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In this paper the asymptotic behavior of the Krylov—Lanczos interpolation is investi-
gated. Exact asymptotic constants of the errors are obtained on the subintervals where
the 2-periodic extension of the approximated function is smooth. In particular, the fast
convergence of this method is observed and examined in a special case. Some numerical
results are presented.
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1. Introduction

It is well known that reconstruction of a smooth on [—1,1] function by truncated
Fourier series

= Z fnewrna:7 fn — 5‘/1 f(x)eflwna:dx (11)
n=—N -

or by trigonometric interpolation

al R 2k
Vn iTnT Vn _ —imny = — 1.2
3 Fe™ gy 3 fe ™ mm g ()

is noneffective when the 2-periodic extension of the approximated function is discon-
tinuous. The oscillations caused by the Gibbs phenomenon are typically propagated
into regions away from the singularities and degrade the quality of approximations.
There is ample literature devoted to overcoming this problem; for example, con-
sult [4,5,11-15], and references therein.

An efficient approach of convergence acceleration of Fourier partial sum (1.1), by
subtracting a polynomial representing the discontinuities in the function and some
of its first derivatives (“jumps”), was suggested in 1906 by Krylov [18] and later
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in 1964 by Lanczos [19,20]. For further development of this approach see, for
example, [2,3,21-24, 28]. Inspired by work of Gottlieb et al. [1,6,16] on prob-
lems with discontinuous solutions, Eckhoff et al. [7-10] developed a new way to
calculate the polynomial terms in the representation suggested by Krylov and Lanc-
zos. In particular, Eckhoff generalizes Krylov-Lanczos representation to piecewise
smooth functions and derives a system of linear equations for calculation of “jumps”
(see (2.1)).

An interpolation counterpart of the Krylov-Lanczos approach is investigated
in [9,10,17,25,26]. In this paper exploration of Krylov—Lanczos interpolation is
continued with restriction to the case when the approximated function is smooth
on the interval [—1,1] with singularities only at the endpoints. In addition, it is
assumed that the exact “jumps” are known.

This paper is organized as follows: In Sec. 2, Krylov—Lanczos interpolation is
briefly described and the main notations are introduced. In Sec. 3 some preliminary
Lemmas are proved. In Sec. 4 the main results are stated; see Theorems 4.2-4.5,
where the convergence of Krylov-Lanczos interpolation is investigated on the inter-
vals [—¢g,¢], 0 < & < 1. In particular, the fast convergence of Krylov—Lanczos
interpolation is observed for odd values of g (see (2.4)).

2. Krylov—Lanczos Interpolation
For f € C'7[—1,1] denote

Alf) = FP (1) = FB (1), k=0,....q. (2.1)
The following lemma is crucial for the Krylov-Lanczos approach.

Lemma 2.1 [6]. Let f € C7'[—1,1] and £~ be absolutely continuous on [—1,1]
for some q > 1; then, the following expansion is valid for the Fourier coefficients fy,

Q

_(—1)n+1 -1 An(f) 1 1 » y
I = T 2 Tyt T /_ D@z, n A0

3
I

Proof. The proof can be derived easily from (1.1) by sequential integration by
parts. O

The so-called Lanczos representation is based on this lemma,

g—1
f(z) = Z Ap(f)Bm(z) + F(z), (2.2)
m=0
where B,,, are 2-periodic Bernoulli polynomials with Fourier coefficients
0, n=>0
n==1,42,...

2(imrm)m+1’
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and F' is a 2-periodic relatively smooth on real line function. Approximation of
F in (2.2) by trigonometric interpolation (1.2) leads to Krylov-Lanczos (KL)
interpolation

N q—1
Ing(f) = Z Fpe™ + Z Ap(f)Bm(z), (2.4)
n=—N m=0
where discrete Fourier coefficients F}, can be calculated from (2.2)
g—1
Fo=fun—=>_ An(f)Bn(m). (2.5)
m=0

From (2.3) we conclude that By(z) = z/2, B1(x) = —1/12+22/4 and so on. Hence,
discrete Fourier coefficients B,,(m) have explicit form. For example, here are three
of them

