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In this article we pose the problem of existence and uniqueness of convex body for which
the projection curvature radius function coincides with given function� We �nd a necessary
and su�cient condition that ensures a positive answer to both questions and suggest an
algorithm of construction of the body� Also we �nd a representation of the support function
of a convex body by projection curvature radii�

x�� INTRODUCTION

Let F ��� be a function de�ned on the sphere S�� The existence and uniqueness of convex body B � IR�

for which the mean curvature radius at a point on �B with outer normal direction � coincides with given

F ��� was posed by Christo�el �see ���	�
��� Let R���� and R���� be the principal radii of curvatures of

the surface of the body at the point with normal � � S�� Christo�el problem asked about the existence

of B for which

R���� � R���� � F ���� ���

The corresponding problem for Gauss curvature R����R���� � F ��� was posed and solved by Minkovski�

W� Blashke reduced the Christo�el problem to a partial di�erential equation of second order for the

support function �see �
��� A� D� Aleksandrov and A� V� Pogorelov generelized these problems	 and

proved the existence and uniqueness of convex body for which

G�R����� R����� � F ���� ����

for a class of symmetric functions G �see ���	 �����

In this paper we generalize the classic problem in a di�erent direction and pose a similar problem for the

projection curvature radii of convex bodies �see ����� By B we denote the class of convex bodies B � IR��

We need some notation�

S� � the unit sphere in IR� �the space of spatial directions�	

S� � S� � the great circle with pole at � � S�	

B��� � projection of B � B onto the plane containing the origin in IR� and ortogonal to ��

R��� �� � curvature radius of �B��� at the point whose outer normal direction is � � S��





Let F ��� �� be a nonnegative function de�ned on f��� �� � � � S�� � � S�g �the space of ��ags� see ����

In this article we pose�

Problem � existence and uniqueness �up to a translation� of a convex body for which

R��� �� � F ��� �� and ����

Problem �� construction of that convex body�

It is well known �see ���� that a convex body B is determined uniquely by its support function

H��� � maxf� �� y �� y � Bg de�ned for � � S�	 where � �� � � denotes the standard inner product in

IR�� Usually one extends H��� to a function H�x�	 x � IR� using homogeneity� H�x� � jxjH���	 where

� is the direction of
��
Ox �O is the origin in IR��� Then the de�nition of convexity of H��� is written as

H�x� y� � H�x� �H�y� for every x� y � IR��

Below Ck�S�� denotes the space of k times continuously di�erentiable functions in S�� A convex body B

we call k�smooth if H��� � Ck�S���

Given a function H��� de�ned for � � S�	 by H����	 � � S� we denote the restriction of H��� to the

circle S� for � � S��

Below we show that the Problem � is equivalent to the problem of existence of a function H��� de�ned

on S� satis�ng the di�erential equation

H���� � �H�����
��
�� � F ��� �� for every � � S� and � � S�� ����

Note	 that if restrictions of H��� satis�es ����	 then �the extention of� H��� is convex�

De�nition ���� If for given F ��� �� there exists H��� � C��S�� de�ned on S� that satis�es ����	 then

H��� is called a spherical solution of �����

In ����	H���� is a �ag function	 so we recall the basic concepts associated with �ags �in integral geometry

the concept of a �ag was �rst systematically employed by R� V� Ambartzumian in ����

A �ag is a pair ��� ��	 where � � S� and � � S�� To each �ag ��� �� corresponds a dual �ag

��� �� � ��� ��� � ��� ��� ����

where � � S� is the spatial direction same as � � S�	 while � � S� is the direction same as �� Given a

�ag function g��� ��	 we denote by g� the image of g de�ned by

g���� �� � g��� ��� ����

where ��� ��� � ��� ���

�



De�nition ���� For every � � S�	 ���� reduces to a di�erential equation on the circle S�� Any continuous

function G��� �� that is a solution of ���� for every � � S� we call a �ag solution�

De�nition ���� If a �ag solution G��� �� satis�es

G���� �� � G���� ��
�

�no dependence on the variable ��	 then G��� �� is called a consistent �ag solution�

There is an important principle� each consistent �ag solution G��� �� of ����	 produces a spherical

solution of ����	 via the map

G��� ��� G��� �� � G��� � H���� ����

and vice versa
 restrictions of any spherical solution of ����	 onto the great circles is a

consistent �ag solution�

Hence the problem of �nding the spherical solutions reduces to �nding the consistent �ag solutions�

To solve the latter problem	 the present paper applies the consistency method �rst used in ��� and ���

in an integral equations context�

We denote�

e��� �� � the plane containing the origin of IR�	 direction � � S� and � � S� �� determine rotation of

the plane around ��	

B��� �� � projection of B � B onto the plane e��� ��	

R���� �� � curvature radius of �B��� �� at the point whose outer normal direction is ��

It is easy to see that

R���� �� � R��� ���

where ��� �� is the �ag dual to ��� ���

Note	 that in the Problem � uniquness �up to a translation� follows from the classical uniqueness result

on Christo�el problem	 since

R���� �R���� �


	

Z ��

�

R���� �� d�� ����

In case F ��� �� � � is nonnegative	 the equation ���� has the following geometrical interpretation� It

follows from ��� that homogeneus fonction H�x� � jxjH���	 where H��� � C��S��	 is convex if and only

if

H���� � �H�����
��
�� � � for every � � S� and � � S�� ����

�



where H���� is the restriction of H��� onto S��

So in case F ��� �� � �	 it follows from ����	 that if H��� is a spherical solution of ���� then its

homogeneus extention H�x� � jxjH��� is convex�

It is well known from convexity theory that if a function H�x� is convex then there is a unique convex

body

B � IR� with support function H�x��

The support function of each parallel shifts �translation� of that body B will again be a spherical solution

of ����� By uniqueness	 every two spherical solutions of ���� di�er by a summand � a�� �	 where

a � IR�� Thus we proved the following theorem�

Theorem ���� Let F ��� �� � � be a nonnegative function de�ned on f��� �� � � � S�� � � S�g�

If the equation ����	 has a spherical solution H��� then there exists a convex body B with

projection curvature radius function F ��� ��� whose support function is H���� Every spherical

solutions of ����	 has the form H���� � a�� �� where a � IR�� each being the support function

of a translation of the convex body B by
��
Oa�

The converse statement is also true� It follows from the theory for ��dimension �see ����	 that the support

function H��� of a convex body B satis�es ���� for F ��� �� � R��� ��	 where R��� �� is the projection

curvature radius function of B�

Before going to the main result	 we make some remarks� The purpose of the present paper is to �nd a

necessary and su�cient condition that ensures a positive answer to both Problems 	� and suggest an

algorithm of construction of the body B by �nding a representation of the support function in terms

of projection curvature radius function� This happens to be a spherical solution of the equation �����

In this paper the support function of a convex body B is considered with respect to a special choice of

the origin O�� It turns out that each �smooth convex body B has the special point O� we will call

the centroid of B �see Theorem ���� The centroid coincides with the centre of symmetry for centrally

symmetrical convex bodies�

For convex bodies B with positive Gaussian curvature one can de�ne the centroid as follows� within B

there exists a unique point O� such that �see Lemma ���

Z
S�

�
������
O�P��
 ��� � d
 � � for every � � S��

where P��
 � is the point on �B whose outer normal has the direction 
 � S�	 d
 is the usual angular

�



measure on S��� The set of points fP��
 �� 
 � SOmg we will call the belt of B with normal ��

Throughout the paper �in particular	 in Theorem �� that follows� we use usual spherical coordinates �� 


for points � � S� based on a choice of a North Pole N � S� and a reference point 
 � � on the equator

SN � We put � � �
� � �d��N � so that the points ��� 
 � lie on the equator SN � The point with coordinates

