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2 ARNAK POGHOSYAN

1. INTRODUCTION

We continue investigations started in [4], [22], [23], and [25] where the accuracy of the
Krylov-Lanczos (KL) and the Eckhoff approximations and interpolations were explored. The
KL approximation or interpolation (see also [1], [5], [6], [12]-[16], and references therein) is a
sum of a correction polynomial, representing the discontinuities in the function and some of its
first derivatives (jumps), and truncated Fourier series

SN(f) :=
N∑

n=−N

fne
iπnx, fn :=

1

2

∫ 1

−1
f(x)e−iπnxdx

or trigonometric interpolation

IN(f) :=
N∑

n=−N

f̌ne
iπnx, f̌n :=

1

2N + 1

N∑
k=−N

f(xk)e
−iπnxk , xk :=

2k

2N + 1

of the corrected function. The KL approximation deals with the Fourier coefficients of the
approximated function while the KL interpolation treats the discrete Fourier coefficients. It
is supposed that the exact values of the jumps are known in the KL methods. Eckhoff et al.
[8]-[11] developed a new approach for calculating the polynomial terms in the representation
suggested by Krylov and Lanczos, deriving a system of linear equations for calculation of the
jumps. The corresponding modifications of the KL approximation and interpolation are known
as the Eckhoff approximation and interpolation, respectively. For further developments of these
methods see also [2], [3], [17]-[21], [24] and references therein.

In [4] the Eckhoff approximation was explored. In particular, the accuracy of the jumps
approximation was studied and L2 error of the approximation was computed. Based on these
estimates, in [25] the asymptotic behavior of the Eckhoff approximation was examined on the
subintervals where the approximated function was smooth. It was found that the Eckhoff ap-
proximation was more precise (by the rate of convergence) compared with the KL approx-
imation. This convergence acceleration phenomenon, which was quite contrary to the slow
convergence that might be expected due to approximate calculation of the jumps, was called the
autocorrection phenomenon of the Eckhoff approximation.

In [22] the asymptotic behavior of the KL interpolation was investigated on the subintervals
where the interpolated function was smooth. Exact asymptotic constants of the errors were ob-
tained. In [23] the problem of the jumps approximation by the discrete Fourier coefficients was
treated. Exact asymptotic errors of the jumps approximation and the corresponding interpola-
tion were derived. Based on these results, in this paper we investigate the Eckhoff interpolation
on the subintervals where the interpolated function is smooth. Comparison with the results in
[22] reveals the autocorrection phenomenon of the Eckhoff interpolation. We show that the
convergence rate of the interpolation even excesses the corresponding convergence rate of the
approximation.

The paper is organized as follows:
Section 2 presents the KL and the Eckhoff approximations, describes the Eckhoff method

of the jumps approximation and represents the theory of the autocorrection phenomenon. In
particular, Subsection 2.1 considers the KL approximation SN,q(f) and investigates the error
on the intervals |x| < 1. Parameter q indicates the number of derivatives that are involved in
the process of approximation. Subsection 2.2 treats the problem of the jumps approximation
and explores the Eckhoff approximation S̃N,q(f) on the intervals |x| < 1. Theorems 2.2 and
2.4 consider even values of q (q = 2m, m = 1, 2, · · · ). Theorem 2.2 shows that the rate
of convergence of SN,2m(f) is O(N−2m−1) as N → ∞. Theorem 2.4 states that the rate of
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convergence of S̃N,2m(f) is O(N−3m−1). We see the improvement in convergence rate by the
factor O(Nm). This convergence acceleration phenomenon is known as the autocorrection
phenomenon of the Eckhoff approximation. Theorems 2.3 and 2.5 reveal this phenomenon
for odd values of q (q = 2m + 1, m = 0, 1, · · · ). In this case the rate of convergence of
SN,2m+1(f) is O(N−2m−2) and the rate of convergence of S̃N,2m+1(f) is O(N−3m−2). We have
an improvement in convergence rate by the factor O(Nm).

Section 3 considers the KL interpolation IN,q(f) and the Eckhoff interpolation ĨN,q(f). The-
orems 3.1 and 3.2 reveal the asymptotic behavior of the KL interpolation on the interval |x| < 1
for even and odd values of q, respectively. For even values of q we have O(N−2m−1) and for
odd values - O(N−2m−3). Subsection 3.2 considers the problem of the jumps approximation
via discrete Fourier coefficients and introduce the Eckhoff interpolation.

Section 4 investigates the autocorrection phenomenon of the Eckhoff interpolation. Subsec-
tion 4.1 considers even values of parameter q. Theorem 4.3 shows that the rate of convergence
of ĨN,2m(f) on the interval |x| < 1 is O(N−4m−1). In comparison with the convergence rate
O(N−2m−1) of IN,2m(f) we have an improvement in convergence rate by the factor O(N2m).
We see that for interpolation the autocorrection phenomenon is much larger than for the non-
interpolating approximations - improvement by the factorO(N2m) instead ofO(Nm). Note also
that interpolation ĨN,2m(f) is even more precise than approximation S̃N,2m(f) when |x| < 1.
Subsection 4.2 explores odd values of parameter q. Theorem 4.7 shows that the rate of conver-
gence of ĨN,2m+1(f) on the interval |x| < 1 isO(N−4m−3) while for IN,2m+1(f) isO(N−2m−3).
Hence, we have an improvement in convergence rate by the factor O(N2m).

Some auxiliary lemmas and useful information are presented in Appendixes.

2. THE KRYLOV-LANCZOS AND THE ECKHOFF APPROXIMATIONS. THE
AUTOCORRECTION PHENOMENON

In this section we describe the Krylov-Lanczos and the Eckhoff approximations and present
estimates of the asymptotic errors. Comparison of these results reveals the essence of the auto-
correction phenomenon. Main results are coming from [4] and [25].

2.1. The Krylov-Lanczos approximation. Throughout the paper we limit our discussion to a
smooth function f on [−1, 1]. Suppose f ∈ Cq[−1, 1] and denote by Ak(f) the exact value of
the jump in the k-th derivative of f

Ak(f) := f (k)(1)− f (k)(−1), k = 0, . . . , q.

The following lemma is crucial for the Krylov-Lanczos approach.

Lemma 2.1. Let f ∈ Cq−1[−1, 1] and f (q−1) is absolutely continuous on [−1, 1] for some
q ≥ 1. Then the following expansion is valid

fn =
(−1)n+1

2

q−1∑
k=0

Ak(f)

(iπn)k+1
+

1

2(iπn)q

∫ 1

−1
f (q)(x)e−iπnxdx, n 6= 0.

Proof. The proof is trivial due to integration by parts.

Lemma 2.1 implies the representation

(2.1) f(x) =

q−1∑
k=0

Ak(f)B(x; k) + F (x),
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4 ARNAK POGHOSYAN

where B(x; k) are 2-periodic extensions of the Bernoulli polynomials (see Appendix B) and F
is a 2-periodic and relatively smooth function on the real line (F ∈ Cq−1(R)) with the Fourier
coefficients

(2.2) Fn = fn −
q−1∑
k=0

Ak(f)Bn(k).

Approximation of F by the truncated Fourier series leads to the Krylov-Lanczos (KL) approxi-
mation

SN,q(f) :=
N∑

n=−N

(
fn −

q−1∑
k=0

Ak(f)Bn(k)

)
eiπnx +

q−1∑
k=0

Ak(f)B(x; k)

with the error
RN,q(f) := f(x)− SN,q(f).

In the next two theorems we present estimates for the accuracy of the KL approximation on
the subintervals where the approximated function is smooth.

Theorem 2.2. [25] Let q be an even number, q = 2m,m = 1, 2, · · · . Suppose f ∈ C2m+1[−1, 1]
and f (2m+1) is absolutely continuous on [−1, 1]. Then the following estimate holds for |x| < 1

RN,2m(f) = A2m(f)
(−1)N+m

2(π N)2m+1

sin π
(
N + 1

2

)
x

cos πx
2

+ o(N−2m−1), N →∞.

Theorem 2.3. [25] Let q be an odd number, q = 2m + 1, m = 0, 1, · · · . Suppose f ∈
C2m+2[−1, 1] and f (2m+2) is absolutely continuous on [−1, 1]. Then the following estimate
holds for |x| < 1

RN,2m+1(f) = A2m+1(f)
(−1)N+m+1

2(π N)2m+2

cos π
(
N + 1

2

)
x

cos πx
2

+ o(N−2m−2), N →∞.

2.2. Computation of the jumps. The Eckhoff approximation. The autocorrection phe-
nomenon. In [8]-[11] Eckhoff suggested to compute approximate jump values Aak(f,N) for
Ak(f) directly from the Fourier coefficients fn. As the Fourier coefficients Fn asymptotically
(n → ∞) decay faster than the coefficients fn, therefore they can be discarded for large |n|.
Hence, from (2.2) we derive the following system of linear equations for determining the ap-
proximate jumps

(2.3) fn =

q−1∑
k=0

Aak(f,N)Bn(k), n = n1, n2, . . . , nq.

Thus, for any given N we assume to have chosen q different integer indices

n1 = n1(N), n2 = n2(N), . . . , nq = nq(N)

for evaluating system (2.3).
We denote by S̃N,q(f) the Eckhoff approximation which differs from the KL approximation

that uses the approximate jumps Aak(f,N) instead of the exact ones

S̃N,q(f) :=
N∑

n=−N

(
fn −

q−1∑
k=0

Aak(f,N)Bn(k)

)
eiπnx +

q−1∑
k=0

Aak(f,N)B(x; k).

We put
R̃N,q(f) := f(x)− S̃N,q(f).