§ —1)" y

B (0) = i 7 n#0, Bo(0) =0,

T
2(2N + 1) si
(2N + 1) sin SN+ 1

™
2NV +7T17'L 3 n 7& 07 Bo(l) =
2N +1

3 (—1)" cos
Bn(1) = - 5
2(2N + 1)?sin

(—1)"*h <3+cos )
2N +1 .
Bn(2): SN + 1)3si 3 TN ) TL#O, 30(2)20
(2N + 1)3sin SN+ 1

Use || f||e to denote the norm of the space La(—¢,¢), 0 < & < 1, namely
c 1/2
1= ([ @)
—€

Ry o(f) = (@) = Ing(f)-

Denote also

3. Preliminaries

In this section we prove some lemmas required in the next section. Propositions (3.1)
and (3.2) in the next Lemma are proved in [27]. Since Proposition (3.3) is a new
one, we are repeating the proof from [27].

Lemma 3.1. Let

P
Wp,m = Z <p> (_1)537’17 m 2 07

s=0 §
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then

Proof. Denote

and note that

The remaining is obvious.

Denote

2p 2
AP (fa) = (;) frtp—ky P20
k=0

Lemma 3.2. The following estimate holds for p > 0 and m > 0

(=) (m + 2p)!
2(imn)m+1n2Pm)

AL(Bn(m)) =

Proof. According to the definition of AP (B, (m)), we derive

AL (Ba(m) =37 (2: ) Buvtp-k(m)

k=0

)—l

e & <2p> 1k
= 2(i7rn)m+l = k ( k)m+1

3

s=m

—1)ptn+l 2p 2 > .
- é(iw)mm“ Z ( p) v <m> e ~(p—

=0

(=1)pintt Zoo mEs\ (=1)° (s
e _1 .]
2(imn)" =\ om ns L=\ (D"

This concludes the proof according to Lemma 3.1.

+ 0™ p - oo
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Lemma 3.3. The following estimate holds for p > 0 and m >0

- _ (=)™ (m o+ 2p)! (-1)°
Aﬁ(Bn(m) - Bn(m)) = 2(i7TN)"L+1N2pm! Z ( m+2p+1
s#£0 |28 + N>
+O(N"™7272) " |p|< N, N — oo. (3.5)

Proof. Taking into account that for m >0

Bn(m) = Z Bn+5(2N+1)(m) = Bn(m) + Z Bn+5(2N+1)(m)7 (3‘6)
s=—00 s#0
we derive for p > 0 and |n| < N

A?(Bn(m) — Bn(m))

n+p+l ) —1)s 1
Z7TN 2(ir N )m+1 Z( ) Z ( n) m1

N (23 + —)
(_1)n+p+1 o0 <m+t> (_1)1& t (t) j S(p+s) t —j
= S aymEl Z 7 Z . ) wap,j Z At
2(imN) =0 \ ™ N =0 \J 570 (23 + )
N
Now (3.5) follows from Lemma 3.1. m|

Lemma 3.4. Let m > 0 be an even number; then, the following estimate holds

(=DM (m 4 2p)! (=1)°
2 (

p > — -~ Z
AiN(Bn(m)) == 2(i7rN)m+1N2Pm! — 25 + 1)2p+m+1

+O(N~™ 2272 N —o00, p>0. (3.7)

Proof. Taking into account (3.6), we derive

AiN(Bn(m))
_pNeeL 22 (9 > 1)
- ig(m)N)mH kZ:O (lf) (=" s:z—:oo (25 4 1)m+1 (1( n )3 +p—k >m+1
’ N(2s+1)

(N & fmtt : & (=1)(s+p)tI

t=0 \ ™

This concludes the proof. O
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Lemma 3.5. Let m > 1 be an odd number; then, the following estimate holds

oo

(—)N*+P(m +2p +1)! (—1)%s
ZOO(

P 5 _ c
AiN(Bn(m)) = Q(in)m+1N2p+1m! - 25 + 1)2p+m+2

+ON™™" 273 N —o00, p>0. (3.8)

Proof. We proceed as in the proof of Lemma 3.4 and derive

(—=)N+PHL(m + 2p)! i oy
2(irN)™HimI N2 £ (25 + 1)2Fm+1

ALy (Bn(m)) = £

COYn+2p+ D g5 (s
2w N)mHImE N2PEL - (£ (25 4+ 1) m2

+O(N~2~m=3) " N — oc.
From the fact that

(D
————=0 =1,2,...
S:Z:oo (2S+1)2m b) m b )

we get (3.8). O

4. Asymptotics of KL-Interpolation

The next theorem reveals the asymptotic behavior of KL-interpolation on the whole
interval of approximation. The proof can be found also in [26] in a more general
context.

