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Abstract—The paper considers a problem of approximation of functions by means of their finite
number of Fourier coefficients. Convergence acceleration of approximations by the truncated Fourier
series is achieved by application of polynomial and rational correction functions. Rational corrections
include unknown parameters whose determination is a crucial problem. We consider an approach
connected with the roots of the Laguerre polynomials and study the rates of convergence of such
approximations.
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1. INTRODUCTION

We consider the problem of approximation of a function f by means of its Fourier coefficients

f̂n =
1
2

∫ 1

−1
f(x) exp{−iπnx} dx, |n| ≤ N.

A natural way is reconstruction of function f by the truncated Fourier series

SN (f, x) =
N∑

n=−N

f̂neiπnx.

Different methods of convergence acceleration of the truncated Fourier series have been suggested in
the literature in the last few decades (see, e.g., [1], [5], [6], and references therein). An approach, which
involves a polynomial, representing the discontinuities (jumps) of the underlying function and some of its
first derivatives, was suggested in 1906 by Krylov [10] (see also [17], [19]). Later Lanczos [11] developed
the same approach in more formalized setting (see also [3], [9], [13]). This approach we will refer as
Krylov-Lanczos (KL)-approximation.

In this paper we consider the KL-approximation with additional acceleration of convergence by
sequential application of rational (by eiπx) correction functions along the ideas of the Fourier-Pade
approximations (see [2]). The general form of the Fourier-Pade representation has been suggested by
Cheney [7]. Similar approximations were studied by Geer [8]. The rational corrections in our approach
contain unknown parameters, and different approaches are known for their determination (see [12], [14],
[15]). We consider an approach connected with the roots of the Laguerre polynomials and analyze its
convergence properties.
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340 POGHOSYAN

2. KRYLOV-LANCZOS APPROXIMATION

Let f ∈ Cq[−1, 1]. By Ak(f) we denote the exact value of the jump in the k-th derivative of f on
interval [−1, 1]:

Ak(f) = f (k)(1) − f (k)(−1), k = 0, 1..., q.

In this paper we restrict our discussion to the class of functions that are smooth on [−1, 1], and assume
that the exact values of the jumps are known. Denote by AC[−1, 1] the set of absolutely continuous
functions on [−1, 1]. Let f (q−1) ∈ AC[−1, 1] for some q ≥ 1. The following expansion of the Fourier
coefficients is crucial for Krylov-Lanczos approach

f̂n =
(−1)n+1

2

q−1∑
k=0

Ak(f)
(iπn)k+1

+
1

2(iπn)q

∫ 1

−1
f (q)(x)e−iπnxdx, n �= 0, (2.1)

which leads to the representation of Lanczos [9]:

f(x) =
q−1∑
k=0

Ak(f)Bk(x) + F (x).

Here, Bk (k = 0, . . . , q − 1) are 2-periodic Bernoulli polynomials

B0(x) =
x

2
, Bk(x) =

∫
Bk−1(x)dx,

∫ 1

−1
Bk(x)dx = 0, x ∈ [−1, 1]

with the Fourier coefficients

B̂k,n =
(−1)n+1

2(iπn)k+1
, n �= 0, B̂k,0 = 0,

and F is a 2-periodic and smooth function defined on the real line (F ∈ Cq−1(R)) with the Fourier
coefficients

F̂n = f̂n −
q−1∑
k=0

Ak(f)B̂k,n.

An approximation of F by the truncated Fourier series leads to the Krylov-Lanczos (KL) – approxima-
tion

SN,q(f, x) =
N∑

n=−N

F̂neiπnx +
q−1∑
k=0

Ak(f)Bk(x)

with the approximation error

RN,q(f, x) = f(x) − SN,q(f, x).

The next theorem describes the asymptotic behavior of RN,q(f, x) in the interval (−1, 1).

Theorem 2.1. [13]. Let f (q+1) ∈ AC[−1, 1] for some q ≥ 0. Then the following holds for |x| < 1

RN,q(f, x) = Aq(f)
(−1)N

2πq+1N q+1

sin π
2 (x(2N + 1) − q)

cos πx
2

+ o(N−q−1), N → ∞.
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3. APPROXIMATION BY RATIONAL FUNCTIONS
Additional convergence acceleration of the KL-approximation can be achieved by application of

rational functions (by eiπx) as corrections of the error. Consider a finite sequence of complex numbers
θ = {θk}p

|k|=1, p ≥ 1. We denote F̂ = {F̂n}, and define the generalized finite differences, denoted by