AJMAA, Vol. 9, No. 1, Art. 18, pp. 1-31, 2012 AJMAA

http://ajmaa.org


ON AN AUTOCORRECTION PHENOMENON OF THE ECKHOFF INTERPOLATION 5

Asymptotic behavior of R̃N,q(f) together with the accuracy of the jumps approximation for
different choices of the indices ns were investigated in [4].

In this article we are interested in the following choices of the indices ns in system (2.3)

ns = N − s+ 1, s = 1, · · · ,m,
ns = −(N − s+m+ 1), s = m+ 1, · · · , 2m(2.4)

for even values of q, q = 2m, m = 1, 2, · · · , and

ns = N − s+ 1, s = 1, · · · ,m+ 1,

ns = −(N − s+m+ 2), s = m+ 2, · · · , 2m+ 1
(2.5)

for odd values of q, q = 2m+ 1, m = 0, 1, · · · .
The next two theorems address the accuracy of the Eckhoff approximation for these choices

of the indices ns on the subinterval |x| < 1 where the approximated function is smooth.

Theorem 2.4. [25] Let q be an even number, q = 2m,m = 1, 2, · · · and the indices ns = ns(N)
be chosen as in (2.4). Suppose that f ∈ C3m+1[−1, 1] and f (3m+1) is absolutely continuous on
[−1, 1]. Then the following estimate holds for |x| < 1 and N →∞

R̃N,2m(f) = A2m(f)
(−1)N+m

2m+1N3m+1π2m+1

sin πx
2

(2N −m+ 1)

(cos πx
2

)m+1

×
m∑
k=0

(−1)k
(m
k

) (m+ 2k)!

(2k)!
+ o(N−3m−1).

Theorem 2.5. [25] Let q be an odd number, q = 2m + 1, m = 0, 1, · · · and the indices
ns = ns(N) be chosen as in (2.5). Suppose that f ∈ C3m+1[−1, 1] and f (3m+1) is absolutely
continuous on [−1, 1]. Then the following estimate holds for |x| < 1 and N →∞

R̃N,2m+1(f) = A2m+1(f)
(−1)N+m+1

2N3m+2π2m+2

e−iπ(N+1)x

(1 + e−iπx)m+1

×
m∑
k=0

(−1)k
(m
k

) (m+ 2k)!(4k +m+ 2)

(2k + 1)!
+ o(N−3m−2).

Theorem 2.2 states that for even values of q (q = 2m, m = 1, 2, · · · ) approximation SN,2m(f)

has the rate of convergence O(N−2m−1), while Theorem 2.4 shows that S̃N,2m(f) has the rate
O(N−3m−1). As a result we have an improvement in convergence rate by the factor O(Nm).
This convergence acceleration phenomenon is known as the autocorrection phenomenon of the
Eckhoff approximation (see [25]). Comparison of Theorems 2.3 and 2.5 reveals this phenom-
enon for odd values of q (q = 2m + 1, m = 0, 1, · · · ). In this case the rate of convergence
is O(N−3m−2) for S̃N,2m+1(f) and O(N−2m−2) for SN,2m+1(f). We have an improvement in
convergence rate by the factor O(Nm). We see that for m = 0 (q = 1) this phenomenon is
absent.

3. THE KRYLOV-LANCZOS INTERPOLATION. COMPUTATION OF THE JUMPS. THE
ECKHOFF INTERPOLATION.

In this section we describe the Krylov-Lanczos interpolation, treat the problem of the jumps
approximation by the discrete Fourier coefficients, and define the Eckhoff interpolation. Main
results are coming from papers [22] and [23].
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6 ARNAK POGHOSYAN

3.1. The Krylov-Lanczos interpolation. Representation (2.1) allows calculation of the dis-
crete Fourier coefficients of F as well

(3.1) F̌n = f̌n −
q−1∑
k=0

Ak(f)B̌n(k).

Approximation of F in (2.1) by IN(f) leads to the Krylov-Lanczos (KL) interpolation

IN,q(f) :=
N∑

n=−N

(
f̌n −

q−1∑
k=0

Ak(f)B̌n(k)

)
eiπnx +

q−1∑
k=0

Ak(f)B(x; k)

with the error
rN,q(f) := f(x)− IN,q(f).

For explicit calculation of the discrete Fourier coefficients B̌n(k) see Appendix B.
The next two theorems reveal the asymptotic behavior of the KL interpolation on the interval
|x| < 1. Note that in Theorem 3.2 the required smoothness is higher than in Theorem 3.1, but
the convergence rate is correspondingly higher.

Theorem 3.1. [22] Let q ≥ 1 be an even number q = 2m, m = 1, 2, · · · . If f ∈ C2m+1[−1, 1]
and f (2m+1) is absolutely continuous on [−1, 1] then the following estimate holds as N → ∞
and |x| < 1

rN,2m(f) = A2m(f)
(−1)N+m

2(πN)2m+1

sin πx
2

(2N + 1)

cos πx
2

∞∑
s=−∞

(−1)s

(2s+ 1)2m+1
+ o(N−2m−1).

Theorem 3.2. [22] Let q ≥ 1 be an odd number q = 2m+1, m = 0, 1, · · · . If f ∈ C2m+3[−1, 1]
and f (2m+3) is absolutely continuous on [−1, 1] then the following estimate holds as N → ∞
and |x| < 1

rN,2m+1(f) =
(−1)N+m+1

2π2m+2N2m+3

sin πx
2

(2N + 1)

cos πx
2

×

(
A2m+1(f)(2m+ 2)tg

πx

2

∞∑
s=−∞

(−1)ss

(2s+ 1)2m+3

+
A2m+2(f)

π

∞∑
s=−∞

(−1)s

(2s+ 1)2m+3

)
+ o(N−2m−3).

3.2. Approximation of the jumps. The Eckhoff interpolation. In this subsection we inves-
tigate the problem of the jumps approximation via the discrete Fourier coefficients.

Taking into account that in (3.1) the discrete Fourier coefficients F̌n can be discarded com-
pared with f̌n as n → ∞ we get the following system of linear equations with unknowns
Aik(f,N)

(3.2) f̌n =

q−1∑
k=0

Aik(f,N)B̌n(k), n = n1, n2, · · · , nq.

Approximation by IN,q(f) where the exact values of the jumps are replaced by the approx-
imated ones, calculated from system (3.2) we call the Eckhoff interpolation and denote by
ĨN,q(f)

ĨN,q(f) :=
N∑

n=−N

(
f̌n −

q−1∑
k=0

Aik(f,N)B̌n(k)

)
eiπnx +

q−1∑
k=0

Aik(f,N)B(x; k)
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with the error

r̃N,q(f) := f(x)− ĨN,q(f).

As was shown in [23] the numbersAik(f,N) approximated the exact valuesAk(f) asN →∞
and cN ≤ ns ≤ N , 0 < c ≤ 1. Now, following [23] we will show that system (3.2) is equivalent
to a system with upper triangular matrix that will simplify the process of the solution.

According to relation (B.3) we rewrite system (3.2) as follows

(3.3) f̌ns sinq πτ s =
(−1)ns+1π

2

q−1∑
k=0

(−1)kAik(f,N)

(iπ(2N + 1))k+1k!

(
1

sin πx

)(k)

x=τs

sinq πτ s,

where τ s := ns
2N+1

. In view of Lemma A.3 we copy out (3.3) in the form

q−1∑
k=0

(−1)kAik(f,N)

(2N + 1)k+1k!

q−1∑
j=0

βj,k(q)e
−2iπjτs = (2i)q(−1)ns+1e−iπ(q−1)τs f̌ns sinq πτ s.

Taking into account that {e−2iπjτs} are the elements of Vandermonde matrix we get

q−1∑
k=0

(−1)kAik(f,N)

(2N + 1)k+1k!
βj,k(q) = (2i)q

q∑
s=1

(−1)ns+1f̌nse
−iπ(q−1)τs sinq πτ s

q∏
r=1
r 6=s

(e−2iπτs − e−2iπτr)

×
q∑

t=j+1

γte
−2iπτs(t−j−1),

(3.4)

where the numbers γs are the coefficients of the polynomial
q∏

n=1

(
e−2iπx − e−2iπτn

)
=

q∑
s=0

γs(q)e
−2iπsx.

In view of Lemmas A.5 and A.6 we copy out (3.4) in the equivalent form

q−1∑
k=0

uj,k
(−1)kAik(f,N)

(2N + 1)k+1k!
= (2i)q

q−1∑
k=0

`j,k

q∑
s=1

(−1)ns+1f̌ns sinq πτ se
−iπ(q−1)τs

q∏
r=1
r 6=s

(e−2iπτs − e−2iπτr)

×
q∑

t=k+1

γt(q)e
−2iπτs(t−k−1).

(3.5)

Note that matrix uj,k in (3.5) is an upper triangular matrix, and hence unknowns Aik(f,N)
can be calculated by backward substitution with O(q2) operations.

4. THE AUTOCORRECTION PHENOMENON OF THE ECKHOFF INTERPOLATION

In this section we investigate the accuracy of the Eckhoff interpolation on the intervals |x| < 1
and reveal the theoretical background of the autocorrection phenomenon.

In the sequel subsections we explore the autocorrection phenomenon for even and odd val-
ues of parameter q, separately. Hereafter we will suppose that the indices ns are chosen in
accordance with (2.4) or (2.5).
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4.1. Even values of q. In this subsection we explore the accuracy of the jumps approximation
and the corresponding Eckhoff interpolation for even values of q when the indices ns are chosen
as in (2.4). We will suppose in this subsection that q = 2m, m = 1, 2, · · · .

