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We consider the so-called Krylov–Gottlieb–Eckhoff (KGE) approximation of a functionf with a discon-
tinuity at a known point. This approximation is based on certain corrections associated with the jumps
in the first q derivatives of f . The approximation of the exact jumps is accomplished by the solu-
tion of a system of linear equations. We show that, in the regions where the period-2 extension of the
approximated function is smooth, the KGE method with approximate values of the jumps converges
faster compared with the case where the exact values are used. We call this accelerated convergence the
auto-correction phenomenon, which was discovered in the past by numerical experiments. The paper
presents a theoretical explanation of the phenomenon with numerical illustrations.

Keywords: Fourier coefficients; Bernoulli polynomials; convergence acceleration; auto-correction
phenomenon.

1. Introduction

We consider the problem of approximating a function using a finite number of its Fourier coefficients

fn =
1

2

∫ 1

−1
f (x)e−iπnx dx, |n| 6 N < ∞. (1.1)

It is well known that the approximation of a period-2 and smooth functionf on the real line by the
truncated Fourier series

SN( f ) =
N∑

n=−N

fn eiπnx

is highly effective. When the approximated function has a point of discontinuity, the approximation by
the partial sumSN( f ) leads to the Gibbs phenomenon.

Different methods of convergence acceleration have been suggested in the literature. An efficient
approach that involved a polynomial representing the discontinuities in the function and some of its
first derivatives (jumps) was suggested in 1906 byKrylov (1907) and later in 1964 byLanczos(1964,
1966) (see alsoJones & Hardy, 1970; Lyness, 1974; Lax, 1978; Gottliebet al., 1981; Cai et al., 1989;
Baszenskiet al., 1995; Nersessian & Poghosyan, 2000b, 2004; Barkhudaryanet al., 2007; Adcock,
2009; Poghosyan, 2009 and references therein). Hereafter we refer to this approach as the Krylov–
Gottlieb–Eckhoff (KGE) method. This method was developed for the applications byEckhoff (1993,

†Email: arnak@instmath.sci.am, arnakp@gmail.com

c© The author 2010. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



ON AN AUTO-CORRECTION PHENOMENON OF THE KGE METHOD 513

1995, 1998) in a series of papers, where the approximate values of the jumps were determined by the
solution of a system of linear equations.

Here two different realizations of the KGE approximation, namely,SN,q( f ) and S̃N,q( f ), are dis-
cussed. The approximationSN,q uses the exact values of the jumps, whileS̃N,q uses the approximations
of the actual jumps. Throughout the paper we limit our discussion to the smooth functionf on [−1, 1].
Hence the period-2 extension off may have discontinuities only at the pointsx = 2s + 1, where
s = 0, ±1, . . .. We are interested in the asymptotic behaviour of these approximations when|x| < 1
(away from the discontinuities).

The approximationSN,q( f ) is considered in Section2 with the main results presented in Subsection
2.2. Here Theorems2.4 and2.5 state that, on the interval|x| < 1, the rate of convergence ofSN,q( f )
is O(N−q−1) as N → ∞. In Section4 the asymptotic behaviour of̃SN,q( f ) on the interval|x| < 1
is investigated and the main results are proved in Subsection4.2. In particular, Theorems4.5 and4.6
consider even values ofq (q = 2m, wherem = 1, 2, . . .) and state that the rate of convergence is
O(N−3m−1) as N → ∞. We see that, in comparison withSN,q( f ), where the exact values of the
jumps are used, we have an improvement in convergence by the factorO(Nm), wherem = 1, 2, . . ..
We call this convergence acceleration phenomenon, which is contrary to the slow convergence that
might be expected due to the approximate calculation of the jumps, the auto-correction phenomenon
of the KGE method. It was first introduced and investigated inNersessian & Poghosyan(2000a) for
the discrete analogues of the approximationsSN,q( f ) and S̃N,q( f ). Theorems4.8 and4.9 reveal this
phenomenon for odd values ofq (q = 2m+1, wherem = 0, 1, . . .). In this case the rate of convergence
is O(N−3m−2) as N → ∞. We have an improvement in convergence by the factorO(Nm), where
m = 0, 1, . . .. Note that, forq = 1, the auto-correction phenomenon is absent. In Section5 some
numerical demonstrations of this phenomenon are presented.

2. The KGE method with exact values of the jumps

Suppose thatf ∈ Cq[−1, 1]. Thus the period-2 extension off may have singularities only at the points
x = 2s + 1, wheres = 0, ±1, . . .. Denote byAk( f ) the exact value of the jump in thekth derivative of
f :

Ak( f ) = f (k)(1) − f (k)(−1), k = 0, . . . , q.

