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We consider the so-called Krylov—Gottlieb—Eckhoff (KGE) approximation of a functiaith a discon-

tinuity at a known point. This approximation is based on certain corrections associated with the jumps

in the firstq derivatives of f. The approximation of the exact jumps is accomplished by the solu-

tion of a system of linear equations. We show that, in the regions where the period-2 extension of the
approximated function is smooth, the KGE method with approximate values of the jumps converges
faster compared with the case where the exact values are used. We call this accelerated convergence the
auto-correction phenomenon, which was discovered in the past by numerical experiments. The paper
presents a theoretical explanation of the phenomenon with numerical illustrations.

Keywords Fourier coefficients; Bernoulli polynomials; convergence acceleration; auto-correction
phenomenon.

1. Introduction

We consider the problem of approximating a function using a finite number of its Fourier coefficients
1/t -
fn = E/ f(x)e”"™™dx, |n]< N < co. (1.1)
-1

It is well known that the approximation of a period-2 and smooth funcfioon the real line by the
truncated Fourier series

N
SN(f) — Z fnein:nx

n=—N

is highly effective. When the approximated function has a point of discontinuity, the approximation by
the partial suny (f) leads to the Gibbs phenomenon.

Different methods of convergence acceleration have been suggested in the literature. An efficient
approach that involved a polynomial representing the discontinuities in the function and some of its
first derivatives (jumps) was suggested in 190&ylov (1907 and later in 1964 by.anczos(1964
1966 (see alsqalones & Hardy197Q Lyness 1974 Lax, 1978 Gottliebet al, 1981, Caiet al, 1989
Baszenskiet al., 1995 Nersessian & PoghosyaB000h 2004 Barkhudaryaret al., 2007 Adcock,

2009 Poghosyan2009 and references therein). Hereafter we refer to this approach as the Krylov—
Gottlieb—Eckhoff (KGE) method. This method was developed for the applicatiofckiyoff (1993

TEmail: arnak@instmath.sci.am, arnakp@gmail.com

(© The author 2010. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



ON AN AUTO-CORRECTION PHENOMENON OF THE KGE METHOD 513

1995 1999 in a series of papers, where the approximate values of the jumps were determined by the
solution of a system of linear equations.

Here two different realizations of the KGE approximation, nam&lyq(f) and "S'N’q( f), are dis-
cussed. The approximatidy q uses the exact values of the jumps, witlgq uses the approximations
of the actual jumps. Throughout the paper we limit our discussion to the smooth furfictiofi—1, 1].
Hence the period-2 extension d&f may have discontinuities only at the points= 2s + 1, where
s = 0,£1,.... We are interested in the asymptotic behaviour of these approximations|whenl
(away from the discontinuities).

The approximatiorsy q( f) is considered in Sectidhwith the main results presented in Subsection
2.2 Here Theorem&.4and2.5 state that, on the intervik| < 1, the rate of convergence &k q(f)
is O(N~971) asN — oo. In Section4 the asymptotic behaviour @ ,q(f) on the intervalx| < 1
is investigated and the main results are proved in Subsedtibin particular, Theorem4.5and4.6
consider even values @f (0 = 2m, wherem = 1,2,...) and state that the rate of convergence is
O(N3™-1) asN — oo. We see that, in comparison witBy q(f), where the exact values of the
jumps are used, we have an improvement in convergence by the actdF), wherem = 1,2, .. ..
We call this convergence acceleration phenomenon, which is contrary to the slow convergence that
might be expected due to the approximate calculation of the jumps, the auto-correction phenomenon
of the KGE method. It was first introduced and investigatetN@rsessian & Poghosyg@0003 for
the discrete analogues of the approximati@ig (f) and ~SN,q(f). Theoremst.8 and4.9 reveal this
phenomenon for odd values@i{gq = 2m+1, wherem = 0, 1, . . .). In this case the rate of convergence
is O(N~3-2) asN — oco. We have an improvement in convergence by the fa€toN™), where
m = 0,1, .... Note that, forq = 1, the auto-correction phenomenon is absent. In Se&isame
numerical demonstrations of this phenomenon are presented.