Taking into account the obvious relations

(4.1) B̌−n(2k) = −B̌n(2k), B̌−n(2k + 1) = B̌n(2k + 1)

we split system (3.2) into two independent subsystems for determining the jumps Ai2k(f,N)
and Ai2k+1(f,N), separately

f̌n − f̌−n
2

=
m−1∑
k=0

Ai2k(f,N)B̌n(2k), n = N,N − 1, · · · , N −m+ 1,(4.2)

f̌n + f̌−n
2

=
m−1∑
k=0

Ai2k+1(f,N)B̌n(2k + 1), n = N,N − 1, · · · , N −m+ 1.(4.3)

In the next theorem we present the accuracy of the jumps approximation by (3.2) or equiva-
lently by (4.2)-(4.3).

Theorem 4.1. Suppose that q is an even number, q = 2m, m = 1, 2, · · · and the indices ns are
chosen as in (2.4). If f ∈ C4m[−1, 1] such that f (4m) is absolutely continuous on [−1, 1] then
the following estimates hold as N →∞

(4.4) Ai2k(f,N) = A2k(f) + A2m(f)
(2k)! ν2k

(2N)2m−2k
+ o(N−2m+2k−1),

(4.5) Ai2k+1(f,N) = A2k+1(f) + A2m+1(f)
(2k + 1)! ν

′

2k+1

(2N)2m−2k
+ o(N−2m+2k),

where the numbers ν2k and ν
′

2k+1 are the solutions of systems

m−1∑
k=s

u2s,2kν2k = µ2s,
m−1∑
k=s

u2s,2k+1ν
′

2k+1 = µ
′

2s, s = 0, · · · ,m− 1

with

µs :=
2m−1∑
j=0

`s,jΥj, µ
′

s :=
2m−1∑
j=0

`s,jΥ
′

j,

and (see Lemma A.1)

Υj : =
1

(2m)!

2m∑
s=0

α2m,s

2m∑
k=j+1

(
2m

k

)
ω∗2m,s+k−j−1,

Υ
′

j : =
1

(2m+ 1)!

2m+1∑
s=0

α2m+1,s

2m∑
k=j+1

(
2m

k

)
ω∗2m+1,s+k−j−1,

ω∗r,j :=
2m−1∑
s=0

(−1)j+s

2r−s

(
j

s

)(
r − s− 1

r − 2m

)
.
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ON AN AUTOCORRECTION PHENOMENON OF THE ECKHOFF INTERPOLATION 9

Proof. Lemma 2.1 leads to the following expansion

f(x) =
4m∑
k=0

Ak(f)B(x; k) + F (x),

where F ∈ C4m(R) and consequently Fn = o(n−4m−1), n→∞. From here we conclude that

f̌n =
4m∑
k=0

Ak(f)B̌n(k) + o(n−4m−1), n→∞, |n| ≤ N.

Using this in (3.2), we derive
2m−1∑
k=0

(Aik(f,N)− Ak(f))B̌ns(k)

=
4m∑

k=2m

Ak(f)B̌ns(k) + o(N−4m−1), s = 1, · · · , 2m.

(4.6)

Proceeding as for the proof of (3.4) we derive
2m−1∑
k=0

λkβj,k(2m) = (2i)2m
4m∑
r=2m

Ar(f)
2m∑
s=1

(−1)ns+1 sin2m πτ sB̌ns(r)e
−iπ(2m−1)τs

2m∏̀
=1
6̀=s

(e−2iπτs − e−2iπτ`)

×
2m∑

t=j+1

γt(2m)e−2iπτs(t−j−1) +
2m∑
s=1

o(N−4m−1)∣∣∣∣∣∣
2m∏̀
=1
6̀=s

(e−2iπτs − e−2iπτ`)

∣∣∣∣∣∣
,

(4.7)

where

λk :=
(−1)k

(2N + 1)k+1k!
(Aik(f,N)− A(f)).

For the last term in (4.7) we write∣∣∣∣∣∣∣
2m∏
`=1
` 6=s

(e−2iπτs − e−2iπτ`)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2m∏
`=1
6̀=s

2i sin π(τ ` − τ s)

∣∣∣∣∣∣∣ = O(N−2m+1), N →∞.

Hence the last term is o(N−2m−2) as N →∞. Taking into account (B.4), we obtain from (4.7)
2m−1∑
k=0

λkβj,k(2m) =
4m∑
r=2m

Ar(f)
(−1)r

r!(2N + 1)r+1

r∑
`=0

αr,`

2m∑
t=j+1

γtωr,`+t−j−1

+ o(N−2m−2), j = 0, · · · , 2m− 1, N →∞,

(4.8)

where

ωr,j :=
2m∑
s=1

e−2iπjτs

(1− e−2iπτs)r−2m+1
2m∏̀
=1
6̀=s

(e−2iπτs − e−2iπτ`)
.

In view of the relations

γs =

(
2m

s

)
+O(N−2), N →∞
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and
ωr,j = ω∗r,j +O(N−2), N →∞

we get from (4.8)
2m−1∑
k=0

λkβj,k(2m) =
A2m(f)Υj

(2N + 1)2m+1
−

A2m+1(f)Υ
′
j

(2N + 1)2m+2
+ o(N−2m−2).

According to Lemma A.6 we derive
2m−1∑
k=s

us,kλk =
A2m(f)µs

(2N + 1)2m+1
− A2m+1(f)µ

′
s

(2N + 1)2m+2
+ o(N−2m−2).

From here we conclude that

λk =
A2m(f)νk

(2N + 1)2m+1
− A2m+1(f)ν

′

k

(2N + 1)2m+2
+ o(N−2m−2).

Finally, we get

Aik(f,N) = Ak(f) + A2m(f)
(−1)kk!νk

(2N + 1)2m−k

− A2m+1(f)
(−1)kk!ν

′

k

(2N + 1)2m−k+1
+ o(N−2m+k−1), N →∞,

(4.9)

where the numbers νk and ν ′k are the solutions of systems

(4.10)
2m−1∑
k=s

us,kνk = µs,
2m−1∑
k=s

us,kν
′

k = µ
′

s.

For even values of k in (4.9) we have

Ai2k(f,N) = A2k(f) + A2m(f)
(2k)! ν2k

(2N + 1)2m−2k

− A2m+1(f)
(2k)! ν

′

2k

(2N + 1)2m−2k+1
+ o(N−2m+2k−1), N →∞.(4.11)

From (4.2) we see that Ai2k(f,N) − A2k(f) doesn’t depend on A2m+1(f). Therefore ν ′2k = 0
and (4.11) coincides with (4.4).

For odd values of k in (4.9) we have as N →∞

Ai2k+1(f,N) = A2k+1(f)− A2m(f)
(2k + 1)!ν2k+1

(2N + 1)2m−2k−1

+ A2m+1(f)
(2k + 1)!ν

′

2k+1

(2N + 1)2m−2k
+ o(N−2m+2k).

(4.12)

From (4.3) we observe that Ai2k+1(f,N)−A2k+1(f) doesn’t depend on A2m(f), hence ν2k+1 =
0. Now (4.12) coincides with (4.5).

Denote

(4.13) Ǧn := f̌n −
q−1∑
k=0

Aik(f,N)B̌n(k),
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and

(4.14) Gn := fn −
q−1∑
k=0

Aik(f,N)Bn(k).

For the proof of the main theorem of this subsection we need the following lemma, where the
asymptotic behaviors of ∆m+1

n (Gn), ∆m+1
n (Ǧn−Gn) and ∆m

±N(Ǧn) are explored (see (B.6) for
definition of ∆p

n(fn)).

Lemma 4.2. Suppose that q is an even number, q = 2m, m = 1, 2, · · · and the indices ns are
chosen as in (2.4). If f ∈ C4m+1[−1, 1] such that f (4m+1) is absolutely continuous on [−1, 1]
then the following estimates hold as N →∞

∆m+1
n (Gn) =

o(N−2m)

n2m+2
, |n| > N,

∆m+1
n (Ǧn −Gn) = o(N−4m−2), |n| ≤ N,

and

∆m
±N(Ǧn) = ±A2m(f)

(−1)N+m

22m+1N4m+1

m∑
k=0

22kν2k(2k + 2m)!

(iπ)2k+1

×
∞∑

s=−∞

(−1)s

(2s+ 1)2m+2k+1
+ o(N−4m−1),

where ν2m = −1/(2m)!.

Proof. Lemma 2.1 implies the representation

(4.15) f(x) =
4m+1∑
k=0

Ak(f)B(x; k) + F (x),

where F ∈ C4m+1(R). From here we conclude that

(4.16) fn =
4m+1∑
k=0

Ak(f)Bn(k) + Fn, Fn = o(n−4m−2), n→∞.

In view of (4.14), we write

Gn =
2m−1∑
k=0

(
Ak(f)− Aik(f,N)

)
Bn(k) +

4m+1∑
k=2m

Ak(f)Bn(k) + o(n−4m−2).

Hence

∆m+1
n (Gn) =

2m−1∑
k=0

(
Ak(f)− Aik(f,N)

)
∆m+1
n (Bn(k))

+
4m+1∑
k=2m

Ak(f)∆m+1
n (Bn(k)) + o(n−4m−2).

This proves the first estimate in view of Theorem 4.1 and Lemma B.1.
For the proof of the second estimate note that representation (4.15) yields

(4.17) f̌n =
4m+1∑
k=0

Ak(f)B̌n(k) + F̌n.
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Condition F ∈ C4m+1(R) implies

(4.18) F̌n − Fn =
∑
s 6=0

Fn+s(2N+1) = o(N−4m−2), |n| ≤ N, N →∞.

From (4.13), (4.14), (4.16), (4.17), and (4.18) we derive

∆m+1
n (Ǧn −Gn) =

2m−1∑
k=0

(Ak(f)− Aik(f,N))∆m+1
n (B̌n(k)−Bn(k))

+
4m+1∑
k=2m

Ak(f)∆m+1
n (B̌n(k)−Bn(k))

+ o(N−4m−2), N →∞, |n| ≤ N.

