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Abstract

The polynomial-trigonometric interpolation based on the Krylov approach for a smooth
function given on [-1, 1] is defined on the union of m shifted each other uniform grids with
the equal number of points.

The asymptotic errors of the interpolation in both uniform and L2 metrics are inves-
tigated. It turned out that the corresponding errors can be minimized due to an optimal
choice of the shift parameters. The study of asymptotic errors is based on the concept
of the ”limit function” proposed by Vallee-Poussin. In particular cases of unions of two
and three uniform grids the limit functions are found explicitly and the optimal shift
parameters are calculated using MATHEMATICA 4.1 computer system.

The parallel processing is investigated.
Key words. Trigonometric Interpolation, Fourier Series, Numerical Analysis, Limit

Function, Asymptotic Expansion, Optimization
AMS subject classification. 42A15, 42A20, 65B10.

Introduction

It is known (see [1]) that the approximation of a function f(x) ∈ C[−1, 1] by the N -
partial sum of Fourier series as N → ∞ results in the Gibbs phenomenon with the
constant Cort = 0.089..., and the ”overshoot” of approximated values in a neighborhood
of the point x = 1 equals Cort(f(1) − f(−1)). The Gibbs phenomenon with the greater
constant Cint = 0.141... (see [2]) also appears in the classical trigonometric interpolation
on the uniform grid {xk} =

{
2k

2N+1

}
, k = 0,±1, ...,±N , N →∞.

In the described cases if f(1) 6= f(−1) the uniform convergence on the segment [−1, 1] is
failed and the order of L2-convergence on compacts inside the interval (−1, 1) is greater
than that on the whole interval.
However, also in the case f(1) = f(−1) the situation generally is similar. Namely, if
f(x) ∈ Cp+1[−1, 1], p ≥ 0, f (k)(−1) = f (k)(1), k = 0, 1, ..., p and f (p+1)(−1) 6= f (p+1)(1)

∗The research was supported by NFSAT/CRDF Grant #CS 037-01 (#BGP 7420) and by the .
Project ISTC A-823.
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then although the uniform convergence on [−1, 1] holds, its order on compacts inside
(−1, 1) is higher (see [1]).
An idea of the more precise approximation of a piecewise smooth function f(x) on [−1, 1]
by means of its Fourier coefficients {fn}, n = 0,±1, ...,±N was proposed by A. N. Krylov
in 1933 (see [3]). In the last decades some practical approaches were developed in a number
of papers (see [4 - 6] and references therein). Applying this approach to approximation of
a function f(x) ∈ Cp+1[−1, 1], p ≥ 0, first it is constructed the polynomial P (x), such that
f

(k)
1 (1) = f

(k)
1 (−1), k = 0, 1, ..., p, where f1(x) = f(x)− P (x), and then the function f1 is

approximated by the partial sum of Fourier series (or by the corresponding interpolation).
It results in much faster approximation of f(x).
The efficiency of numerical realization of this scheme and its generalization on the multi-
dimensional case are based on finding of jumps f (k)(1) − f (k)(−1), k = 0, 1, ..., p (or
multi-dimensional analogs of jumps) directly via the Fourier (discrete Fourier) coefficients
of a function f (see [4 - 7] and Section 2.1 below). This scheme allows to approximate
the function f with the uniform error of order O(N−p−1), N →∞, p ≥ 0, where N is the
number of terms of the truncated Fourier series or grid points of uniform interpolation,
respectively.
In [12] the interpolation on the union of three uniform grids shifted each other is consid-
ered. The study of asymptotic behavior of the uniform error was based on the concept of
”limit function”, proposed by Vallee-Poussin in 1908 already ([9]) for description of Gibbs
phenomenon (see also [10]). It turned out that under the disposition of these three uniform
grids the corresponding Gibbs constant may be even smaller than Cort for the classical
case of Fourier series. The additional drop of the error was obtained while considering
the so-called ”quasiperiodic” interpolation.
In this paper the investigations started in [12] are continued. Results of [12] are included
without proofs. The general case of the union of m uniform grids with the equal number
of points is considered. In particular cases of two and three grids the behavior of limit
function near the endpoints of interval is studied and the asymptotic L2-errors are found.
The optimization problem of investigated interpolation is posed in uniform as well as in
L2-metrics. Its solution is explicitly obtained in cases of unions of two and three grids.
In the general case parallel processing is investigated.

1 Polynomial-orthogonal expansion

1.1 Auxiliary lemma

For y ∈ R by y` we denote y` = y(mod 2), 0 ≤ y` < 2.
The next result will be often used below.

Lemma 1 Let x ∈ C| , x 6= 0,±1,±2, ...; q ≥ −1 be an integer, w ∈ R and w` 6= 0 if
q = −1. Then

Φq(w, x)
def
=

∞∑
s=−∞

eiπws

(x + s)q+2
= 2iπ Resz=−x

eiπw`z

(1− e2iπz)(x + z)q+2
. (1)

Proof. Let CN be a circle in the complex z-plane with the radius rN = (N + 1
2) (N ≥ 1
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is an integer) and center at z = 0. Let 0 ≤ w < 2. Consider the contour integral

JN =
1

2iπ

∫
CN

eiπwz

(1− e2iπz)(x + z)q+2
dz.

The location of CN implies that the integral IN exists and according to residue theory we
have

JN = − 1
2iπ

N∑
s=−N

eiπws

(x + s)q+2
+ Resz=−x

eiπwz

(1− e2iπz)(x + z)q+2
.

For sufficiently large N and q ≥ −1

|JN | ≤
Const
N q+1

max
|z|=rN

∣∣∣∣∣eiπ(w−1)z

sin(πz)

∣∣∣∣∣ ≤ ConstN−(q+1). (2)

Hence JN → 0 as N →∞ if q ≥ 0.
Now let q = −1, w 6= 0 and ε be a sufficiently small positive number. We divide the
circle CN into four arcs as follows: CN = c+ ∪ c− ∪ cup ∪ cdown, where c+ = {z : |z| =
N + 1/2, |argz| ≤ ε}, c− = {z : |z| = N + 1/2, π − ε ≤ argz ≤ π + ε}, cup = {z : |z| =
N + 1/2, ε < argz < π − ε}, cdown = {z : |z| = N + 1/2, π + ε < argz < 2π − ε}. The
integral over cε ∪ cπ−ε can be made arbitrary small by choosing ε and taking into account
an estimate of type (2).
Consider now the part of integral JN over the upper arc cup. Passing to the polar coor-
dinates z = (N + 1/2)eiφ we have

(N + 1/2)
2π

∣∣∣∣∣
∫ π−ε

ε

eiφeπw(N+1/2)(i cos φ−sin φ)

(1− e2π(N+1/2)(i cos φ−sin φ))(x + (N + 1/2)eiφ)
dφ

∣∣∣∣∣ ≤
(N + 1/2)

2π

∫ π−ε

ε

∣∣∣e−πw(N+1/2) sin φ
∣∣∣∣∣1− e2π(N+1/2)(i cos φ−sin φ)

∣∣ |(N + 1/2)− |x||
dφ ≤

Const
∫ π−ε

ε

∣∣∣e−πw(N+1/2) sin φ
∣∣∣∣∣1− e2π(N+1/2)(i cos φ−sin φ)

∣∣ dφ

Since 0 < w < 2 and sinφ ≥ sin ε > 0 on the segment [ε, π − ε] for N → ∞ the
integrand can be estimated from above by Const

(
e−w`(N+1/2) sin ε

)
. Similarly, since

sinφ ≤ − sin ε < 0 on the segment [π + ε, 2π − ε] the integrand can be estimated by
Const

(
e−(N+1/2)(2−w`) sin ε

)
.

