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A sequence of Hermite trigonometric interpolation polynomials with equidistant inter-
polation nodes and uniform multiplicities is investigated. We derive relatively compact
formula that gives the interpolants as functions of the coefficients in the DFTs of the
derivative values. The coefficients can be calculated by the FFT algorithm. Correspond-
ing quadrature formulae are derived and explored. Convergence acceleration based on
the Krylov-Lanczos method for accelerating both the convergence of interpolation and
quadrature is considered. Exact constants of the asymptotic errors are obtained and
some numerical illustrations are presented.
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1. Introduction

For a given smooth function f € CP~1[—1,1] we consider the sequence T, n(f)(z),
p>1, N > 1, of Hermite trigonometric interpolation polynomials with prescribed

; 2% N
10 (gt ) =1 (g ) 5= 0w = L <

values

2N +1 2N +1

The case p = 2 was first treated by Jackson [15]. The usual trigonometric interpo-
lation is included as the particular case p =1 (see Kress [18]).

Salzer [32] considered the general case of full Hermite trigonometric interpo-
lation with non-equidistant interpolation points. Trigonometric divided differences
were used by Lyche [23] to derive a trigonometric analog of the Newton form of the
Hermite polynomial. Interpolation methods of Hermite type in translation invariant
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spaces of trigonometric polynomials for any position of interpolation points and any
number of derivatives were constructed by Delvos [7]. This approach might be con-
sidered as an extension of the method of Salzer and a generalization of the Kress [19]
idea to non-equidistant interpolation points with different multiplicities. Dryanov
[8] proved the existence and uniqueness of the Hermite trigonometric interpolation
polynomial for the general case, any number of interpolation points and multiplici-
ties. Explicit expressions for the quadrature formulae with maximal trigonometric
degree of precision were obtained. Jin [16] established constructively the fundamen-
tal Hermite polynomials for the general case. Trigonometric and paratrigonometric
Hermite interpolation for any number of interpolation points with different multi-
plicities were constructed by Du, Han and Jin [9].

Hermite trigonometric interpolation on equidistant nodes were discussed by dif-
ferent authors (see, for example, Kress [19], Nersessian [25], Sahakyan [31] and
Berrut, Welscher [5] with references therein). Kress derived an explicit form of the
Hermite trigonometric interpolation on equidistant grid with uniform multiplicities
and obtained a derivative-free remainder. He investigated also the corresponding
quadrature formulae.

A new idea has recently come up in Hermite trigonometric interpolation: con-
sidering the separate discrete Fourier transforms (DFTs) of the various derivatives
of f and then writing the Hermite interpolant in terms of the thereby obtained
coefficients. Berrut and Welcher [5] developed a formula for the Fourier coefficients
in terms of those of the two classical trigonometric polynomials interpolating the
values and those of the derivative separately. That formula treated the most cus-
tomary case, i.e., the classical Hermite interpolant that used only the first order
derivatives at every point for an even number of equidistant points. As showed by
the authors that formula yielded the coefficients with a single FFT.

It is well known that the resulting error of Hermite trigonometric interpolation is
strongly dependent on the smoothness of the interpolated function. Interpolation of
a 2-periodic and smooth function is highly effective. When the interpolated function
has a point of discontinuity, the interpolation leads to the Gibbs phenomenon. The
oscillations caused by this phenomenon are typically propagated into regions away
from the singularity and degrade the quality of the approximations. Different ways of
treating this deficiency have been suggested in the literature for the case p = 1. The
idea of increasing the convergence rate by subtracting a polynomial that represents
the discontinuities in the function and some of its first derivatives (“jumps”) was
suggested by Krylov [20] in 1906 and later, in 1964, by Lanczos [21], [22]. The key
problem lies in determining the singularity amplitudes that has been realized by
Eckhoft [10]-[13] where the values of the “jumps” are solutions of the corresponding
system of linear equations. The Krylov-Lanczos and the Krylov-Lanczos-Eckhoff
methods were developed and generalized by a number of authors, see [1]-[4], [6],
[14], [17], [24], [26]-[29] and references therein.