This concludes the proof of the second estimate by Theorem 4.1 and Lemma B.1.
From (4.13) and (4.17) we get

∆m
±N(Ǧn) =

m−1∑
k=0

(A2k(f)− Ai2k(f,N))∆m
±N(B̌n(2k))

+
m−1∑
k=0

(A2k+1(f)− Ai2k+1(f,N))∆m
±N(B̌n(2k + 1))

+
2m−1∑
k=m

A2k(f)∆m
±N(B̌n(2k)) +

2m−1∑
k=m

A2k+1(f)∆m
±N(B̌n(2k + 1))

+ o(N−4m−2).

This finishes the proof of the third estimate.

In the next theorem we explore the asymptotic behavior of r̃N,2m(f) on the interval |x| < 1.
Comparison with Theorem 3.1 will clarify the essence of the autocorrection phenomenon for
the Eckhoff interpolation when parameter q is even.

Theorem 4.3. Suppose that the conditions of Lemma 4.2 are valid. Then the following estimate
holds for |x| < 1

r̃N,2m(f) = A2m(f)
(−1)N+m+1

(2N)4m+1

sin πx
2

(2N + 1)

(cos πx
2

)2m+1

×
m∑
k=0

(−1)k22kν2k(2k + 2m)!

π2k+1

∞∑
s=−∞

(−1)s

(2s+ 1)2m+2k+1

+ o(N−4m−1), N →∞,

where ν2m = −1/(2m)!.
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Proof. It is easy to verify the following transformation

r̃N,2m(f) =
N∑

n=−N

(Gn − Ǧn)eiπnx +
∞∑

n=N+1

Gne
iπnx +

−N−1∑
n=−∞

Gne
iπnx

=
e−iπNx − eiπ(N+1)x

(1 + eiπx)(1 + e−iπx)
ǦN +

eiπNx − e−iπ(N+1)x

(1 + eiπx)(1 + e−iπx)
Ǧ−N

+
1

(1 + eiπx)(1 + e−iπx)

N∑
n=−N

∆1
n(Gn − Ǧn)eiπnx

+
1

(1 + eiπx)(1 + e−iπx)

∞∑
n=N+1

∆1
n(Gn)eiπnx

+
1

(1 + eiπx)(1 + e−iπx)

−N−1∑
n=−∞

∆1
n(Gn)eiπnx.

Reiteration of this transformation leads to the subsequent expansion of the error

r̃N,2m(f) = (e−iπNx − eiπ(N+1)x)
m+1∑
k=1

∆k−1
N (Ǧn)

(1 + eiπx)k(1 + e−iπx)k

+ (eiπNx − e−iπ(N+1)x)
m+1∑
k=1

∆k−1
−N (Ǧn)

(1 + eiπx)k(1 + e−iπx)k

+
1

(1 + eiπx)m+1(1 + e−iπx)m+1

N∑
n=−N

∆m+1
n (Gn − Ǧn)eiπnx

+
1

(1 + eiπx)m+1(1 + e−iπx)m+1

∞∑
n=N+1

∆m+1
n (Gn)eiπnx

+
1

(1 + eiπx)m+1(1 + e−iπx)m+1

−N−1∑
n=−∞

∆m+1
n (Gn)eiπnx.

(4.19)

According to Lemma 4.2 the last three terms in (4.19) are o(N−4m−1). Taking into account that

∆s
±N(Ǧn) =

2s∑
k=0

(
2s

k

)
Ǧ±N+s−k

we conclude that ∆s
±N(Ǧn) = 0 as s = 0, · · · ,m− 1 in view of the relations

Ǧns = f̌ns −
2m−1∑
k=0

Aik(f,N)B̌ns(k) = 0

when the indices ns are chosen as in (2.4). Substituting all these into (4.19) we derive

r̃N,2m(f) =
e−iπNx − eiπ(N+1)x

(1 + eiπx)m+1(1 + e−iπx)m+1
∆m
N(Ǧn)

+
eiπNx − e−iπ(N+1)x

(1 + eiπx)m+1(1 + e−iπx)m+1
∆m
−N(Ǧn) + o(N−4m−1), N →∞.

This concludes the proof in view of the third estimate of Lemma 4.2.
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Denote by ‖ · ‖ε the standard norm in the space L2(−ε, ε)

||f ||ε :=

(∫ ε

−ε
|f(x)|2dx

)1/2

.

The next follows immediately from here.

Theorem 4.4. Suppose that the conditions of Theorem 4.3 are valid. Then the following esti-
mate holds for 0 < ε < 1

lim
N→∞

N4m+1‖r̃N,2m(f)‖ε =
|A2m(f)|

24m+ 3
2

∣∣∣∣∣
m∑
k=0

(−1)k22kν2k(2k + 2m)!

π2k+1

∞∑
s=−∞

(−1)s

(2s+ 1)2m+2k+1

∣∣∣∣∣
×

(∫ ε

−ε

dx

cos4m+2 πx
2

)1/2

,

where ν2m = −1/(2m)!.

Theorems 3.1, 4.3 and 4.4 investigate the KL and the Eckhoff interpolations for even values
of the parameter q (q = 2m, m = 1, 2, · · · ) and reveal the asymptotic behavior of the corre-
sponding interpolations on the interval |x| < 1. Theorem 3.1 shows that the rate of convergence
of IN,2m(f) is O(N−2m−1) as N →∞. Theorems 4.3 and 4.4 state that the rate of convergence
of ĨN,2m(f) isO(N−4m−1) asN →∞. Therefore we have an improvement in convergence rate
by the factor O(N2m). This convergence acceleration phenomenon we will call the autocor-
rection phenomenon of the Eckhoff interpolation similarly to the autocorrection phenomenon
of the Eckhoff approximation described in [25]. We see that the autocorrection phenomenon is
much larger for the interpolation rather than for the approximation - we have an improvement
by the factor O(N2m) instead of O(Nm) as in the Eckhoff approximation. Note also (com-
pare Theorems 2.4, 4.3) that interpolation ĨN,2m(f) is even more precise than approximation
S̃N,2m(f) when |x| < 1 - we have an improvement by the factor O(Nm).

The numerical results described below will accomplish the theoretical investigations.
Consider the following simple function

(4.20) f(x) = sin(x− 1).

In Table 4.1 we present the L2-errors of the approximations SN,2m(f) and S̃N,2m(f) on the
interval [−0.7, 0.7]. The approximation of the jumps are derived from (4.2)-(4.3).

N=16 N=32 N=64 N=128
‖RN,2(f)‖0.7 3.6 · 10−6 4.8 · 10−7 6.1 · 10−8 7.7 · 10−9

‖R̃N,2(f)‖0.7 3.5 · 10−7 2.3 · 10−8 1.5 · 10−9 9.3 · 10−11

‖RN,4(f)‖0.7 1.3 · 10−9 4.6 · 10−11 1.5 · 10−12 4.7 · 10−14

‖R̃N,4(f)‖0.7 3.4 · 10−11 2.6 · 10−13 2.0 · 10−15 1.5 · 10−17

‖RN,6(f)‖0.7 4.9 · 10−13 4.4 · 10−15 3.6 · 10−17 2.9 · 10−19

‖R̃N,6(f)‖0.7 6.2 · 10−15 5.4 · 10−18 4.6 · 10−21 4.3 · 10−24

Table 4.1: L2-errors while approximating the function (4.20) by SN,2m(f) and S̃N,2m(f) on the interval
[−0.7, 0.7] when the indices (2.4) are considered.

Here one can see that according to the autocorrection phenomenon the approximation by
S̃N,2m(f) is more precise than the approximation by SN,2m(f).
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From Table 4.1 we get

‖R16,2(f)‖0.7
‖R32,2(f)‖0.7

= 7.5,
‖R32,2(f)‖0.7
‖R64,2(f)‖0.7

= 7.86,
‖R64,2(f)‖0.7
‖R128,2(f)‖0.7

= 7.92.

These results coincide with the statement of Theorem 2.2, where ‖RN,2‖0.7 = O(N−3) as
N →∞ which implies asymptotically

‖R2z ,2(f)‖0.7
‖R2z+1,2(f)‖0.7

= 8.

In view of Theorem 2.4 we have that ‖R̃N,2‖0.7 = O(N−4) as N → ∞, which implies asymp-
totically

‖R̃2z ,2(f)‖0.7
‖R̃2z+1,2(f)‖0.7

= 16.

This theoretical estimate coincides with the results in Table 4.1

‖R̃16,2(f)‖0.7
‖R̃32,2(f)‖0.7

= 15.2,
‖R̃32,2(f)‖0.7
‖R̃64,2(f)‖0.7

= 15.3,
‖R̃64,2(f)‖0.7
‖R̃128,2(f)‖0.7

= 16.1.

Consequently, the theoretical and the numerical estimates coincide – the magnitude of the au-
tocorrection phenomenon of the Eckhoff approximation for q = 2 is 1 power of N . Similarly,
we can calculate from Table 4.1 that for q = 4 and q = 6 the magnitude of the autocorrection
phenomenon is 2 and 3 power of N , respectively.

In Table 4.2 we show the corresponding results for the interpolations. From here we get

‖r16,2(f)‖0.7
‖r32,2(f)‖0.7

= 7.52,
‖r32,2(f)‖0.7
‖r64,2(f)‖0.7

= 7.75,
‖r64,2(f)‖0.7
‖r128,2(f)‖0.7

= 8.

These results coincide with the statement of Theorem 3.1, where ‖rN,2‖0.7 = O(N−3) as N →
∞, which implies asymptotically

‖r2z ,2(f)‖0.7
‖r2z+1,2(f)‖0.7

= 8.