In this section we suppose that, together with 2N + 1 Fourier coefficients{ fn}N
n=−N , the exact values

of the jumps{Ak( f )}q−1
k=0 are also known. In Section3 we will discuss the methods of approximation of

the actual jumps.

2.1 The accuracy up to the discontinuity

The basic idea of the KGE method is the representation of the approximated function

f (x) = F(x) +
q−1∑

k=0

Ak( f )Bk(x), (2.1)

whereBk are the period-2 extensions of the Bernoulli polynomials with the Fourier coefficients

Bk,n =






0, n = 0,

(−1)n+1

2(iπn)k+1
, n = ±1, ±2, . . . ,
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andF is a period-2 and relatively smooth function on the real line with the Fourier coefficients

Fn = fn −
q−1∑

k=0

Ak( f )Bk,n, |n| 6 N < ∞. (2.2)

Approximation ofF in (2.1) by the truncated Fourier series leads to the approximation

SN,q( f ) =
N∑

n=−N

Fn eiπnx +
q−1∑

k=0

Ak( f )Bk(x) (2.3)

with the error

RN,q( f ) = f (x) − SN,q( f ). (2.4)

We call the approximationSN,q( f ) the KGE method with exact jumps.

Denote by‖ f ‖ε the standard norm in the spaceL2(−ε, ε), where 0< ε 6 1:

‖ f ‖ε =
(∫ ε

−ε
| f (x)|2 dx

)1/2

.

The next theorem describes the asymptotic behaviour ofSN,q( f ) on the segment [−1, 1] in the
L2-norm.

THEOREM2.1 (Nersessian & Poghosyan, 2006; Barkhudaryanet al., 2007) Suppose thatf ∈Cq[−1, 1]
for some q > 1 and f (q) is absolutely continuous on [−1, 1]. Then the following estimate
holds:

lim
N→∞

Nq+ 1
2 ‖RN,q( f )‖1 = |Aq( f )|c(q), (2.5)

where

c(q) =
1

πq+1
√

2q + 1
. (2.6)

2.2 The accuracy away from the discontinuity

In this section we investigate the accuracy ofSN,q( f ) on the interval|x| < 1. Note that this is the
interval of smoothness of the period-2 extension of the smooth functionf on [−1, 1].

LEMMA 2.2 (Nersessian & Poghosyan, 2006) Let

ωk,m =
k∑

s=0

(
k

s

)
(−1)ssm, 06 m.

Then

ωk,m =






0, m < k,

(−1)kk!, m = k.
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We define

Δ0
s( fn) = fs, Δk

s( fn) = Δk−1
s ( fn) + Δk−1

(|s|−1)sgn(s)( fn), k > 1,

where sgn(s) = 1 if s> 0 and sgn(s) = −1 if s < 0.

LEMMA 2.3 Let

fn =
(−1)n+1

2(iπn)α+1
, α = 0, 1, 2, . . . .

Then

Δ
p
n ( fn) = fn

(−1)p(p + α)!

|n|pα!
+O

(
1

np+α+2

)
, n → ∞, p = 0, 1, 2, . . . .

Proof. For n > p we have that

Δ
p
n ( fn) =

p∑

k=0

(
p

k

)
fn−k = fn

p∑

k=0

(
p

k

)
(−1)k

(
1 − k

n

)α+1
= fn

∞∑

m=0

(
m + α

α

)
ωp,m

nm
.

The remainder of the assertion follows from Lemma2.2. The casen < −p can be explored in the same
way. �

THEOREM 2.4 Suppose thatf ∈ Cq+1[−1, 1] for someq > 1 and f (q+1) is absolutely continuous on
[−1, 1]. Then the following estimates hold for|x| < 1:

RN,q( f ) = Aq( f )
(−1)N+ q

2

2(π N)q+1

sinπ
(
N + 1

2

)
x

cosπx
2

+ o(N−q−1), N → ∞, (2.7)

for even values ofq and

RN,q( f ) = Aq( f )
(−1)N+ q+1

2

2(π N)q+1

cosπ
(
N + 1

2

)
x

cosπx
2

+ o(N−q−1), N → ∞, (2.8)

for odd values ofq.
Proof. Equations (2.1), (2.3) and (2.4) imply that

RN,q( f ) = R+
N,q( f ) + R−

N,q( f ),

where

R+
N,q( f ) =

∞∑

n=N+1

Fn eiπnx, R−
N,q( f ) =

−N−1∑

n=−∞

Fn eiπnx.

