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problems and semi-groups

N. B. Yengibarian

Abstract

The following discrete boundary - value problem for non-linear system

xk = ϕk(xk−1, yk), yk−1 = ψk(xk−1, yk), k = 1, N, N < ∞, x0 = a, yN = b,

is considered. Here the functions ϕk(x, y), ψk(x, y) ≥ 0 are monotone with respect
to arguments x, y ≥ 0, satisfing the condition of dissipativity or conservativity:
ϕk(x, y)+ψk(x, y) ≤ x+ y +γk, as well as two simple additional conditions. A relation
of this problem with multistep processes is demonstrated. Existence and uniqueness of
minimal solution of problem is proved. A semi-group approach to solving of problem
is developed. The approach is adjoined with V. Ambartsumian Principle of Invariance
and R.Bellman method of Invariant Imbedding.

Key words: Discrete boundary-value problem, solvability, Invariant Imbedding.

0. Introduction

Let Ω0 be the set of ordered pairs (ϕ, ψ) of non-negative functions ϕ(x, y) and ψ(x, y) on

R2
+ = [0,∞) × [0,∞). The element (ϕ, ψ) ∈ Ω0 may be considered as a Black Box (BB)

Π = Π(ϕ, ψ) having two entries and two exits (conditionally left and right). If x and y are

the entire impulses from the left and the right, then ψ(x, y) and ϕ(x, y) are the exit impulses

from left and right respectively (see Fig.1).

Fig.1

Consider the following system of non-linear equations with respect to (xk)
N
k=1, (yk)

N−1
k=0 ,

xk, yk ≥ 0, N < ∞:
xk = ϕk(xk−1, yk)

yk−1 = ψk(xk−1, yk)

k = 1, 2, · · · , N.

(0.1)
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with boundary conditions:

x0 = x, (0.2)

yN = y, (0.3)

where x, y ≥ 0, (ϕk, ψk) ∈ Ω0.

By its structure, the system (0.1) corresponds to multistep processes with mutual connection

(see for example [1]). The pair ϕk, ψk determines the k-th step Πk = Πk(ϕk, ψk) of process. It

is easy to see from Fig. 2, that considering multistep process is described by boundary-value

problem (0.1)-(0.3).

Fig.2

The problem (0.1)-(0.3) may be served as a mathematical model for non-linear radiative

transfer processes.

The problem (0.1)-(0.3) will be supplemented with the condition of minimality of solution.

Existence and uniqueness of minimal solution of problem (0.1)-(0.3) will be proved. A semi-

group approach to the solution of problem is developed. This approach is adjoined with

V.Ambartsumian Principle of Invariance and R.Bellman method of Invariant Imbedding

(see [2]-[7]).

The following functions ϕ(x, y) and ψ(x, y), defined by

ϕ : (x, y) → xN , ψ : (x, y) → y0 (0.4)

are of special interest. These functions determine an element Π(ϕ, ψ) ∈ Ω0.

We shall show, that the set (1.1)-(1.4) of basic properties of functions ϕk, ψk not only ensure

solvability of problem (0.1)-(0.3), but also go over to the functions (0.4). The Semi-group

structure in the set {Πk} ⊂ Ω0 of BB, possessing properties (1.1)-(1.4) , will be introduced.

1. Statement of problem.

1.1. The Main problem and Exit problem. Under minimal solution (MS) of boundary-

value problem (0.1)-(0.3) we shall assume a (positive) solution {x̆k, y̆k}, satisfying the condi-

tion x̆k ≤ xk, y̆k ≤ yk, where {xk, yk}-is an arbitrary solution of this problem. If MS exists,

then it is unique.

The Main problem of this paper is to construct the Minimal solution of problem (0.1)-

(0.3).

The Exit problem (the reflection-transmission problem) is to determine y0 and xN by

given x0, yN in condition of the solvability of the Main problem.

The Exit problem is of well known interest in Radiative Transfer and etc. In this paper

it will be shown, that, analogous to linear case, the Exit problem can be solved separately,
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without solution of the Main problem. The solution of the Exit problem will be used for the

solution of the Main problem, using one recurrent procedure.