Similarly

‖r̃16,2(f)‖0.7
‖r̃32,2(f)‖0.7

= 28.57,
‖r̃32,2(f)‖0.7
‖r̃64,2(f)‖0.7

= 31.11,
‖r̃64,2(f)‖0.7
‖r̃128,2(f)‖0.7

= 31.58.

These estimates coincide with the statement of Theorem 4.3 or 4.4, where ‖rN,2‖0.7 = O(N−5)
as N →∞, which implies asymptotically

‖r̃2z ,2(f)‖0.7
‖r̃2z+1,2(f)‖0.7

= 32.

We see that the theoretical and the numerical estimates coincide – the magnitude of the au-
tocorrection phenomenon of the Eckhoff interpolation for q = 2 is 2 power of N . Similarly
we can calculate from Table 4.2 that for q = 4 and q = 6 the magnitude of the autocorrection
phenomenon is 4 and 6 power of N , respectively. Comparison of Tables 4.1 and 4.2 shows that
the magnitude of the autocorrection phenomenon of interpolation is bigger than of the approxi-
mation which corresponds to the estimates of Theorems 2.4 and 4.3. Moreover, we see that the
interpolation is more precise than the approximation when |x| < 1.

In Figures 1 and 2 we visually show the autocorrection phenomenon of the Eckhoff approx-
imation and interpolation, respectively, while approximating the function (4.20) on the interval
[−0.7, 0.7] when q = 4 and N = 32. Comparison of these figures shows also that the Eckhoff
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N=16 N=32 N=64 N=128
‖rN,2(f)‖0.7 7.0 · 10−6 9.3 · 10−7 1.2 · 10−7 1.5 · 10−8

‖r̃N,2(f)‖0.7 1.6 · 10−7 5.6 · 10−9 1.8 · 10−10 5.7 · 10−12

‖rN,4(f)‖0.7 2.6 · 10−9 9.1 · 10−11 2.9 · 10−12 9.4 · 10−14

‖r̃N,4(f)‖0.7 1.1 · 10−11 3.1 · 10−14 6.4 · 10−17 1.4 · 10−15

‖rN,6(f)‖0.7 9.4 · 10−13 8.7 · 10−15 7.2 · 10−17 5.8 · 10−19

‖r̃N,6(f)‖0.7 2.0 · 10−15 4.6 · 10−19 6.5 · 10−23 9.2 · 10−27

Table 4.2: L2-errors while approximating the function (4.20) by IN,2m(f) and ĨN,2m(f) on the interval [−0.7, 0.7]
when the indices (2.4) are considered.

-0.7 0.7

8. ´ 10-11

KL approximation

-0.7 0.7

8. ´ 10-13

Eckhoff approximation

Figure 1: Graphics of |RN,q(f)| (left) and |R̃N,q(f)| (right) while approximating the function (4.20) on the interval
[−0.7, 0.7] for q = 4, N = 32 when the indices (2.4) are considered.

-0.7 0.7

1.5 ´ 10-10

KL interpolation

-0.7 0.7

1.2 ´ 10-13

Eckhoff interpolation

Figure 2: Graphics of |rN,q(f)| (left) and |r̃N,q(f)| (right) while approximating the function (4.20) on the interval
[−0.7, 0.7] for q = 4, N = 32 when the indices (2.4) are considered.

interpolation is more precise than the Eckhoff approximation, while the KL interpolation is less
accurate compared with the KL approximation.

4.2. Odd values of q. In this subsection we explore the accuracy of the jumps approximation
and the corresponding Eckhoff interpolation for odd values of q when the indices ns are chosen
as in (2.5). Suppose that q = 2m+ 1, m = 0, 1, · · · .
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Relations (4.1) imply the following modification of (3.2)

(4.21)
f̌n − f̌−n

2
=

m∑
k=0

Ai2k(f,N)B̌n(2k), n = N,N − 1, · · · , N −m+ 1,

(4.22)
f̌n + f̌−n

2
=

m−1∑
k=0

Ai2k+1(f,N)B̌n(2k + 1), n = N,N − 1, · · · , N −m+ 1,

(4.23) f̌N−m =
2m∑
k=0

Aik(f,N)B̌N−m(k).

The next is the analog of Theorem 4.1 for odd values of q.

Theorem 4.5. Suppose that q is an odd number, q = 2m + 1, m = 0, 1, · · · and the indices
ns are chosen as in (2.5). If f ∈ C4m+2[−1, 1] such that f (4m+2) is absolutely continuous on
[−1, 1] then the following estimates hold as N →∞

(4.24) Ai2k(f,N) = A2k(f) + (2k)!
A2m+1(f)ν̃

′

2k + A2m+2(f)ν̃
′′

2k

(2N)2m−2k+2
+ o(N−2m+2k−2),

(4.25) Ai2k+1(f,N) = A2k+1(f)− A2m+1(f)
(2k + 1)! ν̃2k+1

(2N)2m−2k
+O(N−2m+2k−1),

where the numbers ν2k+1, ν
′

2k and ν
′′

2k are the solutions of systems
m−1∑
k=s

u2s,2k+1ν̃2k+1 = µ̃2s, s = 0, · · · ,m− 1,

2m∑
k=s

us,kν̃
′

k = µ̃
′

s, s = 0, · · · , 2m,
m∑
k=s

u2s,2kν̃
′′

2k = µ̃
′′

2s, s = 0, · · · ,m

with

µ̃s :=
2m∑
j=0

`s,jΥ̃j, µ̃
′

s :=
2m∑
j=0

`s,jΥ̃
′

j, µ̃
′′

s :=
2m∑
j=0

`s,jΥ̃
′′

j ,

and

Υ̃j : = − 1

(2m+ 1)!

2m+1∑
s=0

α2m+1,s

2m+1∑
k=j+1

(
2m+ 1

k

)
ω̃∗2m+1,s+k−j−1,

Υ̃
′

j : =
iπ(2m+ 1)

(2m+ 1)!

2m+1∑
s=0

α2m+1,s

2m∑
k=j+1

[(
2m+ 1

k

)
ω̃
′

2m+1,s+k−j−1

−
(

2m

k

)
ω̃∗2m+1,s+k−j−1

]
,

Υ̃
′′

j : =
1

(2m+ 2)!

2m+2∑
s=0

α2m+2,s

2m+1∑
k=j+1

(
2m+ 1

k

)
ω̃∗2m+2,s+k−j−1,

ω̃∗r,j =
2m∑
s=0

(−1)j+s

2r−s

(
j

s

)(
r − s− 1

r − 2m− 1

)
,
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ω̃
′

r,j =
2m+1∑
s=0

(−1)j+s

2r−s+1

(
j

s

)(
r − s

r − 2m− 1

)
.

Proof. Starting as in the proof of Theorem 4.1 we obtain

2m∑
k=0

λkβj,k(2m+ 1) =
4m+2∑
r=2m+1

Ar(f)
(−1)r

r!(2N + 1)r+1

r∑
`=0

αr,`

2m+1∑
t=j+1

γt(2m+ 1)ω̃r,`+t−j−1

+ o(N−2m−3), j = 0, · · · , 2m− 1, N →∞,(4.26)

where

ω̃r,j :=
2m+1∑
s=1

e−2iπjτs

(1− e−2iπτs)r−2m
2m+1∏̀

=1
6̀=s

(e−2iπτs − e−2iπτ`)
.

Taking into account that

γs(2m+ 1) =

(
2m+ 1

s

)
+ iπ

2m+ 1

2N + 1

(
2m

s

)
+O(N−2), N →∞

and

ω̃r,j = ω̃∗r,j −
iπ(2m+ 1)

2N + 1
ω̃
′

r,j +O(N−2), N →∞

we get

2m∑
k=0

λkβj,k(2m+ 1) = A2m+1(f)
Υ̃j

(2N + 1)2m+2
+ A2m+1(f)

Υ̃
′
j

(2N + 1)2m+3

+ A2m+2(f)
Υ̃
′′
j

(2N + 1)2m+3
+ o(N−2m−3), N →∞.

According to the LU -factorization of matrix (βk,j) we derive

2m∑
k=0

us,kλk = A2m+1(f)
µ̃s

(2N + 1)2m+2
+ A2m+1(f)

µ̃
′

s

(2N + 1)2m+3

+ A2m+2(f)
µ̃
′′

s

(2N + 1)2m+3
+ o(N−2m−3), N →∞.

This implies

Aik(f,N) = Ak(f) + A2m+1(f)
ν̃k(−1)kk!

(2N + 1)2m+1−k + A2m+1(f)
ν̃
′

k(−1)kk!

(2N + 1)2m+2−k

+ A2m+2(f)
ν̃
′′

k(−1)kk!

(2N + 1)2m+2−k + o(N−2m−2+k), N →∞,
(4.27)

where the numbers ν̃k, ν̃
′

k, and ν̃
′′

k are the solutions of systems

2m∑
k=s

us,kν̃k = µ̃s,

2m∑
k=s

us,kν̃
′

k = µ̃
′

s,

2m∑
k=s

us,kν̃
′′

k = µ̃
′′

s .
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Equation (4.27) coincides with (4.25) for odd values of k. For even values we rewrite as

Ai2k(f,N) = A2k(f) + A2m+1(f)
ν̃2k(2k)!

(2N + 1)2m−2k+1
+ A2m+1(f)

ν̃
′

2k(2k)!

(2N + 1)2m−2k+2

+ A2m+2(f)
ν̃
′′

2k(2k)!

(2N + 1)2m−2k+2
+ o(N−2m+2k−2), N →∞.