We first estimateR+
N,q( f ). The following transformation can be checked easily (|x| < 1):

R+
N,q( f ) = −

eiπ(N+1)x

1 + eiπx
FN +

1

1 + eiπx

∞∑

n=N+1

Δn(Fn)e
iπnx.
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After reapplying this transformation for the second term, we obtain that

R+
N,q( f ) = −

eiπ(N+1)x

1 + eiπx
FN −

eiπ(N+1)x

(1 + eiπx)2
ΔN(Fn) +

1

(1 + eiπx)2

∞∑

n=N+1

Δ2
n(Fn)e

iπnx. (2.9)

Taking into account that

Fn = Aq( f )
(−1)n+1

2(iπn)q+1
+ Aq+1( f )

(−1)n+1

2(iπn)q+2
+ o(n−q−2), n → ∞,

in view of Lemma2.3, we conclude that

Δ2
n(Fn) = o(n−q−2), n → ∞,

and

ΔN(Fn) = O(N−q−2), N → ∞.

Hence the third term in (2.9) is o(N−q−1) asN → ∞, and the second term isO(N−q−2) asN → ∞.
Substituting all these into (2.9), we derive that

R+
N,q( f ) = Aq( f )

(−1)N

2(iπ N)q+1

eiπ(N+1)x

1 + eiπx
+ o(N−q−1), N → ∞.

We estimateR−
N,q( f ) similarly as follows:

R−
N,q( f ) = Aq( f )

(−1)N

2(−iπ N)q+1

e−iπ(N+1)x

1 + e−iπx
+ o(N−q−1), N → ∞.

Therefore

RN,q( f ) = Aq( f )
(−1)N

(π N)q+1
Re

(
1

iq+1

eiπ(N+1)x

1 + eiπx

)

+ o(N−q−1), N → ∞.

This concludes the proof. �
In the next theorem the norm‖RN,q( f )‖ε for every 0< ε < 1 is estimated.

THEOREM 2.5 Let the conditions of Theorem2.4be valid. Then the following estimate holds:

lim
N→∞

Nq+1‖RN,q( f )‖ε =
|Aq( f )|

πq+1
√

2π

(
tg

πε

2

)1/2
, 0 < ε < 1. (2.10)

Proof. Equation (2.7) yields that

Nq+1‖RN,q( f )‖ε =
|Aq( f )|

2πq+1

(∫ ε

−ε

sin2 π
(
N + 1

2

)
x

cos2 πx
2

dx

)1/2

+ o(1)

=
|Aq( f )|

2πq+1

(∫ ε

−ε

1 − cos 2π
(
N + 1

2

)
x

2 cos2 πx
2

dx

)1/2

+ o(1)

=
|Aq( f )|

2πq+1

(∫ ε

−ε

dx

2 cos2 πx
2

)1/2

+ o(1), N → ∞,

where the last integral can be calculated explicitly.
Equation (2.8) implies the same estimate. �
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3. The KGE method with approximate values of the jumps

In order to determine the approximate valuesÃk( f ) for Ak( f ), the fact that the coefficientsFn asymp-
totically (n → ∞) decay faster than the coefficientsfn is used and can therefore be discarded for large
|n|. Hence equation(2.2) implies that

fn =
q−1∑

k=0

Ãk( f )Bk,n, n = n1, n2, . . . , nq. (3.1)

Thus, for any givenN, assume that we have chosenq different integer indices

n1 = n1(N), n2 = n2(N), . . . , nq = nq(N)

for evaluating system (3.1). The next theorem shows how well the valuesÃk( f ) approximate the actual
jumpsAk( f ) depending on the choice of the indicesns.

By the multiplicity of some numberx in a sequencex1, . . . , xm, we mean the number of indicesi
for which xi = x.

THEOREM 3.1 (Barkhudaryanet al., 2007) Suppose that the indicesns = ns(N) in (3.1) are chosen
such that

lim
N→∞

ns

N
= cs 6= 0, s = 1, . . . , q. (3.2)

Letα be the greatest multiplicity of a number in the sequencec1, c2, . . . , cq. Then, for f ∈Cq+α−1[−1, 1]
such thatf (q+α−1) is absolutely continuous on [−1, 1], the following estimate holds:

Ã j ( f ) = Aj ( f ) − Aq( f )
χ j

(iπ N)q− j
+ o(N−q+ j ), N → ∞, j = 0, . . . , q − 1, (3.3)

where the constantsχ j are the coefficients of the polynomial

q∏

s=1

(
x −

1

cs

)
=

q∑

s=0

χsxs. (3.4)

As in (2.2)–(2.4), let us write that

F̃n = fn −
q−1∑

k=0

Ãk( f )Bk,n, (3.5)