1.2. On condition of minimality of solution. The minimal solution of equations of

the form f = Af with positive operator A is of interest in the theory of non-linear operator

equations, in the theory of Stochastic processes, in Radiative Transfer and etc. (see [7]-[9]).

In some problems the condition of minimality corresponds to the equilibrium (stationary)

distributions, which are the limit of time-dependent processes when t →∞.

1.3. The classes Ω̃ and Ω of black boxes. Denote by Ω̃ ⊂ Ω0 the set of elements

Π = Π(ϕ, ψ) ∈ Ω0, satisfying the following two conditions (1.1)-(1.2):

i) Monotonicity: the functions ϕ, ψ increase on [0,∞)× [0,∞) by each of arguments:

ϕ(x, y), ψ(x, y) ↑ by x, y. (1.1)

ii) Continuity from below:

if x(n) ↑ x, y(n) ↑ y, then ϕ
(
x(n), y(n)

) → ϕ(x, y), ψ
(
x(n), y(n)

) → ψ(x, y). (1.2)

Denote by Ω ⊂ Ω̃ the class of elements Π = Π(ϕ, ψ) ∈ Ω̃, satisfying the following two

additional conditions (1.3)-(1.4).

iii) If y →∞, then ψ(x, y) →∞. (1.3)

iv) Condition of conservativity or dissipativity:

ϕ(x, y) + ψ(x, y) ≤ x + y + γ, (1.4)

where γ ≥ 0 is constant, which we shall call the power of internal sources of BB.

The element Π(ϕ, ψ) we shall call conservative, with source of power γ, if the following

equality takes place in (1.4):

ϕ(x, y) + ψ(x, y) = x + y + γ, (1.5)

The element Π(ϕ, ψ) we shall call uniformly dissipative, if the following more strong

inequality instead of (1.4) takes place:

ϕ(x, y) + ψ(x, y) ≤ q(x + y) + γ, 0 < q < 1. (1.6)

Denote, that the condition (1.3) may be changed by condition

ϕ(x, y) →∞ if x →∞. (1.7)
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2. Some general properties of the solution of

the problem (0.1)-(0.3).

2.1. The mail solution of the problem (0.1)-(0.3). Consider the problem (0.1)-

(0.3) under assumption, that each of pairs ϕk, ψk satisfies the conditions (1.1)-(1.2), i.e.

{Πk(ϕk, ψk)}N
k=1 ⊂ Ω̃. Consider the following simple iterations for (0.1)-(0.3):

x
(n+1)
k = ϕk

(
x

(n)
k−1, y

(n)
k

)
,

y
(n+1)
k−1 = ψk

(
x

(n)
k−1, y

(n)
k

)
, n = 0, 1, 2, · · · ,

x
(n)
0 = x,

y
(n)
N = y.

(2.1)

x
(0)
k = 0, k = 1, 2, · · · , N, y

(0)
k = 0, k = 0, 1, 2, · · · , (N − 1). (2.2)

Applying the induction by n one can show, that the iteration sequences
{

x
(n)
k , y

(n)
k

}

increase (component by component) with n:

x
(n)
k ↑, y

(n)
k ↑, with n. (2.3)

Let the sequences x
(n)
k and y

(n)
k converge (k is fixed):

x
(n)
k → x̃k, y

(n)
k → ỹk.

In accordance with (1.2), one can take the limit in each of equalities (2.1), hence

{x̃k, ỹk} satisfies the problem (0.1)-(0.3). We shall call this solution the Basic solution (BS)

of the problem. The following lemma takes place.

Lemma 2.1. Let {Πk}N
k=1 ⊂ Ω̃ and the sequences x

(n)
k and y

(n)
k , determined by (2.1),(2.2)

are bounded. Then there exist the BS of the problem (0.1)-(0.3).

Lemma 2.2.

i) Let {Πk}N
k=1 ∈ Ω̃. Assume that the solution of the problem (0.1)-(0.3) exists for any

x = a, y = b, where a, b ≥ 0. Then the Basic solution of this problem exists for arbitrary

boundary conditions x ≤ a, y ≤ b.

ii) The BS is the minimal solution of the problem.

iii)The BS depends on boundary values x, y monotonically (component by component).

