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Abstract. In this paper we give a new proof of Riemann’s well known mapping
theorem. The suggested method permits to proof an analog of that theorem for
three dimensional case.
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1 Introduction

By Liouville’s theorem, see [2], p. 130, in three dimensional case, only superposi-
tion of isometric, dilatation and inverse transformations are conformal. To get an
analogy for Riemann’s mapping theorem, one introduce a new family of mappings
named quasi - conformal. This family is wider, nevertheless we have not a natural
analogy of conformal mappings like of two dimensional case. In this paper we in-
troduce a new family of mappings, named week - conformal. For this, new family
of mappings, we have more natural generalization of Riemann’s theorem.

The prove of the main result of this paper is interesting for two dimensional
case too. Actually, we give a new prove of Riemann’s classical theorem, where the
specific properties of complex analysis do not used. This permits to find its three
dimensional analog.

2 Classes of mappings

For an arbitrary matrix

det(M) =




a11 . . . a1n

. . . . . . . . .
an1 . . . ann




with eigenvalues λ1, . . . , λn let us denote by

|M |2 =
n∑

i=1

n∑
j=1

a2
ij =

n∑
i=1

λ2
i ,
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tr(M) =
n∑

i=1

aii =
n∑

i=1

λi

and

det(M) =

∣∣∣∣∣∣

a11 . . . a1n

. . . . . . . . .
an1 . . . ann

∣∣∣∣∣∣
=

n∏
i=1

λi.

Let ϕ(x, y, z) = (A,B,C) be continuous differentiable mapping. Let us denote
by

J =




A′
x A′

y A′
z

B′
x B′

y B′
z

C ′
x C ′

y C ′
z




the Jacobi matrix. Let G = J∗J . We have

||ϕ(~x + ∆~x)− ϕ(~x)||2 = (J∆~x, J∆~x) + o(|∆~x|2) = (∆~x,G∆~x) + o(|∆~x|2).

Definition 1. A continuous differentiable one to one mapping

ϕ : Ω1 → Ω2

of the domain Ω1 ⊂ R3 on Ω2 ⊂ R3 is conformal if for each point ~x ∈ Ω1 there is
a number M(~x) such that

||ϕ(~x + ∆~x)− ϕ(~x)|| = M(~x) |∆~x|+ o(|∆~x|).

Lemma 1. Let ϕ be continuous differentiable mapping with the Jacobi matrix
J and G = J∗J . Then ϕ is conformal if and only if

27 det(G) = tr3 (G) .

Proof. The eigenvalues λ1, λ2, λ3 of the matrix G are nonnegative. The
lemma’s condition means that

(
λ1 + λ2 + λ3

3

)3

= λ1λ2λ3

This equality is valid only if all eigenvalues are equal, i. e. λ1 = λ2 = λ3.

Example. Let us consider the inverse transformation, which the point (x, y, z) 6=
(0, 0, ) maps to (A,B,C), where

(A,B,C) =

(
x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2
,

)
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We have

J =




A′
x A′

y A′
z

B′
x B′

y B′
z

C ′
x C ′

y C ′
z


 =

=
1

(x2 + y2 + z2)2



−x2 + y2 + z2 −2xy −2xz

−2xy x2 − y2 + z2 −2yz
−2xz −2yz x2 + y2 − z2




Consequently,

G =
1

(x2 + y2 + z2)2




1 0 0
0 1 0
0 0 1




So, lemma 1 condition satisfies and this mapping is conformal.

Definition 2. A quasi-conformal mapping is a continuous differentiable home-
omorphism

ϕ : Ω1 → Ω2

for which the ball of small radius maps to the ellipsoid the ratio of the main
diagonals of which are uniformly bounded.

In this paper we introduce a new family of mappings, which are generalization
of conformal mappings. For those mappings, which we named week - conformal,
we have an analogy of Riemann’s mapping theorem.

Definition 3. A week-conformal mapping is a continuous differentiable homo-
morphism

ϕ : Ω1 → Ω2

for which the ball of small radius maps to the ellipsoid the main diagonals of which
form geometric progression.

Lemma 2. Let ϕ be continuous differentiable mapping with Jacobi matrix J .
Then it is week - conformal if and only if

(
tr2(G)− |G|2)3

= 8 det(G) tr3(G),

where G = J∗J .