It remains to note that by definition the function Φq(w, x) is 2-periodic relatively to w so
we can replace w by w` for any w ∈ R.

Remark 1 It follows from formula (1) that if w` 6= 0 then Φq(w, t) ∈ C∞loc as a function
of w, while ϕq(w, t) = ∂q+1Φq(w, t)/∂wq+1 is a piecewise continuous function with jumps
at w` = 0. If w0

` = 0 then the formally divergent series ϕq(w0, t) is summable in the sense
of principal value (i.e. the summation in (1) is taken over symmetric limits −A ≤ s ≤ A,
A → ∞). It is not difficult to see that ϕq(w0, t) = (ϕq(w0 + 0, t) + ϕq(w0 − 0, t))/2.
Function Φq(w, t)− 1

tq+2 is continuous in t for t ∈ (−1, 1) and an integer q > −1.
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1.2 Approximation via Fourier coefficients

First we describe the mentioned in Introduction method of restoration of a function f(x) ∈
Cq+1[−1, 1] by means of its Fourier coefficients

fn =
1
2

∫ 1

−1
f(x)e−iπnx dx, n = 0,±1, ...,±N, N ≥ 1. (3)

The known scheme (see [3-5]) given here will be used to compare with the interpolation
on shifted grids (see Section 6 below).
Let {Bk(x)}∞k=0 be the Bernoulli polynomial system defined on [−1, 1] recurrently by the
formulae:

B0(x) = x/2, Bk(x) =
∫

Bk−1(x) dx,

∫ 1

−1
Bk(x) dx = 0, k = 1, 2, ... (4)

The Fourier coefficients {Bkn} of a polynomial Bk(x) have the form

Bkn =

{
0, n = 0
(−1)n+1

2(iπn)k+1 , n = ±1,±2, ...
(5)

For a given integer N and q polynomial-orthogonal expansion of a function f = f(x) is
defined to be the following approximation

SN,q(f) =
q∑

k=0

Ak(f)Bk(x) +
N∑

n=−N

(
fn −

q∑
k=0

Ak(f)Bkn

)
eiπnx, (6)

where Ak(f) are the jumps of the function f and its derivatives at the endpoints of [−1, 1]

Ak(f) = f (k)(1)− f (k)(−1), k = 0, 1, ..., q, q ≥ 0. (7)

When q = −1 it is natural to deal with the partial sum of Fourier series

SN,−1(f) =
N∑

n=−N

fneiπnx . (8)

Note that in practice it is not necessary to compute the jumps {Ak(f)} by (7). It is
enough to find their approximate values.
The following known asymptotic representation of Fourier coefficients

fn =
q+1∑
k=0

Ak(f)Bkn + o

(
1

nq+2

)
, n →∞ (9)

implies that the jumps {Ak(f)} can be restored with the precision O(N−q+k−2), k =
0, ..., q + 1, N →∞ by solving the system of equations with Vandermonde matrix

fns =
(−1)ns+1

2

q∑
k=0

Ak(f)
(iπns)k+1

, s = 0, 1, ..., q, q ≥ 0,

for various (q + 1) values of {ns} satisfying const N ≤ |ns| ≤ N , N →∞ (see [4, 5]).
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1.3 Asymptotic error

Let x ∈ [−1, 1]. We are interested in the asymptotic behavior of the error

RN,q(f)(x) = SN,q(f)(x)− f(x) (10)

for q = const, N → ∞ provided that the exact values of the jumps (7) are known. It is
known (see Introduction) that the maximum of this error is obtained, generally, near the
endpoints of interval [−1, 1]. Therefore, it is natural to consider the error RN,q(f)(x) at
the point x = 1− h

2N+1 (or x = −1 + h
2N+1) for h = const > 0 as N →∞.

Denote
Qq(x) = −cos(π(x + q/2)), (11)

Consider now the following integral depending on a parameter h

Eq(h) =
1

πq+2

∫ 1
2

0

(
Qq(ht)
tq+2

+ Ψq(h, t)
)

dt, (12)

where

Ψq(h, t) = πResz=−t
e−iπz((−1)qe−iπhteiπh`z + eiπhteiπ(−h)`z)

sin(πz)(t + z)q+2
. (13)

The following results reveal the main term of asymptotic of (10) in uniform and L2-metrics
as N →∞.

Theorem 1 ([12]) Let f(x) ∈ Cq+2[−1, 1], q ≥ −1. Then for x = 1 − h
2N+1 and

h = const > 0
lim

N→∞
(2N + 1)q+1RN,q(f)(x) = Aq+1(f)Eq(h). (14)

Here and below we denote by ||f || the L2-norm of a function f ∈ L2(−1, 1).

Theorem 2 Let f(x) ∈ Cq+2[−1, 1], q ≥ −1. Then

lim
N→∞

(2N + 1)q+3/2||RN,q(f)|| = Aq+1(f)
2q+3/2

πq+2
√

2q + 3
. (15)

Proof. Let f(x) = Bq+1(x). Using the orthogonality of Fourier system in L2[−1, 1] we
have for N →∞

||RN,q(Bq+1)||2 = ||SN,q(Bq+1)−Bq+1||2 = 2
∑
|n|≥N

∣∣∣∣ 1
2(iπn)q+2

∣∣∣∣2 =

1
(π(2N + 1))2(q+2)

∑
n≥N

1
( n
2N+1)2(q+2)

.