For finishing the proof we need to show that ν̃2k = 0, k = 0, · · · ,m− 1. The system of linear
equations

2m∑
k=s

us,kν̃k = µ̃s

is equivalent to the following system

2m∑
k=0

βj,kν̃k = Υ̃j, j = 0, · · · , 2m.

This we copy out in the form

m∑
k=0

βm−1−`,2kν̃2k +
m−1∑
k=0

β,m−1−`,2k+1ν̃2k+1 = Υ̃m−1−`, ` = 0, · · · ,m− 1,

m∑
k=0

β`+m+1,2kν̃2k +
m−1∑
k=0

β`+m+1,2k+1ν̃2k+1 = Υ̃`+m+1, ` = 0, · · · ,m− 1,

m∑
k=0

βm,2kν̃2k +
m−1∑
k=0

βm,2k+1ν̃2k+1 = Υ̃m.

Application of Lemma A.4 leads to the following system of linear equations for determining
the numbers ν2k

m∑
k=0

βm−1−`,2kν̃2k =
1

2
(Υ̃m−1−` + Υ̃`+m+1), ` = 0, · · · ,m− 1,

m∑
k=0

βm,2kν̃2k = Υ̃m.

It remains to show that Υ̃m = 0 and Υ̃m−1−` = −Υ̃`+m+1. We have (see Lemma A.9)

Υ̃m = − 1

(2m+ 1)!22m+1

2m+1∑
r=0

α2m+1,rδr.

In view of Lemmas A.9 and A.2, we get

Υ̃m = − 1

(2m+ 1)!22m+1

m∑
r=0

α2m+1,rδr −
1

(2m+ 1)!22m+1

2m+1∑
r=m+1

α2m+1,rδr

= − 1

2(2m+ 1)!

m∑
`=0

(α2m+1,m−` − α2m+1,`+m+1) = 0.
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Now we return to the identity Υ̃m−1−` = −Υ̃`+m+1. We will prove that Υ̃j = −Υ̃2m−j ,
j = 0, · · · ,m− 1. Application of Lemma A.2 implies

Υ̃j + Υ̃2m−j = (−1)j
2m+1∑
r=0

(−1)rα2m+1,r

×

(
2m+1∑
`=j+1

(
2m+ 1

`

)
(−1)`

2m∑
k=0

2k(−1)k
(
`+ 2m− r − j

k

)

+

j∑
`=0

(
2m+ 1

`

)
(−1)`

2m∑
k=0

2k(−1)k
(
r + j − `

k

))
.

According to Lemma A.8 we get

Υ̃j + Υ̃2m−j = (−1)j
2m+1∑
r=0

(−1)rα2m+1,r

j∑
`=0

(
2m+ 1

`

)
(−1)`

×

(
−

2m∑
k=0

2k(−1)k
(
`+ 2m− r − j

k

)
+

2m∑
k=0

2k(−1)k
(
r + j − `

k

))
.

This ends the proof in view of Lemma A.7.

In the next lemma we explore the asymptotic behaviors of ∆m+2
n (Gn), ∆m+2

n (Ǧn − Gn),
∆m+1
±N (Ǧn) and ∆m

±N(ǦN).

Lemma 4.6. Suppose that q is an odd number, q = 2m + 1, m = 0, 1, · · · and indices ns are
chosen as in (2.5). If f ∈ C4m+3[−1, 1] such that f (4m+3) is absolutely continuous on [−1, 1]
then the asymptotic expansions are valid as N →∞

∆m+2
n (Gn) =

o(N−2m)

n2m+4
, |n| > N,

∆m+2
n (Ǧn −Gn) = o(N−4m−4), |n| ≤ N,

∆m+1
±N (Ǧn) = o(N−4m−4),

and

∆m
±N(ǦN) = ± (−1)N+m

22m+3N4m+3

m+1∑
k=0

22k(2k + 2m)!
A2m+1ν̃

′

2k + A2m+2ν̃
′′

2k

(iπ)2k+1

×
∞∑

s=−∞

(−1)s

(2s+ 1)2m+2k+1
+ A2m+1(f)

(−1)N+m

22m+2N4m+3

×
m∑
k=0

22k+1ν̃2k+1(2k + 2m+ 2)!

(iπ)2k+2

∞∑
s=−∞

(−1)ss

(2s+ 1)2m+2k+3
+ o(N−4m−3),

where ν̃2m+1 = 1/(2m+ 1)!, ν̃
′

2m+2 = 0 and ν̃
′′

2m+2 = −1/(2m+ 2)!.
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Proof. For the first estimate we write

∆m+2
n (Gn) =

2m∑
k=0

(
Ak(f)− Aik(f,N)

)
∆m+2
n (Bn(k))

+
4m+3∑

k=2m+1

Ak(f)∆m+2
n (Bn(k)) + o(n−4m−4)

and apply Lemma B.1 with Theorem 4.5.
For the second estimate we write

∆m+2
n (Ǧn −Gn) =

2m∑
k=0

(
Ak(f)− Aik(f,N)

)
∆m+2
n (B̌n(k)−Bn(k))

+
4m+3∑

k=2m+1

Ak(f)∆m+2
n (B̌n(k)−Bn(k)) + o(N−4m−4)

and apply Lemma B.1 with Theorem 4.5.
Similarly for the third estimate we have

∆m+1
±N (Ǧn) =

2m∑
k=0

(
Ak(f)− Aik(f,N)

)
∆m+1
±N (B̌n(k))

+
4m+3∑

k=2m+1

Ak(f)∆m+1
±N (B̌n(k)) + o(N−4m−4).

Application of Lemma B.1 with Theorem 4.5 will end the proof of the third estimate.
Finally, for the fourth estimate we write

∆m
±N(Ǧn) =

m∑
k=0

(
A2k(f)− Ai2k(f,N)

)
∆m
±N(B̌n(2k))

+
m−1∑
k=0

(
A2k+1(f)− Ai2k+1(f,N)

)
∆m
±N(B̌n(2k + 1))

+
2m+1∑
k=m+1

A2k(f)∆m
±N(B̌n(2k)) +

2m∑
k=m

A2k+1(f)∆m
±N(B̌n(2k + 1))

+ o(N−4m−3), N →∞.

This concludes the proof in view of Lemma B.1 with Theorem 4.5.

The next theorem explores the behavior of the Eckhoff interpolation for the odd values of q
for |x| < 1.
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Theorem 4.7. Suppose that the conditions of Lemma 4.6 are valid. Then the following estimate
holds for |x| < 1

r̃N,2m+1(f) =
(−1)N+m

24m+3N4m+3

ie−i
πx
2 sin(N + 1

2
)πx

cos2m+2 πx
2

×

(
A2m+1(f)

m∑
k=0

22k+1 ν̃2k+1(2k + 2m+ 2)!

(iπ)2k+2

∞∑
s=−∞

(−1)ss

(2s+ 1)2m+2k+3

−
m+1∑
k=0

22k−1(2k + 2m)!
A2m+1(f)ν̃

′

2k + A2m+2(f)ν̃
′′

2k

(iπ)2k+1

∞∑
s=−∞

(−1)s

(2s+ 1)2m+2k+1

)
+ o(N−4m−3), N →∞,

where ν̃2m+1 = 1/(2m+ 1)!, ν̃
′

2m+2 = 0 and ν̃
′′

2m+2 = −1/(2m+ 2)!.

Proof. Similar to (4.19) we get the following transformation

r̃N,2m+1(f) = (e−iπNx − eiπ(N+1)x)
m+2∑
k=1

∆k−1
N (Ǧn)

(1 + eiπx)k(1 + e−iπx)k

+ (eiπNx − e−iπ(N+1)x)
m+2∑
k=1

∆k−1
−N (Ǧn)

(1 + eiπx)k(1 + e−iπx)k

+
1

(1 + eiπx)m+2(1 + e−iπx)m+2

N∑
n=−N

∆m+2
n (Gn − Ǧn)eiπnx

+
1

(1 + eiπx)m+2(1 + e−iπx)m+2

∞∑
|n|=N+1

∆m+2
n (Gn)eiπnx.

(4.28)

According to Lemma 4.6 the last three terms are o(N−4m−3) as N → ∞. Taking into account
that

(4.29) ∆s
±N(Ǧn) =

2s∑
k=0

(
2s

k

)
Ǧ±N+s−k

we conclude that ∆s
±N(Ǧn) = 0 as s = 0, · · · ,m− 1 and ∆m

N(Ǧn) = 0. Substituting all these
into (4.28) we derive

r̃N,2m+1(f) =
eiπNx − e−iπ(N+1)x

(1 + eiπx)m+1(1 + e−iπx)m+1
∆m
−N(Ǧn)

+
eiπNx − e−iπ(N+1)x

(1 + eiπx)m+2(1 + e−iπx)m+2
∆m+1
N (Ǧn)

+
eiπNx − e−iπ(N+1)x

(1 + eiπx)m+1(1 + e−iπx)m+1
∆m+1
−N (Ǧn)

+ o(N−4m−3), N →∞.

This concludes the proof in view of Lemma 4.6.

The next is immediate consequence of the previous one.
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Theorem 4.8. Suppose that the conditions of Theorem 4.7 are valid. Then the following esti-
mate holds for every 0 < ε < 1

lim
N→∞

N4m+3‖r̃N,2m+1(f)‖ε =
1√

2 24m+3

(∫ ε

−ε

dx

cos4m+4 πx
2

) 1
2

×

∣∣∣∣∣A2m+1(f)
m∑
k=0

22k+1 ν̃2k+1(2k + 2m+ 2)!

