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WEIGHTED CLASSES OF REGULAR FUNCTIONS
AREA INTEGRABLE OVER THE UNIT DISC

A. M. Jerbashian

Abstract. This preprint contains some generalizations of the main theorems of M.M.Djr-
bashian of 1945–1948 which laid ground for the theory of Ap

α (or initially Hp(α)) spaces
and his factorization theory of classes N{ω} exhausting all functions meromorphic in
the unit disc. Also some later results on Ap

α spaces and Nevanlinna’s weighted class are
improved.

The preprint contains the main analytic apparatus for generalizing almost all known
results on Ap

α spaces within a new theory, where instead (1 − r2)αdr (−1 < α < +∞,
0 < r < 1) some weights of the form dω(r2) are used. The obtained results make
evident that the theory of Ap

ω spaces and the factorization theory of M.M.Djrbashian
are inseparable parts of a general theory of classes of regular functions associated with
M.M.Djrbashian general integrodifferentiation. The author hopes that the publication of
this preprint can lead to clarification of some priority misunderstandings in the field.

Introduction.

The earliest work of M.M.Djrbashian [1] published in 1945 (see also [2] containing the proofs
of the representations of [1] and some additional theorems) was mainly aimed to improve
Nevanlinna’s result (see [3], Sec. 216) on the density of zeros and poles of functions f(z)
meromorphic in the unit disc, for which the Riemann–Liouville fractional integral of the
growth characteristic T (r, f) is bounded, i.e.∫ 1

0

(1− r)αT (r, f)dr < +∞ (1)

for a given α > −1. The same work [1] contains investigation of the similar Hardy type
classesHp(α) of holomorphic functions in |z| < 1, for which the Riemann–Liouville fractional
integral of

Mp
p (r, f) =

∫ 2π

0

|f(reiϑ)|pdϑ

is bounded, i.e.

Hp(α) ≡ Ap
α :

∫∫
|ζ|<1

(1− |ζ|)α|f(ζ)|pdσ(ζ) < +∞, (2)

where α ∈ (−1,+∞) and p ∈ [1,+∞) are any fixed numbers and dσ(ζ) is the Lebesgue’s area
measure. Particularly, in [1] the representation formula of these classes was first obtained.
It has to be mentioned, that Hp(α) ≡ Ap

α is a generalization of the non-weighted Hilbert
space

H2(0) ≡ A2
0 :

∫∫
|ζ|<1

|f(ζ)|2dσ(ζ) < +∞
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which was widely known for a long time. The oldest known work, where the classes H2(0) ≡
A2

0 (≡ A2) were introduced and investigated was authored by L.Biberbach[4] (1914) to
whom in all probability these classes are to be attributed (see [5], pp. 44, 150, 322)1.

Later a new approach to application of fractional integrodifferentiation led M.M.Djrbashian
(see [11], Ch. IX and [12, 13, 14]) to the factorization theory of his Nevanlinna type N{ω}
classes the sum of which coincides with the whole set of functions meromorphic in |z| < 1.
This theory is given in completed form in his joint monograph with V.S.Zakarian [15]. The
classes N{ω} were introduced in [13] by the use of a generalization of the Riemann–Liouville
operator [12] which is written in the form

Lω log |f(z)| = −
∫ 1

0

log |f(tz)|dω(t), |z| < 1,

if the function ω(x) satisfies some natural conditions.

Further development of investigation methods led the author of this paper [16] to an exten-
sion of M.M.Djrbashian’s factorization theory to the set of all functions δ-subharmonic in
|z| < 1, where the theory got an extremely explicit interpretation. Namely, the replacement
of log |f(z)| by an arbitrary function u(z) which is δ-subharmonic in |z| < 1 led to the
following understanding of M.M.Djrbashian Tω characteristics and Nω classes:

Tω(r, u) = T (r, Lωu) and hence u ∈ Nω if and only if Lωu(z) ∈ N,

i.e. Nevanlinna characteristic of the δ-subharmonic function Lωu(z) is bounded.

Nevertheless, the old results of M.M.Djrbashian [1, 2] still remain in considerable interest
as they find development and application in numerous contemporary investigations (see the
monographs by A.E.Djrbashian–F.A.Shamoian[17] and H.Hedenmalm–B.Korenblum–K.Zhu
[18] containing large lists of references, see also [19 – 25]2

This paper is aimed in generalization of the main theorems of M.M.Djrbashian [1, 2] which
in essence gave rise to the theory of Ap

α spaces in the unit disc and to his factorization theory
of functions meromorphic in the disc [13, 14]. Besides, similar generalizations of some later
results of other authors, related to the spaces Ap

α and to the weighted Nevanlinna class
(1) are obtained. Instead (1 − r2)αdr (−1 < α < +∞, 0 < r < 1), some weights of the
form dω(r2) are used3. This unites the results of the paper with the factorization theory of
M.M.Djrbashian.

This paper improves the results of the report [20]. The author thanks K.L.Avetisyan
for Lemma 1.1 and some additions to References. Besides, the author is thankful to
S.G.Rafaelyan for a remark which laid ground for Section 7.

1. The spaces Ap
ω and their representations

1.1. We define Ap
ω as the set of all functions f(z) holomorphic in |z| < 1, for which

‖f‖p,ω =

{
1
2π

∫∫
|ζ|<1

|f(ζ)|p|dµω(ζ)|

}1/p

< +∞, 0 < p <∞, (1.1)

1 for A2
0, see also Carleman[6] (1922), S.Bergman[7] (1929), W.Wirtinger[8] (1932). Still

without the representation formula of Ap
α, Hardy–Littlewood[9] (1932) investigated the frac-

tional integration operator in Ap
α, and M.V.Keldysch [10] (1941) proved some approximation

theorems in Ap
α.

2 one can see that several assertions on the historical background of Ap
α spaces (see,

for instance, pp. 6 – 8 in [17]) are neglected in some publications, which causes new
misunderstandings.

3 in 1980’s F.A.Shamoian had proved some less general results in the field.
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where dµω(ρeiϑ) = −dω(ρ2)dϑ and ω(t) ∈ ΩA, i.e. is defined in [0, 1] and such that:

(i) 0 <
1∨
δ

ω <∞ for any δ ∈ [0, 1),

(ii) ∆n ≡ ∆n(ω) = −
∫ 1

0

tndω(t) 6= 0, n = 1, 2, . . . ,

(iii) lim inf
n→∞

n
√
|∆n| ≥ 1 .