S̃N,q( f ) =
N∑

n=−N

F̃n eiπnx +
q−1∑

k=0

Ãk Bk(x) (3.6)

and

R̃N,q( f ) = f (x) − S̃N,q( f ). (3.7)

We call the approximation bỹSN,q( f ), where the approximate jumps are calculated from (3.1), the
KGE method with approximate values of the jumps. Note that, instead of (2.1), we now use the other
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representation of the approximated function

f (x) = F̃(x) +
q−1∑

k=0

Ãk( f )Bk(x) (3.8)

and the asymptotic behaviour of the KGE method with approximate jumps is highly dependent on the
smoothness of the functioñF or, in other words, the asymptotic behaviour of the Fourier coefficientsF̃n

asn → ∞.
Taking into account (3.5), system (3.1) can be rewritten in the form

F̃n = 0, n = n1, n2, . . . , nq. (3.9)

The next theorem formulates the analogue of Theorem2.1for S̃N,q( f ).

THEOREM 3.2 (Barkhudaryanet al., 2007) Suppose that the conditions of Theorem3.1are valid. Then
the following estimate holds:

lim
N→∞

Nq+ 1
2 ‖R̃N,q( f )‖1 = |Aq( f )|d(q), (3.10)

where

d(q) =
1

√
2πq+1

(∫ 1

−1

q∏

s=1

(
x −

1

cs

)2

dx

)1/2

. (3.11)

Theorems2.1and3.2explore the asymptotic behaviour of the approximationsSN,q andS̃N,q on the
whole interval of approximation [−1, 1]. Recall that the pointsx = ±1 are the possible singularities
of the period-2 extension off . Note also that the rate of convergence in Theorem2.1 is the same as
that in Theorem3.2, i.e., the approximate calculation of the jumps does not reduce the convergence
rate.

4. The auto-correction phenomenon

Hereafter we consider the following special choice of the indicesns in system (3.1):

ns = N − s + 1, s = 1, . . . , m, ns = −(N − s + m + 1), s = m + 1, . . . , 2m, (4.1)

for even values ofq, that is,q = 2m, wherem = 1, 2, . . ., and

ns = N − s + 1, s = 1, . . . , m + 1, ns = −(N − s + m + 2), s = m + 2, . . . , 2m + 1, (4.2)

for odd values ofq, that is,q = 2m + 1, wherem = 0, 1, . . ..
As will be shown below, these choices lead to the fast convergence of the approximationS̃N,q( f ) in

the regions where the period-2 extension off is smooth.

4.1 The accuracy up to the discontinuity

In the next theorems we investigate the accuracy of the approximation of the actual jumps and its impact
on the precision of the KGE method with approximate jumps.
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THEOREM 4.1 Letq be an even number, that is,q = 2m, wherem = 1, 2, . . . , and let the indicesns =
ns(N) be chosen as in (4.1). Then, for f ∈ C3m−1[−1, 1] such thatf (3m−1) is absolutely continuous
on [−1, 1], the following estimates hold:

Ã2 j ( f ) = A2 j ( f ) − A2m( f )

(m
j

)
(−1)m+ j

(iπ N)2m−2 j
+ o(N−2m+2 j ), j = 0, . . . , m − 1, N → ∞, (4.3)

and

Ã2 j +1( f ) = A2 j +1( f ) + o(N−2m+2 j +1), j = 0, . . . , m − 1, N → ∞. (4.4)

Proof. It is easy to check that for the numberscs (see (3.2)) we have

cs = 1, s = 1, . . . , m, cs = −1, s = m + 1, . . . , 2m. (4.5)

Hence the greatest multiplicity of a number in the sequencec1, c2, . . . , c2m is equal tom. Then replacing
α by m in Theorem3.1, according to the definition of the coefficientsχk, we derive that

2m∑

s=0

χsxs =
2m∏

s=1

(
x −

1

cs

)
=

m∏

s=1

(x − 1)

m∏

s=1

(x + 1)

= (x2 − 1)m =
m∑

s=0

(
m

s

)
(−1)m+sx2s.

Therefore

χ2s =
(

m

s

)
(−1)m+s, s = 0, . . . , m, (4.6)

and

χ2s+1 = 0, s = 0, . . . , m − 1. (4.7)

Substitution of (4.6) and (4.7) into (3.3) completes the proof. �

THEOREM4.2 Letq be an odd number, that is,q = 2m+1, wherem = 0, 1, . . ., and let the indicesns =
ns(N) be chosen as in (4.2). Then, for f ∈ C3m+1[−1, 1] such thatf (3m+1) is absolutely continuous
on [−1, 1], the following estimates hold:

Ã2 j ( f ) = A2 j ( f ) − A2m+1( f )

(m
j

)
(−1)m+ j +1

(iπ N)2m−2 j +1
+ o(N−2m+2 j −1), j = 0, . . . , m, N → ∞, (4.8)

and

Ã2 j +1( f ) = A2 j +1( f ) − A2m+1( f )

(m
j

)
(−1)m+ j

(iπ N)2m−2 j
+ o(N−2m+2 j ), j = 0, . . . , m − 1, N → ∞.