Theorem 4.1. Let f € C9[—1,1] and 9 be absolutely continuous on [~1,1] for
some q > 1; then, the following estimate holds

Jim N[ Ry q(£)llr = |4q(F)ala), (4.1)
where
9 1/2
1 2 ! (—=1)*
= —— d
= T /_1 ; @s+ayt|
Proof. From Lanczos representation (2.2) we get
N
RN7q(f) _ Z (Fn _ Fn)eiﬂ'nr + Z Fneiﬂ'nr.
n=—N [n|>N

Therefore

1/2
N /

IBvo(Nl=v2{ D [Fa—FalP+ Y IR - (4.2)

n=—N [n|>N
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According to the smoothness of f, from Lemma 2.1 and representation (2.2), we

derive
F,=A (f)ﬂ—ko(n*q*l) n — 0. (4.3)
D79 (irm ) e+t ’
Taking into account that
Fn =F, + Z Fn+s(2N+1) (44)
s#0

from (4.3) and Lemma 3.3 we get

o (—1)N (-1)° s
s#0 S+
N
Substituting (4.3) and (4.5) into (4.2), letting N tend to infinity and replacing the
Riemann sums by corresponding integrals, we derive (4.1). O

In Table 1 we show the numerical values of the constant a(q) for different values
of g. It is interesting to see also the values of the ratio a(q)/a(q + 1). The corre-
sponding results are presented in Table 2. It is easy to check that a(q)/a(¢+1) — =
as g — o0o.

Denote (for A4(f) # 0)

Nq+1/2
an(q, f) = WHRN,q(f)HL

According to Theorem 4.1 an(q, f) — a(q) as N — oo.
Now consider the following simple example
f(z) =sin(z — 1). (4.6)

In Table 3 the values of an(q, f) are presented when N = 32 and (4.6) is
approximated. We see that these values are rather close to the theoretical values
from Table 1.

Table 1. Numerical values of the constant a(q) for different values of q.

q 1 2 3 4 5 6 7

a(g) 0.08389 0.01899  0.00554  0.00152 4.4-10* 1.3-107% 4.107°
q 8 9 10 11 12 13 14

a(q) 1-107®> 4-107¢ 1.107% 3.1077 1-1077 3-107% 1.107%

Table 2. Numerical values of the ratio a(q)/a(q + 1).

q 1 2 3 4 0 15 20

a(g)/alg+1) 442 343 364 342 329 324 322
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Table 3. Numerical values of the constant ay(q, f) for different values of ¢ and
N = 32 when (4.6) is approximated.

q 1 2 3 4 5 6 7

an(q, f) 0.08195 0.01826 0.00525 0.00142 0.00041 0.00012  0.00004

In the next four theorems the asymptotic behavior of KL-interpolation is inves-
tigated on the interval [—e,e] when 0 < ¢ < 1. First, even values of ¢ are considered.

Theorem 4.2. Let ¢ > 1 be an even number, f € CIt2[—1,1] and £t be
absolutely continuous on [—1,1]; then, the following estimate holds as N — oo and
|z| <1 is fized

( 1)N+q Sln (2N+ 1) i (_1)5
2(mN)att cos = (25 +1)att
2

S=—00

+O(N"T%).  (4.7)

B g(f) = Aq(f)

Proof. The following transformation can be easily checked for |z| < 1
. e imNz _ eiﬂ’(NJrl)a: . eimNa _ efiﬂ(N+1)w

- . + F_ . .
N(1+€l7rw)(1_|_efz7ra:) N(1_|_ez7ra:)(1_|_efz7ra:)

RN,q(f) =

N
1 S
i ‘ Al Fn _ Fn 1mTnx
+ (1 + ewrw)(l + 671/71'(1?) n;N n( )6

+ 4 - Z Al 17an
(1+€’Lﬂf£) 1+€ 17rr ol

—N—-1

1
Al 17rnm. 4.
+ (]_ + ew’w)(l + e~ Mra: Z ) ( 8)

n=-—oo
Taking into account the smoothness of f and representation (2.2), we write

q+2
F—ZA m)+o(n"973%), n— occ.