2. The KGE method with exact values of the jumps

Suppose that € CY9[—1, 1]. Thus the period-2 extension éfmay have singularities only at the points
X =2s+ 1, wheres = 0, 1, .. .. Denote byAx( f) the exact value of the jump in theh derivative of
f:

Adf)= 0@ - 01, k=0,...,q
In this section we suppose that, together with 2 1 Fourier coefficient$ fn},’}‘:_N, the exact values

of the jumps{ Ak ( f)}ﬂ;l are also known. In Sectiodwe will discuss the methods of approximation of
the actual jumps.

2.1 The accuracy up to the discontinuity

The basic idea of the KGE method is the representation of the approximated function

q-1
FOO =F) + > Ac(f)Be(x), (2.1)
k=0
whereB are the period-2 extensions of the Bernoulli polynomials with the Fourier coefficients
0, n=0,

Bk,n = (_1)n+1

2(i7[—n)k+1’ n::l:l,:I:Z,...,
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andF is a period-2 and relatively smooth function on the real line with the Fourier coefficients

q-1
Fo=fo=> Adf)Bkn, [Nl <N <oo. (22)
k=0

Approximation ofF in (2.1) by the truncated Fourier series leads to the approximation

N _ q-1
Sval(f)= D Fne™ 4> Ac(f)Be(x) (2.3)
n=—N k=0
with the error
Rn,g(f) = f(X) — Snq(f). (2.4)

We call the approximatioSy q( f) the KGE method with exact jumps.

Denote by f ||, the standard norm in the spakce(—e, ¢), where O< ¢ < 1:

€ 1/2
||f||g=( |f(x)|2dx) .

—&

The next theorem describes the asymptotic behaviouf(f) on the segment-{1, 1] in the
Lo-norm.

THEOREM2.1 (Nersessian & Poghosya2006 Barkhudaryart al., 2007) Suppose thaf e C9[—1, 1]
for someq > 1 and f@ is absolutely continuous on—[L, 1]. Then the following estimate
holds:

Jim N Ry g ()l = [Aq(D)Ic(@). (2.5)
where
1
c(q) = W‘l—m. (2.6)

2.2 The accuracy away from the discontinuity

In this section we investigate the accuracySafq(f) on the intervallx| < 1. Note that this is the
interval of smoothness of the period-2 extension of the smooth funétiom[—1, 1].

LEMMA 2.2 (Nersessian & Poghosya2006 Let
k

K
wkm = Z (S) (=™, o< m.

s=0

0, m < k,
Wk,m =
(=D*k!, m=k.

Then
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We define

AUy = fs,  A§(Tn) = A1) + AL pegre (fr), k=1,

where sgis) = 1if s> 0and sgis) = —1if s < 0.
LEMMA 2.3 Let
(_1)n+1

W, 0!:0,1,2,....

n =
Then

p —
An(fn) = fn [P T

—1)P |
(-1 (p+a).+0< 1 ) n—ooo, p=0,1,2,....

Proof. Forn > p we have that
p p k 00
1 m+
Aty = (p) fk = fn > (p) = ;m T2, ( a) .
k=0 k=

The remainder of the assertion follows from Lemfha The casa < —p can be explored in the same
way. O

THEOREM2.4 Suppose that € CIt1[—1, 1] for someq > 1 and f @+D is absolutely continuous on
[—1, 1]. Then the following estimates hold fox| < 1:

(—DN*2 sinz (N + 2)x
2(xN)a+1  cost

Rn.q(f) = Aq(f) +0o(N79 Y, N > o, 2.7)

for even values ofj and

-1 N+£l N + 1
Rag(f) = Aq(f)(z(n)N)qjl cosr ( 3)X

v +0o(N79 1, N oo, (2.8)
2

for odd values ofj.
Proof. Equations2.1), (2.3) and .4) imply that

where
00 ) —N-1 )
Rn,q(f)z Z Fne™, Ryq(f) = Z Fne™nX,
n=N+1 n=—o00

We first estimateR;\,“,q( ). The following transformation can be checked eagdiy & 1):

ei7r(N+l)X 1 e

+ . iTNX
RN’q(f)__ 1+ei7fX l:N + 1+ei7TX Z An(Fn)em .

n=N+1
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After reapplying this transformation for the second term, we obtain that
g (N+1)x g (N+1)x

— : — : A
14 &7Xx N (1+e|7rX)2 N

1 ad :
Riq(f) = (Fo) + =72 AR(Fe™ . (2.9)

Taking into account that

-1 n+1 -1 n+1
Fn = Aq(f)z((iT))le + Aq“(f)z((iT))qH +0o(n™%3), n- oo,

in view of Lemma2.3, we conclude that
A3(Fy) =0o(n™972), n— oo,
and
AN(Fn) = O(N7972), N - co.

Hence the third term in(9) is o(N~9~1) asN — oo, and the second term 8(N~9-2) asN — oo.
Substituting all these int®(9), we derive that

(_1)N eiﬂ'(N-i-l)X
iz N)a+1 1 4 gnx

We estimateRﬁ,q(f) similarly as follows:

Riq(1) = Aah; +o(N"9%), N = oo,

(—l)N e—in’(N+1)X
2(—iz N)O+1 1 ginx

RN.q(F) = Aq() +0o(N79 1, N> .

Therefore

(_1)N ( 1 eiﬂ(N+1)X

RualD = A0 G Ryea R vt T a0

)T )+o(N-q-1), N — oo.

This concludes the proof. O
In the next theorem the norifRy q(f)]l, for every 0< ¢ < 1is estimated.

THEOREM2.5 Let the conditions of Theoreth4 be valid. Then the following estimate holds:
o _1Ag(DI o me\1/2
Jim N Ry (Dl = —E2- (tg : ) . O<e<l (2.10)
Proof. Equation R.7) yields that

o 1 1/2
NQ+1||RN,q(f)||a=|Aq(f)|(/ S'”Z”(N+2)de) +o()

2r9+l \ J_, cog X
1/2
_IAg(Dl(( [* 1=cos2e (N + H)x / .
I WA 2cog X ) +od
|Aq(f)| e dx 1/2
= o arl /_(g 2c0§”—2x +0(1), N - oo,

where the last integral can be calculated explicitly.
Equation 2.8) implies the same estimate. O
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3. The KGE method with approximate values of the jumps

In order to determine the approximate valu&gs f) for Ac( f), the fact that the coefficients, asymp-
totically (n — oo) decay faster than the coefficienfisis used and can therefore be discarded for large
In|. Hence equatio2.2) implies that

q-1

fn=25k(f)Bk’n, n=ng,ny,...,Ng (3.1)
k=0

Thus, for any giverN, assume that we have chosgdifferent integer indices

for evaluating systenB(1). The next theorem shows how well the valueg f ) approximate the actual
jumps Ak (f) depending on the choice of the indiags

By the multiplicity of some numbex in a sequencey, ..., Xm, we mean the number of indices
for whichx; = x.

THEOREM 3.1 (Barkhudaryaret al., 2007 Suppose that the indiceg = ng(N) in (3.1) are chosen
such that
Ns

lim = = =1,...,q. .
Jm §=6#0 s=1...q (3.2)

Leta be the greatest multiplicity of a number in the sequemce;, . . ., ¢q. Then, forfe Cutol-1, 1]
such thatf (@+2=1D s absolutely continuous onr-[L, 1], the followmg estimate holds:

Aj(f) = Ai(H) = Aa(D) 7T )q S +ONT)), No>oo, j=0,....,q-1 (33
where the constanig; are the coefficients of the polynomial
q
11 (X - _) Z 2. (3.4)
s=1
As in (2.2—(2.4), let us write that
q-1
Fn= fh— z Ak(f)Bk,n, (3-5)
k=0
Sua(f) = D> Fne™™ 4> ABr(x) (3.6)
n=—N k=0
and
Ru.g(f) = () = Suq(f). 3.7)

We call the approximation bﬁ\,,q(f), where the approximate jumps are calculated fr@)( the
KGE method with approximate values of the jumps. Note that, instead. 8f (ve now use the other
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representation of the approximated function

g-1
fx) = Fx) + > Ad(F)Be(x) (38)

k=0

and the asymptotic behaviour of the KGE method with approximate jumps is highly dependent on the
smoothness of the functidh or, in other words, the asymptotic behaviour of the Fourier coefficignts
asn — oo.

Taking into account3.5), system 8.1) can be rewritten in the form

Fn=0, n=ngny,...,Ng (3.9)

The next theorem formulates the analogue of Thea2elfor §N,q( f).

THEOREM 3.2 (Barkhudaryaret al, 2007 Suppose that the conditions of Theor8rhare valid. Then
the following estimate holds:

lim N2 Ry gl = 1Aq(DId@), (3.10)

1 19 1 2 1/2
d(‘”:W(/_lg(x‘a) dx) | R

Theoremg.1and3.2explore the asymptotic behaviour of the approximatiSag, and“S'N,q on the
whole interval of approximation{1, 1]. Recall that the pointgs = 41 are the possible singularities
of the period-2 extension of. Note also that the rate of convergence in Theogfris the same as
that in TheorenB.2, i.e., the approximate calculation of the jumps does not reduce the convergence
rate.

where

4. The auto-correction phenomenon

Hereafter we consider the following special choice of the indigda system 8.1):
ns=N-s+1 s=1....m ng=—-(N—-s+m+1), s=m+1,...,2m, 4.1)
for even values of), that is,q = 2m, wherem=1,2, ..., and
ns=N-s+1 s=1,....m+1 ng=—-(N—-s+m+2), s=m+2,...,2m+1, (4.2)

for odd values ofy, thatis,g = 2m+ 1, wherem=0,1, .. .. _
As will be shown below, these choices lead to the fast convergence of the approxi@atjoh) in
the regions where the period-2 extensionfaé smooth.

4.1 The accuracy up to the discontinuity

In the next theorems we investigate the accuracy of the approximation of the actual jumps and its impact
on the precision of the KGE method with approximate jumps.
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THEOREM4.1 Letq be an even number, that 5= 2m, wherem =1, 2, ..., and let the indicess =
ns(N) be chosen as if(1). Then, forf e C3™1[—1, 1] such thatf @™=1 is absolutely continuous
on [—1, 1], the following estimates hold:

x (T)(_l)mﬂ —2m+2j ;
AZ](f):AZJ(f)_AZm(f)m'i'O(N J)’ J:O,...,m—l, N—)OO, (43)
and
Aojia(f) = Agjpa(f) +o(N"2™2I+h) - j=0,... ., m-1, N- oo. (4.4)

Proof. It is easy to check that for the numbexts(see 8.2)) we have
=1 s=1....m c=-1 s=m+1,...,2m. (4.5)

Hence the greatest multiplicity of a number in the sequence, . . ., com is equal tan. Then replacing
a by min Theorem3.1, according to the definition of the coefficients, we derive that

2m 2m 1 m m
2 s =] (x - —) =[[x-D[[x+D
s=0 s=1 CS s=1 s=1
= /m
— (2 _1\m _ __1\M+s,,2s
=(x?-1) _Z(s)( 1M,
s=0
Therefore
o = (r:) (-)™S, s=0,...,m, (4.6)
and
)(25+1:0, s=0,....,m—-1 (4.7)
Substitution of 4.6) and @.7) into (3.3) completes the proof. O