Proof. Let {xk, yk} be some (positive) solution of the problem (0.1)-(0.3) when x = a, y = b.

Consider the iterations (2.1) for some x, y, x ≤ a, y ≤ b. Using the induction by n one can

check that: x
(n)
k ≤ xk, y

(n)
k ≤ yk. From here and from (2.3) follows the monotonic convergence

of these sequences:

x
(n)
k ↑ x̃k ≤ xk, y

(n)
k ↑ ỹk ≤ yk. (2.4)

In accordance with Lemma 2.1, (x̃k, ỹk) is a solution of the problem. It follows from

(2.4), that (x̃k, ỹk) is the Minimal solution of the problem (2.1),(2.2) when x = a, y = b. As an
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a, b one can take arbitrary boundary conditions so, that the problem (0.1)-(0.3) is solvable.

Hence for arbitrary x ≤ a, y ≤ b the corresponding set (x̃k, ỹk) represents the Minimal

solution of the problem. It also follows from (2.4), that (x̃k, ỹk) monotonically depends on

boundary values x, y. The lemma is proved.

2.2. Addition in Ω̃. Let {Πk} ⊂ Ω̃. Assume that the Minimal solution of the problem

(0.1)-(0.3) exists for arbitrary x, y ≥ 0. Then the ordered set {Πk} determines the exit

functions ϕ, ψ in accordance with (0.4). The element Π(ϕ, ψ) ∈ Ω0 will be called the

minimal sum (or sum) of elements Π1, · · · , ΠN :

Π = ⊕{Π1, · · · , ΠN} . (2.5)

Let us show, that Π(ϕ, ψ) ∈ Ω̃.

Lemma 2.3. Let {Πk}N
k=1 ∈ Ω̃ and the problem (0.1)-(0.3) has the minimal solution ∀x ≥ 0,

y ≥ 0. Then the functions ϕ, ψ defined by (0.4) possess the properties (1.1) and (1.2), i.e.

Π(ϕ, ψ) = ⊕{Π1, · · · , ΠN} ∈ Ω̃.

Proof. Monotonic dependence of ϕ(x, y) and ψ(x, y) on x and y follows from assertion iii)

of Lemma 2.2. Let {xk, yk} be the minimal solution of the problem (0.1)-(0.3), x(n) ↑ x,

y(n) ↑ y. Denote by x
(n)
k , y

(n)
k the minimal solution of the corresponding problem, with x =

x(n), y = y(n). We have x
(n)
k ↑ x̃k ≤ xk, y

(n)
k ↑ ỹk ≤ yk. Taking the limit in equations for

x
(n)
k , y

(n)
k , we make sure that {x̃k, ỹk} satisfies the problem (0.1)-(0.3). It follows from (0.4)

and from minimality of {xk, yk}, that {x̃k, ỹk} = {xk, yk}. The Lemma is proved.

3. The existence of the solution of the Main problem.

3.1. The case of fulfilment of the condition (1.3). Consider the procedure of addition

in Ω̃ under the assumption that the summands Πk in (2.5) satisfied the condition (1.3). Then

the Lemma 2.1 may be strengthen.

We shall use the following simple fact: if the function ψ satisfies the conditions (1.1),

(1.3), the sequence x(n) increases and y(n) ↑ ∞, then

ψ
(
x(n), y(n)

) ↑ ∞. (3.1)

Lemma 3.1. Let the elements Πk ∈ Ω̃, k = 1, · · · , N satisfy the condition (1.3). Let the

sequence y
(n)
0 , defined by (2.1),(2.2) for some x = a, y = b, a, b ≥ 0, is bounded. Then for

x ≤ a, y ≤ b all of the sequences x
(n)
k , y

(n)
k are bounded and the iterations (2.1),(2.2) converge

to the minimal solution of the problem (0.1)-(0.3).