The similar class Lp
ω is assumed to be defined in the same way, except the holomorphity re-

quirement. Note that lim supn→∞
n
√
|∆n| ≤ limn→∞

n

√∨1
δ ω = 1. Thus, limn→∞

n
√
|∆n| =

1 under (i) and (iii).

Proposition 1.1. For any fixed p ∈ (0,∞) the sum
⋃

ω∈ΩA
Ap

ω coincides with the set of all
functions holomorphic in |z| < 1.

Proposition 1.2. For any p ∈ [1,∞) and ω ∈ ΩA the class Ap
ω is a Banach space with the

norm (1.1), and Ap
ω becomes Ap

α when ω(x) = (1− x)1+α (−1 < α <∞).

1.2. We start by an estimate which is of independent interest.

Lemma 1.1. If f(z) ∈ Ap
ω, where ω(x) ∈ ΩA and 0 < p < +∞ are arbitrary. Then

|f(z)|p ≤
2‖f‖p

p,ω

(ρ− |z|)
∫ 1

ρ2 |dω(x)|
, |z| < ρ < 1.

The following assertion is a generalization of Theorem I in [2].

Theorem 1.1. If f(z) ∈ Ap
ω for some ω ∈ ΩA and p ∈ [1,∞), then the following formulas

are true in |z| < 1:

f(z) =
1
2π

∫∫
|ζ|<1

f(ζ)Cω(zζ)dµω(ζ), (1.2)

f(z) = −f(0) +
1
π

∫∫
|ζ|<1

{
Re f(ζ)

}
Cω(zζ)dµω(ζ), (1.2′)

where Cω(z) =
∑∞

k=0 z
k/∆k (∆0 = 1) is the Cauchy type kernel of M.M. Djrbashian [12, 13,

14, 15].

1.3. Under some additional requirements on ω ∈ ΩA, the following descriptive represen-
tation is true for several A2

ω, the sum of which still is equal to the set of all functions
holomorphic in |z| < 1.

Theorem 1.2. Let ω ∈ ΩA be continuously differentiable in [0.1] and such that ω ↘,
ω(1) ≡ ω(1− 0) = 0 and ω(0) = 1. Further, let ω̃(x) be the Volterra square of ω(x), i.e.

ω̃(x) = −
∫ 1

x

ω
(x
σ

)
dω(σ), 0 < x < 1.

Then ω̃ ∈ ΩA and A2
ω̃ coincides with the set of all functions which are representable in the

form

f(z) =
1
2π

∫ 2π

0

ϕ(eiϑ)Cω(ze−iϑ)dϑ, |z| < 1, ϕ(eiϑ) ∈ L2[0, 2π]. (1.3)
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For any f(z) ∈ A2
ω̃ there exists a unique function ϕ0(z) of the ordinary Hardy space H2,

such that (1.3) is true with ϕ0(eiϑ). This function is found by the formula

ϕ0(z) = Lωf(z) = −
∫ 1

0

f(tz)dω(t), |z| < 1. (1.4)

Besides, ‖ϕ0‖H2 = ‖f‖2,ω̃ and ϕ − ϕ0 ⊥ H2 for any ϕ(eiϑ) ∈ L2[0, 2π] for which (1.3) is
true. The operator Lω is an isometry A2

ω̃ −→ H2, and the integral (1.3) defines (Lω)−1 on
H2.

Remark 1.1. For ω(x) = (1 − x)(1+α)/2 (α > −1) the previous Theorem 1.2 becomes, in
essence, the union of Theorems IV and V of [2]. For the Biberbach space A2

0 (α = 0) the
representation (1.3) with ϕ0 of the form (1.4) first has been proved by M.V. Keldysch (see
[2]).

1.4. A representation over the boundary of the disc is true also in the general case 1 ≤ p <
+∞. It is natural to call this Shamoian representation as such representations were first
found in [21].

Theorem 1.3. Let 1 ≤ p < +∞ and let ω(x) ∈ ΩA and
∨1

0 ω = 1. Then:

1◦. Any function f(z) ∈ Ap
ω is representable in the form

f(z) =
1
2π

∫ 2π

0

Cω1(ze
−iϑ)ϕ(eiϑ)dϑ, |z| < 1, (1.5)

where ω1(x) = ω(x2) and ϕ(z) = Lω1f(z) ∈ Hp.

2◦. In Ap
ω we have ‖Lω1‖ ≤ 1, and (1.5) represents L−1

ω1
in Lω1A

p
ω.

Remark 1.2. One can verify that Theorem 1.3 remains true if ω1(x) is replaced by ω(x)
itself.

Remark 1.3. For the particular case ω(x) = (1− x)1+α (−1 < α < +∞) some descriptive
representations of Ap

ω by integrals over the unit circle were established by F.A.Shamoian
[21] for p = 1. A development of the methods of [21] in [26] led to similar representations of
Ap

α for p ≥ 1. These representations establish one-to-one correspondences between Ap
α and

definite O.V.Besov spaces. Similar to the results of [21] and [26], the assertion of Theorem
1.3 evidently is true with

ωε(x) = −
∫ 1

x

ε
(x
t

)
dω(t), 0 < x < 1,

and Lωε , Cωε in the representation (1.5) of f(z) ∈ Ap
ω, provided ε(x) ∈ ΩA is continuously

differentiable in [0, 1) and such that ε(x) ↘ and ε(1− 0) = 0.

2. The spaces Ap
ω ⊂ Hp

Below we shall consider some Dirichlet type weighted spaces that we again denote Ap
ω

due to their similarity to those N{ω} classes of M.M.Djrbashian, which are contained in
Nevanlinna’s class N , namely these Ap

ω are contained in Hardy’s Hp and have the same
boundary property as N{ω} ⊂ N .

Definition 2.1. The class Ω̃A is the set of those ω(x) which are continuous and nonde-
creasing in [0, 1) and such that

∫ 1

0
ω(x)dx = 1 and |ω(x) − 1| ≤ Kx (0 ≤ x < δ) for some

K > 0 and δ ∈ (0, 1).

In contrast to the definition of ΩA, this definition permits a function ω(x) ∈ Ω̃A to tend to
+∞ as x→ +0 and to introduce:
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Definition 2.2. Ap
ω (0 < p < +∞) is the set of those functions f(z) for which f ′(z) ∈ Ap

ω̃,
where ω̃(x) =

∫ 1

x
ω(t)dt and ω(x) ∈ Ω̃A.