From the definition of Al(F,) the following is derived

q+2

= An(f)AL(Bu(m)) +o(n "?), n— oo.

m=q

Now, according to Lemma 3.2, we obtain
AL(F,) =0(n 1%, n— occ.

Hence, the last two terms in (4.8) are of the order O(N~972) as N — o0.



Anal. Appl. 2009.07:199-211. Downloaded from www.worldscientific.com
by NANYANG TECHNOLOGICAL UNIVERSITY on 07/17/16. For personal use only.

Asymptotic Behavior of the Krylov—Lanczos Interpolation 207

In the same way, we get
Ai(Fn —F,) = Z Am(f)A}z(Bn(m) — Bn(m))

+0o(N"973), |n|] <N, N — oo.
According to Lemma 3.3

AL(F, = F,) =O(N~7%), |n| <N, N —oo.

From here we conclude that the third term in (4.8) is also of the order O(N ~772)

as N — oo.
Finally, we get

. e—imNz _ eiﬂ(N+1)fE

RN,q(f) = Fy (14 eim)(1 + e—im)

F eimNz _ efiﬂ(N+1)w O N7q72 N
+r_N 1+ o) (1 + e—imo) +O( ), — 0.

From Lemmas 3.4 and 3.5, when p = 0, we have

: DM (1

FN = Aq(f)2(Z7TN)q+1 - (23—|—1)‘1+1 +O(N_q_2)7 N —

and
F_n = —Fy.

Substituting these last two estimates into (4.9), we derive (4.7).

O

From (4.7) the Lo-norm of the error can be derived on the interval [—e, ] when

O<e<1.

Theorem 4.3. Let ¢ > 1 be an even number, f € CIt2[—1,1] and f%2) be
absolutely continuous on [—1,1]; then, the following estimate holds for 0 < e < 1

]\}Enm Nq+1HRN,q(f)H6 = [A4(f)Ib(g,e),

where

1/2T€

_ 1 (=1
b(g,e) = NPT S;OO s tg'? -

Proof. The proof follows immediately from (4.7).

In Table 4, the numerical values of b(q,¢) are presented for € = 0.7.
Now we carry out similar investigations for odd values of q.

(4.10)
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Table 4. Numerical values of b(g, ¢) for e = 0.7.

q 2 4 6 8 10 12

b(g,e) 0.03493 0.00364 0.00037 0.00004 3.8-106 3.8.1077

Theorem 4.4. Let ¢ > 1 be an odd number, f € CT3[—1,1] and f(973) be abso-
lutely continuous on [—1,1]; then, the following estimate holds as N — oo and
|x] < 1 is fized

. T
(_1)N+% sin 7(2]\[ +1)

RN,Q(f) = oratl Nat2 L
COS 7

oo

x (Aq(f>(q+1>t9% ) ﬁ

L Agn(f) i (=1° >+O(Nq3), (4.11)

e S PR D

Proof. Reiteration of transformation (4.8) leads to the similar expansion of the
error when |z| < 1

. e—imNz _ eiﬂ(N+1)z . einNz _ e—iﬂ'(N—i—l)r
R =F - - F_ - -
N,q(f) N (1 + ewrw)(]_ + efwrw) + N (]_ + ew’w)(l + efwrw)
. —irNz _ in(N+1)z . itNax _ ,—in(N+1)x
+ AN (E) ° + ALy (Fy) = .

(1_|_617rr) (1_|_e—i7rr)2 (1_|_617rr) (1+€—iﬂ'm)2

1
(1 + ew’w) (1 + e iTT 2

Z AQF F)Mrnw

n=—N

1
+ i )2 —iﬂr Z AQ “Tnm
e re P 4,

—N—-1

1
: A2 (F,)e'™=. 4.12
+ (1 + ew’w) 1 + e Mra: Z ( )

In view of the smoothness of f the Fourier coefficients F}, have the following asymp-
totic expansion

q+3
Fo=Y An(f)Bn(m)+o(n™ "), n— oc.

m=q
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Hence
q+3
AZ(F) =Y An(f)AL(Bn(m)) +0o(n™17%), n — occ.

m=q

Now, from Lemma 3.2, we get
A2(F,)=0o(N"7%), N — oo.