Proof. In accordance with Lemma 2.2, it is sufficient to consider only the case where x = a,

y = b. The rule of contraries will be used. Let k ≥ 1 be the minimal number such, that

only if one of sequences x
(n)
k , y

(n)
k are non-bounded. Let y

(n)
k ↑ ∞. Then from the equalities

y
(n+1)
k−1 = ψk

(
x

(n)
k−1, y

(n)
k

)
(see (2.1) and (3.1) we shall have y

(n)
k−1 ↑ ∞, which is in contradiction
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with the definition of number k. Consider now the sequence x
(n)
k . In accordance with (2.1)

we have x
(n+1)
k = ϕk

(
x

(n)
k−1, y

(n)
k

)
. From here and from boundedness of x

(n)
k−1, y

(n)
k follows

boundedness of x
(n+1)
k . The lemma is proved.

3.2. Existence of the solution. Consider the problem (0.1)-(0.3) assuming that the

elements Πk(ϕk, ψk) ∈ Ω, i.e. they satisfy the conditions (1.1)-(1.4).

In accordance with (1.4) we have:

ϕk(x, y) + ψk(x, y) ≤ x + y + γk, γk ≥ 0. (3.2)

Lemma 3.2. Let Πk(ϕk, ψk) ∈ Ω, k = 1, · · · , N , the and the iterative sequences x
(n)
k , y

(n)
k

are defined by (2.1),(2.2). Then the following estimate holds:

y
(n)
0 + x

(n)
N ≤ x + y + (γ1 + γ2 + · · · γN). (3.3)

where the constants γ1 · · · , γN are determined by (3.2).

Proof.Adding all of the relations (2.1) and using (3.2) we get:

N∑

k=1

[
x

(n+1)
k + y

(n+1)
k−1

]
=

N∑

k=1

[
ϕk

(
x

(n1)
k−1 , y

(n)
k

)
+ ψk

(
x

(n1)
k−1 , y

(n)
k

)]
≤

N∑

k=1

[
x

(n)
k−1 + y

(n)
k + γk

]
.

From here, taking into account (2.2), we obtain

N−1∑

k=1

[
x

(n+1)
k + y

(n+1)
k

]
+ x

(n+1)
N + y

(n+1)
0 ≤

N−1∑

k=1

[
x

(n)
k + y

(n)
k

]
+ x + y +

N∑

k=1

γk.

Using monotonicity of sequences x
(n)
k , y

(n)
k by n we come to (3.3). The lemma is proved.

The boundedness of sequence y
(n)
0 follows from the estimate (3.3). In accordance with Lemma

3.1, the problem (0.1)-(0.3) possesses the Minimal solution. Using the Lemma 2.3 we come

to the existence of minimal sum Π(ϕ, ψ) = ⊕Π1, · · · , ΠN ∈ Ω̃, defined by (2.5). Let us show,

that Π ∈ Ω. The fulfilment of property (1.4), with γ =
N∑

k=1

γk follows from the estimate (3.3).

Let us check the property (1.3). Let y
n)
N ↑ ∞ at n →∞. Let now

{
x

(n)
k , y

(n)
k

}
be the minimal

solution of the problem (0.1)-(0.3), in which y = y
(n)
N . Let us show, that y

(n)
k → ∞, k =

0, 1, · · · , (N − 1). We shall use the rule of contraries. Denote by m the largest value of k,

for which the sequence yk(n) remains bounded. Because of y
(n)
N ↑ ∞ we have m < N . We

have y
(n)
m = ψm+1

(
x

(n)
m , y

(n)
m+1

)
. It follows from the property (1.3) for ψm+1 and (3.1), that

y
(n)
m ↑ ∞, which is in contradiction with the definition of m.

The following theorem of existence and uniqueness have been proved.
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Theoram 3.1. Let Πk(ϕk, ψk) ∈ Ω, k = 1, · · · , N . Then the boundary-value problem (0.1)-

(0.3) possesses unique Minimal solution, which is the limit of simple iterations, defined by

(2.1),(2.2). The following inequality takes place:

xN + y0 ≤ x + y + (γ1 + γ2 + · · ·+ γN). (3.4)

The sum Π(ϕ, ψ) = ⊕Π1, · · · , ΠN ∈ Ω̃ possesses properties (1.1)-(1.4), i.e. Π ∈ Ω.

4. The semi-group approach to the solution of the Exit

problem and the Main problem.