THEOREMA4.2 Letq be an odd number, that ig,= 2m+1, wherem =0, 1, .. ., and let the indicess =
ns(N) be chosen as iM(2). Then, forf e C3™1[—1, 1] such thatf @™*+D js absolutely continuous
on [—1, 1], the following estimates hold:

(m) (_1)m+j+1

J

—2m+2j-1 -
WH’(N I=h, j=0,...,m, N - oo, (4.8)

Ao () = Agj(f) — Aomya(f)

and
() (1™

W+0(N-2m+zi), j=0,...,m—1, N— oo.
T

(4.9)

Aoj1(f) = Agja(f) — Aompa ()
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Proof. We have
cs=1 s=1...m+1 oc=-1 s=m+2, ....,2m+ 1

Therefore the greatest multiplicity of a number in the sequencey, ..., coms1 IS equal tom + 1.
Substituting this into Theore®.linstead ofx, we proceed as follows:

2m+1 2m+1 1
> =] (x - —) = (X2 -1D"(x - 1)
s=0 s=1 Cs
= /m T /m
— Z (S)(_l)m+sX23+l _ Z (S)(_l)m+sXZS.
s=0 s=0
Thus
m m+s+1
x2s = S (-2 , $=0,...,m, (4.10)
and
m m+s
X2s+1 = (S)(—l) , $=0,...,m (4.11)
Substitution of 4.10 and @.11) into (3.3) concludes the proof. O

Now we reformulate Theore.2for the choices4.1) and é.2).

THEOREM4.3 Let the conditions of Theoreflbe valid. Then the following estimate holds:

lim N2 2| Ry om( )11 = | Agm(F)ld(2m), (4.12)
N— oo
where
(2m)122m
d(2m) = . 4.13
(em) x2m+L /@m+ 1) (413)

Proof. Equations 8.11) and @.5) yield that

1 1 2m 1\2
d(@2m) = N (/_15[[1 (x - g) dx)

1/2
1 ! 2\2m
B ﬁn2m+1 /1(1_X e

1 (F(Zm + 1)r(%))1/2

T Vzeri\ rem+ )

This ends the proof. O

1/2
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THEOREM4.4 Let the conditions of Theorem2be valid. Then the following estimate holds:

Jim N Ry 2mea (D)l = Aemea(F)Id@m + D), (4.14)
where
192m+1
d@Em4+ 1) = (2m)!2 J@m+1)2m+2) (4.15)
7 2m+2,./(4m + 3)!
Proof. Equations 8.11) and @.1) yield that
1 2m+1 2 1/2
d@2m+1) = f P ( (x — —) )
1/2
= W (/ (1-x%?"(1 - x) dx)
T
1/2
1 (2 rem+prem+3)\
T J2n2m2 I'(4m + 4)
This finalizes the proof. O

4.2 The accuracy away from the discontinuity
The next theorems reveal the theoretical basis of the auto-correction phenomenon.

THEOREM 4.5 Letq be an even number, that is = 2m, wherem = 1,2, ..., and let the indices
ns = ns(N) be chosen as iM(1). Suppose thaf e C3™1[—1, 1] for somem > 1 and f @™+ jg
absolutely continuous or{l, 1]. Then the following estimate holds fox| < 1 andN — 00:

Rn,2m(f) = + o(N~3m-1y,

Aom(f)(=DN+M sinZX (2N m+1) ¢ 1K (m+2k)
2m+1N3m+1;2m+1 C0§n+1 r:zx Z( ) k (2k)'

(4.16)
Proof. In view of equations3.5—(3.8), we conclude that

where
—N-1

Riam(D= D> Fd™ Ry (Hh= > Fe™

n=N+1 n=—o00

We first estlmateR;\j om( ). Recall (seed.9) that for this case we solve the system