(iπ)2k+2

∞∑
s=−∞

(−1)ss

(2s+ 1)2m+2k+3

−
m+1∑
k=0

22k−1(2k + 2m)!
A2m+1(f)ν̃

′

2k + A2m+2(f)ν̃
′′

2k

(iπ)2k+1

∞∑
s=−∞

(−1)s

(2s+ 1)2m+2k+1

∣∣∣∣∣,
where ν̃2m+1 = 1/(2m+ 1)!, ν̃

′

2m+2 = 0 and ν̃
′′

2m+2 = −1/(2m+ 2)!.

Theorem 3.2 shows that the rate of convergence of IN,2m+1(f) is O(N−2m−3) as N → ∞.
Theorem 4.7 states that the rate of convergence of ĨN,2m+1(f) is O(N−4m−3) as N → ∞. We
have an improvement in convergence rate by the factor O(N2m). We see that for odd values of
the parameter q the autocorrection phenomenon is much larger for the interpolations rather than
for the approximations - we have an improvement by the factorO(N2m) instead ofO(Nm) as in
the Eckhoff approximation. Compared with S̃N,2m+1(f) when |x| < 1 interpolation ĨN,2m+1(f)
is more precise - we have an improvement by the factor O(Nm).

In Table 4.3 we present the L2-errors of the approximations SN,2m+1(f) and S̃N,2m+1(f) on
the interval [−0.7, 0.7]. The approximation of the jumps are derived from (4.21)-(4.23).

We see that for q = 1 the autocorrection phenomenon for the Eckhoff approximation is
absent. Calculations show that for q = 3 we have

‖R16,3(f)‖0.7
‖R32,3(f)‖0.7

= 15.27,
‖R32,3(f)‖0.7
‖R64,3(f)‖0.7

= 15.32,
‖R64,3(f)‖0.7
‖R128,3(f)‖0.7

= 15.67.

These results coincide with the statement of Theorem 2.3, where ‖RN,3‖0.7 = O(N−4) as
N → ∞. In view of Theorem 2.5 we have that ‖R̃N,2‖0.7 = O(N−5) as N → ∞, which
implies asymptotically

‖R̃2z ,3(f)‖0.7
‖R̃2z+1,3(f)‖0.7

= 32.

This theoretical estimate coincides with the results in Table 4.3
‖R̃16,3(f)‖0.7
‖R̃32,3(f)‖0.7

= 30.77,
‖R̃32,3(f)‖0.7
‖R̃64,3(f)‖0.7

= 32.5,
‖R̃64,3(f)‖0.7
‖R̃128,3(f)‖0.7

= 31.37.

Consequently, the theoretical and the numerical estimates coincide – the magnitude of the auto-
correction phenomenon for q = 3 is 1 power of N . Similarly, we can calculate from Table 4.3
that for q = 4 and q = 6 the magnitude of the autocorrection phenomenon is 2 and 3 power of
N , respectively.

In Table 4.4 we show the corresponding results for the interpolations. Again, for q = 1 the
autocorrection phenomenon is absent. For q = 3 we get

‖r16,3(f)‖0.7
‖r32,3(f)‖0.7

= 28,
‖r32,3(f)‖0.7
‖r64,3(f)‖0.7

= 31.25,
‖r64,3(f)‖0.7
‖r128,3(f)‖0.7

= 29.09.

These results coincide with the statement of Theorem 3.2, where ‖rN,3‖0.7 = O(N−5) which
implies asymptotically

‖r2z ,3(f)‖0.7
‖r2z+1,3(f)‖0.7

= 32.
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N=16 N=32 N=64 N=128
‖RN,1(f)‖0.7 3.0 · 10−4 8.0 · 10−5 2.0 · 10−5 4.9 · 10−6

‖R̃N,1(f)‖0.7 4.0 · 10−4 1.0 · 10−4 3.0 · 10−5 6.9 · 10−6

‖RN,3(f)‖0.7 1.1 · 10−7 7.2 · 10−9 4.7 · 10−10 3.0 · 10−11

‖R̃N,3(f)‖0.7 1.6 · 10−8 5.2 · 10−10 1.6 · 10−11 5.1 · 10−13

‖RN,5(f)‖0.7 3.9 · 10−11 6.8 · 10−13 1.1 · 10−14 1.8 · 10−16

‖R̃N,5(f)‖0.7 1.6 · 10−12 6.0 · 10−15 2.3 · 10−17 8.5 · 10−20

‖RN,7(f)‖0.7 1.4 · 10−14 6.5 · 10−17 2.8 · 10−19 1.1 · 10−21

‖R̃N,7(f)‖0.7 3.0 · 10−16 1.2 · 10−19 5.3 · 10−23 2.4 · 10−26

Table 4.3: L2-errors while approximating the function (4.20) by SN,2m+1(f) and S̃N,2m+1(f) on the interval
[−0.7, 0.7] when the indices (2.5) are considered.

Similarly

‖r̃16,3(f)‖0.7
‖r̃32,3(f)‖0.7

= 100,
‖r̃32,3(f)‖0.7
‖r̃64,3(f)‖0.7

= 128.57,
‖r̃64,3(f)‖0.7
‖r̃128,3(f)‖0.7

= 116.67.

These estimates coincide with the statements of Theorems 4.7 and 4.8, where ‖rN,3‖0.7 =
O(N−7) as N →∞, which implies asymptotically

‖r̃2z ,3(f)‖0.7
‖r̃2z+1,3(f)‖0.7

= 128.

Similar calculations we can carry out also for q = 5 and q = 7. Therefore, Theorems 4.7 and
4.8 show that the magnitude of the autocorrection phenomenon of the interpolation for q = 3 is
2 power of N , for q = 5 is 4 power of N and for q = 7 is 6 power of N .

N=16 N=32 N=64 N=128
‖rN,1(f)‖0.7 4.0 · 10−5 5.3 · 10−6 6.6 · 10−7 8.4 · 10−8

‖r̃N,1(f)‖0.7 5.0 · 10−5 6.9 · 10−6 8.7 · 10−7 1.1 · 10−7

‖rN,3(f)‖0.7 2.8 · 10−8 1.0 · 10−9 3.2 · 10−11 1.1 · 10−12

‖r̃N,3(f)‖0.7 1.8 · 10−9 1.8 · 10−11 1.4 · 10−13 1.2 · 10−15

‖rN,5(f)‖0.7 1.5 · 10−11 1.4 · 10−13 1.2 · 10−15 9.7 · 10−18

‖r̃N,5(f)‖0.7 2.2 · 10−13 1.7 · 10−16 9.1 · 10−20 5.0 · 10−23

‖rN,7(f)‖0.7 6.9 · 10−15 1.8 · 10−17 3.8 · 10−20 7.9 · 10−23

‖r̃N,7(f)‖0.7 5.1 · 10−17 3.5 · 10−21 1.3 · 10−25 4.8 · 10−30

Table 4.4: L2-errors while approximating the function (4.20) by IN,2m+1(f) and ĨN,2m+1(f) on the interval
[−0.7, 0.7] when the indices (2.5) are considered.

In Figures 3 and 4 we visually show the autocorrection phenomenon of the Eckhoff approx-
imation and interpolation, respectively, while approximating the function (4.20) on the interval
[−0.7, 0.7] when q = 5 and N = 32. We see that for the odd values of q the KL interpo-
lation and approximation are more precise than the Eckhoff interpolation and approximation,
respectively.
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-0.7 0.7

1.2 ´ 10-12

KL approximation

-0.7 0.7

1.4 ´ 10-14

Eckhoff approximation

Figure 3: Graphics of |RN,q(f)| (left) and |R̃N,q(f)| (right) while approximating the function (4.20) on the interval
[−0.7, 0.7] for q = 5, N = 32 when the indices (2.5) are considered.

-0.7 0.7

4. ´ 10-13

KL interpolation

-0.7 0.7

7. ´ 10-16

Eckhoff interpolation

Figure 4: Graphics of |rN,q(f)| (left) and |r̃N,q(f)| (right) while approximating the function (4.20) on the interval
[−0.7, 0.7] for q = 5, N = 32 when the indices (2.5) are considered.

A. AUXILIARY IDENTITIES AND LEMMAS

The next lemma gives the explicit form of
(

1
sinπx

)(k). We need this result for calculation of
the discrete Fourier coefficients of the Bernoulli polynomials explicitly (see Appendix B and,
in particular, (B.4)). Below the numbers S(k, n) are the Stirling numbers of the second kind
([27]).

Lemma A.1. [23] The following identity holds

(A.1)
(

1

sin πx

)(k)

=
πk

2k(sinπx)k+1

k∑
j=0

αk,je
iπ(k−2j)x, k ≥ 0,

where

(A.2) αk,j :=

j∑
`=0

(−1)`
k∑

n=0

n!(−1)nS(k, n)

(
k − n
`

)(
n+ 1

2j − 2`

)
.

The next lemma addresses the properties of the numbers αk,j .

Lemma A.2. The following relations are valid

α2s,s−`−1 = α2s,`+s+1, ` = 0, · · · , s− 1, s ≥ 1,

α2s+1,s−` = α2s+1,`+s+1, ` = 0, · · · , s, s ≥ 0.
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Proof. The proof immediately follows from the definition of αk,j as the left hand side of (A.1)
takes only the real values so the same is true for the right hand side.

Lemma A.3. [23] The following identity is valid for k = 0, · · · , q − 1

(A.3) sinq πx

(
1

sin πx

)(k)

=
(iπ)k

(2i)q−1
eiπ(q−1)x

q−1∑
j=0

βj,k(q)e
−2iπjx,

where

(A.4) βj,k(q) :=

j∑
`=0

(−1)`
q−1∑
n=0

n!(−1)nS(k, n)

(
q − n− 1

`

)(
n+ 1

2j − 2`

)
.

The next lemma addresses the properties of the numbers βj,k.