Now setting tn = n
2N+1 , ∆t = 1

2N+1 and rewriting the last sum we observe that this
integral sum tends (as N →∞) to the following integral with the continuous integrand

1
π2(q+2)(2N + 1)2q+3

∫ ∞

1/2

1
t2(q+2)

dt

From here it follows (15).
Let now f(x) be an arbitrary function from Cq+2. We have from (9)

||RN,q(f(x))−Aq+1(f)RN,q(Bq+1(x))|| ≤
||

∑
|n|≥N+1

(fn −Aq+1Bq+1,n)eiπnx|| ≤ o(1)(
∑

|n|≥N+1

n−2q−4)1/2 ≤ o(1)N−q−3/2.(16)
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2 Polynomial-trigonometric interpolation

with shifted nodes

2.1 The problem

For a given α, −1 < α < 1 we define the uniform grid {xα
k} ∈ [−1, 1]

xα
k =

2k + α + 1
N

− 1, k = 0, ..., N − 1. (17)

Denote by f̌α
n the inverse discrete Fourier transform (up to a factor) of a function f(x)

on this grid

f̌α
n =

1
N

N−1∑
k=0

f(xα
k )e−iπnxα

k . (18)

Here and below we denote ∑
n

N · =
N−[N/2]−1∑
n=−[N/2]

· .

Consider the following interpolation of a function f

Iα
N (f)(x) =

∑
n

N f̌α
n an(x) (19)

satisfying the conditions

Iα
N (eiπpx)(x) = eiπpx, p = −[N/2], ..., N − [N/2]− 1, x ∈ [−1, 1]. (20)

According to the formula of discrete Fourier transform we have for a fixed p

Iα
N (eiπpx)(x) =

1
N

∑
n

N
N−1∑
k=0

eiπ(p−n)xα
k an(x) = ap(x).

From this it follows that ap(x) = eiπpx. Hence we can rewrite (19) as

Iα
N (f)(x) =

∑
n

N f̌α
n eiπnx. (21)

Let now ᾱ = {α1, ..., αm} be a vector such that −1 < α1 < ... < αm < 1. We consider the
union ∪m

j=1{x
αj

k } of the uniform grids consisting of an equal number N of nodes.
The aim of this paper is to minimize the interpolation errors by optimally disposing these
grids, or, what is the same, by choosing an optimal shift parameter α.
Here we differ cases of odd and even m.
Let m be odd. Define the following interpolation

I ᾱ
N (f)(x) =

m∑
j=1

ajI
αj

N =
m∑

j=1

aj

∑
n

N f̌
αj
n eiπnx (22)

satisfying the conditions

I ᾱ
N (eiπpx)(x) = eiπpx, p = −[mN/2], ...,mN − [mN/2]− 1 x ∈ [−1, 1]. (23)
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From (18) and (23) we obtain

m∑
j=1

aj

∑
n

Neiπ(p−n)(
αj+1

N
−1)eiπnx

N−1∑
k=0

e
2iπk(p−n)

N = eiπpx,

or representing p in the form p = p0 + sN , p0 = −[N/2], ..., N − [N/2] − 1, s = −(m −
1)/2, ..., (m− 1)/2− 1,

m∑
j=1

aj

∑
n

Neiπ(p0−n+sN)(
αj+1

N
−1)eiπnx

∞∑
s=−∞

δn,p0+sN = eiπ(p0+sN)x,

where δp,q is the Kronecker symbol.
Thus for definition of aj (j = 1, ...,m) we obtain the following system of linear equations

m∑
j=1

aje
iπsαj = (−1)s(N−1)eiπsNx, s = −(m− 1)/2, ..., (m− 1)/2− 1. (24)

It is actually reduced to the linear system with the nonsingular (because αi 6= αj(mod 2)
for i 6= j) Vandermonde matrix.
Let m be even. Define the following interpolation formula

I ᾱ
N (f)(x) =

m∑
j=1

ajI
αj

N =
m∑

j=1

aj

N−1∑
n=0

f̌
αj
n eiπnx (25)

satisfying the conditions

I ᾱ
N (eiπ(p−mN/2)x)(x) = eiπ(p−mN/2)x, p = 0, ...,mN − 1 x ∈ [−1, 1]. (26)

Representing p in the form p = p1 + qN , p1 = 0, ..., N − 1, q = 0, ...,m− 1, from (18) and
(26) we obtain

m∑
j=1

aj

N−1∑
n=0

(−1)p1+N(q−m/2)−neiπ(p1+N(q−m/2)−n)
(αj+1)

N eiπnx
∞∑

s=−∞
δn,p1+N(q−m/2) =

eiπ(p1+N(q−m/2))x. (27)

For definition of aj (j = 1, ...,m) here we also obtain the system of linear equations with
a nonsingular Vandermonde matrix

m∑
j=1

eiπsαjaj = (−1)s(N−1)eiπsNx, s = −m/2, ...,m/2− 1. (28)

As we see in both cases of even and odd m we have got for {aj} the same system.

2.2 Representation of the interpolation via Fourier coeffi-
cients

The next result shows that the coefficients of interpolation {f̌α
n } can be expressed via

Fourier coefficients of a function f .
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Lemma 2 Let {fn} be the Fourier coefficients of a function f(x) and |fn| ≤ const n−p−1,
p > 0. Then for N ≥ 1 and −1 ≤ α ≤ 1

f̌α
n =

∞∑
s=−∞

fn+Nse
iπ(α−N+1)s. (29)

Proof follows at once by substituting the absolutely and uniformly converging Fourier
series of a function f into representation (18).
The next result describes the error of the interpolation on the general uniform grid (17).

Lemma 3 Let {fn} be the Fourier coefficients of a function f(x) and |fn| ≤ const n−p−1,
p > 0. Then the estimation∣∣∣∣∣∑

n

N f̌α
n eiπnx − f(x)

∣∣∣∣∣ ≤ constN−p, N ≥ 1, (30)

holds uniformly by x ∈ [−1, 1].

Proof. From Lemma 2 we obtain

∑
n

N f̌α
n eiπnx − f(x) =

∑
n

N

 ∞∑
s=−∞

s 6=0

fn+Nse
iπ(α−N+1)s

 eiπnx −
∑

|n|>[N/2]

fneiπnx.

The last term is of order O(N−p) as N →∞. Taking into account that∣∣∣∣∣∣∣
∑
n

N

 ∞∑
s=−∞

s 6=0

fn+Nse
iπ(α−N+1)s

 eiπnx

∣∣∣∣∣∣∣ ≤ 1
Np+1

∑
n

N
∞∑

s=−∞
s 6=0

1
| n
N + s|p+1

≤

2
Np

∞∑
s=1

1
(s− 1

2)p+1
.

we get (30).

Corollary 1 Under the assumptions of Lemma 3 the estimation

|I ᾱ
N (f)(x)− f(x)| ≤ constN−p, N ≥ 1. (31)

holds uniformly by x.

Proof follows from (22) (or (25)) and Lemma 3.