Fn=0, n=-N,...,—N+m-—1, (4.17)
Fr=0, n=N-m+1,...,N. (4.18)
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Utilization of Abel’s transformation as in the proof of Theor@m leads to the following expansion of
the error:

m+2 k-1
(f) = e|7r(N+1)xz AN (Fr) n 1
N ,2m (1 + e|7rX)k (1 + e|7rX)m+2

Z AM2(Femnx, (4.19)

n=N+1

Taking into account that

k=1 4\

AII(\l_l(Fn) = Z ( )FN—s,

s=0
from (4.18 we see that1} (Fn) =0fors= ., m—1. Hence 4.19 can be rewritten in the form
~ 1.&
(f) _ein(N+l)X AN(FH) _ei,r(N.:,_l)x AR]H_ (Fn)
N ,2m 1+ einX)m+1 1+ einx_)m+2

1 s -

T ey 2 AT (FneT™. (4.20)

n=N-+1
Equation 8.5) results in the following:

q-1

Fn=fn— > A(f)Bkn
k=0

DM A = Al

k+1
2 s (izn)

()™ 3L A

i k+1
2 e (izn)

+ +0o(n™32) n- . (4.21)

Lemmaz2.3implies that

()P 2 A(F) — A(F) (p+K)!

p k+1
2n = (izn) k!

AR(Fy) =

NG [P+ A (p+K)!

k+1
2nP S (izn) k!

Application of Theoremt.1, in view of (4.22 andn > N, yields that

= o(1)
Arnn+2(|:n) = W’ N — oo. (423)

+0o(n™*M2) no . (4.22)

Hence the third term in4(20 is o(N—3™"1) asN — oo. In a similar way it can be derived that the
second term i©(N~3M-2) asN — oo. Finally, we obtain that

g7 (N+D)x

—-3m-1
(]_+ei—7rX)m+1 + o(N ), N — oo. (4.24)

Ry 2m(F) = — 4R (Fn)
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Similarly, we get that

_ —1)N+1 m 2k
AE = AZm(f)W > (1) T+ o, N o

Substituting this into4.24) and making the same statementsRy[ ,,,(f), we complete the proof.]
The next result is an immediate consequence of Thedrém

THEOREM4.6 Let the conditions of Theorem5 be valid. Then the following estimate holds:

. - | i m\ (m + 2k)!
3m+1 _ m,e _1\K =
Nlinoo N RN, 2m( )l = IAzm(f)I2m+1ﬂ2m+1\/E kz_c:)( 1 (k) @ | O<e<1,
(4.25)
where
€ dx 1/2
o= ([ ) (29
—p COFMF2 ZX

REMARK 4.7 Note that the integral iM(26 can be calculated explicitly by the following recurrent

relation:
/ dx _ sinx +n—2/ dx
codx (n—21cod1ix n-1/ cod2x’

A comparison of Theorem®.4 and 2.5 with Theorems4.5 and 4.6 reveals the fast convergence
(O(N—3™-1) asN — oo) of the KGE method with approximate jumps compared to the convergence
rate @O(N=2"-1) asN — o0) of the KGE method with exact jumps. We call this improvement in the
convergence rate the auto-correction phenomenon. The magnitude of the phenomenon for even values
of g (g = 2m, wherem =1, 2, .. .) is exactlym powers ofN.

Now we formulate the analogues of Theorefiisand4.6for odd values ofj.

THEOREM 4.8 Letq be an odd number, thatts= 2m + 1, wherem = 0, 1, .. ., and let the indices
ns = ns(N) be chosen as iM(2). Suppose that e C3™1[—1, 1] for somem > 0 and f @™+ jg
absolutely continuous onr{l, 1]. Then the following estimate holds fgx| < 1:
( l)N+m+1 e—in(N-i-l)X
RN am1(f) = Aomia(F) 2NBM+272m+2 (1 4 e—in)()m+l

(Mm—+ 2k)!(4k + m + 2) am2
x Z( 1) ( ) KT D] + o(N ), N oco. (4.27)