In this paper (see also [30] where some results are presented without proofs
(Theorems 2.1, 3.1, and 3.2)) we consider Hermite trigonometric interpolation with
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equidistant interpolation nodes and uniform multiplicities. Our method of construc-
tion of the Hermite trigonometric interpolants may be considered as a continuation
of the method of Berrut and Welcher [5]. We derive relatively compact formula for
the Hermite trigonometric interpolation that gives the interpolants as functions of
the coefficients in the DF'Ts of the derivative values. We consider the case of an odd
number of equidistant points for an arbitrary high number of derivatives of equal
order at each of these nodes. Although we are discussing only the case of odd num-
ber of points our approach is valid also for even number of nodes. The accelerating
convergence of interpolations are achieved by application of the Krylov-Lanczos ap-
proach. We also give formulae for the corrections that should be applied in order to
soften the effect of the “jumps” at the endpoints when the interpolated function is
not periodic. In this paper it will be assumed that the exact values of the “jumps”
are known.

We organize this paper as follows. In Section 2 we give the explicit form of
the Hermite trigonometric interpolation Tj, n(f) and the corresponding quadra-
ture Qp, N (f) that exploit the discrete Fourier coefficients of the interpolated func-
tion and its derivatives. In Section 3 the Krylov-Lanczos convergence acceleration
method is applied to T, n(f) and Qp n(f). We denote the resulting interpolation
and quadrature by T, , n(f) and Qg p. n(f), respectively, and call them Hermite-
Krylov-Lanczos interpolation and quadrature. This approach uses the values of the
“jumps” in the function and some of its first derivatives at the end points of the
interval. The parameter ¢ indicates the number of “jumps” that are involved in
the process of interpolation. In Subsections 3.2 and 3.3 the exact constants of the
asymptotic errors are given. In Subsection 3.4 some numerical results are presented.
Section 4 gives a short summary of the results.

2. Main Formulas for Hermite Trigonometric Interpolation and
Quadrature

Let f € CP71[-1,1], p > 1. Let f},ﬁ denote the discrete Fourier coefficients of the
j-th derivative of f

N

77 1 j —iTmx 2k .
fg):2N+1 Z f(j)(‘rk)e kﬂxk::77¢7: aap_]'7|m|§N
k=—N

We set fm = V,SE).
Following [5], the sequence T, n(f), p > 1, N > 1, of Hermite trigonometric
interpolation polynomials will be defined by the formula

N(140) p—1

Ton(H)@) = > Y Qim)f,

m=—N(1—0) j=0

where 0 = 0 for odd values of parameter p and ¢ = 1 for even values. The unknown
functions {€;} will be determined from the condition that T}, 5(f) is exact for the
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set of functions {e™"*}, r = —N(1—0)—[2] 2N +1), -+, N(1+0)+ 2] (2N +1),
where [x] denotes the greatest integer less than or equal to . We set r = n+s(2N +

1),n==-N(1-0),--- ,N(1+0); s=— [%} AR [”2;1} and write
_ N(140) p-—1
eim(nts(2N+1))x _ Z Z im(n+ s(2N + 1)))3@ (m)
m=—N(1—o) j=0
1 N
im(n+s(2N+1))xy ,—imrmazy
X SN TT k;Ne e .

Taking into account that

1 N
2 62ﬂ(n+s(2N+1))xke—m’mzk _ 5n,m

2N +1 R

(0, m is the Kronecker symbol) we obtain the system of linear equations
p—1
eiﬂ'(m+s(2N+l))w _ Zai(m)ﬂj (m)7 (21)

with Vandermonde matrix, for determining the functions {€2;}, where
as(m) :=1im(m + s(2N + 1)).

We proceed as in [3] and construct the explicit solution of (2.1).
Let P;(z) be the Lagrange fundamental polynomial of degree p — 1 defined as

L 2 Xr — Oy . D p_l
= T s = St =[] [257],
— 12
£

where the ¢; 1 (m) denote the coefficients of the polynomial P;(x). From the equa-
tions

St 13- [15]

we see that the transpose of (c; 1) is the inverse of the Vandermonde matrix (af),
i.e., the following relations hold

(257]

Y crg(m)ag(m) =3, (2.2)

k=[]

p—1
> ek j(m)ad(m) = by (2.3)
Jj=0
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As was shown in [3]

1) = > wma ), 4
2 s=j+1
IT (alm) = aem)) "~
=-(3)

where the v, are the coefficients of the polynomial

(257] P

[[ @—asm) =) ~(m)a’.
s=-13] =0
Equation (2.1) implies
(23] |
Qj(m) _ Z Chj (m)eu'r(m+k(2N+1))z.
k=—15]

This leads to the explicit form of the trigonometric Hermite interpolants

N(d+e) p-1 (23] ‘
Ton(f)@) = > SN clm)emmth@NEDe (95
m=—N(1—0) j=0 k=—[2]

where ¢ = 0 for the odd values of the parameter p and ¢ = 1 for the even values.