2.3 Interpolation on the union of two uniform grids

Let consider the simplest case of union of two uniform grids symmetrically located with
respect to origin.
Let ᾱ = {−α, α} and {xα

k}, 0 < α < 1, be a uniform grid of the form (17). For 0 < α < 1
we consider the following interpolation of a function f on the grid of 2N points of the
union {x−α

k } ∪ {xα
k}

I ᾱ
N (f)(x) = a−α(x)

N−1∑
n=0

f̌−α
n eiπnx + aα(x)

N−1∑
n=0

f̌α
n eiπnx (32)
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satisfying the conditions

I ᾱ
N (eiπ(p−N)x)(x) = eiπ(p−N)x, p = 0, ..., 2N − 1, x ∈ [−1, 1]. (33)

Note that for α = 1/2 formula (32) corresponds to a trigonometric interpolation of a
function f(x) on a uniform grid with 2N nodes.
Similarly to (28) from (32) and (33) we get the following system of linear equations with
respect to {a−α, aα} (x ∈ [−1, 1])

a−α(x) + aα(x) = 1,

eiπαa−α(x) + e−iπαaα(x) = (−1)(N−1)e−iπNx.

As result for a fixed x we obtain

a−α(x) = −e−iπα + (−1)Ne−iπNx

2i sin(πα)
,

aα(x) =
eiπα + (−1)Ne−iπNx

2i sin(πα)
. (34)

2.4 Interpolation on the union of three uniform grids

Here we consider the case of a union of three uniform grids symmetrically located with
respect to origin.
Let ᾱ = {−α, 0, α}. For 0 < α < 1 consider the interpolation of a function f on the grid
of 3N points of the union {x−α

k } ∪ {x0
k} ∪ {xα

k}

I ᾱ
N (f)(x) = a−α(x)

∑
n

N f̌−α
n eiπnx + a0(x)

∑
n

N f̌0
neiπnx + aα(x)

∑
n

N f̌α
n eiπnx (35)

satisfying the conditions

I ᾱ
N (eiπpx)(x) = eiπpx, p = −[3N/2], ..., (3N − [3N/2]− 1), x ∈ [−1, 1]. (36)

As in (24) from (35), (36) we lead to the following system with respect to {a−α, a0, aα},
x ∈ [−1, 1]

a−α(x) + a0(x) + aα(x) = 1,

e−iπαa−α(x) + a0(x) + eiπαaα(x) = (−1)N−1eiπNx,

eiπαa−α(x) + a0(x) + e−iπαaα(x) = (−1)N−1e−iπNx.

Thus for a fixed x we obtain

a−α(x) =
1

4 sin2
(

πα
2

)
cos

(
πα
2

) (cos
(

πα

2

)
+ (−1)N cos

(
πα

2
− πNx

))
,

a0(x) = − 1
2 sin2

(
πα
2

)((−1)N cos(πNx) + cos(πα)), (37)

aα(x) =
1

4 sin2
(

πα
2

)
cos

(
πα
2

) (cos
(

πα

2

)
+ (−1)N cos

(
πα

2
+ πNx

))
.

Note that for α = 2/3 formula (35) is a trigonometric interpolation of a function f(x) on
a uniform grid with 3N nodes.
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2.5 Total and quasiperiodic interpolations

We start from the general scheme of the classic pointwise interpolation of a function
f ∈ C[−1, 1].
Let N ≥ 2 be an integer, {xN

k } ⊂ [−1, 1] , k = 1, 2, ..., N be a set of interpolation nodes
and {TN

n (x)} be a given system of N linear independent functions, TN
n (x) ∈ C[−1, 1],

n = 1, 2, ..., N .
Consider the formula

IN (f)(x) =
N∑

n=1

anTN
n (x), (38)

where an (= aN
n (f), n = 1, 2, ..., N) are defined to satisfy:

a) Formula (38) is interpolation on the grid {xN
k }, i.e. if f ∈ C[−1, 1] then IN (f)(xN

k ) =
f(xN

k ), k = 1, 2, ..., N ;
b) Formula (38) is exact for the system {TN

n (x)}, i.e. IN (TN
n (x)) = TN

n (x), x ∈
[−1, 1], n = 1, 2, ..., N .
Following to [8] let introduce two definitions.

Definition 1 Interpolation (38) is called total if min{xk} = −1, max{xk} = 1.

Show now that every not total interpolation generates the corresponding total one.
Assume that the interpolation (38) is not total, i.e. b − a < 2, where a = mink{xN

k },
b = maxk{xN

k }. Apply it to a function f1(x) = f((2x − a − b)/(b − a)) that defined on
the segment [a, b] since (2x − a − b)/(b − a) ∈ [−1, 1] for x ∈ [a, b]. By inverse change of
variable x → (b− a)x/2 + (a + b)/2 we get the total interpolation formula

Ĩ(f)(x) =
N∑

n=1

anT̃N
n (x) (39)

on the grid {(2xN
k − a − b)/(b − a)}, k = 1, 2, ..., N , by means of the system {T̃N

n (x)} =
{TN

n ((b− a)x/2 + (a + b)/2}, n = 1, 2, ..., N .

Definition 2 Interpolation (38) is called quasiperiodic if it is defined for all N ≥ 1,
the system {TN

n (x)} is defined for x ∈ R, TN
n ∈ Cloc, TN

n (x + tN ) = TN
n (x), tN > 2 and

tN → 2 when N →∞.

Observe that the periodic interpolation (i.e. tN = 2) can not be total (see condition b)).
Though a quasiperiodic interpolation for N � 1 is close to a periodic one, in some cases
it leads to the smaller errors than the periodic interpolation (see Section 6 below).
Applying the above-mentioned approach to the total quasiperiodic interpolation on the
basis of formula (22) we note that its properties depend on a choice of a vector ᾱ. Below
(see Sections 3 and 4) we consider the optimization problem of a polynomial-trigonometric
interpolation in the sense of both uniform and L2 convergences by means of choice of the
parameter ᾱ and application of the quasiperiodic interpolation.
This problem is explicitly solved below in two particular cases of the unions of two and
three uniform grids.
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3 Limit functions

3.1 Asymptotic uniform errors near the ends of interval

3.1.1 Union of two uniform grids

Assume that ᾱ = {−α, α}, 0 < α < 1. Let consider the union of two grids {x−α
k } ∪ {xα

k},
k = 0, ..., 2N − 1, consisting of 4N nodes (N is now replaced by 2N in formula (17)).
Likewise (6), polynomial-trigonometric interpolation of a function f is defined to be the
approximation formula

Sᾱ
N,q(f)(x) =

q∑
k=0

AkBk(x) + I ᾱ
N

(
f(x)−

q∑
k=0

AkBk(x)

)
. (40)

The result that follows characterizes the asymptotic behavior of the error

Rᾱ
N,q(f)(x) = Sᾱ

N,q(f)(x)− f(x) (41)

in a neighborhood of the point x = 1.

