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Abstract. Convergence acceleration of the classical trigonometric interpolation by the

Eckhoff method is considered, where the exact values of the “jumps" are approximated

by solution of a system of linear equations. The accuracy of the “jump" approximation

is explored and the corresponding asymptotic error of interpolation is derived. Numerical

results validate theoretical estimates.

Key words: Fourier series, trigonometric interpolation, convergence acceleration,

Bernoulli polynomials
AMS (2010) subject classification: 42A15, 65T40, 97N50

1 Introduction

The problem of a function reconstruction by its finite number of Fourier coefficients

fn :=
1
2

∫ 1

−1
f (x)e−iπnxdx, |n| ≤ N, N ≥ 1

or discrete Fourier coefficients

f̌n :=
1

2N + 1

N

∑
k=−N

f (xk)e−iπnxk , xk :=
2k

2N + 1
, |n| ≤ N, N ≥ 1
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is considered.

It is well known that approximation of a 2-periodic and smooth function on the real line by

truncated Fourier series

SN( f ) :=
N

∑
n=−N

fneiπnx

or trigonometric interpolation

IN( f ) :=
N

∑
n=−N

f̌neiπnx

is highly effective. When the approximated function has a point of discontinuity, the approxi-

mation by SN( f ) or IN( f ) leads to the Gibbs phenomenon which degrades the quality of approx-

imations.

An efficient approach of convergence acceleration of SN( f ) and IN( f ) by subtracting a poly-

nomial representing the discontinuities (“jumps") in the function and some of its first derivatives

was suggested by Krylov[10] in 1906 and later in 1964 by Lanczos[11],[12]. The latter was devel-

oped for applications by Eckhoff in a series of papers [5]-[7], where the approximate values of

the “jumps" were determined by solution of a system of linear equations. The Eckhoff method

was developed and generalized by a number of authors, see [1], [2], [4], [13]-[18] with refer-

ences therein.

In [2] the theoretical background of the Eckhoff method was investigated, where the recon-

struction of function by its finite number of Fourier coefficients was considered. Therein, the

asymptotic behavior of the approximate “jumps” was studied and the asymptotic L2 constant of

the rate of convergence was computed.

In this paper we continue investigations started in [2] and consider the Eckhoff method for

function reconstruction by discrete Fourier coefficients. Section 2 describes the Krylov-Lanczos

and the Eckhoff approximations. Asymptotic estimates of the “jumps" approximation and func-

tion reconstruction are presented. The main results are coming from [2]. Section 3 investigates

the Krylov-Lanczos interpolation and the corresponding asymptotic error. The main results are

coming from [18]. Also a closed form of the discrete Fourier coefficients of the Bernoulli poly-

nomials is derived. In Section 4 the Eckhoff interpolation is considered. Following Eckhoff we

explore a system of linear equations for the “jumps" approximation. In particular, we calculate

the determinant of the corresponding system and obtain the conditions providing the system with

unique solution. Moreover, we modify the system to the equivalent one with the upper triangular

matrix. This modification is important for applications as it reduces the complexity and leads
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to more robust procedure. Section 5 studies the precision of the “jumps" approximation and the

corresponding asymptotic error of interpolation. Numerical results in Section 6 accomplishes

theoretical investigations.

2 The Krylov-Lanczos and the Eckhoff Approximations

Throughout the paper we limit our discussion to the smooth function f on [−1,1]. Suppose

f ∈Cq[−1,1] and denote by Ak( f ) the exact value of the “jump" in the k-th derivative of f

Ak( f ) := f (k)(1)− f (k)(−1), k = 0, . . . ,q.

The following lemma is crucial for the Krylov-Lanczos approach.

Lemma 2.1. Let f ∈Cq−1[−1,1]. Assume that d f (q−1) is absolutely continuous on [−1,1]

for some q ≥ 1. Then the following expansion is valid

fn =
(−1)n+1

2

q−1

∑
k=0

Ak( f )
(iπn)k+1 +

1
2(iπn)q

∫ 1

−1
f (q)(x)e−iπnxdx, n �= 0.

Proof. The proof is trivial due to integration by parts.

Lemma 2.1 implies the representation

f (x) =
q−1

∑
k=0

Ak( f )Bk(x)+ F(x), (2.1)

where Bk are 2-periodic Bernoulli-like polynomials with the Fourier coefficients

Bk,n :=

⎧⎪⎪⎨⎪⎪⎩
0, n = 0,

(−1)n+1

2(iπn)k+1 , n �= 0
(2.2)

and F is a 2-periodic and relatively smooth function on the real line (F ∈ Cq−1(R)) with the

Fourier coefficients

Fn = fn −
q−1

∑
k=0

Ak( f )Bk,n. (2.3)

Approximation of F by the truncated Fourier series leads to the Krylov-Lanczos (KL-) approxi-

mation

SN,q( f ) :=
N

∑
n=−N

(
fn −

q−1

∑
k=0

Ak( f )Bk,n

)
eiπnx +

q−1

∑
k=0

Ak( f )Bk(x).
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Denote by ‖ · ‖ the standard norm in the space f ∈ L2(−1,1)

|| f || :=
(∫ 1

−1
| f (x)|2dx

)1/2

.

We put

RN,q( f ) := f (x)−SN,q( f )

and below present an asymptotic behavior of the KL-approximation.

Theorem 2.2[2]. Let f ∈ Cq[−1,1]. Assume that f (q) is absolutely continuous on [−1,1].

Then the following estimate holds

lim
N→∞

(2N + 1)q+ 1
2 ‖RN,q( f )‖ = |Aq( f )| 2q+ 1

2

πq+1
√

2q+ 1
.

In [5]-[7] Eckhoff suggested to compute approximate “jump" values Aa
k( f ,N) for Ak( f )

directly from the Fourier coefficients fn. As the Fourier coefficients Fn asymptotically (n →
∞) decay faster than the coefficients fn, and can therefore be discarded for large |n|. Hence,

from (2.3) we derive the following system of linear equations for determining the approximate

“jumps"

fn =
q−1

∑
k=0

Aa
k( f ,N)Bk,n, n = n1,n2, . . . ,nq. (2.4)

Thus, for any given N we assume to have chosen q different integer indices

n1 = n1(N), n2 = n2(N), . . . ,nq = nq(N)

for evaluating the system (2.4).