(4.9)
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Proof. We have

cs = 1, s = 1, . . . , m + 1, cs = −1, s = m + 2, . . . , 2m + 1.

Therefore the greatest multiplicity of a number in the sequencec1, c2, . . . , c2m+1 is equal tom + 1.
Substituting this into Theorem3.1 instead ofα, we proceed as follows:

2m+1∑

s=0

χsxs =
2m+1∏

s=1

(
x −

1

cs

)
= (x2 − 1)m(x − 1)

=
m∑

s=0

(
m

s

)
(−1)m+sx2s+1 −

m∑

s=0

(
m

s

)
(−1)m+sx2s.

Thus

χ2s =
(

m

s

)
(−1)m+s+1, s = 0, . . . , m, (4.10)

and

χ2s+1 =
(

m

s

)
(−1)m+s, s = 0, . . . , m. (4.11)

Substitution of (4.10) and (4.11) into (3.3) concludes the proof. �
Now we reformulate Theorem3.2for the choices (4.1) and (4.2).

THEOREM 4.3 Let the conditions of Theorem4.1be valid. Then the following estimate holds:

lim
N→∞

N2m+ 1
2 ‖R̃N,2m( f )‖1 = |A2m( f )|d(2m), (4.12)

where

d(2m) =
(2m)!22m

π2m+1
√

(4m + 1)!
. (4.13)

Proof. Equations (3.11) and (4.5) yield that

d(2m) =
1

√
2π2m+1

(∫ 1

−1

2m∏

s=1

(
x −

1

cs

)2

dx

)1/2

=
1

√
2π2m+1

(∫ 1

−1
(1 − x2)2m dx

)1/2

=
1

√
2π2m+1

(
Γ (2m + 1)Γ

(1
2

)

Γ
(
2m + 3

2

)

)1/2

.

This ends the proof. �
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THEOREM 4.4 Let the conditions of Theorem4.2be valid. Then the following estimate holds:

lim
N→∞

N2m+ 3
2 ‖R̃N,2m+1( f )‖1 = |A2m+1( f )|d(2m + 1), (4.14)

where

d(2m + 1) =
(2m)!22m+1√(2m + 1)(2m + 2)

π2m+2
√

(4m + 3)!
. (4.15)

Proof. Equations (3.11) and (4.1) yield that

d(2m + 1) =
1

√
2π2m+2

(∫ 1

−1

2m+1∏

s=1

(
x −

1

cs

)2

dx

)1/2

=
1

√
2π2m+2

(∫ 1

−1
(1 − x2)2m(1 − x)2 dx

)1/2

=
1

√
2π2m+2

(
24m+3Γ (2m + 1)Γ (2m + 3)

Γ (4m + 4)

)1/2

.

This finalizes the proof. �

4.2 The accuracy away from the discontinuity

The next theorems reveal the theoretical basis of the auto-correction phenomenon.

THEOREM 4.5 Let q be an even number, that isq = 2m, wherem = 1, 2, . . ., and let the indices
ns = ns(N) be chosen as in (4.1). Suppose thatf ∈ C3m+1[−1, 1] for somem > 1 and f (3m+1) is
absolutely continuous on [−1, 1]. Then the following estimate holds for|x| < 1 andN → ∞:

R̃N,2m( f ) =
A2m( f )(−1)N+m

2m+1N3m+1π2m+1

sin πx
2 (2N − m + 1)

cosm+1 πx
2

m∑

k=0

(−1)k
(

m

k

)
(m + 2k)!

(2k)!
+ o(N−3m−1).

(4.16)

Proof. In view of equations (3.5)–(3.8), we conclude that

R̃N,2m( f ) = R̃+
N,2m( f ) + R̃−

N,2m( f ),

where

R̃+
N,2m( f ) =

∞∑

n=N+1

F̃n eiπnx, R−
N,q( f ) =

−N−1∑

n=−∞

F̃n eiπnx.