Proof. We proceed as in the proof of Theoren®. The additional equation
ﬁN—m =0
implies that

ez (N+Dx

—-3m-2
1+ e+l +o(N ), N — oo

Ru.2mi1(F) = Ry pmar () +0(NT3M1) = — 4™ (Fy)

The remainder of the proof is obvious. O
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THEOREM4.9 Let the conditions of Theoreth8 be valid. Then the following estimate holds for<0
e <1

. ~ |
Jm NT2IRN am 1 (D)l = [Aamea (Dl 5z s

K (m+ 2k)!(4k + m + 2)
Z( b ( ) 2k + 1! ’
(4.28)
whereln, . is defined by 4.26).

The comparison of Theoren2s4 and2.5 with Theorems4.8 and4.9 shows that the magnitude of
the auto-correction phenomenon for odd valueqg @ = 2m+ 1, m =0, 1,...) is exactlym powers
of N. We see that fom = 0 the phenomenon is absent.

5. Numerical illustrations

In this section we illustrate the convergence properties of the KGE method by some numerical examples.
The auto-correction phenomenon is also explored.
Consider the simple function

f(X) = sin(x — 1). (5.1)

In Table1 we present the »-errors of the approximationSy q(f) and AS'N,q(f) on the interval
[—1, 1]. The approximation of the jumps are calculated fr@ri) with the indicesns given by @.1)
and @.2). It can be seen th&y q(f) is more precise thaEN,q( f) for all values ofN andg. We came to
the same conclusion by comparing Theorgrhwith Theoremst.3 and4.4. After simple calculations,
we derive that

d2m)  (2m)i4™ d@em+1)  22™12m)l/@2m+ D2m+2) 1
cem) ~ Jamt  C cm+1) J@m+ 21 g

The results from numerical experiments on the intervd.[, 0.7] are presented in Tab Here
one can see that the situation is reversed for the region where the period-2 extension of the approxi-
mated function is smooth. In spite of our expectations, the approximéﬁjgﬂ f) is more precise than
Sn,q(f).
From Table2 we get that
|Rea2(f)llo7

Rs22(f)llo7 _ _ | Ri2g2(f)llo.7 _
IRea2(f)llo7 " |IRi2g2(f)llo7 7 |IResg2(f)llo7

TABLE 1 Lj-errors while approximating the functiofs.1) by Sy q(f) and “S'N,q(f) on the interval
[—1, 1] when the indice$4.1) and (4.2) are considesd

N =232 N = 64 N =128 N = 256
IRn,2(F) 12 22x10°° 39x 107/ 7.0x 1078 12x 1078
IRn.2(F)I1 3.7x10°° 6.5 x 10~ 1.2x 1077 2.0x 1078
IRN,3(F)ll1 2.8 x 1078 25x%x 107° 2.3x 10710 2.0x 10711
IRN.3(F)ll1 6.3x 1078 55x 1077 4.8 x 10710 42 x 107
IRN,a( )11 1.6 x 10710 7.1x 10712 32x 10713 14 x 1071
Rn.4(F)l1 34 x 10710 15x 10711 6.3 x 10713 2.8 x 10714
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TABLE 2 Lp-errors while approximating the functio®.1) by Sy q(f) and §N,q(f) on the interval
[—0.7, 0.7] when the indice$4.1) and (4.2) are consideed

N =232 N = 64 N =128 N = 256

IRn2(F) o7 4.8 x 1077 6.0 x 1078 7.7 x 1079 9.7 x 10710
IRn.2(f)llo7 23x 1078 15x%x 107° 93x 10711 5.7 x 10712
IRN,3(f)ll0.7 7.2x 10°° 4.7 x 10710 3.0x 10711 19x 10712
IRN,3(T)ll0.7 5.2 x 10710 16x 10711 51x 10713 1.6 x 1071
IRn,4(F)llo.7 46 x 10711 1.5 x 10712 4.7 x 10714 15x 10715
|Rn.a( )07 2.6 x 10713 20x 10715 15x 10717 12 x 10719