Proof. In terms of eigenvalues of the matrix G = J∗J , this condition one can
write as follows

λ1λ2λ3 (λ1 + λ2 + λ3)
3 = (λ1λ2 + λ3λ1 + λ3λ2)

3 .

So,

(λ1λ2λ3 − λ3
3) (λ1 + λ2 + λ3)

3 − (λ1λ2 + λ3λ1 + λ3λ2)
3 +

(
λ1λ3 + λ2λ3 + λ2

3

)3
= 0.
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After simple transformations we get

(λ1λ2 − λ2
3)

(
(λ1λ2 + λ3λ1 + λ3λ2)

(
λ2

1 + λ2
2 + λ1λ2

)− λ1λ2 (λ1 + λ2 + λ3)
2) = 0.

The last condition is equivalent to the following one

(
λ1λ2 − λ2

3

) (
λ1λ3 − λ2

2

) (
λ3λ2 − λ2

1

)
= 0.

Consequently, our condition means that eigenvalues of the matrix J∗J form a
geometrical progression.

3 Green’s function in R2

In this section we define Green function and prove some of its properties.

Definition 4. Let Ω be a domain in R2. A function G(~x, ~y), ~x 6= ~y ∈ Ω is
called Green function for the domain Ω, if it satisfies the following conditions:

1. G(~x, ~y) is continuous from below and

G(~x, ~y) > 0, ~x 6= ~y ∈ Ω;

2. for each fixed point ~y ∈ Ω there is a harmonic function h(~x, ~y), ~x ∈ Ω such
that

G(~x, ~y) =
1

2π
log

1

|~x− ~y| + h(~x, ~y);

3. if u(~x), ~x ∈ Ω is an arbitrary harmonic function satisfying the condition

u(~x) ≤ G(~x, ~y), ~x ∈ Ω \ {~y},
then

u(~x) ≤ 0, ~x ∈ Ω.

In three dimension case, if Ω ⊂ R3, the Green’s function one define by the
same way replacing the second condition to the following one

G(~x, ~y) =
1

4π|~x− ~y| + h(~x, ~y), ~x ∈ Ω \ {~y}.

It is well known, that if the boundary of a domain Ω 6= R2 has positif capacity,
then it has unique Green function, see [4], p. 138. In particulary, if Ω 6= R2 is
simply connected then it has Green function.

For a fixed point ~y ∈ Ω and for an arbitrary number 0 < t < +∞ let us denote

Ωt = {~x; G(~x, ~y) > t}.
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It is easy to note that for arbitrary value of t > 0 the domain Ωt is connected and
its Green function is G(~x, ~y)− t.

Lemma 3. Let u(~x), ~x ∈ Ω, be a harmonic function and

{~x; |~x− ~x0| ≤ r} ⊂ Ω.

Let for some point ~x, |~x− ~x0| = r, we have

u(~x) = inf{u(~y); |~y − ~x0| < r}.

Then

|∇u(~x)| ≥ 1

2r
(u(~x0)− u(~x)).

Proof. For arbitrary 0 ≤ ϕ < 2π and 0 < t < 1 we have

r2 − (rt)2

|reiϕ − t(~x− ~x0)|2 ≥
r2 − (rt)2

(r + rt)2
≥ 1− t

2
.

So,
u(~x0 + t(~x− ~x0))− u(~x)

|~x0 + t(~x− ~x0)− ~x| =

=
1

2π(r − rt)

∫ 2π

0

r2 − (rt)2

|reiϕ − t(~x− ~x0)|2 (u(~x0 + reiϕ)− u(~x))dϕ ≥

≥ 1

4πr

∫ 2π

0

(u(~x0 + reiϕ)− u(~x))dϕ =
1

2r
(u(~x0)− u(~x)).

Passing to the limit if t → 1− 0 we get the required result.

Remark. The analogous result is true in R3.

Theorem 1. Let G(~x, ~y) be Green function for a simply connected domain Ω
in R2. Then

|∇G(~x, ~y)| 6= 0, ~x ∈ Ω \ {~y}.

Proof. Let us assume, that at some point ~x0 ∈ Ω we have

|∇G(~x0, ~y)| = 0.