Δk
n(θ, F̂ ), by formula:

Δ0
n(θ, F̂ ) = F̂n, Δk

n(θ, F̂ ) = Δk−1
n (θ, F̂ ) + θk sgn(n)Δ

k−1
(|n|−1)sqn(n)(θ, F̂ ), k ≥ 1,

where sign(n) = 1 if n ≥ 0 and sgn(n) = −1 if n < 0. By Δk
n(F̂ ) we denote the classical finite

differences that correspond to the generalized differences Δk
n(θ, F̂ ) for the choice θ ≡ 1. We have

RN,q(f, x) = R+
N (F, x) + R−

N (F, x),

where

R+
N (F, x) =

∞∑
n=N+1

F̂neiπnx, R−
N (F, x) =

−N−1∑
n=−∞

F̂neiπnx.

An application of the Abel transformation implies

R+
N (F, x) = −θ1F̂N eiπ(N+1)x

1 + θ1eiπx
+

1
1 + θ1eiπx

∞∑
n=N+1

Δ1
n(θ, F̂ )eiπnx.

Iterating p times we get

R+
N (F, x) = −eiπ(N+1)x

p∑
k=1

θkΔk−1
N (θ, F̂ )∏k

s=1(1 + θseiπx)
+

1∏p
k=1(1 + θkeiπx)

∞∑
n=N+1

Δp
n(θ, F̂ )eiπnx,

where the first term can be viewed as a correction of the error, while the last term is the actual error. A
similar expansion for R−

N (F, x) leads to the rational-trigonometric-polynomial (RTP)-approximation

SN,q,p(f, x) =
q−1∑
k=0

Ak(f)Bk(x) +
N∑

n=−N

F̂neiπnx

− eiπ(N+1)x
p∑

k=1

θkΔk−1
N (θ, F̂ )∏k

s=1(1 + θseiπx)
− e−iπ(N+1)x

p∑
k=1

θ−kΔk−1
−N (θ, F̂ )∏k

s=1(1 + θ−se−iπx)

(3.1)

with the error
RN,q,p(f, x) = f(x) − SN,q,p(f, x) = R+

N,q,p(f, x) + R−
N,q,p(f, x),

where

R±
N,q,p(f, x) =

1∏p
k=1(1 + θ±ke±iπx)

∞∑
n=N+1

Δp
±n(θ, F̂ )e±iπnx. (3.2)

Note that the approximation (3.1) will be completely determined if the values of parameters θk are
specified. Different methods are known for determination of these parameters (see, [12], [14] – [16]).

In this paper we will focus to the approach discussed in [12], [15] and [16], where the following setting
is considered:

θk = θ−k = 1 − τk

N
, k = 1, . . . , p. (3.3)

By γk(τ) we denote the coefficients of the polynomial
p∏

k=1

(1 + τkx) =
p∑

k=0

γk(τ)xk. (3.4)

The next theorem describes the behavior of RN,q,p(f, x) in the case where the parameter sequence
θ = {θk} is specified by (3.3) (see [16]).
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Theorem 3.1. Let f (q+p+1) ∈ AC[−1, 1] for some q ≥ 0 and p ≥ 1. Let

θk = θ−k = 1 − τk

N
, k = 1, ..., p.

Then the following estimate holds for |x| < 1

RN,q,p(f, x) = Aq(f)
(−1)N+p

2p+1πq+1Np+q+1q!
sin π

2 (x(2N − p + 1) − q)
cosp+1 πx

2

p∑
k=0

(−1)k(p − k + q)!γk(τ)

+ o
(
N−q−p−1

)
, N → ∞.

Note that Theorem 3.1 remains valid also in the case where the parameters τk in (3.3) are undefined.
This enables an extra freedom in rational approximations to achieve some additional goals.

In this paper we apply an approach where the parameters τk are the roots of the Laguerre polynomials
Lq

p(x) (see [4]). The next section contains a theoretical background of such RTP-approximations.

4. RTP-APPROXIMATIONS BY THE ROOTS OF LAGUERRE POLYNOMIALS

Let τk be the roots of the Laguerre polynomial Lq
p(x):

Lq
p(τk) = 0, k = 1, ..., p.

It is well-known that τk are distinct and positive, and the Laguerre polynomials have the following
representation:

Lq
p(x) =

p∑
k=0

(−1)k
(p + q)!

k!(p − k)!(q + k)!
xk.

For our purposes the equation Lq
p(τs) = 0 can be written in the form:
p∑

k=0

(
− 1

τs

)k p!
k!(p − k)!(q + p − k)!