One can verify that the last definition is correct since it provides ω̃(x) ∈ ΩA. Besides, it
is obvious that Ap

ω (1 ≤ p < +∞, ω(x) ∈ Ω̃A) is a Banach space with the norm ‖f‖p,ω =
‖f ′‖p,ω̃.

Before giving the theorem, we have to recall the concept of ω–capacity introduced by M.M.
Djrbashian and V.S.Zakarian [27, 28, 14, 15] as a generalization of Frostman’s well known α–
capacity (holding for ω(x) = (1− x)α, −1 < α < 0). Assuming that ω(x) > 0 is continuous
in [0, 1), |ω(x) − 1| ≤ Kx (0 ≤ x < δ) for some K > 0 and δ ∈ (0, 1), ω(0) = 1 and∫ 1

0
ω(x)dx < +∞, and

C(z;ω) = 1 +
∞∑

k=1

zk

k
∫ 1

0
tk−1ω(x)dx

,

they introduced

Definition 2.3. A Borel set E ⊂ [0, 2π] has positive ω–capacity if there exists a nonnegative
measure µ ≺ E for which

sup
|z|≤1

∫ 2π

0

|C(ze−iϑ;ω)|dµ(ϑ) < +∞. (2.1)

Otherwise (i.e. if the integral (2.1) is unbounded for any µ ≺ E) E has zero ω–capacity.

Theorem 2.1. Let 1 ≤ p < +∞ and let ω(x) ∈ Ω̃A. Then:

1◦. Ap
ω ⊂ Hp

2◦. For any f(z) ∈ Ap
ω the finite nontangential boundary values f(eiϑ) exist for all

ϑ ∈ [0, 2π] except, perhaps, for a set E ⊂ [0, 2π] of zero ω–capacity.

Remark 2.1. Using the representation (1.3) of Theorem 1.2, one can prove a more sharp
theorem on the boundary properties of the classes A2

ω̃ ⊂ H2.

3. Evaluation of M.M.Djrbashian ω-kernels

This section contains the estimates of the still unpublished work [29], which were essential
for proving further results.

As M.M.Djrbashian had often stated, one of the most significant problems related with
his factorization theory [13, 14, 15] is the evaluation of Cω (and hence of Sω = 2Cω − 1)
kernels which depend on a function-parameter ω(x) given in (0, 1) and are used in the
representations of this theory (see also [16], where the theory is extended to all functions
δ–subharmonic in |z| < 1). Later, for solution of some representation problems in tube
domains A.H.Karapetyan [30] constructed some kernels which in the one-dimensional case
are the half-plane similarities of Cω and take the form

Cω(z) ≡
∫ +∞

0

eiztdt

t
∫ +∞
0

e−σtω(σ)dσ
, z ∈ G+ = {z : Im z > 0} (3.1)

(we use the same notation for these new kernels and preassume some restrictions on ω(t),
0 < t < +∞, providing the holomorphity of Cω(z) in G+). The main assumption was that
under some additional conditions on the behavior of the parameter-functions ω(x) in (0, 1)
and (0,+∞) the following estimates have to be true:

|Cω(z)| ≤ M

|z2ω′(y)|
, z = x+ iy ∈ G+ and |Cω(z)| ≤ M

|(1− z)2ω′(|z|)|
, |z| < 1, (3.2)
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which are “almost” generalizations of the representations

Cω(z)
∣∣∣∣
ω(x)=xα

=
1

(−iz)1+α
, z ∈ G+ and Cω(z)

∣∣∣∣
ω(x)=(1−x)α

=
1

(1− z)1+α
, |z| < 1 (α > −1).

3.1. We use a united evaluation method for proving (3.2) for both kernels, under some
conditions in which the derivatives of ω(x) in (0, 1) (or (0,+∞)) decrease as x→ 1− 0 (or
x→ +0) not more rapidly than the function (1−x)α (or xα). These estimates are exact on
the positive radius z = r ∈ (0, 1) and on the imaginary half-axis z = iy, y ∈ (0,+∞). The
“model” case is the evaluation of the half-plane kernel (3.1), and the main technical tool is
the following, perhaps known, similarity of Abel’s theorem.

Lemma 3.1. Let ϕ(t) > 0 be a function defined in (0,+∞).

1◦. If ϕ(t) ↗ but t−αϕ(t) ↘ in (0,+∞) for an α > 0, then∫ +∞

0

e−txϕ(t) dt � ϕ(1/x)
x

, 0 < x < +∞. (3.3)

2◦. If ϕ(t) ↗ but (1− e−t)−αϕ(t) ↘ for an α > 0, then for enough small v > 0∫ +∞

+0

e−tvϕ(t) d[t] � ϕ(1/v)
v

. (3.4)

3◦. If ϕ(t) ↘ in (0,+∞) but tδϕ(t) ↗ or (1 − e−t)δϕ(t) ↗ for a δ ∈ (0, 1) , then
(3.3) and (3.4) correspondingly are true.

3.2. The below two theorems are for the half-plane kernels.

Theorem 3.1. Let ω(t) > 0 be a non-decreasing, continuously differentiable function in
(0,+∞), such that

1◦. ω(+0) = 0 and lim
x→+∞

e−εxω(x) = 0 for any ε > 0,

2◦. (i) ω′(x) ↗ but x−αω′(x) ↘ for some α > 0 or, alternatively,
(ii) ω′(x) ↘ but xδω′(x) ↗ for some δ ∈ (0, 1),

Then
Cω(iy) � 1

y2ω′(y)
, 0 < y < +∞.

If along with 1◦ and 2◦(i) we have

3◦. ω′(+∞) = +∞ and x−1ω′(x) ↗ or x−1ω′(x) ↘ but x−δω′(x) ↗ for some δ ∈
(0, 1), then there exists a constant M (≡Mω) > 0 for which

|Cω(z)| ≤ M

|z|2ω′(y)
, z = x+ iy ∈ G+.

The latter estimate is proved under the assumption that ω′(x) ↗. Nevertheless, it is used
for proving the following theorem which is for the case ω′(x) ↘.