Denote
Ω+ = {~x, G(~x, ~y) > G(~x0, ~y)}

and
Ω− = {~x, G(~x, ~y) < G(~x0, ~y)}.
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Let us note that the domain Ω+ is connected. For sufficiently small number ε > 0,
such that

B(~x0, ε) ⊂ Ω \ {~y}
holds, we consider the open set

A = B(~x0, ε) \ {~x; G(~x, ~y) = G(~x0, ~y)}.

The set A can not consist of an odd number of components. Otherwise, we
could find a point

~x1 ∈ B(~x0, ε) ∩ {~x; G(~x, ~y) = G(~x0, ~y)}

in some neighborhood of which the function G(~x, ~y)−G(~x0, ~y) would preserve its
sign. So, ~x1 would be the point of local extremum, which is not possible for the
nonconstant harmonic function G(~x, ~y), ~x ∈ B(~x0, ε). Moreover, the set A can
not consist of two components. Indeed if it had two components then the boundary
∂Ω+ ∩B(~x0, ε) would be smooth. Consequently, by lemma 1 we would have

|∇G(~x0, ~y)| > 0.

Thus, the domain A consists at least with four connected components. This im-
plies that the open set Ω− consists of more than two connected components. Since
our domain is simply connected, one of those components has the boundary, com-
pletely laying inside of ∂Ω+. On that connected component the function G(~x, ~y)
is identically constant end equal G(~x0, ~y). This is contradiction.

Let us note that in the theorem 1, the condition ”simply connected”, is essen-
tial. Indeed, for the domain {~x; 1 < |~x| < 2} the theorem 1 does not valid.

4 New prove of Riemann’s theorem

In this section we give a new proof of Riemann’s well known theorem on conformal
mapping. In this prove we do not use methods of complex analysis. That is way
it permits three dimensional analog.

Let us denote by
D(~y, r) = {~x; |~x− ~y| < r}.

Theorem 2. Let Ω be a simply connected domain in R2. If Ω 6= R2 then there
is a one to one conformal mapping

ϕ : Ω → D

6



of the domain Ω on the unit disk D = D(~0, 1).

Proof. Let us fix a point ~y ∈ Ω and G(~x, ~y) be Green function of the domain
Ω. Let us consider the following dynamical system in Ω \ {~y}

d~x(t)

dt
= − ∇G(~x(t), ~y)

2π|∇G(~x(t), ~y)|2 e2πG(~x(t),~y), 0 < t < 1. (1)

For an arbitrary solution of this equation we have

d

dt

(
e−2πG(~x(t),~y)

)
= −2πe−2πG(~x(t),~y)

(
∇G(~x(t), ~y),

d~x(t)

dt

)
= 1.

Consequently,

G(~x(t), ~y) =
1

2π
ln

1

t
, 0 < t < 1.

In the neighborhood of each point ~x ∈ Ω \ {~y} the equation (1) has a unique
solution passing through the point ~x, see [1] p. 19.

In the neighborhood of the point ~y the equation (1) could be written in the
following form

d~x(t)

dt
=

~x(t)− ~y

|~x(t)− ~y| exp{2πh(~y, ~y)}+ o(t), t → 0.

So, for each solution of our equation we have

~x(t) = ~y + ~at exp{2πh(~y, ~y)}+ o(t), t → 0,

where ~a is a vector with norm one.
Consequently, for each point x ∈ Ω \ {~y} we can find a unique vector ~a = ~a(~x),

such that there is a solution ~x(t) of our equation which passes through the point
~x and at the same time in the neighborhood of the point ~y satisfies the condition

lim
t→0

~x(t)− ~y

t
= ~a exp{2πh(~y, ~y)}.

Let us define the mapping
ϕ : Ω → D

as follows, ϕ(~y) = 0 and for the arbitrary point ~x ∈ Ω \ {~y} we put

ϕ(~x) = ~a(~x)e−2πG(~x,~y).

It is obvious, that ϕ(~x) is a one to one mapping and ϕ(Ω) = D.
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Now we’ll recall some facts about the constructed mapping, which permit to
assert that it is conformal.