Theorem 3 Let f(x) ∈ Cq+2[−1, 1], q ≥ 0, ᾱ = {−α, α}, 0 < α < 1. Then for x =
1− h

4N and h = const > 0

lim
N→∞

[
(4N)q+1Rᾱ

N,q(f)
]

= Aq+1(f)Dq,α(h), (42)

where

Dq,α(h) = − 2q

(iπ)q+2

∫ 1

0

(
e−

iπht
2 Resz=−t

(
e−iπzcosec(πz)

(t + z)q+2

(
i
2
cosec

(
πα)(eiπ(α+z(−1+α)`−

eiπ(−α+z(−1−α)`
)

+ e
iπh
2

(
eiπz(−1+α)` − eiπz(−1−α)`

))))
dt (43)

Proof. Let f(x) = Bq+1(x). According to (1), (5) and (29) (n = 1, ..., 2N , q ≥ 0)

(B̌q+1(x))α
n =


(−1)n+1Φq(α+1, n

2N
)

2(iπ(2N))q+2 , n 6= 0
1
2

∑∞
s=−∞

s 6=0

(−1)s+1

(2iπNs)q+2 , n = 0.
(44)

Using (34) let denote

u(α, h)
def
= aα

(
2N

(
1− h

4N

))
=

eiαπ + e
iπh
2

2i sin(πα)
. (45)

From the asymptotic expansion (N →∞, x = 1− h
4N , h = const > 0)

Bq+1(x) =
∞∑

n=−∞
n6=0

(−1)n+1

2(iπn)q+2
eiπn(1− h

4N
) =

− 1
2(iπ)q+2

2N−1∑
n=1

∞∑
s=−∞

e−
iπ(n+2Ns)h

2N

(n + 2Ns)q+2
− 1

2(iπ)q+2

∞∑
s=−∞

s 6=0

e−
iπhs

2

(2Ns)q+2
=

− 1
2(iπ(2N))q+2

2N−1∑
n=1

e−
iπnh
4N

∞∑
s=∞

e−
iπhs

2

( n
2N + s)q+2

+ O

(
1

N q+2

)
=

− 1
2(iπ(2N))q+2

2N−1∑
n=1

e−
iπnh
4N Φq

(
−h

2
,

n

2N

)
+ O

(
1

N q+2

)
, (46)
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we get

Rᾱ
N,q(Bq+1(x)) = Sᾱ

N,q(Bq+1(x))−Bq+1(x) =

1
2(iπ(2N))q+2

2N−1∑
n=1

e−
iπnh
4N

(
u(α, h)Φq

(
1 + α,

n

2N

)
+

u(−α, h)Φq

(
1− α,

n

2N

)
− Φq

(
−h

2
,

n

2N

))
+ O

(
1

N q+2

)
. (47)

Denoting now tn = n
2N , ∆t = 1

2N , we obtain

lim
N→∞

(4N)q+1Rᾱ
N,q(Bq+1(x)) =

2q+1

2(iπ)q+2

∫ 1

0
e
−ihπt

2 (u(α, h)Φq(1 + α, t) +

u(−α, h)Φq(1− α, t)− Φq(−h/2, t)) dt . (48)

The passage to the limit is admissible since the integrand of the latter integral is smooth
on [0, 1] (see Remark to Lemma 1). From here and (45) it follows (42).
Let now f be an arbitrary function from Cq+2[−1, 1]. Denoting by ω(f, ε) the continuity
modulus of function f (q+2)(x), from (9) we obtain (see [1], vol. 1)

|RN,q(f(x))−Aq+1(f)RN,q(Bq+1(x))| ≤ ω(f, 1/N)
∞∑

n=N

n−q−2 = o(N−q−1).

This completes the proof.

3.1.2 Union of three uniform grids

Denote
χq(u, w) = 2πResz=−t

cos(π(q/2 + u + (1− w)z))
sin(πz)(t + z)q+2

. (49)

The following theorem shows the asymptotic behavior of the error Rᾱ
N,q(f), ᾱ = {−α, 0, α},

for polynomial-trigonometric interpolation of a function f on the union of three grids
{x−α

k } ∪ {x0
k} ∪ {xα

k}, k = 0,±1, ...,±N in a neighborhood of the point x = 1.

Theorem 4 ([12]) Let f(x) ∈ Cq+2[−1, 1], q ≥ −1, ᾱ = {−α, 0, α}. Then for x =
1− h

6N+3 and h = const > 0

lim
N→∞

[
(6N + 3)q+1Rᾱ

N,q(f)
]

= Aq+1(f)Dq,α(h), (50)

where

Dq,α =
3q+1

8πq+2

∫ 1
2

0

(
csc2

(
πα

2

)(
χq

(
ht

3
, (1 + α)

`
)(

cos
(

π

(
α

2
− h

3

))
sec

(
πα

2

)
+

+1)χq

(
ht

3
, (1− α)

`
)(

cos
(

π

(
α

2
+

h

3

))
sec

(
πα

2

)
+ 1

)
− 2i2q

(
cos

(
πh

3

)
+

cos (πα))χq

(
−q

2
, 1
)

cos
(

π

(
q

2
− ht

3

)))
− 4χq

(
ht

3
,

(
−h

3

)
`
))

dt. (51)
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4 L2-asymptotic errors

In this section we are interested in the asymptotic behavior of L2-norm of the error Rᾱ
N,q(f)

in the interval (−1, 1) as N →∞.

4.1 Union of two uniform grids

Let consider the case of the union of two grids described in Section 3.1.1.

Theorem 5 Let f(x) ∈ Cq+2[−1, 1], q ≥ −1 and ᾱ = {−α, α}, 0 < α < 1. Then

lim
N→∞

(4N)q+3/2||Rᾱ
N,q(f)|| = Aq+1Vq,α, (52)

where

Vq,α =
2q+1

πq+2

∫ 1

0

∣∣∣∣∣∣− 1
(t− 1)q+2

− iπ

2
Resz=−t

e−iπz
(
eiπz(−1−α)` − eiπz(−1+α)`

)
sin(πα) sin(πz)(t + z)q+2

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣− 1
tq+2

− iπ

2
Resz=−t

e−iπz
(
eiπ(−α+z(−1−α)`)− eiπ(α+z(−1+α)`

)
sin(πα) sin(πz)(t + z)q+2

∣∣∣∣∣∣
2

−

1
(t− 1)2(q+2)

− 1
t2(q+2)

− πResz=−t
e−iπz

sin(πz)(t + z)2(q+2)
dt

)1/2

. (53)