Theorem 2.1. Let f € CP~1[—1,1], p > 1. Then T, n(f) is a Hermite trigonomet-
ric interpolation of f on the equidistant grid xj = %, |k] < N with the uniform
multiplicities

TCL () (r) = £ k), s =0, p— 1.

Proof. In view of (2.5), we get

N(+o) p-1 (23
TN = 3 o fDemmr 3 englmar(m).
m=—N(1—0) j=0 k=—[2]
Relation (2.2) implies
N(1+4o0)
TN = > FPemmer = f9 (),
m=—N(1-o0) O

Definition of the coefficients v, implies

Y(m) = (—im@N + 1P Y 11 (% +£> |

_[%]§k1<‘“<kp—5§[p771] =k
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Inserting this into (2.4) we get

1 m
k3 (m) = (ir(2N + 1)) Bri (2N+ 1)’ (2.6)
where
g (@) = Z (—1)P* pa () (& + k)9 (2.7)

=
H (k-
]

and the p;(z) are the coefficients of the polynomial

P

[ wt@ts)=>py. (2.8)

=[] <=0
Equation (2.6) helps to calculate the numbers ¢ ;(0)

Bo.;(0) - (—1) 'PJ+1(0)
(ir(2N +1))7
(im(2N +1 H I

~[p/2]
040

Coyj(O) = (29)

Integration of the interpolation T}, 5 (f)(x) over the interval (—1,1) leads to the
quadrature formula

1 p—1
Qu(f) = / Ty =23 i, (0)
i 2

In view of (2.9), we get

-1

Qpn( Z PJ+1 (0)

2t — (im( 2N + 1))
H 0’
= [p/2)
2#£0
- . (2.10)
j+1(0 ()

“1 = ( 2N+1J+1 ij k).
H ¢

“[p/2)
L#£0

In the next section we review the Krylov-Lanczos method for accelerating the
convergence of the classical trigonometric interpolation and apply this method to
Hermite trigonometric interpolation (2.5) and quadrature (2.10).
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3. Accelerating the Convergence of Trigonometric Hermite
Interpolation and Quadrature
For f € C'?[—1,1] denote by Ak(f) the “jump” of the k-th derivative of f

Throughout the paper it will be assumed that the exact values of the “jumps” are
known.
By fr(f ) define the Fourier coefficients of the j-th derivative of f

, 1 [t ,
f9) = 5/ F9 (x)e™ ™2 dz, j > 0.
-1
We set f, := f,SO).

3.1. The Krylov-Lanczos correction method

The following Lemma is crucial for the Krylov-Lanczos method.

Lemma 3.1. Suppose f € C971[—1,1] for some ¢ > 1 and F@=1 s absolutely
continuous on [—1,1]. Then the following formula holds for n # 0

_qynt1 971 ! ;
e L

2 &= (imn

Proof. The proof is trivial by means of integration by parts. O

Equation (3.1) implies the basic expansion

qg—1

fla) = F(x)+ ) Ai(f)Bi(@) (3-2)

k=0

of the approximated function where the By, are 2-periodic extensions of the Bernoulli
polynomials with the Fourier coefficients

B 0, n =20,
kon = _q1\yn+1
;@;ﬁﬁu n 7& 0,

and F is a 2-periodic and smooth function (F € C?7!(R)) on the real line with the
discrete Fourier coeflicients

Fn = .}Zn - ZAk(f)Bk:,n (33)
It is well known that [22]

1
Bow) =3, Bulx) = /Bk_l(x)dx, /1Bk(x)dx ~0.
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Hence, the discrete Fourier coefficients Bkyn have explicit form, for example, here
are three of them:

(="

By = n#0, Byo=0,
0 2(2N + 1) sin 557 7 0.0
. (-1)” COS m . 1
By, = SN N - T e ———
YT 2(2N 1 1)2sin® 2 70 Bro= "N e
§ (—1)"*t i (3 + cos Ak ) §
BQ,n - ki , n 7é O, B270 =0.
8(2N +1)3sin® NG

Equation (3.2) yields (p < q)

. . A,
F@u»:f@u»—;%%ﬁ—ggAAﬂBkﬂ> J=lep-1 (34
Therefore
.
and

—1
- Ak(f)Bk—j,07j:17"' 7p_1 (36)
J

Q

o) _ o) Amilf)
0 2

£
I

Approximation of F' in (3.2) by T, n(f), for ¢ > p, leads to the following Hermite
interpolation that we will call Hermite-Krylov-Lanczos interpolation

N(+o) p-1 [251] |
Topn(H)@) = > Y ED Y o j(m)etmTEEN D)
m=—N(1-c) j=0 k=—[2] (37)

q—1
k=0

where the coefficients £ are defined by (3.3), (3.5), and (3.6).
Integration of the interpolation (3.7) over the interval (—1,1) leads to the fol-
lowing quadrature formula that we will call Hermite-Krylov-Lanczos quadrature

1 9 p—1 v (_l)jp4 (0)

Qurn(h) = [ Tupm(Dlade = = o Cnu)
H ¢

—[p/2]

,q>p (3.8)

<.
I
o
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or equivalently

2 — Ipj +1(0)
Qap.n(f) = (251] 2N]_|_ 1)i+1 Z FD(xy), ¢ > p, (3.9)
5 (
I«
t=—[p/2]
££0

where for FU) () we have representation (3.4).
In the next subsections we investigate the convergence of Ty, n(f) and
Qq.p.n(f), deriving the exact constants of the asymptotic errors.

3.2. Accuracy of the Hermite-Krylov-Lanczos interpolation

First we prove some lemmas that we need in our analysis.

Lemma 3.2. Let f € C—1,1], ¢ > 1, with absolutely continuous f9 on [~1,1].
Then for 0 < j < q—1 the following asymptotic expansion is valid:
(-1

+o(n~ 1 n - . (3.10)

Proof. Expansion (3.2) implies that F € C4[—1,1] and F@ is absolutely contin-
uous on [—1,1]. By means of integration by parts we get

) _1)n+1 4q Ak (F) 1 1 )
F(]) _ ( 4 i / F(q+1) —iTne Jo.
" 2 ; Grn)F— 71 2yt | (z)e *
Taking into account that Ax(F) =0,k =0,---,¢—1, Ay(F) = Ay(f), in view of
the Riemann-Lebesgue lemma, we obtain the required. |

Lemma 3.3. Let f € C—1,1], ¢ > 1, with absolutely continuous f9 on [~1,1].
Then the following relation is true

FU) = (irn)lF,, 1< j<q. (3.11)
Proof. Integration by parts yields (1 < j < q)

_qyn+1 71 1 ) )
F, = ( 1) Z Ak(F) + 1 / F(J)((E)eimnwd‘r.
1

2 = (imn)*+1  2(imn)I

Taking into account that Ax(F) =0,k =0,---,q— 1 we get the required. O

We put

RypN(f)(2) = f(2) = Typ,n(f)(2)
and by || f|| we denote the standard norm in the space Lo(—1,1)

= ([ 11 s )

1/2
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The next theorem reveals the asymptotic behavior of the trigonometric Hermite
interpolation.

Theorem 3.1. Let f € C1—1,1], ¢ > 1 be such that @ s absolutely continuous
n [—1,1]. Then the following estimate holds

lim (2N + 1) 5| Ry (f)]| = |Ag(f)[(g, ),

N —oo

2 1

1+a
(-1 2z Y
tan=rs | [ L zp zﬁm D3 G s )
5

where

—[51-1

DI

S=700  s=[2A]41

and the B ; are defined by (2.7).