We first estimatẽR+
N,2m( f ). Recall (see (3.9)) that for this case we solve the system

F̃n = 0, n = −N, . . . , −N + m − 1, (4.17)

F̃n = 0, n = N − m + 1, . . . , N. (4.18)
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Utilization of Abel’s transformation as in the proof of Theorem2.4 leads to the following expansion of
the error:

R̃+
N,2m( f ) = −eiπ(N+1)x

m+2∑

k=1

Δk−1
N (F̃n)

(1 + eiπx)k
+

1

(1 + eiπx)m+2

∞∑

n=N+1

Δm+2
n (F̃n)e

iπnx. (4.19)

Taking into account that

Δk−1
N (F̃n) =

k−1∑

s=0

(
k − 1

s

)
F̃N−s,

from (4.18) we see thatΔs
N(F̃n) = 0 for s = 0, . . . , m − 1. Hence (4.19) can be rewritten in the form

R̃+
N,2m( f ) = −eiπ(N+1)x Δm

N(F̃n)

(1 + eiπx)m+1
− eiπ(N+1)x Δm+1

N (F̃n)

(1 + eiπx)m+2

+
1

(1 + eiπx)m+2

∞∑

n=N+1

Δm+2
n (F̃n)e

iπnx. (4.20)

Equation (3.5) results in the following:

F̃n = fn −
q−1∑

k=0

Ãk( f )Bk,n

=
(−1)n+1

2

2m−1∑

k=0

Ak( f ) − Ãk( f )

(iπn)k+1

+
(−1)n+1

2

3m+1∑

k=2m

Ak( f )

(iπn)k+1
+ o(n−3m−2), n → ∞. (4.21)

Lemma2.3 implies that

Δ
p
n (F̃n) =

(−1)p+n+1

2np

2m−1∑

k=0

Ak( f ) − Ãk( f )

(iπn)k+1

(p + k)!

k!

+
(−1)p+n+1

2np

3m+1∑

k=2m

Ak( f )

(iπn)k+1

(p + k)!

k!
+ o(n−3m−2), n → ∞. (4.22)

Application of Theorem4.1, in view of (4.22) andn > N, yields that

Δm+2
n (F̃n) =

o(1)

N2mnm+2
, N → ∞. (4.23)

Hence the third term in (4.20) is o(N−3m−1) as N → ∞. In a similar way it can be derived that the
second term isO(N−3m−2) asN → ∞. Finally, we obtain that

R̃+
N,2m( f ) = −Δm

N(F̃n)
eiπ(N+1)x

(1 + eiπx)m+1
+ o(N−3m−1), N → ∞. (4.24)
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Similarly, we get that

Δm
N(F̃n) = A2m( f )

(−1)N+1

2(iπ)2m+1N3m+1

m∑

k=0

(−1)k
(

m

k

)
(m + 2k)!

(2k)!
+ o(N−3m−1), N → ∞.

Substituting this into (4.24) and making the same statements forR−
N,2m( f ), we complete the proof.�

The next result is an immediate consequence of Theorem4.5.

THEOREM 4.6 Let the conditions of Theorem4.5be valid. Then the following estimate holds:

lim
N→∞

N3m+1‖R̃N,2m( f )‖ε = |A2m( f )|
Im,ε

2m+1π2m+1
√

2

∣
∣
∣
∣
∣

m∑

k=0

(−1)k
(

m

k

)
(m + 2k)!

(2k)!

∣
∣
∣
∣
∣
, 0 < ε < 1,

(4.25)
where

Im,ε =
(∫ ε

−ε

dx

cos2m+2 πx
2

)1/2

. (4.26)

REMARK 4.7 Note that the integral in (4.26) can be calculated explicitly by the following recurrent
relation:

∫
dx

cosn x
=

sinx

(n − 1) cosn−1 x
+

n − 2

n − 1

∫
dx

cosn−2 x
.

A comparison of Theorems2.4 and2.5 with Theorems4.5 and4.6 reveals the fast convergence
(O(N−3m−1) asN → ∞) of the KGE method with approximate jumps compared to the convergence
rate (O(N−2m−1) asN → ∞) of the KGE method with exact jumps. We call this improvement in the
convergence rate the auto-correction phenomenon. The magnitude of the phenomenon for even values
of q (q = 2m, wherem = 1, 2, . . .) is exactlym powers ofN.

Now we formulate the analogues of Theorems4.5and4.6for odd values ofq.

THEOREM 4.8 Letq be an odd number, that isq = 2m + 1, wherem = 0, 1, . . ., and let the indices
ns = ns(N) be chosen as in (4.2). Suppose thatf ∈ C3m+1[−1, 1] for somem > 0 and f (3m+1) is
absolutely continuous on [−1, 1]. Then the following estimate holds for|x| < 1:

R̃N,2m+1( f ) = A2m+1( f )
(−1)N+m+1

2N3m+2π2m+2

e−iπ(N+1)x

(1 + e−iπx)m+1

×
m∑

k=0

(−1)k
(

m

k

)
(m + 2k)!(4k + m + 2)

(2k + 1)!
+ o(N−3m−2), N → ∞. (4.27)

Proof. We proceed as in the proof of Theorem4.5. The additional equation

F̃N−m = 0

implies that

R̃N,2m+1( f ) = R̃−
N,2m+1( f ) + o(N−3m−1) = −Δm

−N(F̃n)
e−i π(N+1)x

(1 + e−iπx)m+1
+ o(N−3m−2), N → ∞.