4.1. The semi-group Ω. The present section is devoted to the dissemination of

V.Ambartsumian method of addition of layers (see [2],[3],[6],[7]) to non-linear boundary-

value problems. Our approach has certain likeness with R. Bellman method of Invariant

Imbedding.

It follows from the theorem 3.1, that by equality

Π1 ⊕ Π2 = ⊕{Π1, Π2}
a binary operation (of addition) ⊕ in Ω is determined.

It is easy to check in simple examples, that the operation ⊕ is non-commutative.

Consider the functions

ϕ0(x, y) = x, ψ0(x, y) = y.

These functions determine the element θ = Π0(ϕ0, ψ0) ∈ Ω so, that

Π⊕ θ = θ ⊕ Π = Π, ∀Π ∈ Ω. (4.1)

Let us show, that the class Ω represents a semi-group relatively the operation ⊕. For

this we must show, that this operation is associative.

Let Πi ∈ Ω, i = 1, 2, 3. In accordance with the theorem 3.1 there exist the elements

Π1 ⊕ (Π2 ⊕ Π3), (Π1 ⊕ Π2)⊕ Π3, ⊕Π1, Π2, Π3 ∈ Ω. Let us show, that

Π1 ⊕ (Π2 ⊕ Π3) = (Π1 ⊕ Π2)⊕ Π3 = ⊕Π1, Π2, Π3. (4.2)

The sum Π1 ⊕ (Π2 ⊕ Π3) give a solution of the problem (0.1)-(0.3) (where N = 3)

by the following way. We have Π1 ⊕ (Π2 ⊕ Π3) = Π1 ⊕ Π̃, where Π̃(ϕ̃, ψ̃) = Π2 ⊕ Π3 ∈ Ω.

Consider the system

x̃1 = ϕ1(x, ỹ1), (4.3)

ỹ1 = ψ̃(x̃1, y), (4.4)

where x and y are the numbers, participating in the boundary conditions (0.2),(0.3). Because

of existence of the sum Π1⊕ Π̃, this system has the minimal solution x̃1, ỹ1. Let x̃2, ỹ2 be the

minimal solution of the system

x̃2 = ϕ2(x̃1, ỹ2), ỹ2 = ψ3(x̃2, y). (4.5)
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The following equality takes place:

ỹ1 = ψ2(x̃1, ỹ2). (4.6)

Introduce ỹ0, x̃3 by following equalities:

x̃3 = ϕ3(x̃2, y), ỹ0 = ψ1(x, ỹ1). (4.7)

The relations (4.2),(4.4)-(4.6) coincide with (0.1)-(0.3). Hence x̃k, ỹk is a solution of the

problem (0.1)-(0.3). Let us show, that the constructed solution x̃k, ỹk coincides with the

minimal solution xk, yk of the problem. Consider the following iterations for (4.3):

x̃1
(n+1) = ϕ1

(
x, ỹ1

(n)
)

, ỹ1
(n+1) = ψ̃

(
x̃1

(n), y
)

, x̃1
(0) = ỹ1

(0) = 0, n = 0, 1, · · ·

Denote by x̃2
(n), ỹ2

(n) the minimal solution of the system (4.4), in which x̃1 is changed by x̃1
(n)

and ỹ3 is changed by ỹ3
(n). Taking into account monotonic dependence of the minimal solution

from the boundary conditions and using the induction by n it is easy to show that x̃k
(n) ≤ xk,

ỹk
(n) ≤ yk, k = 1, 2, 3. From these inequalities follows the convergence of

{
x̃k

(n), ỹk
(n)

}
to

the minimal solution of the problem (0.1)-(0.3). The equality Π1⊕(Π2⊕Π3) = ⊕{Π1, Π2, Π3}
is proved. The equality (Π1 ⊕ Π2) ⊕ Π3 = ⊕{Π1, Π2, Π3} may be proved by an analogous

manner. Hence the equalities (4.1) take place.

We come to the following theorem:

Theoram 4.1. The class Ω is a non-commutative semi-group (monoid) with the addition ⊕
and zero element θ (see (4.1)).