Theorem 3.2. Let ω(t) > 0 be a continuously differentiable, non-decreasing function in
(0,+∞), such that

1◦. x−1ω(x) ↘, x−δω(x) ↗ for a δ ∈ (0, 1) and ω′(x) ↘,

2◦. ω(+∞) = +∞ but lim
x→+∞

e−εxω(x) = 0 for any ε > 0.
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Then there exists a constant M (≡Mω) > 0 for which

|C ′ω(z)| ≤ M

|z|2yω′(y)
, z = x+ iy ∈ G+.

3.3. The following two theorems are true for the disc kernels

Cω(z) =
∞∑

k=0

zk

∆k
, |z| < 1

(
∆0 = 1, ∆k = −

∫ 1

0

xkdω(x), k = 1, 2, . . .
)
.

Theorem 3.3. Let ω(t) > 0 be a non-increasing, continuously differentiable function in
(0, 1), such that

1◦. ω(1− 0) = 0 and ω(+0) = 1,

2◦. (i) |ω′(x)| ↘ but (1− x)−α|ω′(x)| ↗ for an α > 0 or, alternatively,
(ii) |ω′(x)| ↗ but (1− x)δ|ω′(x)| ↘ for a δ ∈ (0, 1).

Then
Cω(r) � 1

(1− r)2|ω′(r)|
, 0 < r < 1.

If along with 1◦ and 2◦(i)

3◦. ω′(1− 0) = 0 and (1−x)−1|ω′(x)| ↘ or (1−x)−1|ω′(x)| ↗ but (1−x)−δ|ω′(x)| ↘
for a δ ∈ (0, 1), then there exists a constant M (≡Mω) > 0 such that

|Cω(z)| ≤ M

|1− z|2|ω′(|z|)|
, |z| < 1.

Theorem 3.4. Let ω(t) > 0 be a non-increasing, continuously differentiable function of
L1(0, 1), such that ω(1 − 0) = 0, ω(+0) = 1 but (1 − x)−1ω(x) ↗, (1 − x)−δω(x) ↘ for a
δ ∈ (0, 1) and |ω′(x)| ↗ in (0, 1). Then there exists a constant M (≡Mω) > 0 such that

|C ′ω(z)| ≤ M

|1− z|2(1− |z|)|ω′(|z|)
, |z| < 1.

Remark 3.1. The used evaluation method is applicable also if the condition of not more
than power decrease is posed not on the derivative but immediately on the function ω(x).
This leads to estimates similar to (3.2), where the power function in the dominator is linear
and ω′ is replaced by ω. However, we prefer the form (3.2) with ω′ as it turns to be better
for further application.

Remark 3.2. The ω-function-parameters for which the Cω kernels are evaluated in Theo-
rems 3.1 – 3.4 are strictly contained in the class of functions of regular behavior. Although,
among them there are ω-functions for which

|ω′(x)| � (1− x)α logβ 1
1− x

as x→ 1− 0 and |ω′(x)| � xα logβ 1
x

as x→ +0

for any given α ∈ (−1,+∞) and β > 0.

3.4. The following two theorems are true for ω-kernels in the half-plane in the case of
exponentially decreasing parameter–functions.

Theorem 3.5. Let

ω(t) ≡ ωρ,α(t) =
∫ t

0

e−ρ/σσαdσ, 0 < t < +∞,

7



where ρ > 0 and α are any fixed real numbers. Then the kernel (3.1) admits the following
estimate:

Cω(iy) � 1
y3ω′(y)

×


1 + y if α > −1,
(1 + y)2+α if α < −1,
(1 + y) log−1(e+ y) if α = −1,

0 < y < +∞.

And if α > 0, then there exists a constant M ≡Mρ,α > 0 such that

|Cω(z)| ≤M
1 + y

|z|2yω′(y)
, z = x+ iy ∈ G+.

3.5. Some similar estimates are true for the kernels Cω(z) in the unit disk, for the scale of
parameter-functions

ω(x) ≡ ωρ,α(x) = −K
∫ 1

x

exp
{
− ρ

1− t

}
(1− t)αdt, 0 ≤ x ≤ 1,

where K =
(∫ 1

0
exp

{
− ρ

1−t

}
(1− t)αdt

)−1

and ρ, α > 0 are any numbers.

Theorem 3.6. For any real α and ρ > 0

Cω(r) � 1
(1− r)3|ω′(r)|

, 0 < r < 1.

And if α > 0, then there exists a constant M ≡Mρ,α > 0 such that

|Cω(z)| ≤ M

|1− z|2(1− |z|)|ω′(|z|)|
, |z| < 1.

4. Projection theorems and the conjugate space of Ap
ω

4.1. While formula (1.3) of Theorem 1.2 describes the orthogonal projections of L2[0, 2π]
onto A2

ω, our next theorem shows that the representation formula (1.2) defines an orthogonal
projection of L2

ω onto A2
ω. Note that for ω(x) = 1−x one can find the proof of this statement

(i.e. the projection L2
0 −→ A2

0) in [5, 8], and for ω(x) = (1 − x)α+1 (α > −1) (i.e. for
L2

α −→ A2
α) the proof is first given in [2] (Theorem VII).

Before proving our theorem, note that if ω ∈ ΩA is a nonincreasing function, then one can
easily show that

en(z) =
zn√

∆n(ω)
, n = 0, 1, 2, . . . (4.1)

is an orthonormal set in A2
ω. As the polynomials are dense in A2

ω, the set (4.1) is an
orthonormal basis in A2

ω. Besides, one can prove that if f(z) =
∑∞

n=0 anz
n and g(z) =∑∞

n=0 bnz
n are any functions from A2

ω, then

‖f‖22,ω =
∞∑

n=0

|an|2∆n(ω) and (f, g)ω =
∞∑

n=0

anbn∆n(ω),

where the inner product (f, g)ω is that induced from L2
ω.

Theorem 4.1. If ω ∈ ΩA is a nonincreasing function such that
∨1

0 ω = 1, then the following
formula

Pωf(z) =
1
2π

∫∫
|ζ|<1

f(ζ)Cω(zζ)dµω(ζ), |z| < 1, f ∈ L2
ω,
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is true for the orthogonal projection of L2
ω onto A2

ω.

Remark 4.1. While the sum of classes A2
ω considered in Theorem 4.1 coincides with the

whole set of functions holomorphic in |z| < 1 (Proposition 1.1), the sum of classes L2
ω which

are orthogonally projected to A2
ω in Theorem 4.1coincides with the set of all measurable in

|z| < 1 functions F (z) for which F (ρne
iϑ) ∈ L2[0, 2π] on a sequence ρn = ρn(F ) ↑ 1.