By S̃N,q( f ) the Eckhoff approximation is denoted where the approximate “jumps" Aa
k( f ,N)

are used instead of the exact ones

S̃N,q( f ) :=
N

∑
n=−N

(
fn −

q−1

∑
k=0

Aa
k( f ,N)Bk,n

)
eiπnx +

q−1

∑
k=0

Aa
k( f ,N)Bk(x).

Below we present some results from [2] that reveal the properties of the Eckhoff approxima-

tion.

Definition 2.3. By the multiplicity of some number x in a sequence x1, . . . ,xm we mean the

number of indices i for which xi = x.

The next theorem shows how well the values Aa
k( f ,N) approximate the exact “jumps" Ak( f ).
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Theorem 2.4[2]. Suppose the indices ns = ns(N) are chosen such that

lim
N→∞

ns

N
= cs �= 0, s = 1, . . . ,q.

Let α be the greatest multiplicity of a number in the sequence c1,c2, . . . ,cq. Then for f ∈
Cq+α−1[−1,1] such that f (q+α−1) is absolutely continuous on [−1,1], the following estimate

holds

Aa
j( f ,N) = A j( f )−Aq( f )

χ j

(iπN)q− j + o(N−q+ j), N → ∞, j = 0, . . . ,q−1,

where the constants χ j are the coefficients of the polynomial

q

∏
s=1

(
x− 1

cs

)
=

q

∑
s=0

χsxs.

We put

R̃N,q( f ) := f (x)− S̃N,q( f ).

The following result addresses the accuracy of the Eckhoff approximation.

Theorem 2.5[2]. Suppose that the conditions of Theorem 2.4 are valid. Then the following

estimate holds

lim
N→∞

(2N + 1)q+ 1
2 ‖R̃N,q( f )‖ = |Aq( f )| 2q+ 1

2√
2πq+1

(∫ 1

−1

q

∏
s=1

(
x− 1

cs

)2
dx

)1/2

.

Note that the rate of convergence in Theorem 2.2 is the same as in Theorem 2.5, i.e. approx-

imate calculation of the “jumps" does not degrade the rate of convergence.

In the next sections we present the analogs of Theorems 2.2, 2.4, and 2.5 when the discrete

Fourier coefficients are used for function reconstruction.

3 The Krylov-Lanczos Interpolation

Representation (2.1) allows to calculate the discrete Fourier coefficients of F as well

F̌n = f̌n −
q−1

∑
k=0

Ak( f )B̌k,n. (3.1)

Approximation of F by IN( f ) in (2.1), leads to the Krylov-Lanczos (KL-) interpolation

IN,q( f ) :=
N

∑
n=−N

(
f̌n −

q−1

∑
k=0

Ak( f )B̌k,n

)
eiπnx +

q−1

∑
k=0

Ak( f )Bk(x).
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We set

rN,q( f ) := f (x)− IN,q( f )

and investigate the asymptotic behavior of rN,q( f ) in the next theorem.

Theorem 3.1[18]. Let f ∈Cq[−1,1]. Assume that f (q) is absolutely continuous on [−1,1].

Then

lim
N→∞

(2N + 1)q+ 1
2 ‖rN,q( f )‖ = |Aq( f )|a1(q),

where

a1(q) :=
1

πq+1

⎛⎝ 22q+1

2q+ 1
+

1
2

∫ 1
2

− 1
2

∣∣∣∣∣∑s �=0

(−1)s

(s+ x)q+1

∣∣∣∣∣
2

dx

⎞⎠1/2

.

We conclude from (2.2) that

B0(x) =
x
2
, Bk(x) =

∫
Bk−1(x)dx,

∫ 1

−1
Bk(x)dx = 0.

Whence, the discrete Fourier coefficients B̌k,n can be calculated explicitly. For example, here are

three of them

B̌0,n =
(−1)n i

2(2N + 1)sin πn
2N+1

, n �= 0, B̌0,0 = 0,

B̌1,n =
(−1)n cos πn

2N+1

2(2N + 1)2 sin2 πn
2N+1

, n �= 0, B̌1,0 = − 1
12(2N + 1)2 ,

B̌2,n =
(−1)n+1 i

(
3+ cos 2πn

2N+1

)
8(2N + 1)3 sin3 πn

2N+1

, n �= 0, B̌2,0 = 0.

It is possible to get a closed form of B̌k,n for every k ≥ 0. Theorem 3.4 does exactly that.

First we prove some auxiliary relations. The next lemma presents the particular case of the Faa

di Bruno formula [8], [21].

Lemma 3.2. Let f ∈Cp[−1,1]. Then the following identity is valid

f (p)(eiπx) = (iπ)p
p

∑
k=0

S(p,k) f (k)(eiπx)eiπkx, p ≥ 0,

where S(p,k) is the Stirling number of the second kind [20].
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Proof. We fulfill the proof by mathematical induction. For p = 0 the formula is obvious as

S(0,0) = 1. Suppose it is true for p = n. For p = n+ 1 we have

f (n+1)(eiπx) =
d
dx

f (n)(eiπx)

= (iπ)n+1
n

∑
k=0

kS(n,k)eiπkx f (k)(eiπx)

+ (iπ)n+1
n

∑
k=0

S(n,k)eiπ(k+1)x f (k+1)(eiπx)

= (iπ)n+1
n

∑
k=1

(kS(n,k)+ S(n,k−1))eiπkx f (k)(eiπx)

+ (iπ)n+1eiπ(n+1)x f (n+1)(eiπx).

Note that

kS(n,k)+ S(n,k−1) = S(n+ 1,k),

and

S(n+ 1,0) = 0,

we complete the proof.