�� 
 we will denote by ��� 
 �N � On each S� we choose E�the direction East for the reference point and

the anticlockwise direction as positive�

Now we describe the main result�

Theorem ���� The support function of any ��smooth convex body B with respect to the

centroid O� has the representation

H��� �


�	

Z ��

�

�Z �

�

�

R���� 
 ��� �� cos�d�

�
d
�

�


�	�

Z ��

�

�Z �

�

��

�

R���� 
 ��� �� ��	 � ��� cos�� � sin� �� d�

�
d
�

�


�	�

Z �

�

�

sin�

cos� �
d�

Z ��

�

d


Z ��

�

R���� 
 ��� �� sin
��d� ���

where R��� �� is the projection curvature radius function of B� on S� we measure � from

the East direction with respect to �� �����	 is a spherical solution of the equation ����	 for

F ��� �� � R��� ���

Remark	 that the order of integration in the last integral of ��� is important�

Obviously Theorem �� suggests a practical algorithm of reconstruction of convex bodies from projection

curvature radius function R��� �� by calculation of the support function H����

We turn to Problem � Let R��� �� be the projection curvature radius function of a convex body B�

Then F ��� �� 	 R��� �� necessarily satis�es the following conditions�

� Z ��

�

F ��� �� sin�d� �

Z ��

�

F ��� �� cos�d� � �� ����

for every � � S� and any reference point on S� �follows from equation ����	 see also in �����

�� For every direction � � S� Z ��

�
�F ����� 
 ��� E��

�
��� d
 � �� ����

where F ���� �� � F ��� �� �see ����� and E is the East direction at the point ��� 
 �� with respect �

�Theorem ����

�



Let F ��� �� be a nonnegative continuously di�erentable function de�ned on f��� �� � � � S�� � � S�g�

Using ���	 we construct a function F ��� de�ned on S��

F ��� �


�	

Z ��

�

�Z �

�

�

F ���� 
 ��� �� cos�d�

�
d
�

�


�	�

Z ��

�

�Z �

�

��

�

F ���� 
 ��� �� ��	 � ��� cos� � � sin��� d�

�
d
�

�


�	�

Z �

�

�

sin�

cos� �
d�

Z ��

�

d


Z ��

�

F ���� 
 ��� �� sin
� �d� ����

Note that the last integral converges if the condition ���� is satis�ed �see ���
� and �������

Theorem ���� A nonnegative continuously di�erentable function F ��� �� de�ned on f��� �� � � �

S�� � � S�g represents the projection curvature radius function of some convex body if and only if

F ��� �� satis�es the conditions ������� ����	� and

F���� � �F�����
��
�� � F ��� �� for every � � S� and � � S�� ����

where F���� is the restriction of F ��� �given by ����
�� onto S��

Note that	 in ��� the same problem for centrally symmetrical convex bodies was posed and a necessary

and su�cient condition ensuring a positive answer found�

x�� GENERAL FLAG SOLUTION OF �����

We �x � � S� and a pole N � S� and try to solve ���� as a di�erential equation of second order on the

circle S��

We start with two results from ����

� For any smooth convex domain D in the plane

h��� �

Z �

�

R��� sin��� �� d�� ����

where h��� is the support function of D with respect to a point s � �D� In ���� we measure � from the

normal direction at s	 R��� is the curvature radius of �D at the point with normal ��

�� ���� is a solution of the following di�erential equation

R��� � h��� � h������ �����

One can easy verify that �also it follows from ����� and �����

G��� �� �

Z �

�
F ��� �� sin�� � �� d�� �����

is a �ag solution of the equation �����

�



Theorem ���� Every continuous �ag solution of ����	 has the form

g��� �� �

Z �

�

F ��� �� sin�� � �� d� � C��� cos� � S��� sin � �����

whera Cn and Sn are some real coecients�

Proof
 Every continuous �ag solution of ���� is a sum of G��� �� � g���� ��	 where g���� �� is a �ag

solution of the corresponding homogeneous equation

H���� � �H�����
��
�� � � for every � � S� and� � S�� �����

We look for the general �ag solution of ����� as a Fourier series

g���� �� �
X

n����������

�Cn��� cos n�� Sn��� sinn��� �����

After substitution of ����� into ����� we obtain that g���� �� satisfy ����� if and only if it has the form

g���� �� � C���� cos�� S���� sin��

Theorem �� is proved�

x	� THE CONSISTENCY CONDITION

Now we consider C � C��� and S � S��� in ����� as functions of � � ��� 
 � and try to �nd C��� and S���

from the condition that g��� �� satis�es ��
�� We write g��� �� in dual coordinates i�e� g��� �� � g���� ��

and require that g���� �� should not depend on � for every � � S�	 i�e� for every � � S�

�g���� ����� � �G��� �� � C��� cos� � S��� sin ���� � �� ����

where G��� �� was de�ned in ������

Here and below ����� denotes the derivative corresponding to right screw rotation around ��

Termwise di�erentiation with use of expressions �see ����


 �� �
sin�

cos �
� ��� � � tan � sin�� ��� � � cos�� �����

after a natural grouping of the summands in ����	 yields the Fourier series of ��G��� ����� �a detailed

derivation is contained in ��� and ����� By uniqueness of the Fourier coe�cients

�����������������

�C������ �
�S������
cos �

� tan � C��� �


	

Z ��

�

A��� �� cos ��d�

�C������ �
�S������
cos �

� tan � C��� �


�	

Z ��

�
A��� �� d�

�S������ �
�C������
cos �

� tan � S��� �


	

Z ��

�

A��� �� sin ��d��

�����






where

A��� �� �

Z �

�

�F ��� ���� sin ��� �� � F ��� �� cos ��� ������ d�� �����

x�� AVERAGING

Let H be a continuous spherical solution of ����	 i�e� restriction of H onto the great circles is a consistent

�ag solution of ����� By Theorem � there exists a convex body B with projection curvature radius

function R��� �� � F ��� ��	 whose support function is H����

To calculate H��� we take � � S� for the pole � � N � Returning to the formula ����� for every

� � ��� 
 �� � S� we have

H��� �

Z �

�

�

R��� �� sin�
	

�
� �� d� � S���� ����

We integrate both sides of ���� with respect to uniform angular measure d
 over ��� �	� to get

�	H��� �

Z ��

�

Z �

�

�
R���� 
 ��� �� cos� d� d
 �

Z ��

�
S���� 
 ��� d
� �����

Now the problem is to calculate Z ��

�

S���� 
 ��� d
 � S���� �����

We are going to integrate both sides of ����� and ����� with respect to d
 over ��� �	��

For � � ��� 
 ��	 where � � ��� �� � and 
 � ��� �	� �see ������ we denote

S��� �

Z ��

�
S���� 
 ��� d
� �����

A��� �


	

Z ��

�

d


Z ��

�

�Z �

�

�R��� ���� sin ��� �� �R��� �� cos ��� ������ d�

�
sin ��d�� �����

Integrating both sides of ����� and ����� and taking into account that

Z ��

�

�C��� 
 ���
�
� d
 � �

for � � ��� �� � we get

S
�
��� � tan � S��� � A���� �����

Thus we have di�erential equation ����� for unknown coe�cient S����

x
� BOUNDARY CONDITION FOR DIFFERENTIAL EQUATION �����

We have to �nd S��� given by ������ It follows from ����� that

	
S���

cos �


�
�
A���

cos �
� ����

�



Integrating both sides of ���� with respect to d� over ��� �� � we obtain

S��� �
S���

cos �

����
�

�

�

Z �

�

�

A���

cos �
d�� �����

Now	 we are going to calculate S���
cos�

���
�

�

�

It follows from ����� that

S��� �


	

Z ��

�

Z ��

�

�
H���� �

Z �

�

R��� �� sin��� �� d�

�
sin�d�d
 �

�


	

Z ��

�

Z ��

�

H���� sin�d�d
 �


�	

Z ��

�

Z ��

�

R��� �� ���	 � �� cos � � sin�� d� d
� �����

Let � � S� be the direction that corresponds to � � ��� �	�	 for � � ��� 
 ��� As a point of S�	 let � have

spherical coordinates u� t with respect �� By the sinus theorem of spherical geometry

cos � sin� � sinu� �����

From ����� we get

�u�����

�

� � sin�� �����

Using �����	 for a �x 
 we write a Taylor expession at a neighbourhood of the point � � �
�
�

H��������� � H���� �� 
 ��� �H�
����� �� 
 ��� sin� �

	

�
� �� � o�

	

�
� ��� �����

Similarly	 for � � ��� �	� we get

R���� 
 ��� �� � R��
	

�
� 
 ��� � � 
 � �R����

	

�
� 
 ��� � � 
 � sin� �

	

�
� �� � o�

	

�
� ��� ���
�

Substituting ����� and ���
� into ����� and taking into account the easy equalities

Z ��

�

Z ��

�

H���� �� 
 ��� sin�d�d
 � �

and Z ��

�

Z ��

�

R��
	

�
� 
 ��� � � 
 � ���	 � �� cos� � sin�� d� d
 � � �����

we obtain

lim
���

�

S���

cos �
�



	

Z ��

�

Z ��

�
H�
����� �� 
 ��� sin

� �d�d
�

�


�	

Z ��

�

Z ��

�

R����
	

�
� 
 ��� � � 
 � sin� ���	 � �� cos� � sin�� d� d
 �

�



�

Z ��

�

H�
����� 
 ��� d
 �

�

�

Z ��

�

�R����� 
 ��� E��
�
���d
� �����

Theorem ���� For every ��smooth convex body B and any direction � � S�� we have

Z ��

�

�R����� 
 ��� E��
�
��� d
 � �� �����

where �� 
 is the spherical coordinates with respect to �� where E is the East direction at the

point ��� 
 �� with respect ��

Proof� Using spherical geometry	 one can prove that �see also �����

�R����� 
 ��� E��
�
��� �

�
H���� 
 ��� �H��

������ 
 ���
�
���

�

�
H���� 
 ��� �H��

��



cos� �
�H �

� tan �

��
���

� �H��
�� �

�
���� ����

where H��� is the supporet function of B� After integration ���� we get

Z ��

�

�R����� 
 ��� E��
�
��� d
 �

Z ��

�

�H��
�� �

�
��� d
 � ��

x�� CENTROID OF A CONVEX BODY

Let B be a convex body in IR� and Q � IR� be a point� By HQ��� we denote the support function of B

with respect to Q�

Theorem ���� For a given �smooth convex body B there is a point O� � IR� such that

Z ��

�

�HO����� 
 ����
�
��� d
 � � for every � � S�� ����

where �� 
 are the spherical coordinates with respect ��

Proof� For a given B and a point Q � IR� by KQ��� we denote the following function de�ned on S�

KQ��� �

Z ��

�

�HQ���� 
 ����
�

��� d
�

KQ��� is a continuous odd function with maximumK�Q�

K�Q� � max
��S�

KQ����

It is easy to see that K�Q� � 
 for jQj � 
� Since K�Q� is a continuous so there is a point O� for

which

K�O�� � minK�Q��

�



Let �� be a �say unique� direction of maximum i�e�

K�O�� � max
��S�

KO� ��� � KO� �����

If K�O�� � � the theorem is proved� For the case K�O�� � a � � let O�� be the point for which

�����
O�O�� � ��� It is easy to understand that HO����� � HO���� � ������	 hence for a small  � � we

�nd that K�O��� � a � �	 which is contrary to de�nition of O�� So K�O�� � �� For the case where

there are two or more directions of maximum one can apply a similar argument� The theorem is proved�

The point O� we will call the centroid of the convex body B� Theorem ��� below gives a clearer

geometrical interpretation to that concept�

Let P��
 � be the point on �B whose outer normal has the direction 
 � S��

Lemma ���� For every ��smooth convex body B with positive Gaussian curvature and any

direction � � S�� we have

Z ��

�

�HQ���� 
 ����
�

��� d
 �

Z
S�

�
������
QP��
 ��� � d
� �����

where Q is a point of IR� and d
 is the usual angular measure on S���

Proof� Let B��� 
 � be the projection of B onto the plane e��� 
 � �containing Q and the directions � � S�

and 
 � S�� and P ��
 � be the point on �B��� 
 � with outer normal ��� 
 ��� For the support function of