4.2. For proving some projection theorems from Lp
ω to Ap

ω (1 ≤ p < ∞), which contain
those known for Lp

α −→ Ap
α [17, 18] in the particular case ω(x) = (1−x)α+1 (−1 < α <∞),

the asymptotic estimates of Theorems 3.1 and 3.2 are used.

Definition 4.1. A function ω(x) is of the class Ω̃A if along with ω(x) ∈ ΩA the below
requirements (A) or (B) are satisfied.

(A) ω(x) > 0 is nonincreasing, continuously differentiable in [0, 1) and such that ω′(x) 6= 0
(0 ≤ x < 1) and

1o. |ω′(x)| ↘ but (1− x)−α|ω′(x)| ↗ for an α > 0,

2o. (1− x)−1|ω′(x)| ↘ or alternatively (1− x)−1|ω′(x)| ↗ but (1− x)−δ|ω′(x)| ↘
for a δ ∈ (0, 1).

(B) ω(x) > 0 is a nonincreasing, continuously differentiable function in [0, 1), such that

1o. ω(1− 0) = 0, ω(x) ∈ L1[0, 1),

2o. |ω′(x)| ↗ but (1− x)δ1 |ω′(x)| ↘ for a δ1 ∈ (0, 1)
and (1− x)−1|ω(x)| ↗ but (1− x)−δ2 |ω(x)| ↘ for a δ2 ∈ (0, 1).

One can observe that if ω(x) ∈ Ω̃A, then |ω′(x)| is of regular behavior in (0, 1). Indeed, if
a function λ(x) is such that λ(x)x−α ↗ and λ(x)x−α−ε ↘ in (0, 1), then for any 0 < δ0 <
δ < 1

0 < δα+ε
0 ≤ δα+ε ≤ λ(δx)

λ(x)x−α−ε
x−α−ε =

λ(δx)
λ(x)

=
λ(δx)(δx)−α

λ(x)
(δx)α ≤ δα < 1, 0 < x < 1.

The conditions of the following theorem in a sense are similar to those in a projection
theorem proved by A.L.Shields and D.L.Williams [31].

Theorem 4.2. Let ω1 ∈ ΩA be continuously differentiable in [0, 1) and let ω2 ∈ Ω̃A.

If (1− x)−β |ω′1(x)| ↘ for some β > −1 and∣∣∣∣ω′1(x)ω′2(x)

∣∣∣∣ (1− x)∆1 ↗ and
∣∣∣∣ω′1(x)ω′2(x)

∣∣∣∣ (1− x)∆2 ↘

for some ∆1 and ∆2 (0 < ∆1 ≤ ∆2 < +∞), then the operator

Pω2F (z) =
1
2π

∫∫
|ζ|<1

F (ζ)Cω2(zζ)dµω2(ζ), |z| < 1, (4.2)

is a bounded projection of L1
ω1

onto A1
ω1

.

In contrast to Theorem 4.2 which preassumes ω1 6≡ ω2 for p = 1, the next theorem
shows that for p > 1 the representation formula of Ap

ω itself defines a bounded projection of
Lp

ω onto Ap
ω.

Theorem 4.3. 1◦. Let both ω1,2(x) ∈ ΩA be continuously differentiable in [0, 1) and such
that ∣∣ω′1,2(x)

∣∣ (1− x)−α1,2 ↗ and
∣∣ω′1,2(x)

∣∣ (1− x)−β1,2 ↘

9



for some −1 < β1 ≤ α1 and −1 < β2 ≤ α2. If ω2(x) ∈ Ω̃A and α1 + 1 < p(1 + β2), then the
operator Pω2 defined by (4.2) is a bounded projection of Lp

ω1
onto Ap

ω1
(1 < p < +∞).

2◦. If the functions ω1,2(x) ∈ ΩA are continuously differentiable, nonincreasing in [0, 1) and
(4.2) defines a bounded operator in Lp

ω1
(1 < p < +∞), then∫ 1

0

∣∣∣∣ω′2(x)ω′1(x)

∣∣∣∣q |ω′1(x)|dx < +∞ (1/p+ 1/q = 1).

Remark 4.2. Obviously, the last condition is equivalent to α1 + 1 < p(1 + α2) in the
case when ω1,2(x) = (1− x)1+α1,2 (α1,2 = β1,2). Thus, for this particular case the previous
Theorem 4.3 states that: the operator (4.2) is a bounded projection of Lp

α1
onto Ap

α1
if

and only if α1 + 1 < p(1 + α2), what coincides with the known statement ([18], p. 12,
Theorem 1.10) on projection of Lp

α1
onto Ap

α1
. Some results on continuity of projections

with ω(x) = (1− x)1+α in harmonic Ap
ω spaces having more general weights then a degree

of 1− x are contained in [32].

Remark 4.3. The requirements of Theorem 4.3 particularly are satisfied if

|ω′(x)| = M(1− x)α logγ a

1− x
, 0 ≤ x < 1, M =

(∫ 1

0

(1− t)α logγ a

1− t

)−1

,

where α,γ > 0 are any numbers and a ≥ eγ/(α−β) for some choice of β.

4.3. Theorem 4.3 is used to establish

Theorem 4.4. Let 1 < p < +∞ and 1/q = 1− 1/p be any numbers. If ω(x) ∈ Ω̃A satisfies∣∣ω′(x)(1− x)−α
∣∣↗ and

∣∣ω′(x)(1− x)−β
∣∣↘ (0 ≤ x < 1)

for some −1 < β ≤ α such that 1 + α < q(1 + β), then the set of bounded linear functionals
in Ap

ω is completely described by the formula

Φ(f) = (f, g)ω =
1
2π

∫∫
|ζ|<1

f(ζ) g(ζ) dµω(ζ), f ∈ Ap
ω, g ∈ Aq

ω, (4.3)

i.e. (Ap
ω)∗ = Aq

ω (1/p+ 1/q = 1) in the sense of isomorphism.

Remark 4.4. Another form of linear functionals in Ap
ω, which differs from (4.3), is obtained

in [21]. This work is based on the representations of some spaces Ap
α which contain the spaces

Ap
ω considered in [21].