Let us take two solutions
~x(t), ~x1(t)

of the equation (1). We denote by α the angle between the vectors ~a(~x(t)) and
~a(~x1(t)). For arbitrary numbers 0 < t0 < t1 < 1 let us denote by U the domain
bounded by the curves

γ1 = {~x(t); t0 < t < t1}, γ2 = {~x1(t); t0 < t < t1}
and

γ3 = {~x; G(~x, ~y) = G( ~x(t0), ~y)}, γ4 = {~x; G(~x, ~y) = G( ~x(t1), ~y)}.
Let ~m(~x) be the unite outer normal to the boundary of the domain U at the point
~x ∈ ∂U . For an arbitrary point ~x ∈ γ1 ∪ γ2 we have

(
d~x(t)

dt
, ~m(~x(t))

)
= 0, t0 < t < t1.

Consequently,

(∇G(~x, ~y), ~m(~x)) =
∂G(~x, ~y)

∂ ~m
= 0.

If ~x ∈ γ3 then we have ~m(~x) = −~n(~x), where ~n(~x) is the outer normal to the
domain {~x; G(~x, ~y) > t0}. If ~x ∈ γ4 then we have ~m(~x) = ~n(~x), where ~n(~x) is
the outer normal to the domain {~x; G(~x, ~y) > t}. Consequently,

∫

γ3

∂G(~x, ~y)

∂~n
ds =

∫

γ4

∂G(~x, ~y)

∂~n
ds.

Passing to the limit we get

α = 2π lim
t0→+0

∫

γ3

∂G(~x, ~y)

∂~n
ds = 2π

∫

γ4

∂G(~x, ~y)

∂~n
ds.

From definition of the mapping ϕ(~x) we have

|ϕ(~x(t))− ϕ(~x1(t)| = |t(~x)||~a(~x(t))− ~a(~x1(t))| =

= |t(~x)|
∣∣∣∣2π

∫

γ4

∂G(~x, ~y)

∂~n
ds

∣∣∣∣ =

= 2π
∂G(~x(t), ~y)

∂~n
exp{−2πG(~x(t), ~y)}|~x(t)− ~x1(t)|+ o(|~x(t)− ~x1(t)|).
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Further on we can write

|ϕ(~x(t + ∆t))− ϕ(~x(t))|+ o(|∆t|) = |∆t|+ o(|∆t|) =

= |~x(t + ∆t)− ~x(t)|
∣∣∣∣
d~x(t)

dt

∣∣∣∣
−1

=

= 2π
∂G(~x(t), ~y)

∂~n
exp{−2πG(~x(t), ~y)}|~x(t + ∆t)− ~x(t)|+ o(|∆t|).

Let r > 0 be sufficiently small. We chose ∆t and ~x1(t) such that the equalities

|~x(t + ∆t)− ~x(t)| = |~x(t)− ~x1(t)| = r

holds. The vectors
~x(t + ∆t)− ~x(t)

and
~x(t)− ~x1(t)

are orthogonal. Consequently, the image of the disk D(~x(t), r) is circle, in the first
approach, once if the orthogonal vectors

ϕ(~x(t + ∆t))− ϕ(~x(t))

and
ϕ(~x(t))− ϕ(~x1(t))

satisfy the condition

|ϕ(~x(t + ∆t))− ϕ(~x(t))| = |ϕ(~x(t))− ϕ(~x1(t))|+ o(r).

The last condition holds since

|ϕ(~x(t + ∆t))− ϕ(~x(t))| = 2π
∂G(~x(t), ~y)

∂~n
exp{−2πG(~x(t), ~y)}r + o(r)

and

|ϕ(~x(t))− ϕ(~x1(t)| = 2π
∂G(~x(t), ~y)

∂~n
exp{−2πG(~x(t), ~y)}r + o(r).

Remark. For constructed mapping at the points ~x ∈ Ω \ {~y} we have

|ϕ′(~x)| = 2π|∇G(~x, ~y)| exp{−2πG(~x, ~y)}.
At the point ~y we have

|ϕ′(~y)| = 2π exp{−2πh(~y, ~y)}.
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5 Green’s function in R3

Definition 5. We say that a domain Ω ⊂ R3 is simply connected if
1. for an arbitrary bounded domain Ω1 if we have ∂Ω1 ⊂ Ω then it follows

Ω1 ⊂ Ω;
2. an arbitrary closed curve laying in domain Ω permits continuous deformation

in domain Ω to the point.

Lemma 4. Let Ω be a simply connected domain in R3. Let Ω be a bounded
and has smooth boundary, with Green function G(~x, ~y). Then

∇G(~x, ~y) 6= 0, ~x ∈ Ω \ {~y}.