Therefore, the last two terms in (4.12) are of the order o(N~973) as N — oo.
According to Lemma 3.3 the same estimate is valid also for the fifth term. The
third and the fourth terms are of the order O(N~973) as N — oo according to
Lemmas 3.4 and 3.5, when p = 1. Finally, we get

. e~imNz _ eiﬂ(N+1)fE

RN,q(f) = Fy (1 + eim)(1 + e—im)

eimNz _ efiﬂ(N+1)w
(1_|_617rr)(1 _|_€—i7'rm)
From Lemmas 3.4 and 3.5, when p = 0, we derive

§ “DV(g+1) & —1)5s
Fan = Aqlf )(2(1'7T)N§C‘II+1N) ; (2£+i)q+2

+F N +O(N"93), N —oo. (4.13)

_1\N+1 > _1)\s
s Ay (P -

—_— — = +O(N" 7%, N
(imN)a+t2 = (25 +1)+2 +0( ) o

Substituting this last estimate into (4.13), we obtain (4.11). O

Theorem 4.5. Let ¢ > 1 be an odd number, f € C3[—1,1] and f(973) be abso-
lutely continuous on [—1,1]; then, the following estimate holds for 0 < e <1

Jim N Ry o (f)])-
0o 2
_ (DBt (§ s ) e
Gr2a+s A @sypez) Y

o 2 3
[Ag1(H)I? (=D° e
R e Z mrneE) 97 ) (4.14)
Proof. The proof follows immediately from (4.11). O

From Theorem 4.1 we conclude that it makes no difference whether odd or even
values are used for KL-interpolation if asymptotic behavior is estimated on the
whole interval of approximation. Hence, the larger the value of the parameter ¢
the more precise is the corresponding interpolation. Note only that larger values of
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parameter g lead to round off errors and usually it is recommended to use values
q < 10. Meanwhile, if we are interested in precision on the subintervals where the
approximated function is smooth, then according to the last four Theorems the odd
values are preferable.

References

1]

(11]

(12]

(13]

(14]

S. Abarbanel, D. Gottlieb and E. Tadmor, Spectral methods for discontinuous
problems, in Numerical Methods for Fluid Dynamics II, eds. K. W. Morton and
M. J. Baines (Oxford Univ. Press, London, 1986), pp. 129-153.

A. Barkhudaryan, R. Barkhudaryan and A. Poghosyan, Asymptotic behavior of Eck-
hoff’s method for Fourier series convergence acceleration, Anal. Theory Appl. 23(3)
(2007) 228-242.

G. Baszenski, F.-J. Delvos and M. Tasche, A united approach to accelerating trigono-
metric expansions, Comput. Math. Appl. 30 (1995) 33—-49.

B. Beckermann, A. C. Matos and F. Wielonsky, Reduction of the Gibbs phenomenon
for smooth functions with jumps by the e-algorithm, Universite’ de Lille (2006);
http://math.univ-lillel.fr/~bbecker/, preprint number 3.

C. Brezinski, Extrapolation algorithms for filtering series of functions, and treating
the Gibbs phenomenon, Numer. Algorithms 36 (2004) 309-329.

W. Cai, D. Gottlieb and C. W. Shu, Essentially non oscillatory spectral Fourier
methods for shock wave calculations, Math. Comp. 52 (1989) 389-410.

K. S. Eckhoff, Accurate and efficient reconstruction of discontinuous functions from
truncated series expansions, Math. Comp. 61 (1993) 745-763.

K. S. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated
Fourier series expansions, Math. Comp. 64 (1995) 671-690.

K. S. Eckhoff, On a high order numerical method for functions with singularities,
Math. Comp. 67 (1998) 1063-1087.

K. S. Eckhoff and C. E. Wasberg, On the numerical approximation of derivatives
by a modified Fourier collocation method, Technical Report No. 99, Department of
Mathematics, University of Bergen, Norway (1995).