B��� 
 � �equivalently for the restriction of HQ��� onto e��� 
 �� we have

�HQ���� 
 ����
�
��� � �j

������
QP ��
 �j cos �� � �o� �HP� �������� � j

������
QP ��
 �j sin �o ��

������
QP ��
 ��� �� �����

where HP���� is the support function of B��� 
 � with respect to the point P ��
 � � �B��� 
 � and ���� 
 ��

is the direction of
������
QP ��
 �� The statment �HP��������� � � was proved in ���� Integrating ����� and taking

into account that �
������
QP ��
 ��� ��� �QP��
 ��� � we get ������

Theorem �� and Lemma �� imply the following Theorem�

Theorem ���� For a smooth convex body B with positive Gaussian curvature we have

Z ��

�

�
������
O�P��
 ��� � d
 � � for every � � S�� �����

where O� is the centroid of B�

One can consider the last statement as a de�nition of the centroid of B�





x�� A REPRESENTATION FOR SUPPORT FUNCTION OF CONVEX BODIES

Let O� be the centroid of the convex body B �see x��� Now we take O� for the origin of IR�� Below

HO���� we will simply denote by H����

By Theorem ��	 Theorem �� and Lemma �� we have the boundary condition �see ������

S���

cos �

����
�

�

� �� �
��

Substituting ����� into ����� we get

�	H��� �

Z ��

�

Z �

�

�

R���� 
 ��� �� cos� d� d
 �

Z �

�

�

A���

cos �
d� �

Z ��

�

Z �

�

�

R���� 
 ��� �� cos� d� d
�

�


	

Z �

�

�

d�

cos �

Z ��

�

d


Z ��

�

�Z �

�

�R��� ���� sin �� � �� � R��� �� cos �� � ������ d�

�
sin ��d��

Using expressions ����� and integrating by d� yields

�	H��� �

Z ��

�

Z �

�

�

R���� 
 ��� �� cos� d� d
�

�


	

Z �

�

�

d�

cos �

Z ��

�

d


Z ��

�

�R��� ���� I � R��� �� tan � II� d�� �
���

where

II �

Z ��

	

sin �� cos��� �� sin�d� �

�
��	 � �� cos�

�
�
sin�� � sin� ��

�
� sin� �

�
�

and

I �

Z ��

	

sin �� sin�� � �� cos�d� �

�
��	 � �� cos�

�
�
sin�� � sin� ��

�

�
� �
���

Integrating by parts �
��� we get

�	H��� �

Z ��

�

Z �

�

�

R���� 
 ��� �� cos� d� d
 �


	

Z �

�

�

d�

Z ��

�

d


Z ��

�

R��� ��
sin � sin��

cos� �
d��

�


	

Z �

�

�

d


Z ��

�

R���� 
 ��� ��I d� � lim
a��

�



	 cos a

Z �

�

�

d


Z ��

�

R��a� 
 ��� �� I d�� �
���

Using ���
�	 Theorem �� and taking into account thatZ ��

�

I d� � �

we get

�	H��� �

Z ��

�

Z �

�

�
R���� 
 ��� �� cos� d� d
�

�


	

Z �

�

�

d�

Z ��

�

d


Z ��

�

R��� ��
sin � sin� �

cos� �
d� �



	

Z �

�

�

d


Z ��

�

R���� 
 �� ��I d�� �
���

From �
���	 by ���� we obtain ���� Theorem �� is proved�

�



x� PROOF OF THEOREM ��	

Proof� Necessity� let F ��� �� be the projection curvature radius function of a convex body B	 then it

satis�es ���� �see ����	 the condition ���� �Theorem ��� and the condition ���� �Theorem ����

Su�ciently� let F ��� �� be a nonnegative continuous di�erentable function satis�ng the conditions ����	

����	 ����� By means of ���� we construct the function F ��� de�ned on S� as in ����� According

to ����	 F ��� is a convex function hence there exists a convex body B with support function F ����

The same ���� implies that F ��� �� is the projection curvature radius of B�

I would like to express my gratitude to Professor R� V� Ambartzumian for helpful remarks�
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