Proof. By lemma we have

∂G(~x, ~y)

∂n
6= 0, ~x ∈ ∂Ω.

Let 0 < t0 < ∞ be the biggest number for which there is a point x0 ∈ Ω such
that

∇G(~x0, ~y) = 0.

and G(~x0, ~y) = t0. Denote

Ω+ = {~x, G(~x, ~y) > t0}
and

Ω− = {~x, G(~x, ~y) < t0}.
Let us note that the domain Ω+ is connected. If Ω− does not connected we come
to the contradiction like of two dimensional case.

It turns out, that in three dimensional case, it is possible that the domain Ω−

is connected too.
In the domain

{~x; ~x ∈ Ω, G(~x, ~y) > t0}
we consider the following dynamic system

d~x(t)

dt
= − ∇G(~x(t), ~y)

4π|∇G(~x(t), ~y)|2G2(~x(t), ~y), t0 < t.

For an arbitrary solution of this equation we have

d

dt

1

G(~x(t), ~y)
= − 1

G2(~x(t), ~y)

(
∇G(~x(t), ~y),

d~x(t)

dt

)
=

1

4π
.
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Consequently, we have

G(~x(t), ~y) =
1

4πt
, 0 < t < ∞.

So, for each 0 < ε, the solutions of this equation generate the following trans-
formation

x(∞) → x(t0 + ε)

which settle a one to one correspondence between the points of the manifolds ∂Ω
and ∂Ωt0+ε. Consequently, those manifolds are homotopic equivalent.

In the domain
{~x, G(~x, ~y) > t0 + ε}

there is a smooth closed curve γ1, which passes throw the points x0 and y.
For sufficiently small ε > 0 the plain orthogonal to the curve γ1 at the point

x0, cut a closed curve γ2 on the boundary ∂Ωt0+ε which have nonzero index in
compare to the curve γ1.

Since ∂Ωt0+ε and ∂Ω are homotopic equivalent so, the curve γ2, by continuous
deformation, staying on the boundary ∂Ωt0−ε, is possible to transform to a point.

This is a contradiction since each curve on the boundary ∂Ωt0+ε having suffi-
ciently small diameter, has zero index in compare with the curve γ1.

6 Week conformal mapping in R3

In this paper we prove the main result of our paper.

Theorem 3. Let Ω be a simply connected domain in R3. If Ω is a bounded
and has smooth boundary then there is a one to one week - conformal mapping

ϕ : Ω → B

of the domain Ω onto the unit ball B = {x ∈ R3; |x| < 1}.
Proof. We consider the following dynamic system

d~x(t)

dt
= − ∇G(~x(t), ~y)

4π|∇G(~x(t), ~y)|2G2(~x(t), ~y), 0 < t < ∞.

In neighborhood of the point ~y we have

− ∇G(~x, ~y)

4π|∇G(~x, ~y)|2G2(~x, ~y) =

11



=

(
~x− ~y

4π|~x− ~y|3 −∇h

)(
1

4π|~x− ~y| + h

)2

(
1

16π2|~x− ~y|4 −
(~x− ~y, ∇h)

2π|~x− ~y|3 + |∇h|2
)−1

=

=

(
~x− ~y

|~x− ~y| − 4π|~x− ~y|2∇h

)
(1 + 4π|~x− ~y|h)2

1− 8π|~x− ~y|(~x− ~y, ∇h) + 16π2|~x− ~y|4|∇h|2 =

=
~x− ~y

|~x− ~y| + 8πh(~y, ~y)(~x− ~y) + O(|~x− ~y|2)

So, for each solution of our equation we have

~x(t) = ~y + ~at + 4π~at2h(~y, ~y) + o(t2), t → 0,

where ~a is a vector with norm one.
Consequently, for each point ~x ∈ Ω\{~y} we can find the unique vector ~a = ~a(~x)

of unit norm, such that a solution ~x(t) passes through the point ~x and

lim
t→0

~x(t)− ~y

t
= ~a.