= 0.

A comparison of the last equality with (3.4) shows that

γk(τ) =
(

p

k

)
(q + p)!

(q + p − k)!
. (4.1)

Now we are going to estimate the pointwise convergence of such RTP-approximations in the regions
away from the endpoints. The next result is an immediate consequence of Theorem 3.1.

Theorem 4.1. Let f (q+p+1) ∈ AC[−1, 1] for some q ≥ 0 and p ≥ 1, and let

θk = θ−k = 1 − τk

N
,

where τk, k = 1, ..., p are the roots of the Laguerre polynomial. Then the following estimate holds
for |x| < 1

RN,q,p(f, x) = o
(
N−q−p−1

)
, N → ∞. (4.2)

Proof. In view of (4.1) we have
p∑

k=0

(−1)k(p − k + q)!γk(τ) = 0.

Hence the estimate (4.2) follows from Theorem 3.1.
Imposing extra smoothness on the underlying functions we can derive more precise estimates. To

this end, we first prove some properties of the generalized finite differences.
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Lemma 4.1. Let f (q+p+r+1) ∈ AC[−1, 1] for some q, r ≥ 0 and p ≥ 1, and let θk be as in Theorem
3.1. Then the following estimate holds as N → ∞ and |n| ≥ N + 1

Δw
n (Δp

n(θ, F̂ )) =
(−1)n+1

2(iπn)q+1

p∑
k=0

(sgn(n))p−k γk(τ)
Nk

r+1∑
t=w

1
nt+p−k

(4.3)

×
t∑

s=w

(sgn(n))s
(

t + p − k + q

p − k + s

)
At+q−s(f)

(iπ)t−s
αk,s+p−k(w) +

o(N−p)
nq+r+2

,

where

αk,s(w) =
w+p−k∑

j=0

(−1)j
(

w + p − k

j

)
(k + j)s.

Proof. It is easy to verify that

Δp
n(θ, F̂ ) =

p∑
k=0

(−1)k
γk(τ)
Nk

Δp−k
n−sgn(n)k(F̂ ),

where the classical finite differences can be calculated as follows

Δk
n(F̂ ) =

k∑
j=0

(
k

j

)
F̂n−sgn(n)j .

Taking into account that

Δw
n (Δp−k

n (F̂ )) = Δw+p−k
n (F̂ ),

we get

Δw
n (Δp

n(θ, F̂ )) =
p∑

k=0

(−1)k
γk(τ)
Nk

w+p−k∑
j=0

(
w + p − k

j

)
F̂n−sgn(n)(k+j). (4.4)

In view of (2.1) we have

F̂n−sgn(n)(k+j) =
(−1)n+k+j+1

2

q+p−k+r+1∑
s=q

As(f)
(iπ(n − (±(k + j))))s+1

+ o(n−q−p+k−r−2), n → ∞.

Next, using (4.4) and denoting h = q + p − k + r + 1, we can write

Δw
n (Δp

n(θ, F̂ )) =
(−1)n+1

2

p∑
k=0

γk(τ)
Nk

w+p−k∑
j=0

(−1)j
(

w + p − k

j

)

×
h∑

s=q

As(f)
(iπn)s+1

1(
1 − ±(k+j)

n

)s+1 +
o(N−p)
nq+r+2

=
(−1)n+1

2

p∑
k=0

γk(τ)
Nk

w+p−k∑
j=0

(−1)j
(

w + p − k

j

) h∑
s=q

As(f)
(iπn)s+1

×
∞∑
t=s

(±1)t−s

(
t

s

)
(k + j)t−s

nt−s
+

o(N−p)
nq+r+2

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 48 No. 6 2013



344 POGHOSYAN

=
(−1)n+1

2(iπn)q+1

p∑
k=0

γk(τ)
Nk

h−q∑
t=0

1
nt

t∑
s=0

(±1)s
(

t + q

s

)
At+q−s(f)

(iπ)t−s
αk,s(w) +

o(N−p)
nq+r+2

. (4.5)

Taking into account that αk,s(w) = 0 for s < w + p − k, due to the well-known identity (see [18])
p∑

k=0

(−1)k
(

p

k

)
kj = 0, j = 0, . . . , p − 1, (4.6)

we take in the right-hand side of (4.5), s ≥ w + p − k and consequently t ≥ w + p − k, and after some
algebra we get the desired estimate.