Lemma 3.3. The following identity holds(
1

sinπx

)(k)

=
πk

2k(sinπx)k+1

k

∑
j=0

αk, jeiπ(k−2 j)x, k ≥ 0,

where

αk, j :=
j

∑
�=0

(−1)�
k

∑
n=0

n!(−1)nS(k,n)
(

k−n
�

)(
n+ 1

2 j−2�

)
.

Proof. We have

1
sinπx

=
2i

eiπx − e−iπx = i
(

1
1+ eiπx −

1
1− eiπx

)
.

In view of Lemma 3.2(
1

sinπx

)(k)

= i(iπ)k
k

∑
n=0

eiπnxS(k,n)
(

n!(−1)n

(1+ eiπx)n+1 − n!
(1− eiπx)n+1

)
=

i(iπ)keiπkx

(eiπx − e−iπx)k+1

k

∑
n=0

n!S(k,n)(−1)n(1− e−2iπx)k−n

× (
(1+ e−iπx)n+1 +(1− e−iπx)n+1)

=
i(iπ)keiπkx

(eiπx − e−iπx)k+1

k

∑
n=0

n!S(k,n)(−1)n
k−n

∑
�=0

(
k−n

�

)
× (−1)�e−2iπ�x

n+1

∑
s=0

(
n+ 1

s

)
(1+(−1)s)e−iπsx.
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For even values of k, k = 2m, we derive(
1

sinπx

)(2m)

=
π2me2iπmx

22m(sin πx)2m+1

m

∑
n=0

S(2m,2n)(2n)!

×
2m−2n

∑
�=0

(
2m−2n

�

)
(−1)�e−2iπ�x

n

∑
s=0

(
2n+ 1

2s

)
e−2iπsx

− π2me2iπmx

22m(sin πx)2m+1

m−1

∑
n=0

S(2m,2n+ 1)(2n+ 1)!

×
2m−2n−1

∑
�=0

(
2m−2n−1

�

)
(−1)�e−2iπ�x

n+1

∑
s=0

(
2n+ 2

2s

)
e−2iπsx

=
π2me2iπmx

22m(sin πx)2m+1

2m

∑
j=0

e−2iπ jx

×
j

∑
�=0

(−1)�
2m− j

∑
n=0

(2n)!S(2m,2n)
(

2m−2n
�

)(
2n+ 1
2 j−2�

)
− π2me2iπmx

22m(sin πx)2m+1

2m

∑
j=0

e−2iπ jx

×
j

∑
�=0

(−1)�
2m− j

∑
n=0

(2n+ 1)!S(2m,2n+ 1)
(

2m−2n−1
�

)(
2n+ 2
2 j−2�

)
=

π2me2iπmx

22m(sin πx)2m+1

2m

∑
j=0

e−2iπ jx

×
j

∑
�=0

(−1)�
4m−2 j+1

∑
n=0

n!S(2m,n)(−1)n
(

2m−n
�

)(
n+ 1

2 j−2�

)
=

π2me2iπmx

22m(sin πx)2m+1

2m

∑
j=0

α2m, je−2iπ jx.

The proof for odd values of k can be performed in a similar way.

Theorem 3.4. The following relations for k ≥ 0 are true

B̌k,0 =
1

2(iπ(2N + 1))k+1 ∑
r �=0

(−1)r+1

rk+1 ,

B̌k,n =
(−1)n+k+1

(2i(2N + 1))k+1k!
(
sin πn

2N+1

)k+1

k

∑
j=0

αk, jei πn(k−2 j)
2N+1 , n �= 0,

where αk, j are defined in Lemma 3.3.

Proof. The first relation immediately follows from the well-known formula (see [22])

B̌k,n =
∞

∑
r=−∞

Bk,n+r(2N+1)
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and the equation (2.2).

For the second relation we write down

B̌k,n =
∞

∑
r=−∞

(−1)n+r+1

2(iπ(n+ r(2N + 1)))k+1

=
(−1)n+1

2(iπ(2N + 1))k+1

∞

∑
r=−∞

(−1)r( n
2N+1 + r

)k+1

=
(−1)n+1

2(iπ(2N + 1))k+1 ϕk

(
n

2N + 1

)
,

where

ϕk(x) :=
∞

∑
r=−∞

(−1)r

(x+ r)k+1 .

It is easy to verify that

ϕ (k)
0 (x) = (−1)kk!ϕk(x).

Taking into account that

ϕ0(x) =
π

sin πx

we get

ϕk(x) =
(−1)k

k!
ϕ (k)

0 (x) = π
(−1)k

k!

(
1

sin πx

)(k)

and hence

B̌k,n =
(−1)n+k+1π

2k!(iπ(2N + 1))k+1

(
1

sinπx

)(k)

x= n
2N+1

, n �= 0. (3.2)

This completes the proof in view of Lemma 3.3.

For practical realization of the Krylov-Lanczos interpolation the discrete Fourier coefficients

B̌k,n can be calculated by FFT algorithm but application of Theorem 3.4 provides the same with

less complexity and greater accuracy.

4 Computation of the “Jumps". The Eckhoff Interpolation

In this section we investigate the problem of the “jump" approximation via discrete Fourier

coefficients. Following Eckhoff we consider the system of linear equations with unknowns

Ai
k( f ,N) that as we will show below approximate the exact values of the “jumps" Ak( f )

f̌n =
q−1

∑
k=0

Ai
k( f ,N)B̌k,n, n = n1,n2, . . . ,nq. (4.1)
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Approximation by IN,q( f ) where the exact values of the “jumps" are replaced by the approx-

imated ones, calculated from (4.1), we call the Eckhoff interpolation and denote by ĨN,q( f )

ĨN,q( f ) :=
N

∑
n=−N

(
f̌n −

q−1

∑
k=0

Ai
k( f ,N)B̌k,n

)
eiπnx +

q−1

∑
k=0

Ai
k( f ,N)Bk(x).

The main contribution of this paper is a study of (4.1), calculation of its determinant, ob-

taining the conditions that provide existence and uniqueness of the solution (see Theorem 4.3).