5. Weighted classes of δ-subharmonic functions

5.1. A function u(z) is said to be δ–subharmonic in a domain G and ν is said to be its
associated measure if

u(z) = u1(z)− u2(z) and ν = ν1 − ν2,

where u1,2(z) are subharmonic functions in G, possessing Riesz associated measures ν1,2.
We say that two δ–subharmonic functions

u(z) = u1(z)− u2(z) and v(z) = v1(z)− v2(z), z ∈ G,

are equal, i.e. u(z) = v(z), if everywhere in G

u1(z) + v2(z) = u2(z) + v1(z).
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Besides, we assume that the associated measure ν of the δ–subharmonic function u(z) is
minimally decomposed in the Jordan sense (see, for instance [33], Ch. III, Sec. 4, 11
Corollary), i.e.

ν = ν+ − ν−, (supp ν+)
⋂

(supp ν−) =6 ◦,

where ν± are positive and negative variations of ν. Also we assume that 0 6∈ supp ν
(i.e. d0 = inf{|λ| : λ ∈ suppν} > 0) and use the following generalization of Nevanlinna’s
characteristic:

T (r, u) =
1
2π

∫ 2π

0

u+(reiϑ) dϑ+
∫ r

0

n−(t)
t

dt, n−(t) =
∫∫

|ζ|<t

dν−(ζ).

Along with the equilibrium relation

u(0) + T (r,−u) = T (r, u), 0 < r < R,

the characteristic T (r, u) arises from the following similarity of the Jensen–Nevanlinna for-
mula for functions δ–subharmonic in |z| < R ≤ +∞:

u(0) =
1
2π

∫ 2π

0

u(reiϑ) dϑ−
∫∫

|ζ|<r

log
r

|ζ|
dν(ζ), 0 < r < R.

In its turn, this formula holds by taking z = 0 in the Riesz representation of u(z) in
|z| < r < R (i.e. in the difference of the Riesz representations of u1 and u2 in |z| < r):

u(z) =
1
2π

∫ 2π

0

r2 − |z|2

|reiϑ − z|2
u(reiϑ)dϑ+

∫∫
|ζ|<1

log
∣∣∣∣r(λ− z)
r2 − λz

∣∣∣∣ dν(λ), |z| < r.

Henceforth we consider only functions ω(x) ∈ ΩN , what means the additional to ω(x) ∈ ΩA

requirement ω(1) = ω(1−0) = 0, and we assume that also ω(x) is decomposed in its positive
and negative variations, i.e. for all x ∈ [0, 1]

ω(x) = ω+(x)− ω−(x), ω±(x) =
∫ 1

x

(dω(t))±,
1∨
x

ω =
1∨
x

ω+ +
1∨
x

ω− = ω+(x) + ω−(x).

Definition 5.1. We call N◦
ω the set of those functions u(z) δ–subharmonic in |z| < 1, for

which ∫ 1

0

T (r, u)|dω(r2)| < +∞.

Remark 5.1. The sum
⋃

ω∈ΩN
N◦

ω coincides with the set of all functions δ–subharmo-
nic in |z| < 1. The subset of N◦

ω consisting of functions of the form u(z) = log |f(z)|,
where f(z) is meromorphic in |z| < 1, coincides with Nevanlinna’s weighted class (1) when
ω(x) = (1− x)1+α (−1 < α < +∞).

5.2. Theorem 5.1. 1◦. For any ω(x) ∈ ΩN and any fixed point |ζ| < 1 the function

bω(z, λ) = exp

{
−
∫ 1

|λ|2
Cω

(
zt

λ

)
ω(t)
t
dt

}
, |z| < |λ|,

possesses analytic continuation to the whole |z| < 1, where it has unique, simple zero at
z = λ.
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2◦. Let ω(x) ∈ ΩN and let ν ≥ 0 be any measure which is bounded inside |z| < 1 and
such that 0 6∈ supp ν and ∫∫

|λ|<1

(∫ 1

|λ|2
|ω(t)|dt

)
dν(λ) < +∞.

Then the Green type potential

Jω(z) =
∫∫

|λ|<1

log |bω(z, λ)|dν(λ)

presents a subharmonic function in |z| < 1

Remark 5.2. The function bω(z, ζ) is a generalization of the Blaschke-Djrbashian factor
[1, 2], which is the case ω(x) = (1 − x)1+α (−1 < α < +∞) of bω(z, ζ). One has to note
that M.M.Djrbashian’s factors later were independently found by M.Tsuji [34] (Ch. IV)
for ω(x) = (1 − x)n, n = 1, 2, . . .. For the latest repetition of the same particular case of
M.M.Djrbashian’s factorization of 1945, see [35].

Theorem 5.2. If u(z) ∈ Ãω for an ω(x) ∈ ΩN , then the associated measure ν of u(z)
satisfies the condition∫∫

|ζ|<1

(∫ 1

|ζ|2
|ω(t)|dt

)
dν±(ζ) =

∫∫
|ζ|<1

(∫ 1

|ζ|2
[ω+(t) + ω−(t)]dt

)
dν±(ζ) < +∞, (5.1)

and the following Riesz type representation is true in |z| < 1:

u(z) = −u(0) +
∫∫

|ζ|<1

log |bω(z, ζ)|dν(ζ) +
1
π

∫∫
|ζ|<1

Re
{
Cω(zζ)

}
u(ζ) dµω(ζ). (5.2)

Remark 5.3. In the particular case ω(x) = (1 − x)α (−1 < α < +∞) and u(z) =
log |f(z)|, where f(z) is a meromorphic function in |z| < 1, the representation (5.2) becomes
M.M.Djrbashian’s canonical factorization [1, 2]. Besides, (5.1) becomes the well known
condition ∑

k

(1− |zk|)2+α < +∞

established by R.Nevanlinna for zeros and poles of functions f(z) from his weighted class
(1) (see [3], Sec 216).

Remark 5.4. One can see that N◦
ω ⊂ Nω1 ⊆ Nω (ω(x) = ω(x2)), where Nω is the class of

those functions δ–subharmonic in |z| < 1, for which Lωu(z) belongs to Nevanlinna’s class,
i.e. Lωu(z) is representable in |z| < 1 as the difference of two nonpositive subharmonic
functions. The descriptive representations of Nω classes are established in [16]. Using a
representation similar to (1.5) (with ω1 ≡ ω), one can prove the representation of [16] with
an absolutely continuous measure in the ω–parametered Poisson integral, i.e. to a similarity
of (5.2) with somewhat different Green type potential and a Poisson type integral over
|z| = 1 with an absolutely continuous measure.