Proof. It is sufficient to prove the theorem for the function f = Bq+1(x) (see 16)). We
have the expansion

Bq+1(x) =
1
2

∞∑
n=−∞

n6=0

(−1)n+1

(iπn)q+2
eiπnx =

1
2

2N−1∑
n=1

∞∑
s=−∞

(−1)n+2Ns+1

(iπ(n + 2Ns))q+2
eiπ(n+2Ns)x +

1
2

∞∑
s=−∞

s 6=0

(−1)2Ns+1

(iπ2Ns)q+2
eiπ2Nsx =

1
2

2N−1∑
n=1

∞∑
s=−∞

(−1)n+1eiπ(n+2Ns)x

(iπ(n + 2Ns))q+2
+ O

(
1

N q+2

)
. (54)

Consider the L2-norm of error (41) for N →∞ (see (1), (32), (40) and (44))

||Rᾱ
N,q(Bq+1)||2 =

∣∣∣∣∣∣Sα
N,q(Bq+1(x))−Bq+1(x)

∣∣∣∣∣∣2 =

1
2(π(2N))2(q+2)

∣∣∣∣∣
∣∣∣∣∣
2N−1∑
n=1

(−1)n+1eiπnx

(
aα(2Nx)Φq

(
1 + α,

n

2N

)
+

a−α(2Nx)Φq

(
1− α,

n

2N

)
− 1(

n
2N

)q+2 −
e−iπ(2N)x

( n
2N − 1)q+2

−
∞∑

s=−∞
s 6=−1,0

eiπ(2Ns)x

( n
2N + s)q+2

)
+

O

(
1

N2(q+2)

)∣∣∣∣∣
∣∣∣∣∣
2

. (55)

From the orthogonality of system {eiπnx}, n ∈ Z, in L2(−1, 1) we obtain∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2N−1∑
n=1

∞∑
s=−∞
s 6=−1,0

(−1)n+1eiπ(n+2Ns)x)

( n
2N + s)q+2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= Φ2q+2

(
0,

n

2N

)
− 1

( n
2N )2(q+2)

− 1
( n
2N − 1)2(q+2)

.
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Collecting the terms by degrees of the exponent we have as N →∞

(4N)2q+3||Rᾱ
N,q(Bq+1)||2 =

22(q+1)

π2(q+2)

(
2N−1∑
n=1

∣∣∣∣∣− 1
( n
2N − 1)q+2

−

iπ

2
Resz=− n

2N

e−iπz
(
eiπz(1−α)` − eiπz(1+α)`

)
sin(πα) sin(πz)( n

2N + z)q+2

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣− 1
n

2N
q+2 −

iπ

2
Resz=− n

2N

e−iπz
(
eiπ(−α+z(1−α)`)− eiπ(α+z(1+α)`

)
sin(πα) sin(πz)( n

2N + z)q+2

∣∣∣∣∣∣
2

−

1
( n
2N − 1)2(q+2)

− 1
n

2N
2(q+2)

− πResz=− n
2N

e−iπz

sin(πz)( n
2N + z)2(q+2)

)
. (56)

Denoting now tn = n
2N , ∆t = 1

2N , tending N to infinity and taking into account the
smoothness of the integrand in (53) on [0, 1] we obtain the statement of the theorem.

4.1.1 Minimization of the error of quasiperiodic interpolation

Apply now the scheme of Section 3.2 to the periodic (obviously not total) interpolation
on [−1, 1] by means of the system of periodic functions {TN

n (x)} which period greater
than 2. If min{xN

k } → −1 and max{xN
k } → 1 for N → ∞ we arrive at quasiperiodic

interpolation.
For interpolation I ᾱ

N , ᾱ = {−α, α}, 0 < α < 1 (see (32)) the total quasiperiodic interpo-
lation is constructed by such parameters: tN = 2(1 + (1− α)/(2N + α)), and in (34) the
argument x is replaced by (2N+α−1

2N )x.
The advantages of such a transfer from periodic interpolation to quasiperiodic one are
obvious: in practice for the same algorithm the function is approximated exactly at the
ends of the segment [−1, 1] and in addition the error is essentially decreased. Moreover
Gibbs phenomenon more naturally characterized at the ends of segment [−1, 1] by both
values of ”overshoot” and ”undershoot”.
Show now that using the previous results we shall get the asymptotic formula of the total
quasiperiodic interpolation. Indeed, denoting by ε2,N,q the error of the total quasiperiodic
interpolation we obtain

||ε2,N,q||2 =
∫ 1

−1

∣∣∣∣Rᾱ
N,q

((
2N + α− 1

2N

)
x

)∣∣∣∣2 dx =
2N

2N + α− 1

∫ 1− 1−α
2N

−1+ 1−α
2N

|Rᾱ
N,q(x)|2 dx =

2N

2N + α− 1

(∫ 1

−1
|Rᾱ

N,q(x)|2 dx− 2
∫ 1

1− 1−α
2N

|RN,q(x)|2 dx

)
=

2N

2N + α− 1

(
||Rᾱ

N,q(x)||2 dx− dN,q(α)
)

, (57)

where

dN,q(α) =
1

2N

∫ 2(1−α)

0

∣∣∣∣Rᾱ
N,q

(
1− h

4N

)∣∣∣∣2 dh

is the value describing the improvement of asymptotic L2-norm of error Rᾱ
N,q(x).

From here and Theorems 3 and 5 we get
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Theorem 6 Let f(x) ∈ Cq+2[−1, 1], q ≥ −1, ᾱ = {−α, α}, 0 < α < 1, Dq,α and Vq,α be
defined by (43) and (53) respectively Then

lim
N→∞

(4N)q+3/2||ε2,N,q|| = Aq+1

√√√√(V 2
q,α − 2

∫ 2(1−α)

0
|Dq,α(h)|2 dh

)
. (58)

Optimal choice of the parameter α corresponds to the minimization problem of the right-
hand side of (58) if Aq+1 = 1.

4.2 Union of three uniform grids

4.2.1

For the union of three grids considered in item 3.1.2 the next result is true.