As a result the asymptotic errors of the “jumps" approximation (Theorems 5.2, 5.6) and the cor-

responding errors of the Eckhoff interpolation (Theorems 5.5, 5.9) are derived. Moreover, we

show that (4.1) is equivalent to a system with an upper triangular matrix and therefore Ai
k( f ,N)

can be calculated by backward substitution (see the equation (4.9)).

First we prove some preliminary lemmas.

Lemma 4.1. The following identity is for k = 0, · · · ,q−1 is valid

sinq πx
(

1
sinπx

)(k)

=
(iπ)k

(2i)q−1 eiπ(q−1)x
q−1

∑
j=0

βk, je−2iπ jx,

where

βk, j :=
j

∑
�=0

(−1)�
q−1

∑
n=0

n!(−1)nS(k,n)
(

q−n−1
�

)(
n+ 1

2 j−2�

)
.

Proof. Starting as in the proof of Lemma 3.3 we get

sinq πx
(

1
sinπx

)(k)

=
i(iπ)k

(2i)q

k

∑
n=0

(−1)nS(k,n)n!eiπnx

× (eiπx − e−iπx)q−n−1((1+ e−iπx)n+1 +(1− e−iπx)n+1)

=
i(iπ)k

(2i)q eiπx(q−1)
k

∑
n=0

(−1)nS(k,n)n!
q−n−1

∑
�=0

(−1)�e−2iπ�x
(

q−n−1
�

)
×

n+1

∑
s=0

(
n+ 1

s

)
(1+(−1)s)e−iπsx.
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Suppose that k is even, k = 2m

sinq πx
(

1
sinπx

)(2m)

=
(iπ)2m

(2i)q−1 eiπ(q−1)x
m

∑
n=0

S(2m,2n)(2n)!

×
q−2n−1

∑
�=0

(
q−2n−1

�

)
(−1)�e−2iπ�x

n

∑
s=0

(
2n+ 1

2s

)
e−2iπsx

− (iπ)2m

(2i)q−1 eiπ(q−1)x
m−1

∑
n=0

S(2m,2n+ 1)(2n+ 1)!

×
q−2n−2

∑
�=0

(
q−2n−2

�

)
(−1)�e−2iπ�x

n+1

∑
s=0

(
2n+ 2

2s

)
e−2iπsx

=
(iπ)2meiπ(q−1)x

(2i)q−1

q−1

∑
j=0

e−2iπ jx

×
j

∑
�=0

(−1)�
q− j−1

∑
n=0

(2n)!S(2m,2n)
(

q−2n−1
�

)(
2n+ 1
2 j−2�

)

−(iπ)2meiπ(q−1)x

(2i)q−1

q−1

∑
j=0

e−2iπ jx
j

∑
�=0

(−1)�
q− j−1

∑
n=0

(2n+ 1)!

×S(2m,2n+ 1)
(

q−2n−2
�

)(
2n+ 2
2 j−2�

)
=

(iπ)2meiπ(q−1)x

(2i)q−1

q−1

∑
j=0

e−2iπ jx

×
j

∑
�=0

(−1)�
2q−2 j−1

∑
n=0

n!S(2m,n)(−1)n
(

q−n−1
�

)(
n+ 1

2 j−2�

)

=
(iπ)2meiπ(q−1)x

(2i)q−1

q−1

∑
j=0

β2m, je−2iπ jx.

The case of odd k can be proved similarly.

Denote

V := (vi j)
q−1
i, j=0, vi j :=

i

∑
s=0

(−1)s
(

q− j−1
s

)(
j + 1

2i−2s

)
. (4.2)

The next lemma provides the LU-factorization of the matrix V .

Lemma 4.2. The matrix V has the following LU-factorization

V = LU,

where

L := (�i j)
q−1
i, j=0, U := (ui j)

q−1
i, j=0,
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�i j := (−1)i
(

q− j−1
q− i−1

)
, ui j := (−1)i

q−1

∑
k=0

(
j + 1
2k

)(
j− k
i− k

)
.

Proof. We have

q−1

∑
s=0

�isus j = (−1)i
q−1

∑
k=0

(
j + 1
2k

) q−1

∑
s=0

(−1)s
(

q− s−1
q− i−1

)(
j− k
s− k

)

= (−1)i+q+1
q−1

∑
k=0

(
j + 1

2q−2−2k

) k

∑
s=0

(−1)s
(

s
q− i−1

)(
j−q+ k + 1

k− s

)

= (−1)i+q+1
q−1

∑
k=0

(−1)k
(

j + 1
2q−2−2k

) k

∑
s=0

(−1)s
(

k− s
q− i−1

)(
j−q+ k + 1

s

)
.

According to the identity ([19])(
n− p
n−m

)
=

n

∑
k=0

(−1)k
(

n− k
m

)(
p
k

)
we derive

q−1

∑
s=0

�isus j = (−1)i+q+1
q−1

∑
k=0

(−1)k
(

j + 1
2q−2−2k

)(
q−1− j

k−q+ 1+ i

)
=

i

∑
k=0

(−1)k+i
(

j + 1
2k

)(
q−1− j

i− k

)
=

i

∑
k=0

(−1)k
(

j + 1
2i−2k

)(
q−1− j

k

)
= vi j.

This ends the proof if we observe that L and U are lower and upper triangular matrices, respec-

tively.

In view of the identity (3.2) we rewrite the system (4.1) in the form

q−1

∑
k=0

Ai
k( f ,N)

(−1)kπ
2k!(iπ(2N + 1))k+1 sinq πτs

(
1

sin πx

)(k)

x=τs

= (−1)ns+1 sinq πτs f̌ns ,

τs :=
ns

2N + 1
, s = 1, · · · ,q.