6. Representations in the whole complex plane

6.1. We shall deal with the spaces Ap
ω(C) (1 ≤ p < +∞) of entire functions satisfying the

condition

‖F‖p,ω =
{

1
2π

∫∫
C
|F (ζ)|p|dµω(ζ)|

}1/p

< +∞, (6.1)
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where dµω(ρeiϑ) = −dω(ρ2)dϑ and ω ∈ Ω∞A , i.e. ω(x) is a strictly decreasing function on
the whole half-axis [0,+∞), such that ω(0) = 1 and

∆∞
n (ω) = −

∫ +∞

0

tndω(t) < +∞ for any n = 0, 1, 2 . . .

We denote Lp
ω(C) the corresponding Lebesgue spaces.

One can show that Ap
ω (1 ≤ p < +∞) is a Banach space with the norm (6.1). On the

other hand, the following assertion is true.

Lemma 6.1. For any p ∈ [1,+∞) the sum
⋃

ω∈Ω∞
A
Ap

ω(C) coincides with the set of all
entire functions.

6.2 Observing that under the above conditions

lim
n→∞

n

√
|∆R

n (ω)| = R2 for ∆R
n (ω) = −

∫ R2

0

tn|dω(t)| and ∀R ∈ (0,+∞],

we start by the following representations.

Theorem 6.1. Let F (z) ∈ A2
ω(C), where ω ∈ Ω∞A . Then for all z ∈ C

F (z) =
1
2π

∫∫
C
F (ζ)C∞ω (zζ)dµω(ζ), (6.2)

F (z) = −F (0) +
1
π

∫∫
C

{
Re F (ζ)

}
C∞ω (zζ)dµω(ζ), (6.2′)

where C∞ω (z) =
∑∞

n=0 z
n/∆∞

n (ω) is M.M.Djrbashian’s Cauchy type kernel [36].

Remark 6.1. One can verify that the set (4.1) (with ∆∞
n (ω) instead ∆n(ω)) is an or-

thonormal basis in A2
ω(C) (ω ∈ Ω∞A ). Besides, one can be convinced that the following

similarity of Theorem 4.1 is true.

Theorem 6.2. If ω ∈ Ω∞A , then the following formula

Pωf(z) =
1
2π

∫∫
C
f(ζ)C∞ω (zζ)dµω(ζ), z ∈ C, f ∈ L2

ω(C), (6.3)

is true for the orthogonal projection of L2
ω(C) onto A2

ω(C).

6.3. In virtue of Theorem 6.2, it is evident that for any ω ∈ Ω∞A the representation (6.2),(6.3)
with f ∈ L2

ω(C) describes the whole class A2
ω(C), i.e. A2

ω(C) coincides with the set of all
functions representable in that form. Besides, the following similarity of Theorem 1.2 is
true.

Theorem 6.3. Let ω ∈ Ω∞A be continuously differentiable in [0,+∞) and such that
ω(+∞) = 0, ω′(x) < 0 and is bounded on [0,+∞) and 0 >

∫ +∞
0

t−1dω(t) > −∞. Then the
function

ω̃(x) = −
∫ +∞

0

ω
(x
t

)
dω(t), 0 < x < +∞,

belongs to Ω∞A and A2
ω̃(C) coincides with the set of all functions representable in the form

F (z) =
1
2π

∫ 2π

0

ϕ(eiϑ)C∞ω (ze−iϑ)dϑ, z ∈ C, ϕ(eiϑ) ∈ L2[0, 2π]. (6.4)
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For any F (z) ∈ A2
ω̃(C) there exists a unique function ϕ0(z) of the ordinary Hardy space H2,

such that (6.4) is true with ϕ0(eiϑ). This function is found by the formula

ϕ0(z) = L∞ω F (z) = −
∫ +∞

0

F (tz)dω(t), |z| < 1.

Besides, ‖ϕ0‖H2 = ‖F‖2,ω̃ and ϕ − ϕ0 ⊥ H2 for any ϕ(eiϑ) ∈ L2[0, 2π] for which (6.4) is
true. The operator Lω is an isometry A2

ω̃(C) −→ H2, and the integral (6.4) defines (Lω)−1

on H2.

Remark 6.2. The sum of the spaces A2
ω̃(C) considered in Theorem 6.3 coincides with the

set of all entire functions.

6.4. For functions of Ap
ω(C) the similarities of Shamoian’s representation is true. The

following theorem is proved.

Theorem 6.4. Let 1 ≤ p < +∞ and let ω(x) ∈ Ω∞A and
∨∞

0 ω = 1. Then:

1◦. Any function F (z) ∈ Ap
ω(C) is representable in the form

F (z) =
1
2π

∫ 2π

0

Cω1(ze
−iϑ)ϕ(eiϑ)dϑ, |z| < 1, (6.5)

where ω1(x) = ω(x2) and ϕ(z) = Lω1F (z) ∈ Hp.

2◦. In Ap
ω we have ‖Lω1‖ ≤ 1, and (6.5) represents L−1

ω1
in Lω1A

p
ω(C).

6.4. The assertions of Theorem 6.3 remain valid for the case

ω′(x) = −C0 e
−γxρ

xµρ−1, 0 < x < +∞, C0 =
[∫ +∞

0

e−γxρ

xµρ−1dx

]−1

,

where γ, ρ, µ > 0 are any numbers, though the requirements on ω̃′(x) providing the inclu-
sion ω(x) ∈ Ω∞A in Theorem 6.3 are not satisfied. However, the following improvement of
M.M.Djrbashian’s [2] Theorem XIV1 is true.

Theorem 6.5. The Hilbert space of entire functions which satisfy the condition

‖F‖ =
{

1
2π

∫ +∞

0

dϑ

∫ 2π

0

|F (reiϑ)|2e−2γrρ

r2µρ−ρ/2−1dr

}1/2

< +∞, (6.6)

where γ, ρ, µ > 0 are any numbers, coincides with the set of all functions representable in
the form

F (z) =
ργµ

2π

∫ 2π

0

Eρ

(
γ1/ρze−iϑ, µ

)
ϕ(e−iϑ)dϑ, z ∈ C, ϕ(e−iϑ) ∈ L2[0, 2π], (6.15)

where Eρ(z, µ) =
∑∞

k=0 z
k [Γ (µ+ k/ρ)]−1 is the well-known Mittag–Leffler type function.