Proof. It is easy to verify that

N(1+0) p p—1
Ropn(f)(@) = Z Z < mAk(2N+1) — Z ¢k (m F(])) eim(m+k(2N+1))z

m=—N(1-0) k=—[§] Jj=0
N(1+4o0) .
+ Z Z Fm+k(2N+1)€Zﬂ—(m+k(2N+l))w.
=—N(1-0) k
This yields
N(1+4o0) p p—1 2
[Rypn ()] =2 Z Z Frtkentn) — ZC’W VED)
m=—N(1—o) k—f[ ] 7=0
Ntto) (3.12)
2 3 Y Fekenan
m=—N(1-0) k

Taking into account that

oo

oy )
ngf): Z ij-s-s(zN-s-l)7

S§=—00
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in view of (3.11), we derive

p—1

Frgr@en+1) — Z crj(M)ED = Foyinans)
7=0

(25 p—1
- Z Frtsen+) ch,j(m)ai(m)
= 18] i=0
p—1
()
- Z Ckj(m) Z ij+s(2N+1)
§=0

Relation (2.3) implies

p—1

Foireensy) — ch,g VED) = chu F751+s(2N+1)
7=0

From expansion (3.10) and equation (2.6), we conclude that

p—1 p
56 (=D™A(f) =
Fnkonn = D enibil) = ir@N + 1)) ;o s o) 2 (2m + )77

j=0 s
m
N1, N — = .
ol ) oM T ON 1
We end the proof by inserting the last estimate into (3.12), letting N tend to infinity,
and replacing the Riemann sums by the corresponding integrals. |

Numerical values of (g, p) for various values of the parameters ¢ and p are shown
in Table 1. Note that p = 1 corresponds to the classical trigonometric interpolation
accelerated by the Krylov-Lanczos method (see [29]). We see that, for the fixed
values of ¢, the values of t(q, p) are decreasing when p is increasing. Similarly, when
p is fixed then the values of ¢(g,p) are decreasing when ¢ is increasing. Hence, for
the same number of grid points of interpolation we derive greater precision while
increasing either one of the parameters p and ¢. Note also that the parameter ¢
changes the rate of convergence of interpolation while the parameter p influences
only the value of the constant ¢(g, p).

In Figure 1 the numerical values of ¢(9,p) and ¢(10, p) are presented. It shows
the behavior of t(g, p) when the parameter ¢ is fixed and p is increasing.

In the next subsection we will prove similar results for the corresponding quadra-
ture formula.

3.3. Accuracy of the Hermite-Krylov-Lanczos quadrature

Denote

Tqp,N / f(x = Qqp.n(f)-
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Table 1. The numerical values of t(gq,p) for 1 <p <5 and p < ¢ < 10.

q\p | 1 2 3 4 5
1 0.24 - - - -
2 0.11 0.025 - - -
3 0.063 9.4-1073 3.6-1073 - -
4 0.034 2.4-1073 58-1074 221074 -
5 0.020 771074 1.5-1074 5.0-107° 2.3-107°
6 0.011 221074 2.6-107° 6.2-1076 221076
7 7.0-1073 6.7-107° 5.8-107° 1.2-1076 3.8-107"7
8 4.2-1073 1.9-107° 1.1-1076 1.6-1077 3.9-1078
9 2.5-1073 6.0-1076 2.3-1077 2.8-1078 6.0-107°
10 1.5-1073 1.8-1076 4.6-1078 4.0-107° 6.6 - 10710

In the next theorem we reveal the asymptotic behavior of the Hermite-Krylov-
Lanczos quadrature.

Theorem 3.2. Let f € C9[—1,1], ¢ > 1 be such that {9 is absolutely continuous
n [—1,1]. Then the following estimate holds

lim (2N + 1) g n () = Ag(f) Pla, ).

N—oo
p—1
1 » C(=1)°
- 72 ’ 1V . E A7)
h’(Qap) T [L—l] ( 1) p]"rl(o) Sq_j+17
) 2 j=0 s
(im)att H 14
(=—[2
u0[2]
where
. —-[5]-1 00
E = E +
s §==00  g—[Ezl)q]
t(9,p) t(10,p)
00015 © 00015+ ®
° 2.x107¢ °
2.x1078
PY [ ]
- [ )
2.x1078 L4 o 2.x107° °
° [ )
[ ) o )
oxi100p o o L 0 g P 4x10°2 L T e g p
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10

Fig. 1. The values of ¢(9, p) (left) and ¢(10, p) (right) for various values of the parameter p (p < q).
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and the ps(z) are defined by (2.8).