An application of Lemma 4.1 implies the following system of linear equations that is equivalent

to the system (4.1)
q−1

∑
k=0

msktk = ys, s = 1, · · · ,q, (4.3)

where

ys := (2i)q(−1)ns+1 f̌ns sinq πτse−iπ(q−1)τs ,
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tk :=
(−1)k

k!(2N + 1)k+1 Ai
k( f ,N),

msk :=
q−1

∑
j=0

ws j

q−1

∑
n=0

v jnsnk, ws j := e−2iπτs j, snk := n!(−1)nS(k,n),

and vi j is defined by the equation (4.2). The system (4.3) can be rewritten also in the matrix

form

MT = Y, (4.4)

where

T := (t0, · · · , tq−1)T , Y := (y1, · · · ,yq)T , M := (mi j) = WV S

with

S := (si j), W := (wi j).

An application of Lemma 4.2 yields the matrix factorization of M

M = W LUS. (4.5)

Note that W is a Vandermonde matrix and S is an upper triangular matrix.

Factorization (4.5) will help to calculate the determinant of M in the next theorem.

Theorem 4.3. The system (4.3), and hence (4.1), has a unique solution, provided that the

values n1, · · · , nq are distinct.

Proof. The factorization (4.5) implies

det M = detW ·detL ·detU ·detS.

The matrices L, U and S are triangular. Whence

detL =
q−1

∏
j=0

� j j =
q−1

∏
j=0

(−1) j = (−1)
q(q−1)

2 ,

detU =
q−1

∏
j=0

uj j =
q−1

∏
j=0

(
(−1) j

q−1

∑
k=0

(
j + 1
2k

))

=
q−1

∏
j=0

(−1) j2 j = (−2)
q(q−1)

2 ,

detS =
q−1

∏
j=0

s j j =
q−1

∏
j=0

(−1) j j! = (−1)
q(q−1)

2

q−1

∏
j=0

j!.
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Taking into account that W is a Vandermonde matrix, we get

detW =
q

∏
j=1

q

∏
k= j+1

(
e−2iπτk − e−2iπτ j

)
.

Finally

detM = (−1)
q(q−1)

2 2
q(q−1)

2

q

∏
j=1

q

∏
k= j+1

(
e−2iπτk − e−2iπτ j

)q−1

∏
s=0

s!.

This completes the proof.

We continue investigation of the matrix M. In the next two lemmas the inverses of the

matrices L and W are calculated.

Lemma 4.4. The following relation is true

L−1 = L.

Proof. We will show that L2 = I, where I is the identity matrix. We have

q−1

∑
j=0

�n j� jm =
n

∑
j=m

(−1)n
(

q− j−1
q−n−1

)
(−1) j

(
q−m−1
q− j−1

)
= (−1)n

(
q−m−1
q−n−1

) n

∑
j=m

(−1) j
(

n−m
j−m

)

= (−1)n+m
(

q−m−1
q−n−1

) n−m

∑
j=0

(−1) j
(

n−m
j

)
= (−1)n+m

(
q−m−1
q−n−1

)
δ0,n−m = δn,m.

Denote by w−1
k j the elements of the matrix W−1. The next lemma gives the explicit form of w−1

k j .

Lemma 4.5. Suppose that the indices ns, s = 1, · · · ,q are distinct. Then for the elements

w−1
k j the following representation is true

w−1
k j =

1
q
∏
m=1
m �= j

(e−2iπτ j − e−2iπτm)

q

∑
s=k+1

γse−2iπτ j(s−k−1),

τs :=
ns

2N + 1
, j = 1, · · · ,q; k = 0, · · · ,q−1,

where the numbers γs are the coefficients of the polynomial

q

∏
n=1

(
e−2iπx − e−2iπτn

)
=

q

∑
s=0

γse−2iπsx.
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Proof. As in [2] we consider the following trigonometric polynomial

Q j(x) :=
q

∏
n=1
n �= j

e−2iπx − e−2iπτn

e−2iπτ j − e−2iπτn
=

q−1

∑
k=0

ρ jke−2iπkx, j = 1, · · · ,q,

where by ρ jk we denote the coefficients of the polynomial Q j(x). From the equations

Q j(τi) =
q

∑
k=1

ρ jke−2iπτik = δi j, i, j = 1, · · · ,q

we see that the transpose of (ρ jk) is the inverse of the Vandermonde matrix (e−2iπτik). Following

[2], we write

ρ jk = − 1
q
∏
m=1
m �= j

(e−2iπτ j − e−2iπτm)

k

∑
s=0

γse−2iπτ j(s−k−1), k = 0, · · · ,q−1; j = 1, · · · ,q.

This ends the proof as w−1
k j = ρ jk.

Denoting P = US, from (4.5) we get the factorization

M = WLP, (4.6)

where P is an upper triangular matrix. Applying Lemmas 4.4 and 4.5 we can rewrite the system

(4.4) in the equivalent form

PT = L−1W−1Y = LW−1Y, (4.7)

or elementwise
q−1

∑
k=0

pjktk = ỹ j, j = 0, · · · ,q−1, (4.8)

where

ỹ j :=
q−1

∑
k=0

� jk

q

∑
r=1

w−1
kr yr = (2i)q

q−1

∑
k=0

(−1) j
(

q− k−1
q− j−1

)
×

q

∑
r=1

(−1)nr+1 f̌nr e
−iπ(q−1)τr sinq πτr

q
∏
m=1
m �=r

(e−2iπτk − e−2iπτm)

q

∑
s=r+1

γse−2iπτk(s−r−1)

and pjk are the elements of the matrix P. Now Ai
k( f ,N) can be derived by backward substitution

from (4.8)

Ai
k( f ,N) =

k!(−1)k(2N + 1)k+1

pkk
ỹk

−
q−1

∑
j=k+1

Ai
j( f ,N)

(−1) j+kk!
j!(2N + 1) j−k

pk j

pkk
, k = 0, · · · ,q−1.

(4.9)
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5 Asymptotic Estimates

Hereafter we will suppose that the indices ns are distinct and

ρN ≤ |ns| ≤ N, s = 1, . . . ,q, 0 < ρ ≤ 1. (5.1)

In this section we derive asymptotic estimates of the “jumps" approximation and the corre-

sponding asymptotic errors of the Eckhoff interpolation.