By definition the vector ~a(~x(t)) is the same for all values of 0 < t < ∞.
Let ~x = ~x(t0). We denote by

γ(~x) = {~x(t); t0 ≤ t < ∞}

the curve begins of the point ~x and goes to the boundary of the domain Ω.
If for each point ~x ∈ Ω the curve γ(~x) has a finite length, then we can define

the mapping
ϕ : Ω → B

as follows, ϕ(~y) = 0 and for the arbitrary point ~x ∈ Ω \ {~y} we put

ϕ(~x) = ~a(~x) exp

{
−

∫

γ(~x)

√
4π|∇G(~z, ~y)|ds(~z)

}
.

It is obvious, that ϕ is a one to one mapping onto the unit ball B.
Now let us consider the properties of the constructed mapping.
For arbitrary nonzero vector ~a let us denote by Dα(~a) the round cone of bisector

~a and the sector
{~y; |~y| = 1, ~y ∈ Dα(~a)}

has area equal α.
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Let us fix a point ~x ∈ Ω and a number 0 < α < 4π. For arbitrary numbers
0 < t0 < t1 < ∞ let us denote by U the domain

U =
⋃

~a(~x(t0))∈Dα(~a(~x))

{~x(t); t0 < t < t1}

We denote
W (t0, α) = {~x(t0); ~a(~x(t0)) ∈ Dα(~a(~x))}

and
W (t1, α) = {~x(t1); ~a(~x(t1)) ∈ Dα(~a(~x))}

By Green’s formula we have

∫

W (t0,α)

∂G(~z, ~y)

∂~n
ds(~z) =

∫

W (t1,α)

∂G(~z, ~y)

∂~n
ds(~z).

Passing to the limit if t0 → 0 we get

∫

W (t1,α)

∂G(~z, ~y)

∂~n
ds(~z) = lim

t0→+0

∫

W (t0,α)

∂G(~z, ~y)

∂~n
ds(~z) =

α

4π
.

Consequently, for small α we have

s(W (t1, α))
∂G(~x(t1), ~y)

∂~n
=

α

4π
+ o(α).

The vector ~x(t1 + ∆t)− ~x(t1) is orthogonal to the surface W (t1, α) and

|~x(t1 + ∆t)− ~x(t1)| =
∣∣∣∣
dx(t1)

dt

∣∣∣∣ |∆t| = G2(x(t1), y)

4π|∇G(x(t1), y)| |∆t|+ o(|∆t|).

We choose the parameters α and ∆t such that

s(W (t1, α)) = π|~x(t1 + ∆t)− ~x(t1)|2.
This means that we have

G4(x(t1), y)

16π|∇G(x(t1), y)|2 |∆t|2 =
α

4π|∇G(x(t1), y)| + o(α).

The vector ϕ(~x(t1 + ∆t)− ϕ(~x(t1)) is orthogonal to the surface ϕ(W (t1, α)).
Let us note that the image of the subset W (t1, α) is a round sector in the sphere

of the center at the point ~0 and of the radius equals |ϕ(~x(t1))|. So, we have

s(ϕ(W (t1, α))) = α|ϕ(~x(t1))|2.
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Since

|ϕ(~x(t1))| = exp

{
−

∫

γ(~x(t1))

√
4π|∇G(~z, ~y)|ds(~z)

}
=

= exp

{
−

∫ ∞

t1

G2(x(t), y)√
4π|∇G(x(t), y)|dt

}

So,

|ϕ(~x(t1 + ∆t))− ϕ(~x(t1))| = |ϕ(~x(t1))| G2(~x(t1), ~y)√
4π|∇G(~x(t1), ~y)| |∆t|+ o(|∆t|).

Consequently, we have

s(ϕ(W (t1, α))) = α|ϕ(~x(t))|2 = π|ϕ(~x(t + ∆t))− ϕ(~x(t))|2 + o(|∆t|2).
This relation is equivalent to the week - conformal condition at the point ~x ∈ Ω

for constructed mapping.
Remark. For an arbitrary point ~x 6= ~y we have

lim
∆t→0

|ϕ(~x(t + ∆t))− ϕ(~x(t))|
|~x(t + ∆t)− ~x(t)| =

=
√

4π|∇G(~x, ~y)| exp

{
−

∫

γ(~x)

√
4π|∇G(~z, ~y)|ds(~z)

}

where ~x = ~x(t). So, we have

ϕ(~x) = ϕ(~x)− ϕ(~y) = ~x− ~y + o(|~x)− ~y|).
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