Proof. We have

rq,p,mf):/_l o () )dJU—?Fo—?Z 0

Jj=

2250, 3 Fly

S=—00

In view of relation (3.11), we derlve

("57]

p—1
TqpN(f) =2Fp —2 Z F 2N+1)ZCOJ O)_2ZCO] Z F(2N+1)
3=0
Identity (2.3) implies
p
P () = =200 Fiyy. (3.13)

According to expansion (3.10) and equation (2.9) we obtain

(—1)® o
r‘]vaN(f):(lﬂ_ 2N+ q+1 ZBO] Z gd— J11 O(N q 1)7N—>OO.

This ends the proof. |

Table 2. Numerical values of |h(q,p)|-.

q\p | 1 2 3 4 5
1 0.16 - - - -
2 0 5.3-1072 - - -
3 1.9-1072 1.9-1072 251073 - -
4 0 6.2-1073 0 41-1074 -
5 2.0-1073 2.0-1073 8.0-107° 8.0-107° 1.5-107°
6 0 6.5-107% 0 1.3-107° 0
7 2.1-107% 2.1-107% 2.3-1076 2.3-1076 221077
8 0 6.7-107° 0 3.6-1077 0
9 2.1-107° 2.1-107° 6.0-1078 6.0-1078 2.9-1079
10 0 6.8-107° 0 9.5-107" 0

Numerical values of |h(q, p)| are presented in Table 2. We see that |h(g, 2p+1)| =
|h(g,2p + 2)| for odd values of ¢ and 1 < p < ¢. It is easy to verify theoretically
that for odd values of ¢

h(qg,2p+1) =h(q,2p+2),p > 1.
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Moreover, Table 2 shows that h(g,p) = 0 for even values of ¢ when p is odd. We
prove this property in the next theorem.

Theorem 3.3. Let parameters ¢ and p be even and odd, respectively. Suppose f €
C9-1,1], ¢ > 1, with absolutely continuous f9 on [—1,1]. Then the following
estimate holds

Jim v (f) = o(N971), N = o,

Proof. Suppose that p is odd. According to the definition of the ps(x)

p—1 p—1 p—1 p—1
P 2 2 2 2
Yooy = ] w+rn=y][[eu+n][@-n=yv]]G&* -7
r=0 T:_Pgl r=1 r=1 r=1

From here we conclude that p5(0) = 0, s = 0,--- ,%. Now let ¢ be an even

number. We have

5050) = S (P =S a0
j=0

j s

3=0 s

as the last sum vanishes. This completes the proof in view of Theorem 3.2. O

The next theorem proves more accurate estimate. First we need the following
lemma.

Lemma 3.4. Let f € CIT-1,1], ¢ > 1, with absolutely continuous 9T on
[—1,1]. Then for 0 < j < q—1 and n # 0 the following asymptotic expansion is
valid

(_1)n+1
2(imn)a—i+1

(_1)n+1

F) = Ay(f) imm)a i

+ Agi(f) +o(n~ 73 n = 0o, (3.14)

Proof. The proof coincides with the one for the expansion (3.10). O

Theorem 3.4. Let ¢ and p be even and odd numbers, respectively. Suppose f €
CIt1—1,1], ¢ > 1, with absolutely continuous f9*Y) on [~1,1]. Then the following
estimate holds

lim (2N + 1) 2rg, v (f) = Ag1(f) H(g. p),

N—oc0

where

5 S§=—00 sngl 41
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Proof. In view of expansion (3.14), the proof follows from (3.13). m|

Numerical values of |H (g, p)| are presented in Table 3.