Lemma 4.2. Let f (q+p+r+1) ∈ AC[−1, 1] for some q, r ≥ 0 and p ≥ 1, and let θk be as in Theorem
4.1. Then the following estimate holds as N → ∞

Δw
±N (Δp

n(θ, F̂ )) =
(−1)N+1

2(±iπN)q+1Np

r+1∑
t= p+w

2

1
N t

t∑
s=w

At+q−s(f)
βp,q(w, s, t)
(±iπ)t−s

+ o(N−q−p−r−2), (4.7)

where w ≤ p and p have the same parity, and

Δw
±N (Δp

n(θ, F̂ )) =
(−1)N+1

2(±iπN)q+1Np

r+1∑
t= p+w+1

2

1
N t

t∑
s=w

At+q−s(f)
βp,q(w, s, t)
(±iπ)t−s

+ o(N−q−p−r−2), (4.8)

when w ≤ p + 1 and p have opposite parity, where

βp,q(w, s, t) =
p∑

k=0

γk(τ)
(

t + p − k + q

p − k + s

)
αk,s+p−k(w),

and αk,s are defined in Lemma 4.1.

Proof. Taking n = ±N in (4.3) we get

Δw
±N (Δp

n(θ, F̂ )) =
(−1)N+1

2(±iπN)q+1Np

r+1∑
t=w

1
N t

t∑
s=w

At+q−s(f)
(±iπ)t−s

βp,q(w, s, t) + o(N−q−p−r−2). (4.9)

As it was mentioned above, when τk are the roots of the Laguerre polynomial Lq
p(x), then the coefficients

γk(τ) have an explicit form (see (4.1)), and hence βp,q(w, s, t) can be written in the following form

βp,q(w, s, t) =
(p + q)!

(t + q − s)!

p∑
k=0

(
p

k

)
(t + p − k + q)!

(q + p − k)!(p − k + s)!
(4.10)

×
w+p−k∑

j=0

(−1)j
(

w + p − k

j

)
(k + j)s+p−k.

Below we show that

βp,q(w, s, t) = 0, t ≤ w + p − 1
2

,

which proves (4.7) and (4.8).
First observe that, applying Newton’s binomial formula, the equality (4.10) we can write in the form

βp,q(w, s, t) =
(p + q)!

(t + q − s)!

p∑
k=0

(
p

k

)
(t + q + p − k)!

(q + p − k)!(p − k + s)!

s+p−k∑
u=0

(
s + p − k

u

)
ku

×
w+p−k∑

j=0

(−1)j
(

w + p − k

j

)
js+p−k−u.
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Taking into account that the last sum vanishes for s + p − k − u < w + p − k we get

βp,q(w, s, t) = (−1)w+p (p + q)!
(t + q − s)!

s−w∑
α=0

1
(s − w − α)!

p∑
k=0

(−1)kks−α−w

(
p

k

)

× (t + q + p − k)!
(q + p − k)!

(w + p − k)!
(w + p − k + α)!

S(p − k + α + w, p − k + w),

where S(n, k) are the Stirling numbers of the second kind (see [18]). Using the following property of
Stirling numbers (see [18])

S(k + α, k) =
α∑

j=0

(
k + α

j + α

)
cj(α), α ≥ 0, (4.11)

where cj(α) are the associated Stirling numbers of the second kind, we can write

S(p − k + α + w, p − k + w) =
α∑

j=0

(
p − k + w + α

j + α

)
cj(α).

So, for βp,q(w, s, t) we obtain

βp,q(w, s, t) = (−1)w+p (p + q)!
(t + q − s)!

s−w∑
α=0

1
(s − w − α)!

α∑
j=0

cj(α)
(j + α)!

p∑
k=0

(−1)kks−α−w

(
p

k

)

×(t + q + p − k)!
(q + p − k)!

(w + p − k)!
(w + p − k − j)!

. (4.12)

This, in view of identity (4.6), proves that βp,q(w, s, t) = 0 for t ≤ 1
2 (w + p − 1). Lemma 4.2 is proved.

The next theorem describes the behavior of RN,q,p for even p.

Theorem 4.2. Let f (q+p+ p
2
+1) ∈ AC[−1, 1] for some q ≥ 0 and p ≥ 1 (p is even), and let θk be as in

Theorem 4.1. Then

RN,q,p(f, x) = Aq(f)
(−1)N

2p+1πq+1N q+p+ p
2
+1

sin π
2 (x(2N − p + 1) − q)

cosp+1 πx
2

βp,q

(
0,

p

2
,
p

2

)

+o(N−q−p− p
2
−1), N → ∞,

where βp,q are defined in Lemma 4.2.