Denote

ωr,m :=
q

∑
s=1

e−2iπmτs

(1− e−2iπτs)r−q+1
q
∏
n=1
n �=s

(e−2iπτs − e−2iπτn)
, r ≥ q, m ≥ 0, (5.2)

where τs := ns/(2N + 1), τi �= τ j, i �= j. Evidently

ωr,m =
1

2πi

∫
Γ

zm

(1− z)r−q+1 ∏q
n=1(z− e−2iπτn)

dz, (5.3)

where Γ is a closed curve containing the points z = e−2iπτs , s = 1, · · · ,q, N ≥ 1 but not containing

the point z = 1. In particular, we put

Γ = Γ1 ∪Γ2 ∪Γ3 ∪Γ4,

Γ1 : z = Reiϕ ,
1
3

πρ ≤ ϕ ≤ 1
3π(6−ρ), R > 1,

Γ2 : z = reiϕ ,
1
3

πρ ≤ ϕ ≤ 1
3π(6−ρ), r < 1,

Γ3 : z = tei 5
6 πρ , r ≤ t ≤ R,

Γ4 : z = te−i 5
6 πρ , r ≤ t ≤ R.

(5.4)

Lemma 5.1. Suppose that the indices ns = ns(N) are distinct and (5.1) is true. Then

ωr,m = O(1), N → ∞.

Proof. The proof follows from (5.1) as

2
3

πρ ≤ 2π|τs| ≤ π.

The next theorem explores the accuracy of the “jumps" approximation.
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Theorem 5.2. Suppose that the indices ns, s = 1, · · · ,q are distinct and

lim
N→∞

ns

2N + 1
= lim

N→∞
τs = cs �= 0, s = 1, · · · ,q.

Let ε (ε ≥ 1) be the greatest multiplicity of a number in the sequence {e−2iπcs}, s = 1, . . . ,q.

Then, for f ∈Cq+ε−1[−1,1] such that f (q+ε−1) is absolutely continuous on [−1,1], the following

estimate as N → ∞ holds

Ai
j( f ,N) = A j( f )+ Aq( f )

(−1) j j!ν j

(2N + 1)q− j + o(N−q+ j), j = 0, . . . ,q−1,

where the numbers ν j are defined by the recurrence relation

ν j :=
μ j

p j j
−

q−1

∑
k= j+1

νk
p jk

p j j
, j = 0, · · · ,q−1

and

μs :=
(−1)q

q!

q−1

∑
j=0

�s j

q

∑
m=0

αq,m

q

∑
k= j+1

γ∗k ω∗
q,m+k− j−1.

The numbers ω∗
r,m are defined by the formula (see (5.4))

ω∗
r,m :=

1
2πi

∫
Γ

zm

(1− z)r−q+1 ∏q
n=1(z− e−2iπcn)

dz

and γ∗k are the coefficients of the polynomial

q

∏
n=1

(
e−2iπx − e−2iπcn

)
=

q

∑
s=0

γ∗s e−2iπsx.

Proof. In view of Lemma 2.1, we have the representation

f (x) = F(x)+
q+ε−1

∑
k=0

Ak( f )Bk(x),

where F is a 2-periodic and smooth function F ∈Cq+ε−1(R). This representation implies

f̌n = F̌n +
q+ε−1

∑
k=0

Ak( f )B̌k,n.

Taking into account that

F̌n =
∞

∑
s=−∞

Fn+s(2N+1)

we get

F̌n = o(n−q−ε ), n → ∞, |n| ≤ N
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and therefore

f̌n =
q+ε−1

∑
k=0

Ak( f )B̌k,n + o(n−q−ε), n → ∞, |n| ≤ N.

Using this in (4.1), we derive

q−1

∑
k=0

(Ai
k( f ,N)−Ak( f ))B̌k,ns =

q+ε−1

∑
k=q

Ak( f )B̌k,ns + o(n−q−ε
s ), s = 1, · · · ,q.

An application of Theorem 3.4 and the factorization (4.6) implies

q−1

∑
k=0

(W LP)skzk =
q+ε−1

∑
r=q

Ar( f )
(−1)r

r!(2N + 1)r+1
1

(1− e−2iπτs)r+1−q

×
r

∑
m=0

αr,me−2iπmτs + o(n−q−ε
s ), s = 1, · · · ,q, N → ∞,

where

zk :=
(−1)k

k!(2N + 1)k+1 (Ai
k( f ,N)−Ak( f )). (5.5)

Applying Lemma 4.5 we write down

q−1

∑
k=0

(LP) jkzk =
q+ε−1

∑
r=q

Ar( f )
(−1)r

r!(2N + 1)r+1

r

∑
m=0

αr,m

q

∑
t= j+1

γtωr,m+t− j−1

+
q

∑
s=1

o(n−q−ε
s )

q
∏
m=1
m �=s

(e−2iπτs − e−2iπτm)
, j = 0, · · · ,q−1, N → ∞.

(5.6)

For the last term we note that∣∣∣∣∣∣
q

∏
m=1
m �=s

(e−2iπτs − e−2iπτm)

∣∣∣∣∣∣=
∣∣∣∣∣∣

q

∏
m=1
m �=s

2isin π(τm − τs)

∣∣∣∣∣∣= O(N−ε+1), N → ∞.

Hence the last term in (5.6) is o(N−q−1) as N → ∞. By Lemma 5.2 the terms with r > q are also

o(N−q−1) as γt = O(1) and we need to consider only the term r = q. Taking into account that

γs = γ∗s + o(1) and ωq,m+t− j−1 = ω∗
q,m+t− j−1 + o(1) as N → ∞, we get

q−1

∑
k=0

(LP) jkzk = Aq( f )
(−1)q

q!(2N + 1)q+1

q

∑
m=0

αq,m

q

∑
k= j+1

γ∗k ω∗
q,m+k− j−1 + o(N−q−1).