Table 3. Numerical values of |H(g,p)|.

qg\p | 1 3 5 7 9
2 1.9-1072 — — — —
4 2.1-1073 8.0-107° - - -
6 2.1-1074 2.3-107° 221077 - -
8 2.1-107° 6.0-1078 2.9-107° 4.1-10710 -
10 221076 1.6-107° 3.6-107 11 3.1-10712 5.3-10713
12 2.2-1077 4.0-1071 4.3-10713 221071 2.6-1071°
14 221078 1.0-10712 49-1071° 1.5-10716 1.2-107%7

3.4. Numerical results

Consider the following simple function

f(z) =sin(z — 1). (3.15)

In Table 4 the uniform errors Iml(?i |Rg p.n(f)(x)| are presented for various values
T|>

of p, ¢ and N = 1 while interpolating the function (3.15) by the Hermite-Krylov-
Lanczos interpolation. We see that the errors vary from the value 0.15 (p = ¢ =1)
to the value 3-1071% (¢ = 10 and p = 6). The graphs of the corresponding absolute
errors are presented in Figure 2. Note that we are interpolating the function (3.15)
using only 2N + 1 = 3 grid points.

2.x107 8 ¢
15x107 8
1.x1078 ¢
N:M 7 A
-1.0 05 1.0 -1.0 -05 05 1.0

Fig. 2. The absolute errors while approximating (3.15) by Tg 6,1 (f) (left) and Ty 6,1(f) (right).
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Table 4. The uniform errors while approximating the function (3.15) by the Hermite-Krylov-
Lanczos interpolation for various values of the parameters p and g. Here, N = 1.

q\p | 1 2 3 4 5
1 0.15 - - - -
2 6.4-1073 2.4-1073 — — -
3 2.4-1073 6.7-107% 2.6-1074 - —
4 1.8-1074 2.5-107° 4.9-107 2.3-1076 -
5 5.2-107° 5.9-107° 9.9-107" 4.4-1077 1.9-1077
6 4.7-1076 2.9-1077 2.4-1078 7.7-107° 2.4-107°
7 1.2-1076 5.7-108 3.8-107Y 1.1-1077 3.3-10710
8 1.2-1077 321077 1.1-10710 2.4-107 1 4.7-10712
9 3.1-1078 5.8 -10710 1.5-107 1 2.9-10712 5.4-10713
10 3.1-1077 3.6-107 11 4510713 6.9-10"14 85-1071°

Table 5 shows the numerical values of |ry 1 (f)| for even values of ¢ and for odd
values of p when f = sin(z — 1). Recall that for these values of p and ¢ Theorem 3.4
is valid. In this case also using the same number of nodes (2N + 1 = 3) we increase
the precision of the quadrature by increasing the values of parameters p and gq.

Table 5. Numerical values of |rg,p,1(f)| for even values of ¢ and for odd values of p when f =
sin(z — 1).

qg\p | 1 3 5 7 9

2 3.4-107% — — — —

4 4.0-1076 1.6-1077 - - -

6 4.6-1078 4.9-10710 4.8 -107 11 - -

8 5210710 1.4-10712 7.0-1071 9.8-1071° -

10 5.8-10712 4.1-1071° 9.6-10"17 83-10718 1.4-10718
12 6.6-10"14 1.2-10717 1.3-1071 6.6 10721 7.8-10722
14 7.4-10716 3.3-10720 1.6 10722 5.1-107%4 4.1-1072°

4. Conclusion

We have introduced the Hermite trigonometric interpolation T}, x(f) that ex-
ploited the discrete Fourier coefficients of the interpolated function and its deriva-
tives. Those coeflicients could be calculated by the FFT algorithm. At least when
one might choose N as a power of two, that formula yielded the coefficients in
O(N log N) operations. We presented also the corresponding quadrature formula.
Application of the Krylov-Lanczos correction method led to the Hermite-Krylov-
Lanczos interpolation Ty , n(f) and quadrature Qg v (f) where the parameter ¢
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indicated the number of “jumps” that were involved in the process of interpolation
or quadrature. The accelerated convergence was achieved through the use of the
Bernoulli polynomials along Krylov’s idea.

In Section 3 we proved (Theorem 3.1) that the rate of convergence of the
Hermite-Krylov-Lanczos interpolation was O(N~97%) in the Ly norm as N — oo

while the rate of convergence of the corresponding quadrature was O(N ~971) (see
Theorem 3.2). Theorems 3.3 and 3.4 improved that estimate for the even values of
q when the values of p were odd. In that case the rate of convergence was o( N ~471)
and O(N~972), respectively.

Numerical and theoretical results showed that with the same number of inter-
polation nodes the precision could be dramatically improved by increasing either p
or q.
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