Lemma A.4. The following relations are valid for ` = 0, · · · ,m− 1

βm−`−1,2s(2m) = −β`+m,2s(2m), s = 0, · · · ,m− 1,

βm−`−1,2s+1(2m) = βm+`,2s+1(2m), s = 0, · · · ,m− 1,

and

βm−`−1,2s(2m+ 1) = β`+m+1,2s(2m+ 1), s = 0, · · · ,m,
βm−`−1,2s+1(2m+ 1) = −βm+`+1,2s+1(2m+ 1), s = 0, · · · ,m− 1,

βm,2s+1(2m+ 1) = 0, s = 0, · · · ,m− 1.

Proof. The proof follows from definition of βk,j as the left hand side of (A.3) takes only the real
values so the same is true for the right hand side.

We define matrix V as V = (βj,k) and in the next lemma present the LU-factorization of it.

Lemma A.5. [23] Matrix V has the following LU-factorization

V = LU,

where
L := (`j,k)

q−1
j,k=0, U := (uj,k)

q−1
j,k=0,

`j,k := (−1)j
(
q − k − 1

q − j − 1

)
, uj,k :=

q−1∑
n=0

q−1∑
`=0

(−1)j+n
(
n+ 1

2`

)(
n− `
j − `

)
n!S(k, n).

Another interesting property of matrix L.

Lemma A.6. [23] L is an involutive matrix

(A.5) L−1 = L.

Now we will prove some combinatorial identities.

Lemma A.7. The following identity is valid

(A.6)
N∑
k=0

2k
(
N − n
k

)
(−1)k = (−1)N

N∑
k=0

2k
(n
k

)
(−1)k, n ∈ Z.
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Proof. We carry out the proof by the help of mathematical induction. For N = 0 the identity is
obvious. Supposing that it is true for N , we write for N + 1

N+1∑
k=0

2k
(
N − n+ 1

k

)
(−1)k =

N+1∑
k=0

2k
(
N − n
k

)
(−1)k +

N+1∑
k=1

2k
(
N − n
k − 1

)
(−1)k

=
N∑
k=0

2k
(
N − n
k

)
(−1)k + 2N+1

(
N − n
N + 1

)
(−1)N+1 − 2

N∑
k=0

2k
(
N − n
k

)
(−1)k

= −
N∑
k=0

2k
(
N − n
k

)
(−1)k + 2N+1

(
N − n
N + 1

)
(−1)N+1

= (−1)N+1

N∑
k=0

2k
(n
k

)
(−1)k + 2N+1

(
N − n
N + 1

)
(−1)N+1

= (−1)N+1

N+1∑
k=0

2k
(n
k

)
(−1)k.

We used the fact that for 0 ≤ n ≤ N we have(
N − n
N + 1

)
=

(
n

N + 1

)
= 0,

for n > N

2N+1

(
N − n
N + 1

)
(−1)N+1 = 2N+1

(
n

N + 1

)
and for n < 0

(−1)N+12N+1

(
n

N + 1

)
= 2N+1

(
N − n
N + 1

)
.

For n > N and n < 0 we applied also the identity(
−n
k

)
= (−1)k

(
n+ k − 1

k

)
.

These end the proof.

Lemma A.8. Suppose

(A.7) ηn :=
2m+1∑
`=0

(−1)`
(

2m+ 1

`

) 2m∑
k=0

2k
(
n− `
k

)
(−1)k, 0 ≤ n ≤ 3m+ 1.

Then
ηn = 0.

Proof. According to the well-known identity (see [26])

(A.8)
∑
k=0

(−1)k
(
n− k
m

)(p
k

)
=

(
n− p
n−m

)
,

where the summation is executed by the all possible values of k we get for 2m+1 ≤ n ≤ 3m+1

ηn =
2m∑
k=0

2k(−1)k
(
n− 2m− 1

n− k

)
= 0
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as (
n− 2m− 1

n− k

)
= 0, k = 0, · · · , 2m.

For 0 ≤ n ≤ 2m we have from Lemma A.7

ηn =
2m+1∑
`=0

(−1)`
(

2m+ 1

`

) 2m∑
k=0

2k
(

2m− n+ `

k

)
(−1)k

= −
2m∑
k=0

2k(−1)k
2m+1∑
`=0

(−1)`
(

2m+ 1

`

)(
4m+ 1− n− `

k

)
.

Again by the identity (A.8) we derive

ηn = −
2m∑
k=0

2k(−1)k
(

2m− n
4m+ 1− n− k

)
= 0

as (
2m− n

4m+ 1− n− k

)
= 0, n, k = 0, · · · , 2m.

This ends the proof.

Lemma A.9. Let

(A.9) δr := (−1)r
m∑
`=0

(−1)`
(

2m+ 1

`+m+ 1

) 2m∑
k=0

2k
(
`+ r

k

)
(−1)k.

Then

δr =

{
22m, 0 ≤ r ≤ m,

−22m, m+ 1 ≤ r ≤ 2m+ 1.

Proof. We write for 0 ≤ r ≤ m

δr = (−1)r
m∑
`=0

(−1)`
(

2m+ 1

`+m+ 1

) `+r∑
k=0

2k
(
`+ r

k

)
(−1)k

=
m∑
`=0

(
2m+ 1

`+m+ 1

)
= 22m.

We have for m+ 1 ≤ r ≤ 2m+ 1

δm+1 = −δm + (−1)m+1

m∑
`=0

(−1)`
(

2m+ 1

`+m+ 1

) 2m−1∑
k=0

2k+1

(
`+m

k

)
(−1)k+1

= −δm + 2
m−1∑
`=0

(
2m+ 1

`+m+ 1

)
+ 2

2m−1∑
k=0

2k
(

2m

k

)
(−1)k

= −δm = −22m.

We derive for m+ 1 ≤ r ≤ 2m similarly

δr+1 = δr − 22m+1(−1)r+1

m∑
`=0

(−1)`
(

2m+ 1

`+m+ 1

)(
r + `

2m

)
= δr = −22m.
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We used the fact that (see (A.8))
m∑
`=0

(−1)`
(

2m+ 1

`+m+ 1

)(
r + `

2m

)
= 0, m+ 1 ≤ r ≤ 2m.

B. BERNOULLI POLYNOMIALS

The 2-periodic extensions of the Bernoulli polynomials are defined recurrently ([8])

(B.1) B(x; 0) =
x

2
, B(x; k) =

∫
B(x; k − 1)dx, x ∈ [−1, 1],

where the constant of integration is defined by the relation∫ 1

−1
B(x; k)dx = 0.

It is easy to verify that the Fourier coefficients have the form

(B.2) Bn(k) :=


0, n = 0

(−1)n+1

2(iπn)k+1 , n = ±1,±2, . . .

Relations (B.1) allow the calculation of B̌n(k) explicitly. Here are three of them

B̌n(0) =
(−1)ni

2(2N + 1) sin πn
2N+1

, n 6= 0, B̌0(0) = 0,

B̌n(1) =
(−1)n cos πn

2N+1

2(2N + 1)2 sin2 πn
2N+1

, n 6= 0, B̌0(1) = − 1

12(2N + 1)2
,

B̌n(2) =
(−1)n+1i

(
3 + cos 2πn

2N+1

)
8(2N + 1)3 sin3 πn

2N+1

, n 6= 0, B̌0(2) = 0.

It is possible to get the closed form of B̌n(k). Note that for n 6= 0

B̌n(k) =
∞∑

r=−∞

Bn+r(2N+1)(k) =
∞∑

r=−∞

(−1)n+r+1

2(iπ(n+ r(2N + 1)))k+1

=
(−1)n+1

2(iπ(2N + 1))k+1

∞∑
r=−∞

(−1)r(
n

2N+1
+ r
)k+1

.

Hence

(B.3) B̌n(k) =
(−1)n+k+1π

2k!(iπ(2N + 1))k+1

(
1

sin πx

)(k)

x= n
2N+1

.

In view of Lemma A.1 Equation (B.3) yields

(B.4) B̌n(k) =
(−1)n+k+1

(2i(2N + 1))k+1k!
(
sin πn

2N+1

)k+1

k∑
j=0

αk,je
i
πn(k−2j)

2N+1 , n 6= 0, k ≥ 0.

For n = 0 and k ≥ 0 we have

(B.5) B̌0(k) =
∞∑

r=−∞

Br(2N+1)(k) =
1

2(iπ(2N + 1))k+1

∑
r 6=0

(−1)r+1

rk+1
.
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Denote

(B.6) ∆p
n(fn) :=

2p∑
k=0

(
2p

k

)
fn+p−k, p ≥ 0, ∀n.

We will frequently use the following result.

Lemma B.1. [22] The following estimates hold for p ≥ 0 and k ≥ 0

∆p
n(Bn(k)) =

(−1)n+p+1(k + 2p)!

2(iπn)k+1n2pk!
+O(n−k−2p−2), n→∞,

∆p
n(B̌n(k)−Bn(k)) =

(−1)n+p+1(k + 2p)!

2(iπN)k+1N2pk!

∑
s 6=0

(−1)s

(2s+ n
N

)k+2p+1

+ O(N−k−2p−2), |n| ≤ N, N →∞,

∆p
±N(B̌n(2k)) = ±(−1)N+p+1(2k + 2p)!

2(iπN)2k+1N2p(2k)!

∞∑
s=−∞

(−1)s

(2s+ 1)2p+2k+1

+ O(N−2k−2p−2), N →∞,

∆p
±N(B̌n(2k + 1)) =

(−1)N+p(2k + 2p+ 2)!

2(iπN)2k+2N2p+1(2k + 1)!

∞∑
s=−∞

(−1)ss

(2s+ 1)2p+2k+3

+ O(N−2k−2p−4), N →∞.
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