The remainder of the proof is obvious. �
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THEOREM 4.9 Let the conditions of Theorem4.8be valid. Then the following estimate holds for 0<
ε < 1:

lim
N→∞

N3m+2‖R̃N,2m+1( f )‖ε = |A2m+1( f )|
Im,ε

2m+2π2m+2

∣
∣
∣
∣
∣

m∑

k=0

(−1)k
(

m

k

)
(m + 2k)!(4k + m + 2)

(2k + 1)!

∣
∣
∣
∣
∣
,

(4.28)
whereIm,ε is defined by (4.26).

The comparison of Theorems2.4 and2.5 with Theorems4.8 and4.9 shows that the magnitude of
the auto-correction phenomenon for odd values ofq (q = 2m + 1, m = 0, 1, . . .) is exactlym powers
of N. We see that form = 0 the phenomenon is absent.

5. Numerical illustrations

In this section we illustrate the convergence properties of the KGE method by some numerical examples.
The auto-correction phenomenon is also explored.

Consider the simple function

f (x) = sin(x − 1). (5.1)

In Table 1 we present theL2-errors of the approximationsSN,q( f ) and S̃N,q( f ) on the interval
[−1, 1]. The approximation of the jumps are calculated from (3.1) with the indicesns given by (4.1)
and (4.2). It can be seen thatSN,q( f ) is more precise thañSN,q( f ) for all values ofN andq. We came to
the same conclusion by comparing Theorem2.1with Theorems4.3and4.4. After simple calculations,
we derive that

d(2m)

c(2m)
=

(2m)!4m

√
(4m)!

> 1,
d(2m + 1)

c(2m + 1)
=

22m+1(2m)!
√

(2m + 1)(2m + 2)
√

(4m + 2)!
> 1.

The results from numerical experiments on the interval [−0.7, 0.7] are presented in Table2. Here
one can see that the situation is reversed for the region where the period-2 extension of the approxi-
mated function is smooth. In spite of our expectations, the approximationS̃N,q( f ) is more precise than
SN,q( f ).

From Table2 we get that

‖R32,2( f )‖0.7

‖R64,2( f )‖0.7
= 8,

‖R64,2( f )‖0.7

‖R128,2( f )‖0.7
= 7.8,

‖R128,2( f )‖0.7

‖R256,2( f )‖0.7
= 7.9.

TABLE 1 L2-errors while approximating the function(5.1) by SN,q( f ) and S̃N,q( f ) on the interval
[−1, 1] when the indices(4.1) and (4.2) are considered

N = 32 N = 64 N = 128 N = 256

‖RN,2( f )‖1 2.2 × 10−6 3.9 × 10−7 7.0 × 10−8 1.2 × 10−8

‖R̃N,2( f )‖1 3.7 × 10−6 6.5 × 10−7 1.2 × 10−7 2.0 × 10−8

‖RN,3( f )‖1 2.8 × 10−8 2.5 × 10−9 2.3 × 10−10 2.0 × 10−11

‖R̃N,3( f )‖1 6.3 × 10−8 5.5 × 10−9 4.8 × 10−10 4.2 × 10−11

‖RN,4( f )‖1 1.6 × 10−10 7.1 × 10−12 3.2 × 10−13 1.4 × 10−14

‖R̃N,4( f )‖1 3.4 × 10−10 1.5 × 10−11 6.3 × 10−13 2.8 × 10−14
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TABLE 2 L2-errors while approximating the function(5.1) by SN,q( f ) and S̃N,q( f ) on the interval
[−0.7, 0.7] when the indices(4.1) and (4.2) are considered

N = 32 N = 64 N = 128 N = 256

‖RN,2( f )‖0.7 4.8 × 10−7 6.0 × 10−8 7.7 × 10−9 9.7 × 10−10

‖R̃N,2( f )‖0.7 2.3 × 10−8 1.5 × 10−9 9.3 × 10−11 5.7 × 10−12

‖RN,3( f )‖0.7 7.2 × 10−9 4.7 × 10−10 3.0 × 10−11 1.9 × 10−12

‖R̃N,3( f )‖0.7 5.2 × 10−10 1.6 × 10−11 5.1 × 10−13 1.6 × 10−14

‖RN,4( f )‖0.7 4.6 × 10−11 1.5 × 10−12 4.7 × 10−14 1.5 × 10−15

‖R̃N,4( f )‖0.7 2.6 × 10−13 2.0 × 10−15 1.5 × 10−17 1.2 × 10−19

These results coincide with the statement of Theorem2.5, where‖RN,2‖ε = O(N−3) asN → ∞. This
yields asymptotically that

‖R2z,2( f )‖0.7

‖R2z+1,2( f )‖0.7
= 8.