For any F (z) of the space (6.6) there exists a unique function ϕ0(z) ∈ H2(|z| < 1),
such that (6.15) is true with ϕ0(eiϑ). This function can be found by the formula

ϕ0(z) =
∫ +∞

0

F (tz)e−γtρ

tµρ−1dt, |z| < 1. (6.17)

Besides, ‖ϕ0‖H2 = ‖F‖ and ϕ − ϕ0 ⊥ H2 for any ϕ(e−iϑ) ∈ L2[0, 2π] for which (6.15) is
true.
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7. Biorthogonal systems of functions in A2
ω

The isometries between H2 (|z| < 1) and the spaces A2
ω̃ and A2

ω̃(C) established in Theorems
1.2, 6.3 and 6.5 permit to convert the known facts in H2 into similar statements in A2

ω.
Particularly, the results of M.M.Djrbashian–H.M.Hayrapetyan [37, 38, 39] on biorthogonal
systems of functions in H2 are convertible into similar statements in A2

ω̃ and A2
ω̃(C). The

below propositions contain the results which hold in A2
ω̃(C).

For simplicity we consider the case when the knots are of multiplicity 1, i.e. everywhere
below we assume that {αj}∞1 is a sequence of pairwise different numbers in |z| < 1, which
satisfies the Blaschke condition

∞∑
j=1

(1− |αj |) < +∞. (7.1)

It is said that {αj}∞1 ∈ ∆ if the sequence {αj}∞1 is uniformly separated, i.e.

inf
k≥1

∏
j=1, j 6=k

∣∣∣∣ αj − αk

1− αjαk

∣∣∣∣ = δ > 0.

Also, we introduce the Blaschke product with zeros at {αj}∞1 :

B(z) =
∞∏

j=1

αj − z

1− αjz

|αj |
αj

.

Assuming that henceforth the functions ω̃(x) and ω(x) are those of Theorem 6.3 or Theorem
6.5, we denote the isometry H2 −→ A2

ω̃(C) of that theorems as

T∞ω (f(z)) =
1
2π

∫ 2π

0

f(eiϑ)C∞ω (zeiϑ)dϑ, |z| < 1, (Tω = (L∞ω )−1).

A well known inequality due to H.Shapiro and A.Shields [40] takes the following form:

Proposition 7.1. If {αk}∞1 ∈ ∆, then for any F (z) ∈ A2
ω̃(C)

∞∑
j=1

(1− |αj |2)|L∞ω F (αj)|2 ≤ C‖F‖ω̃,2,

where C is a constant.

For giving a series of propositions which mainly follow the account of [39], first denote

rk(z) =
1

1− αkz
and Ωk(z) =

B(z)
z − αk

.

One can verify that the entire functions T∞ω (rk(z)) = r∞k,ω(z) and T∞ω (Ωk(z)) = Ω∞k,ω(z)
admit the following representations:

r∞k,ω(z) = C∞ω (αkz) and Ω∞k,ω(z) = lim
ρ→1−0

∞∑
n=0

znρn

∆n(ω)

∞∑
m=0

αm
k ρ

m+1bn+m+1, (7.2)

where bn are the coefficients of the power expansion B(z) =
∑∞

n=0 bnz
n (|z| < 1).
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Proposition 7.2. If the sequence {αk}∞1 does not satisfy the Blaschke condition, i.e. the
series (7.1) is divergent, then both systems are complete in A2

ω̃(C).

Further, we introduce λ∞2,ω{αk} as the set of all functions F (z) ∈ A2
ω̃(C) for which there

exist ψ(z) ∈ H2, ψ(0) = 0 such that the boundary values of ψ(z)/B(1/z) coincide with
those of L∞ω F (z) almost everywhere on |z| = 1.

Proposition 7.3. The functions of (7.2) belong to λ∞2,ω{αk}, and the system (7.2) is
biorthogonal in A2

ω̃(C), i.e

(r∞k,ω,Ω
∞
k,ω)ω̃ ≡

∫∫
C
r∞k,ω(ζ)Ω∞k,ω(ζ)dµω̃(ζ) =

{
1, if ν = k
0, if ν 6= k.

Proposition 7.4. Let F (z) ∈ A2
ω̃(C). Then F (z) ∈ λ∞2,ω{αk} if and only if∫

|ζ|=1

L∞ω F (ζ)
B(ζ)

dζ

ζ − z
≡ 0, z ∈ C.

Proposition 7.5. Any function f(z) ∈ A2
ω̃(C) is representable in the form

f(z) = f1(z) + f2(z), ‖f‖2 = ‖f1‖2 + ‖f2‖2,

where f1(z) ∈ λ∞2,ω{αk} and

f2(z) = Tω(B(z)g(z)) ∈ A2
ω̃(C), g(z) =

1
2π

∫
|ζ|=1

L∞ω f(ζ)
B(ζ)

dζ

ζ − z
∈ H2.

Proposition 7.6. If {αk}∞1 ∈ ∆ and {wk}∞1 is any sequense for which

∞∑
k=1

(1− |αk|)|wk|2 < +∞,

then there exists unique function F (z) ∈ λ∞,ω
2 {αk} such that

L∞ω F (αk) = wk, k = 1, 2, . . . (7.3)

This function is representable in the form

F (z) =
∞∑

k=1

wkΩ∞k,ω(z), z ∈ C,

where the series converges in the norm of A2
ω, and F (z) is the solution of the interpolation

problem (7.3) with minimal norm.

Proposition 7.7. Each of the sets {(1−|αk|2)1/2r∞k,ω(z)}∞1 and {(1−|αk|2)−1/2Ω∞k,ω(z)}∞1
is a nonconditional basis in λ∞2,ω{αk} if and only if {αk}∞1 ∈ ∆.

Proposition 7.8. If {αk}∞1 ∈ ∆, then any function F (z) ∈ λ∞2,ω{αk} is representable by
both series

F (z) =
∞∑

k=1

ck(F )r∞k,ω(z) =
∞∑

k=1

L∞ω F (αk)Ω∞k,ω(z), z ∈ C, ck(F ) = (F,Ω∞k,ω)ω̃

which are convergent in the norm of A2
ω̃(C).
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Remark. The biorthogonal systems of this section qualitatively differ from those investi-
gated by A.F.Leontev [41].
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