare S, y(f) with Fourier—Pade
approximation. In Table II we represent L,-errors by approximating the
function f(x)=(1 —x%)sin(x —1). We see that for N =32,128,512,2048
the approximation S3 y(f) is more precise than Sy (f) correspondingly 5,
13, 33, 43, 61 times. The last number coincides with asymptotical estimate
;;((11)) =61.3 (see Table I). Notice also that S3 x(f) is 10 times more precise
for N =2048 than Fourier-Pade approximation [N/3].

Now we represent some numerical results in order to show how the
considered approximations perform themselves from a pointwise point
of view. In Fig. 1 we outline absolute errors at the point of x =1
while approximating the functions f(x)=sin(x —1) (a) and f(x)=(1 —
x2)4sin(x — 1) (b) for N =128. These figures also well explain why the
Ly-errors of approximation S, y(f) are so small.

It is interesting that the situation is quite the contrary far from the
end points of the interval [—1,1]. In Tables III and IV we show abso-
lute errors in the interval [0, 0.1] while approximating the functions f(x)=
sin(x — 1) and f(x)= (1 —x?)*sin(x — 1) for N =16. It become obvious
that the precision of Fourier—Pade approximation is the best in the regions
far from the singularities.
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Table I. Numerical Values of c,(¢) and c(q)/c,(q) for 1 <q <6, 1 < p <4 Using the
Numerical Optimal Values of Parameters 7, | <k < p

q 1 2 3 4 5 6
c1(q) 0.01009  0.00159  0.00031  0.00007  0.00001  4-10~°
c(@)/ci(q) 5.7 9.0 12.2 15.5 18.7 22.0

7] 1.3533 23199 3.3020 4.2915 5.2845 6.2795
c2(q) 0.00277  0.00030 0.00004 8-107° 1.107°  3.1077
c(@)/c2(q)  21.0 46.7 82.3 128.1 183.8 249.7

T 27595  4.0837  5.3580 6.6001 7.8190 9.0202
n 0.53199  1.1360  1.8177 2.5460 3.3060 4.0890
c3(q) 0.00095 0.00007 9x107¢ 1x107% 2x1077 4x1078
c(@)/c3(q) 613 185.1 411.6 771.8 1296.7 2017.4
71 0.2510  0.6382  1.1230 1.6730 2.2699 2.9023
7 1.28553  2.2362  3.2067 4.1868 5.1725 6.1617
7 42225 57813 17.2573 8.6781 10.0589  11.4089
ca(q) 0.00037 0.00002 2x107¢ 2x1077 4x107% 7x107°
c(@)/ca(q)  156.5 621.3 1704.4 3794.9 7377.9 13034.6
7] 0.6663  0.3861  0.7379 1.1602 1.6358 2.1534
n 0.1304  1.3458  2.0908 2.8748 3.6851 4.5146
7 22056 34130  4.5975 5.7649 6.9188 8.0619
4 57354  7.4661  9.0951 10.6547 121630  13.6315

Table II.  L,-errors While Approximating the Function f(x)= (1 —x2)sin(x — 1)
N=8 N=32 N=128 N=512 N=2048
Sn(f) 0.003 0.0004 0.00005 6.5x107¢  8x 1077
Syn(f) 0.0006 0.00003 3.5x107% 44x1077 3.8x1078
S3n(f)  0.002  0.00003 1.5x107° 1.5x1077 1.3x1078
[N/2]¢ 0.001  0.00009 0.00001 14x107°  1.3x1077
[N/3]f  0.0009 0.00007 7.6x107% 6.6x1077 1.4x107’

Table III. Absolute Errors in the Interval [0,0.1] While Approximating the Function
f(x)=sin(x —1) for N=16

Sn(f)

S2.n () S3n(f)

[N/2f

[N/3]y

Absolute error

0.008

7x107° 4% 1077

6x10°8

1x107°
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(a) (b)
0.4 6x10°1f
= Sz,n(f)
0.3 A 83,n(f)
= [N/2]¢
0.2 A N3¢
2x10° 1
0.1 1x10°1
0 0 i X
0.9992  0.9994 0.9996  0.9998 1 0.997  0.998  0.959 t
Fig. 1. Absolute errors at the point of x = 1 while approximating the functions

fx)=sin(x —1) (a) and f(x)=(1 —x2)*sin(x —1) (b) for N=128.

Table IV. Absolute Errors in the Interval [0,0.1] While Approximating the Function
f@)=1—-xH*sin(x—1) for N=16

Sn(f) So.n (f) S3.n () [N/2]y [N/3]s

Absolute error  4x 1077 2x1072  4x1071%  6x 10711  4x 10712

4.2. Application of KGE-Method

The results in Table I make it clear that effectiveness of the approxi-
mation S, x(f) is directly connected with the smoothness of f (parameter
q). Thus, if Ax(f)#0 for a small k¥ we need a smoothing procedure for the
approximated function. From this point of view we consider KGE approx-
imation. As we have mentioned above the idea of KGE method is to split
the given function f into two parts

q—1
fO=F@)+ Y Ac(f)Bi(x), (4.1)

k=0

where F is a relatively smooth function and B (x) are the 2-periodic Ber-
noulli polynomials with Fourier coefficients

0 n=0

Bk,: ’_1n+1
T\ sl n=EL A2

4.2)

Approximation of the function F by the truncated Fourier series leads
to KGE approximation

N q—1
Eoqn(f)= Y Fa™ + ) Ax(f)Bi(x), (4.3)

n=—N k=0
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Table V. Lj-errors While Approximating (4.6) by E, 4 256(f), p=0, ..., 3

q=4 q=>5 q=6 q=7
Eoq.N 1.7%x107° 1x107° 6.6x1071  3x107°
Eigzn 19x10710  58x107""  62x107""  3x107°
Ergn 45x10711 70x10712  62x10711 3% 1070
Esgn  21x107" 24x10712 62x10711 3x107°

where the coefficients F, can be expressed by f, and Bi, from (4.1).

In order to determine the approximate values Ay for Ax(f) the fact
that the coefficients F,, asymptotically (n — oco) decay faster than the
coefficients By, (however for k=0) is used, and can therefore be discarded
for large |n|. Hence, from (4.1) we derive

q—1
fn:ZAkBk,nv N=R1,N2, ..., 0y, NiF#ENj, [F#]. 4.4
k=0

where the ¢ unknowns are Ak, k=0,...,g—1and n=0(N)<N, N—o0.
We use the same idea and approximate F by S, x(f) deriving a new
class of approximations

q—1
Epgn(H)=Spn(F)+Y_ Ax(f)Bi(x), p=1,2,... (4.5)
k=0

As a typical example let’s consider the function
f(x)=sinh(2.3x — 0.6) sin(23.5x + 0.8) (4.6)

in the interval [—1,1]. In Table V we represent Lj-errors for approxima-
tion E, 4 n(f), p=0,...,3, N=256. We calculate Ay from (4.4) with
m=qg+3, ni=N,ny=—N,n3=N—1,ng=—N+1,... by the least square
algorithm. Besides, for additional precision we reconstruct the values of A
for k=0,...,g+2 and then use only for k=0,...,g—1.

It is well known that for big values of ¢ (¢ >8) and N KGE-method
is unstable. Unfortunately this is true even if the exact values of Ax(f)
are known. Consequently, it is useless to increase ¢ without any limit. The
conclusion that can be derived from here and many other similar experi-
ments is as follows: fix ¢ (4 <¢ <6) and increase p.
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