Proof. An application of the Abel transformation to R+
N,q,p(f, x) (see (3.2)) implies

R±
N,q,p(f, x) = − e±iπ(N+1)x∏p

k=1(1 + θ±ke±iπx)
Δ0

±N (Δp
n(θ, F̂ ))

1 + e±iπx

− e±iπ(N+1)x∏p
k=1(1 + θ±ke±iπx)

p
2
+1∑

w=1

Δw
±N(Δp

n(θ, F̂ ))
(1 + e±iπx)w+1

+
1∏p

k=1(1 + θ±ke±iπx)
1

(1 + e±iπx)
p
2
+2

∞∑
n=N+1

Δ
p
2
+2

±n (Δp
n(θ, F̂ ))e±iπnx. (4.13)

According to Lemma 4.1 we have

Δ
p
2
+2

n (Δp
n(θ, F̂ )) =

o(N−p)

nq+ p
2
+2

, N → ∞, |n| ≥ N + 1,
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and hence the last term on the right-hand side of (4.13) is o(N−q−p− p
2
−1) as N → ∞. The estimates

(4.7) and (4.8) show that the second term in (4.13) is O(N−q−p− p
2
−2) as N → ∞. Therefore,

R±
N,q,p(f, x) = − e±iπ(N+1)x

(1 + e±iπx)p+1 Δ0
±N(Δp

n(θ, F̂ )) + o(N−q−p− p
2
−1), N → ∞. (4.14)

Next, the estimate (4.7) implies

Δ0
±N (Δp

n(θ, F̂ )) =
(−1)N+1

2(±iπN)q+1Np

p
2
+1∑

t= p
2

1
N t

t∑
s=0

At+q−s(f)
βp,q(0, s, t)
(±iπ)t−s

+ o(N−q−p− p
2
−2)

=
(−1)N+1

2(±iπN)q+1Np+ p
2

p
2∑

s=0

A p
2
+q−s(f)

βp,q

(
0, s, p

2

)
(±iπ)

p
2
−s

+ O(N−q−p− p
2
−2).

(4.15)

In view of identity (4.6), the equation (4.12) shows that βp,q

(
0, s, p

2

)
= 0 for s = 0, . . . , p

2 − 1, and hence,
in the right-hand side of (4.15), only the term corresponding to s = p

2 is nonzero, which leads to the
following estimate

Δ0
±N (Δp

n(θ, F̂ )) = Aq(f)
(−1)N+1

2(±iπN)q+1Np+ p
2

βp,q

(
0,

p

2
,
p

2

)
+ O(N−q−p− p

2
−2), N → ∞.

Substituting this into (4.14) we get

R±
N,q,p(f, x) = Aq(f)

e±iπ(N+1)x

(1 + e±iπx)p+1

(−1)N

2(±iπ)q+1Np+q+ p
2
+1

βp,q

(
0,

p

2
,
p

2

)
+ o(N−q−p− p

2
−1),

yielding the final expansion of the error:

RN,q,p(f, x) = Aq(f)
(−1)N

πq+1Np+q+ p
2
+1

βp,q

(
0,

p

2
,
p

2

)
Re

[
eiπ(N+1)x

(1 + eiπx)p+1iq+1

]
+ o(N−q−p− p

2
−1).

This completes the proof.
Similarly the next theorem can be proved.

Theorem 4.3. Let f (q+p+ p+1
2

+1) ∈ AC[−1, 1] for some q ≥ 0 and p ≥ 1 (p is odd), and let θk be as
in Theorem 4.1. Then the following estimate holds for |x| < 1 and N → ∞

RN,q,p(f, x) =
ϕN,q,p(x)

Np+q+ p+1
2

+1
+ o(N−p−q− p+1

2
−1),

where

ϕN,q,p(x) = Aq(f)
(−1)N

πq+1

sin π
2 (x(2N − p + 1) − q)

2p+1 cosp+1 πx
2

βp,q

(
0,

p + 1
2

,
p + 1

2

)

− Aq+1(f)
(−1)N

πq+2

cos π
2 (x(2N − p + 1) − q)

2p+1 cosp+1 πx
2

βp,q

(
0,

p − 1
2

,
p + 1

2

)

+ Aq(f)
(−1)N

πq+1

sin π
2 (x(2N − p) − q)
2p+2 cosp+2 πx

2

βp,q

(
1,

p + 1
2

,
p + 1

2

)
,

and βp,q are defined in Lemma 4.2.
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