These results coincide with the statement of Thea2eywhere|| Ry 2ll; = O(N~3) asN — oo. This
yields asymptotically that

[ Roz,2(f)llo.7 _
IRpz+1o(f)llo7z

In view of Theoremd.5, we have thaﬁN,z = O(N~% asN — oo, which implies asymptotically that
IRz 2(D)llo7
1 Roz+1 2(f)ll0.7
This theoretical estimate coincides with the results in T2tds follows:

||§322(f)||0.7 — 153 ||§64,2(f)||0.7 _ ||§lZ&2(f)||O.7 _
Rea2(f)llo7 Ri2g2(f)llo.7 | Rosg 2( f)llo.7

Consequently, the theoretical and the numerical estimates coincide—the magnitude of the auto-
correction phenomenon for= 2 is 1 power ofN.
Similarly, for g = 4, Theoren®.5implies the estimate

Roz,4(f)ll0.7

e VT 3
I Roz+1 4(F)llo.7
while the numerical experiments yield that
Rs24(f)llo7 — 307, |Reaa(f)llo7 _ 319, Rizg4(f)llo.7 _ 313
IRe4,4(f)llo7 | Ri2g4(f)llo.7 | Resga( f)llo.7
For Ry 4(f), Theoremd.5implies that
I Roz,4( f)llo7 _
l R22+1,4( oz
and Table? confirms that
Raza( f Reaa( f R f
R32.4(f)llo7 _13 Rea4(f)llo7 _ 1333, Ri2g4(f)ll0.7 _ 125

IRea,4()llo7 IRi2g4(f)ll07 I Resg.a( F)llo.7
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2.5x107 %2 7 x1071°

-0.7 ' 0.7 -0.7 0.7

FiG. 1. Plots of|Ry,q () (left) and|§N,q(f)| (right) while approximating the functiorb(l) on the interval £0.7, 0.7] for
g =4 andN = 64.

Again, the theoretical and the numerical estimates coincide—the magnitude of the auto-correction phe-
nomenon fog = 4 is 2 powers oiN.
For the valueg = 3, Theoren®.5implies that

IR2z,3(f)llo.7 _ 16
| Roz+1 3(f)ll0.7

This result coincides with calculations from Tal2las follows:

IRs23(P)llo7 _ 153 IRea3(f)llo7 _ 157 IR1283(f)llo7 _
| Re4,3(f)llo.7 7 |IR12g3(f)llo7 "7 |IResg3(f)llo7

According to Theorerd.9, we have

158.

IRz a()llo7
| Roz+1 4(F)llo.7

Table?2 gives that

||§3zs(f)||o,7 _ 325, ||~Re4,3(f)||o,7 _ 314, |||3128,3(f)||0.7 _ 319
IRe4,3(f)llo7 IR12g3(f)llo.7 | R2563( f)ll0.7

Also this time, the theoretical and the numerical estimates coincide—the magnitude of the auto-
correction phenomenon for= 3 is 1 power ofN.

In Fig. 1 we visually show the auto-correction phenomenon while approximating the funétin (
on the interval 0.7, 0.7] whenq = 4 andN = 64.

6. Conclusion

We have investigated the asymptotic behaviour of the KGE method. In particular, we considered two
families of approximationSy q( f) andéN,q( f) that use the exact and approximate values of the jumps,
respectively. The approximations to the actual jumps were carried out according to the procedure de-
scribed in Subsectiof.1 N

The main results of the paper are the asymptotic behavio@@f( f) and Sy q(f) for [x| < 1,
where the period-2 extension of the approximated functiors smooth. The comparison of these
results shows that the approximation by @@q( f) gives higher accuracy by abogt2 powers ofN.
This is the ‘auto-correction phenomenon'—the approximate jumps give better accuracy than the exact
ones.

The numerical results confirm the statements of the corresponding theorems.
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