Corollary (The principle of minimality). Let Π1, · · · , ΠN ∈ Ω and 1 ≤ m < N . Then

⊕{Π1, · · · , ΠN} = Π1 ⊕ · · · ⊕ ΠN = {Π1 ⊕ · · · ⊕ Πm} ⊕ {Πm+1 ⊕ · · · ⊕ ΠN} (4.8)

(The minimal sum is equal to the minimal sum of the minimal subsumes).

4.2.The solution of the Main problem. The theorem 4.1 gives a method to the solution

of the Exit problem, based on the successive construction of sums

Gk(ϕ̃k, ψ̃k) = Π1 ⊕ · · · ⊕ Πk, k = 2, · · · , N.

For the construction of the solution of the Main problem we shall use the resolution functions

u and v, which will be introduced below.

Let Πk ∈ Ω, k = 1, 2 and x1, x2, y0, y1 is the minimal solution of the corresponding

problem (0.1)-(0.3). The resolution functions u and v are determined by mappings

u : (x, y) → x1, v : (x, y) → y1. (4.9)

Let us describe the procedure of solving of the problem (0.1)-(0.3) using the resolution

functions. Proposed scheme, analogous with Gauss method in linear algebra and the method

of Invariant Imbedding, consists of direct and inverse runs.

8



The direct run: a successive construction of sums Gk(ϕ̃k, ψ̃k). Each step k of this

procedure assumes the construction of the functions ϕ̃k, ψ̃k and the resolution functions

uk−1, vk−1 for the sum Gk ⊕ Πk in accordance with (.), where Gk plays the role of Π1, and

Πk plays the role of Π2.

The inverse run. The numbers xN−1, yN−1 are determined by formulae

xN−1 = uN−1(x, y)(= un−1(x0, yN)) yN−1 = vN−1(x, y)(= vn−1(x0, yN)).

Continue this process, changing N on N − 1. On k-th step of inverse run, xN−k, yN−k are

determined by formulae:

xN−k = uN−k(x, yN−k+1), yN−k = vN−k(x, yN−k+1), k = 1, 2, · · · , (N − 1). (4.10)

The numbers xN , y0 are determined by: xN = ϕ̃N(x, y), y0 = ψ̃N(x, y).

Obviously, the numbers xk, yk satisfy all of the relations (0.1)-(0.3). Conditions

(0.2),(0.3). Using the principe of the minimality (see Corollary to the theorem 4.1) one

can show, that these numbers xk, yk give the minimal solution of the problem (0.1)-(0.3).

The following theorem has been proved:

Theoram 4.2. Let Πk(ϕk, ψk) ∈ Ω, k = 1, · · · , N . Then the Minimal solution of the

problem (0.1)-(0.3) may be constructed by the recurrent formulas (4.9).

4.3. Some subsemigroups of Ω. Let us briefly consider some subsemigroups of Ω. All

of them have simple physical meaning.

i) The semi-group, consisting of conservative elements (see (1.5)).

ii) The semi-group, consisting of uniformly dissipative elements (see (1.6)).

iii)The semi-group, consisting of elements without sources.

iv) The semi -group, consisting of sums of identical elements (homogeneous semi-group).

Each element Π ∈ Ω generates a semi-group, consisting of Π, Π⊕ Π, Π⊕ Π⊕ Π, · · ·
v) Linear semi-groups with sources and without sources. Then the functions ϕ, ψ have the

form:
ϕ(x, y) = q+x + r+y + γ+,

ψ(x, y) = r−x + q−y + γ−,
(4.11)

where

q±, r±, γ± ≥ 0, q± + r∓ ≤ 1, γ± ≥ 0. (4.12)

The condition of the conservativity means that q± + r∓ = 1. The absence of sources

means, that γ± = 0.

vi) The semi-group with bounded non-linearity. Then the functions ϕ, ψ have the form:

ϕ(x, y) = q+x + r+y + γ+(x, y),

ψ(x, y) = r−x + q−y + γ−(x, y).
(4.13)

Here the constants q±, r± satisfying the conditions (4.12), γ±(x, y) are bounded non-negative

functions, monotonic by x, y and satisfying the condition of continuity from below (see (1.2)).
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