Theorem 7 Let f(x) ∈ Cq+2[−1, 1], q ≥ −1 and ᾱ = {−α, 0, α}. Then the asymptotic
formula

lim
N→∞

(6N + 3)q+3/2||Rᾱ
N,q(f)|| = Aq+1Vq,α, (59)

where

Vq,α =
3q+3/2

√
2πq+2

(∫ 1
2

− 1
2

(
Φ2q+2(0, t)− 1

t2(q+2)
− 1

(t− 1)2(q+2)
− 1

(t + 1)2(q+2)
+∣∣∣∣ 1

(t− 1)q+2
+

1
4
cosec2

(
απ

2

)(
Φq(1, t)− 2 sec

(
απ

2

)(
e

iπα
2 Φq(1− α, t)+

e−
iπα
2 Φq(1 + α, t)

))∣∣∣2 +
∣∣∣∣− 1

tq+2
− 1

2
cosec2

(
απ

2

)
(cos(απ)Φq(1, t)−

2(Φq(1− α, t) + Φq(1 + α, t))|2 +
∣∣∣∣ 1
(t + 1)q+2

+
1
4
cosec2

(
απ

2

)
(Φq(1, t)−

2 sec
(

απ

2

)(
e−

iπα
2 Φq(1− α, t) + e

iπα
2 Φq(1 + α, t)

))∣∣∣∣2
)

dt

)1/2

. (60)

Proof is quite similar to the proof of Theorem 5.

4.2.2 Minimization of the error of quasiperiodic interpolation

For interpolation I ᾱ
N , 0 < α < 1, (see (35)) the total quasiperiodic interpolation is con-

structed by the following parameters: tN = 2(1 + (1 − α)/(2N + α)), and in (37) the
argument x is substituted on (2N+α

2N+1 )x. Denoting by ε3,N,q the corresponding error of the
total quasiperiodic interpolation, we have

||ε3,N,q||2 =
∫ 1

−1

∣∣∣∣Rᾱ
N,q

((
2N + α

2N + 1

)
x

)∣∣∣∣2 dx =
2N + 1
2N + α

∫ 1− 1−α
2N

−1+ 1−α
2N

|Rᾱ
N,q(x)|2 dx =

2N + 1
2N + α

(∫ 1

−1
|Rᾱ

N,q(x)|2 dx− 2
∫ 1

1− 1−α
2N

|Rᾱ
N,q(x)|2 dx

)
=

2N + 1
2N + α

(
||Rᾱ

N,q(x)||2 dx− dN,q(α)
)

, (61)
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where

dN,q(α) =
2

6N + 3

∫ 3(1−α)

0

∣∣∣∣Rᾱ
N,q

(
1− h

6N + 3

)∣∣∣∣2 dh.

From here and Theorems 4 and 7 we get the next result.

Theorem 8 Let f(x) ∈ Cq+2[−1, 1], q ≥ 0 and ᾱ = {−α, 0, α}. Then

lim
N→∞

(6N + 3)q+3/2||ε3,N,q|| = Aq+1

√√√√(V 2
q,α − 2

∫ 3(1−α)

0
|Dq,α(h)|2 dh

)
, (62)

where Dq,α and Vq,α are defined by (51) and (60) respectively.

The problem is the minimization by α of the right-hand side of (62) if Aq+1 = 1.

5 Parallel processing

5.1

For simplicity here we consider the parallel processing problem only in the case of odd m.
It will be easy to see that the suggested scheme is applicable also for even m.
The solution of system (24) has the following form

aj =
m∑

j=1

λjs(−1)NseiπsNx, j = 1, 2, ...,m, (63)

where the matrix {λjs} is inverse to the Vandermonde matrix {eiπsαj}, j = 1, 2, ...,m,
s = −(m− 1)/2, ...,m− (m− 1)/2− 1.
From here and (22) we have (see denotations in Section 1.3 above)

I ᾱ
N (f)(x) =

∑
n

NFnse
iπ(n+Ns)x, (64)

where

Fns = (−1)Ns
m∑

j=1

(m−1)/2∑
s=−(m−1)/2

λjsf̌
αj
n ,

n = −[N/2], ..., N − [N/2]− 1, s = −(m− 1)/2, ...,m− (m− 1)/2− 1. (65)

So to obtain the interpolation I ᾱ
N it is necessary:

a) to calculate the N ×m-matrix Fns,
b) to put out formula (64).

Pure numerical calculations are connected with item a). Let find its complexity taking
into account all arithmetic operations. The coefficients {fαj

n } can be calculated by means
of Fast Fourier Transform (FFT) whose complexity in the case of radix-2 scheme equals
6N log2 N + O(N) (N →∞) operations for each j, j = 1, ...,m (see [13]).
Calculation of the matrix {λjs} by the best at present Björck-Perejra algorithm for Van-
dermonde matrices (see [14]) requires m2 + O(m) operations.
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Thus, for m,N � 1 the whole complexity Ω of calculation of matrix {Fns} is

Ω = 6mN log N + m2 + O(log N) + O(m).

Taking into account the form of (24) and (63) in case when m � N it is reasonable to
apply a multiprocessor system. Indeed, if we have m processors then each of them can
calculate the coefficients {f̌αj

n } separately for the corresponding j (j = 1, 2, ...,m). Thus
(see the previous item), the main part of operations of calculation {Fnm} will be executed
m times faster.
Let calculations be carried out on a cluster consisting of (m+1) Computer Modules (CM):
{CM(1), ...,CM(m + 1)} provided each of them is actually a separate computer.
On Fig. 1 the chart of cluster working by the SIMD (Single Instruction Multiple Data)
scheme is shown.
The function f and integer N are entered into input device (INPUT). Control Unit (CU)
gives out the corresponding data {f(xαj

k )} to each of the modules CM(j) (j = 1, ...,m) for
treatment by the same program of FFT. These data are forwarded back to CU and sent
to CM(m+1) for solving system (63), calculation of matrix {Fns} and symbolic writing
of the formula produced at output device (OUTPUT).
It should be noted that connections among the modules CM(1), ..., CM(m) are not acti-
vated here.

Input[f, N, ᾱ]
−→ CU −→ CM(m+1) −→Output[I ᾱ

N [f ] ]

l
l l l · · · l

CM(1) CM(2) CM(3) CM(m)

Fig. 1. The scheme of calculating cluster for interpolation (64).

It is not difficult to see that for this scheme the ”speedup” efficiency coefficient without
formation of the symbolic formula in CM(m + 1) equals (N,m � 1) (see [16])

speedup =
6N log2 N + m2

6mN log2 N + m2
.

For m = const and N � 1 speedup is maximal (practically equals 1
m).

It is important that in the case of large m calculation of the matrix {λjs}may be evaluated
by a parallel processing also because Björck-Perejra algorithm is vectorized. Here we will
not stay on that.

5.2

Interpolation on the uniform grid with mN nodes corresponds to (22) if αj = 2j+β+1
m

(−1 < β = const < 1, j = 1, 2, ...,m). In this case the left side of (24) is discrete Fourier

17



transform of {aαj} and {λjs} has an explicit form. For example, if m is odd it is easy to
check that

I ᾱ
N (f)(x) =

m∑
j=1

sin π
2 m(Nx− 2j+1−β

m )

sin π
2 (Nx− 2j+1−β

m )
I

2j+β+1
m

N (f)(x). (66)

So parallel processing mentioned above will be more simple.
On the other hand, each of FFT in modules CM(k) (k = 1, ...,m) of the scheme of Fig. 1
can be parallelized in its turn.
Indeed, if N allows the expansion N = m1N1 then each of CM(k) on Fig. 1 may be
replaced by a m1-cluster with computer modules CM(k, r) (r = 1, 2, ...,m1), each of
which works by the similar scheme using (66) but instructions and data are get from the
previous CU and results are output in CM(m+1). Applying this architecture we obtain
that speedup equals 1

mm1
.