Lemma 4.4 implies

q−1

∑
k=s

pskzk = Aq( f )
μs

(2N + 1)q+1 + o(N−q−1), N → ∞.
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From here we derive

zk = Aq( f )
νk

(2N + 1)q+1 + o(N−q−1), N → ∞, k = 0, · · · ,q−1.

This finalizes the proof.

This theorem allows to estimate the accuracy of the Eckhoff interpolation.

We put

Ǧn := f̌n −
q−1

∑
k=0

Ai
k( f ,N)B̌k,n, (5.7)

Gn := fn −
q−1

∑
k=0

Ai
k( f ,N)Bk,n. (5.8)

In the next two lemmas we explore the asymptotic behavior of Ǧn and Gn.

Lemma 5.3. Suppose that the conditions of Theorem 5.2 are valid. Then the following

asymptotic estimate as N → ∞, |n| > N is true

Gn = Aq( f )
(−1)n

2(2N + 1)q+1

q

∑
k=0

k!(−1)kνk(
iπ n

2N+1

)k+1 +
o(N−q)(−1)n

n
,

where the numbers νk, k = 0, · · · ,q−1 are defined in Theorem 5.2 and νq = (−1)q+1/q!.

Proof. Lemma 2.1 implies

fn =
q−1

∑
k=0

Ak( f )Bk,n + Aq( f )Bq,n + o(n−q−1), n → ∞.

From here and (5.8) we obtain

Gn =
q−1

∑
k=0

(
Ak( f )−Ai

k( f ,N)
)

Bk,n + Aq( f )Bq,n + o(n−q−1), n → ∞. (5.9)

Theorem 5.2 yields

Gn = Aq( f )
(−1)n

2(2N + 1)q+1

q−1

∑
k=0

k!(−1)kνk(
iπ n

2N+1

)k+1 + Aq( f )Bq,n

+ o(n−q−1)+ o(N−q−1)(−1)n
q−1

∑
k=0

1(
iπ n

N

)k+1 .

This completes the proof.

Lemma 5.4. Suppose that the conditions of Theorem 5.2 are valid. Then the following

asymptotic estimate as N → ∞, |n| ≤ N is true

Ǧn −Gn = Aq( f )
(−1)n

2(2N + 1)q+1

q

∑
k=0

k!(−1)kνk

(iπ)k+1 ∑
s �=0

(−1)s( n
2N+1 + s

)k+1 + o(N−q−1),
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where the numbers νk, k = 0, · · · ,q−1 are defined in Theorem 5.2 and νq = (−1)q+1/q!.

Proof. The proof follows from the formula

Ǧn −Gn =
∞

∑
s=−∞

Gn+s(2N+1)−Gn = ∑
s �=0

Gn+s(2N+1) (5.10)

in view of Lemma 5.3.

Denote

r̃N,q( f ) := f (x)− ĨN,q( f ).

The next theorem reveals the asymptotic behavior of the Eckhoff interpolation.

Theorem 5.5. Suppose that the conditions of Theorem 5.2 are valid. Then

lim
N→∞

(2N + 1)2q+1‖r̃N,q( f )‖2 = a2(q)|Aq( f )|,

a2(q) :=

(
1
2

∫ 1/2

−1/2

∣∣∣∣∣ q

∑
k=0

k!(−1)kνk

(iπ)k+1 ∑
s �=0

(−1)s

(x+ s)k+1

∣∣∣∣∣
2

dx

+
1
2

∫
|x|>1/2

∣∣∣∣∣ q

∑
k=0

k!(−1)kνk

(iπx)k+1

∣∣∣∣∣
2

dx

) 1
2

,

where the numbers νk, k = 0, · · · ,q−1 are defined in Theorem 5.2 and νq = (−1)q+1/q!.

Proof. The proof follows from the formula

‖r̃N,q( f )‖2 = 2
N

∑
n=−N

|Gn − Ǧn|2 + 2 ∑
|n|>N

|Gn|2 (5.11)

and Lemmas 5.3, 5.4.

Omitting any condition on the indices ns besides (5.1) we are still able to calculate the

convergence rate of Ai
j and the corresponding interpolation. The coming theorems of this section

illustrate these facts.

Theorem 5.6. Suppose that f ∈ C2q−1[−1,1] and f (2q−1) is absolutely continuous on

[−1,1] for some q ≥ 1. Then, if the indices ns are distinct and (5.1) is valid, the following

estimate holds

Ai
j( f ,N) = A j( f )+ Aq( f )O(N−q+ j), j = 0, . . . ,q−1, N → ∞.
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Proof. The proof mimics that of Theorem 5.2. Starting as there, replacing ε by q, we get
q−1

∑
k=0

(LP) jkzk =
2q−1

∑
r=q

Ar( f )
(−1)r

r!(2N + 1)r+1

r

∑
m=0

αr,m

q

∑
t= j+1

γtωr,m+t− j−1

+
q

∑
s=1

o(n−2q
s )

q
∏
n=1
n �=s

(e−2iπτs − e−2iπτn)
.

(5.12)

For the last term we observe that∣∣∣∣∣∣
q

∏
n=1
n �=s

(e−2iπτs − e−2iπτn)

∣∣∣∣∣∣= O(N−q+1), N → ∞.

Hence the last term in (5.12) is o(N−q−1) as N → ∞. In view of Lemma 5.2 we get
q−1

∑
k=0

(LP) jkzk = Aq( f )O(N−q−1), N → ∞,

where zk is defined by (5.5). Lemma 4.4 implies
q−1

∑
k=s

pskzk = Aq( f )O(N−q−1), N → ∞.

From here we derive

zk = Aq( f )O(N−q−1), N → ∞, k = 0, · · · ,q−1.

This finishes the proof.

Now, we will estimate the accuracy of the Eckhoff interpolation similarly. First we given

some auxiliary lemmas.

Lemma 5.7. Suppose that the conditions of Theorem 5.6 are valid. Then the following

estimate holds

Gn = Aq( f )O(N−q)
(−1)n

n
, n → ∞, |n| > N.