In view of Theorem4.5, we have that̃RN,2 = O(N−4) asN → ∞, which implies asymptotically that

‖R̃2z,2( f )‖0.7

‖R̃2z+1,2( f )‖0.7
= 16.

This theoretical estimate coincides with the results in Table2 as follows:

‖R̃32,2( f )‖0.7

‖R̃64,2( f )‖0.7
= 15.3,

‖R̃64,2( f )‖0.7

‖R̃128,2( f )‖0.7
= 16.1,

‖R̃128,2( f )‖0.7

‖R̃256,2( f )‖0.7
= 16.3.

Consequently, the theoretical and the numerical estimates coincide—the magnitude of the auto-
correction phenomenon forq = 2 is 1 power ofN.

Similarly, for q = 4, Theorem2.5 implies the estimate

‖R2z,4( f )‖0.7

‖R2z+1,4( f )‖0.7
= 32,

while the numerical experiments yield that

‖R32,4( f )‖0.7

‖R64,4( f )‖0.7
= 30.7,

‖R64,4( f )‖0.7

‖R128,4( f )‖0.7
= 31.9,

‖R128,4( f )‖0.7

‖R256,4( f )‖0.7
= 31.3.

For R̃N,4( f ), Theorem4.5 implies that

‖R̃2z,4( f )‖0.7

‖R̃2z+1,4( f )‖0.7
= 128

and Table2 confirms that

‖R̃32,4( f )‖0.7

‖R̃64,4( f )‖0.7
= 130,

‖R̃64,4( f )‖0.7

‖R̃128,4( f )‖0.7
= 133.3,

‖R̃128,4( f )‖0.7

‖R̃256,4( f )‖0.7
= 125.
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FIG. 1. Plots of|RN,q( f )| (left) and |R̃N,q( f )| (right) while approximating the function (5.1) on the interval [−0.7, 0.7] for
q = 4 andN = 64.

Again, the theoretical and the numerical estimates coincide—the magnitude of the auto-correction phe-
nomenon forq = 4 is 2 powers ofN.

For the valueq = 3, Theorem2.5 implies that

‖R2z,3( f )‖0.7

‖R2z+1,3( f )‖0.7
= 16.

This result coincides with calculations from Table2 as follows:

‖R32,3( f )‖0.7

‖R64,3( f )‖0.7
= 15.3,

‖R64,3( f )‖0.7

‖R128,3( f )‖0.7
= 15.7,

‖R128,3( f )‖0.7

‖R256,3( f )‖0.7
= 15.8.

According to Theorem4.9, we have

‖R̃2z,4( f )‖0.7

‖R̃2z+1,4( f )‖0.7
= 32.

Table2 gives that

‖R̃32,3( f )‖0.7

‖R̃64,3( f )‖0.7
= 32.5,

‖R̃64,3( f )‖0.7

‖R̃128,3( f )‖0.7
= 31.4,

‖R̃128,3( f )‖0.7

‖R̃256,3( f )‖0.7
= 31.9.

Also this time, the theoretical and the numerical estimates coincide—the magnitude of the auto-
correction phenomenon forq = 3 is 1 power ofN.

In Fig. 1 we visually show the auto-correction phenomenon while approximating the function (5.1)
on the interval [−0.7, 0.7] whenq = 4 andN = 64.

6. Conclusion

We have investigated the asymptotic behaviour of the KGE method. In particular, we considered two
families of approximationsSN,q( f ) andS̃N,q( f ) that use the exact and approximate values of the jumps,
respectively. The approximations to the actual jumps were carried out according to the procedure de-
scribed in Subsection4.1.

The main results of the paper are the asymptotic behaviour ofSN,q( f ) and S̃N,q( f ) for |x| < 1,
where the period-2 extension of the approximated functionf is smooth. The comparison of these
results shows that the approximation by theS̃N,q( f ) gives higher accuracy by aboutq/2 powers ofN.
This is the ‘auto-correction phenomenon’—the approximate jumps give better accuracy than the exact
ones.

The numerical results confirm the statements of the corresponding theorems.
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