At last note that for parallel processing of FFT in each of CM(k) (k = 1, 2, ...,m) one
can use the other current multiprocessor system working by own scheme (see[17]). It is
well-known many types of them. For example, it is possible to use the computation of
FFT on the star-connected cycle network (see[18]) when the architecture is based on the
n-star (2 < n < N) interconnected graph.

6 Numerical optimization

6.1

The presented results allow to obtain numerical values of asymptotic L2-errors as well as
the values of asymptotic uniform errors. However, here some calculating obstacles arise.
First of all, it is connected with calculation of indeterminacies in integrands which are
actually continuous. The direct application of an automatic integration package to the
values Eq, Gq, Dq,α and Vqα reduces (especially for large q) to the extreme accumulation
of errors.
For example, in (43) the integrand (which is continuous on [0, 1])contains indeterminacy
of type 0/0 at the points x = 0 and x = 1. To overcome these difficulties we have used
the following approach: for a given sufficiently small parameter ε > 0 the interval is
divided on three parts: (0, ε), (ε, 1 − ε), (1 − ε, 1). On (ε, 1 − ε) the integrand may be
automatically integrated. As to intervals (0, ε) and (1− ε) the function must be replaced
in the neighborhood of the points t = 0 and t = 1 by the corresponding truncated Taylor
series in the symbolic form. Note that we use MATHEMATICA 4.1 package possessed
a powerful package for expansion of functions by the standard Taylor series formula. It
turned out that with increasing q it is necessary to take more terms of Taylor series and
to choose the appropriate ε to provide the desired precision.
In such way we have calculated the parts of the integrals (51), (53), (58), (60) and (62)
containing the indeterminacies in a small neighborhoods of the ends of integration interval.
It should be mentioned that this approach requires the computer with a high frequency
and a big RAM. In our case PC Pentium III, 1GHz, 128 RAM was used.
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6.2

Here we give numerical solutions of the problems of minimizations of both uniform and
L2 errors of interpolation (22) for some fixed q and N → ∞ when considering both the
periodic and quasiperiodic interpolations.
For convenience, we call Gibbs Phenomenon value (GPv) for given q and α the maximal
value of Dq,α(h) (or Eq(h) in the case of orthogonal decomposition) characterizing the
asymptotic uniform error (see Theorems 1, 3 and 4). Correspondingly, we call the value
of L2-error for given α and q the value Vq,α characterizing the asymptotic L2-error (The-
orems 2, 5 and 7). Numerical results are given in Tables 1 - 3 up to 3 exact significant
digits with the rounding last one.
Obviously the total quasiperiodic interpolation can not be applied to the polynomial-
orthogonal decomposition. So for comparison the approximation errors are given for
periodic (not total) interpolation. In Table 1 we present for the unions of 2 and 3 grids
only GPvs, since we applied the total quasiperiodic interpolation and uniform error and
GPv coincide for these cases.

q OrthDec UnGr 2 grids 3 grids
UnErr GPv GPv GPv GPv

-1 0.500 0.0895 0.141 0.0834 0.0612
0 0.203 0.0706 0.0494 0.0223 0.0140
1 0.0495 0.0495 0.0453 0.0343 0.0308
2 0.0274 0.0187 0.0240 0.0356 0.0106
3 0.0119 0.0119 0.0115 0.0109 0.0101
4 0.00666 0.00551 0.00882 0.00630 0.00517

Table 1.Uniform Error (UnErr) and GPv for the orthogonal decomposition (OrthDec),
optimal GPv for uniform grid (UnGr) and unions of 2 and 3 grids.

Results of Table 1 show that the suggested optimization is rather efficient. As for classic
Gibbs Phenomenon value, the optimal values for 2 and 3 grids about twice less than in
the case of the uniform grid. Note that the GPv for Fourier series equals 0.0895...
Table 2 shows that the asymptotic L2-error is sufficiently improved when applying the
total quasiperiodic interpolation. There are given the values of asymptotic L2-errors
corresponding to choice of the optimal parameter α in the cases of uniform, not total
optimal, total uniform and total optimal grids.

q OrthDec UnGr OptimGr TotalUnGr TotalOptimGr
2 Grids 3 Grids 2 Grids 3 Grids

-1 0.450 0.469 0.458 0.454 0.266 0.194 0.154
0 0.165 0.237 0.211 0.203 0.074 0.0441 0.0303
1 0.0816 0.107 0.103 0.0979 0.103 0.0957 0.0875
2 0.0439 0.0627 0.0611 0.0597 0.032 0.030 0.0239
3 0.0246 0.0345 0.0340 0.0336 0.0340 0.0339 0.0331
4 0.0142 0.0201 0.020 0.0199 0.0154 0.0136 0.0129

Table 2.Values Vq,α in the cases of the orthogonal decomposition (OrthDec), uniform
(UnGr) and total uniform grids (TotalUnGr), optimal (OptimGr) and total optimal

grids (TotalOptimGr) for the unions of 2 and 3 grids.
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As we can see the suggested method is the best efficient in the case q = 0 when L2-error
decreases 5.4 times for 2 grids and 7.8 times for 3 grids.
It should be also mentioned that in case of the union of two and three grids corresponding
to optimal α the significant decrease of errors takes place only for −1 ≤ q ≤ 2 and q = 4.

Below in Table 3 one can find the optimal values of the parameter α for which the
asymptotic errors of uniform convergence (Gibbs phenomenon) and L2-convergence of
interpolations in the cases of not total and total grids, are the lowest. Thus, the grids
corresponding to these values are optimal.

αopt αopt

for 2 grids for 3 grids
q GPv not Total (L2) Total (L2) GPv not Total(L2) Total (L2)
-1 0.407 0.432 0.329 0.550 0.607 0.487
0 0.345 0.647 0.294 0.469 0.781 0.436
1 0.436 0.436 0.416 0.590 0.593 0.567
2 0.380 0.553 0.310 0.504 0.721 0.480
3 0.486 0.471 0.470 0.631 0.624 0.619
4 0.411 0.519 0.394 0.537 0.692 0.540

Table 3.Optimal values of the parameter α in the cases of the unions of 2 and 3 grids

These results can be considered as instructions for practical applications.
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