Proof. The proof immediately follows from the equation (5.9) and Theorem 5.6.

Lemma 5.8. Suppose that the conditions of Theorem 5.6 are valid. Then

Ǧn −Gn = Aq( f )O(N−q−1), N → ∞, |n| ≤ N.

Proof. The proof follows from (5.10) and Lemma 5.7.

Finally we get the required estimate.

Theorem 5.9. Suppose that the conditions of Theorem 5.6 are valid. Then

‖r̃N,q( f )‖ = |Aq( f )|O(N−q− 1
2 ), N → ∞.

Proof. The equation (5.11) completes the proof, due to Lemmas 5.7 and 5.8.
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6 Numerical Results

Hereafter we consider a special choice of the indices ns. If q is an even number q = 2m,

m = 1,2, · · · , then we put

ns = N − s+ 1, s = 1, · · · ,m,

ns = −(N − s+ m + 1), s = m + 1, · · · ,2m.

(6.1)

If q is odd, q = 2m + 1, m = 0,1, · · · then we put

ns = N − s+ 1, s = 1, · · · ,m + 1,

ns = −(N − s+ m + 2), s = m + 2, · · · ,2m + 1.

(6.2)

In Table 1 we show the numerical values of the constants a1(q), a2(q), and the ratio a2(q)/a1(q)

for different values of q. The indices ns are chosen as in (6.1) and (6.2) and the constants a1(q)

and a2(q) are calculated according to Theorems 3.1 and 5.5. The ratio a2(q)/a1(q) shows the

deficiency of the Eckhoff interpolation compared to the Krylov-Lanczos interpolation.

Table 1. The numerical values of a1(q), a2(q), and the ratio a2(q)/a1(q) for different

values of q for the above choices of ns.

q 1 2 3 4 5 6 7 8 9 10

a1 0.237 0.107 0.063 0.035 0.020 0.012 0.007 0.004 0.003 0.002

a2 0.237 0.173 0.141 0.122 0.108 0.098 0.090 0.084 0.078 0.074

a2/a1 1 1.6 2.3 3.5 5.4 8.3 12.9 20.1 31.2 48.6

By ‖T‖∞ and κ(T ) denote the norm and the condition number of a matrix T respectively

‖T‖∞ := max
1≤i≤q

q

∑
j=1

|ti j|, κ(T ) := ‖T‖∞‖T−1‖∞,

where T−1 is the inverse of T and ti j are the elements of T .

In Table 2 the condition numbers of the matrix B̌k,ns are presented for the above choices of the

indices ns and for different values of N and q. We see that this matrix is ill-conditioned. There-

fore, the factorization (4.6) will help for solving the system (4.1) effectively. More concrete by

taking into account that W is a Vandermonde matrix, a practical solution can be achieved using

the well-known Björk-Pereyra algorithm, [3]. This O(q2) algorithm has a number of beneficial
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properties. In particular, under certain mild hypotheses the magnitude of the numerical errors

depends only on the machine precision used, and is independent of the condition number of the

matrix, [9].

Table 2. The condition numbers of the matrix B̌k,ns , k = 0, · · · ,q−1 for different values of

q and N

q 2 3 4 5 6 7

N = 32 2690 4×106 3×109 2×1012 1×1015 5×1017

N = 64 10594 6×107 2×1011 5×1014 1×1018 2×1021

N = 128 42048 9×108 1×1013 1×1017 1×1021 8×1024

N = 256 167539 1×1010 8×1014 3×1019 1×1024 3×1028

N = 512 668849 2×1011 5×1016 8×1021 1×1027 1×1032

N = 1024 3×106 4×1012 3×1018 2×1024 1×1030 5×1035

N = 2048 1×107 6×1013 2×1020 5×1026 1×1033 2×1039

N = 4096 4×107 9×1014 1×1022 1×1029 1×1036 9×1042

Consider the following simple function

f (x) = sin(x−1) (6.3)

and put

σq,N( f ) :=

(
1
q

q−1

∑
k=0

∣∣Ak( f )−Ai
k( f ,N)

∣∣2) 1
2

.

In Table 3 the values of σq,N( f ) are calculated for different choices of q and N.

Table 3. Nmerical values of σq,N( f ) for different values of q and N when is interpolated

q 2 3 4 5 6 7

N = 32 0.0002 0.0009 0.0003 0.001 0.0003 0.001

N = 64 0.00005 0.0002 0.00007 0.0003 0.00008 0.0004

N = 128 0.00001 0.00006 0.00002 0.00008 0.00002 0.00009

N = 256 3×10−6 0.00001 5×10−6 0.00001 5×10−6 0.00002

N = 512 9×10−7 4×10−6 1×10−6 5×10−6 1×10−6 6×10−6

N = 1024 2×10−7 9×10−7 3×10−7 1×10−6 3×10−7 1×10−6

N = 2048 5×10−8 2×10−7 7×10−8 3×10−7 9×10−8 4×10−7

N = 4096 1×10−8 6×10−8 2×10−8 8×10−8 2×10−8 9×10−8
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For the function (6.3) denote

a1,q,N( f ) :=
(2N + 1)q+ 1

2

|Aq( f )| ‖rq,N( f )‖, a2,q,N( f ) :=
(2N + 1)q+ 1

2

|Aq( f )| ‖r̃q,N( f )‖.

Table 4 shows the numerical values of the constants a1,q,N( f ) and a2,q,N( f ) for N = 32 and

different values of q. A comparison with Table 1 shows that the theoretical estimates coincide

with experimental results even for moderate values of N.

Table 4. Numerical values of a1,q,N( f ) and a2,q,N( f ) for different values of q and N = 32

when () is interpolated.

q 1 2 3 4 5 6

a1,q,N 0.2372 0.1074 0.0626 0.0344 0.0201 0.0117

a2,q,N 0.2375 0.1737 0.1422 0.1228 0.1099 0.1004

a2,q,N/a1,q,N 1.001 1.62 2.27 3.564 5.48 8.58
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