J. Geer and N. S. Banerjee, Exponentially accurate approximations to piece-
wise smooth periodic functions, J. Sci. Comp. 12 (1997) 253-287; ICASE Report
No. 95-17.

D. Gottlieb, C. W. Shu, A. Solomonoff and H. Vandevon, On the Gibbs phenomenon
I: Recovering exponential accuracy from the Fourier partial sum of a non-periodic
analytic function, J. Comput. Appl. Math. 43 (1992) 81-92.

D. Gottlieb and C. W. Shu, On the Gibbs phenomenon III: Recovering exponen-
tial accuracy in a sub-interval from the spectral partial sum of a piecewise analytic
function, ICASE Report No. 93-82 (1993).

D. Gottlieb and C. W. Shu, On the Gibbs phenomenon IV: Recovering exponential
accuracy in a sub-interval from a Gegenbauer partial sum of a piecewise analytic
function, Math. Comp. 64 (1995) 1081-1096.

D. Gottlieb and C. W. Shu, On the Gibbs phenomenon V: Recovering exponential
accuracy from collocation point values of a piecewise analytic function, Numer. Math.
33 (1996) 280-290.

D. Gottlieb, L. Lustman and S. A. Orszag, Spectral calculations of one-dimensional
inviscid compressible flows, STAM J. Sci. Statist. Comput. 2 (1981) 296-310.

W. B. Jones and G. Hardy, Accelerating convergence of trigonometric approxima-
tions, Math. Comp. 24 (1970) 47-60.



Anal. Appl. 2009.07:199-211. Downloaded from www.worldscientific.com
by NANYANG TECHNOLOGICAL UNIVERSITY on 07/17/16. For personal use only.

(18]
[19]

[20]
(21]

22]

23]

24]

[25]

[26]

[27]

[28]

Asymptotic Behavior of the Krylov—Lanczos Interpolation 211

A. Krylov, On Approzimate Calculations, Lectures delivered in 1906 (in Russian),
St. Petersburg (Tipolitography of Birkenfeld, 1907).

C. Lanczos, Evaluation of noisy data, J. Soc. Indust. Appl. Math. Ser. B Numer.
Anal. 1 (1964) 76-85.

C. Lanczos, Discourse on Fourier Series (Oliver and Boyd, Edinburgh, 1966).

J. N. Lyness, Computational techniques based on the Lanczos representation, Math.
Comp. 28 (1974) 81-123.

A. Nersessian and A. Poghosyan, Bernoulli method in multidimensional case,
preprint, N20 Ar-00 (in Russian); preprint, ArmNIINTI 09.03.00 (2000) 40 pp.

A. Nersessian and A. Poghosyan, La-estimates for convergence rate of polynomial-
periodic approximations by translates, J. Contemp. Math. Anal. 36 (2002) 56-74;
translated from Izv. Nats. Akad. Nauk Armenii Mat. 36 (2002) 59-77 (in Russian).
A. Nersessian and A. Poghosyan, Asymptotic errors of accelerated two-dimensional
trigonometric approximations, in Proceedings of the International ISAAC Conference
“Complex Analysis, Differential Equations and Related Topics”’, eds. G. A. Barsegian,
H. G. W. Begehr, H. Ghazaryan and A. Nersessian (Yerevan: “Gitutjun” Publishing
House, 2004), pp. 70-78.

A. Nersessian and A. Poghosyan, Fast convergence of a polynomial-trigonometric
interpolation, preprint, ArmNIINTI 07.07.00, N45, Ar-00, 1-12 (2000).

A. Nersessian and A. Poghosyan, Asymptotic error of a polynomial-periodic inter-
polation, in Proceedings of the International ISAAC Conference “Complex Analysis,
Differential Equations and Related Topics’, eds. G. A. Barsegian, H. G. W. Begehr,
H. Ghazaryan and A. Nersessian (Yerevan: “Gitutjun” Publishing House, 2004),
pp- 88-98.

A. Nersessian and A. Poghosyan, On a rational linear approximation of Fourier series
for smooth functions, J. Sci. Comput. 26 (2006) 111-125.

A. Poghosyan, On an autocorrection phenomenon of Krylov—Gottlieb—Eckhoff
Method, submitted to IMA J. Numer. Anal. (2007).





