Artur Hovhannisyan's Publications (Full profile)

Paper

  1. Artur Hovhannisyan, Solution of Hadamard's Problem for one class of Hyperbolic Equations with Variable Coefficients, Izv. Acad. Nauk Arm. SSR, ser. Math. , 26, (2), pp. 163-170, (1991)
    Published translation
    J. Contemp. Math. Anal.
    26
    (2)
    , pp. 59-65
  2. Artur Hovhannisyan, Generalization of the Lagnese-Stellmacher Method for one Class of Equations Satisfying the Huygens Principle, Izv. Acad. Nauk Arm. SSR, ser. Math. , 25, (5), pp. 462-473, (1990)
    Published translation
    Soviet J. Contemp. Math. Anal.
    25
    (5)
    , pp. 43-54
  3. Artur Hovhannisyan, Construction of a Parametrix for the Cauchy Problem with Weight for Second Order Hyperbolic Equations with Unbounded Coefficients, Izv Acad. Nauk Arm. SSR, ser. Math. , 21, (1), pp. 33-50, (1986)
    Published translation
    Soviet J. Contemp. Math. Anal.
    21
    (1)
    , pp. 32-50
  4. Artur Hovhannisyan, Yu. Berest, N. H. Ibragimov, Conformal Invariance Huygens Principle and Fundamental Solutions for Scalar Second Order Hyperbolic Equations, In: Modern Group Analysis: Advanced Analytical and Computational Methods. Edited by N. H. Ibragimov et al. The Hague: Kluwer Academic Publishers
  5. Artur Hovhannisyan, Huygens principle, Painleve property and nonlinear differential equations, Dokl. Nat. Acad. Nauk Armenii, 94, (5), pp. 270-273
  6. Artur Hovhannisyan, G. G. Kazarian, Huygens principle and nonlinear differential equations, J. Contemp. Math. Anal. , ser. Math. , 29, (5), pp. 64-73
  7. Artur Hovhannisyan, G. G. Kazarian, On a nonlinear evolution equation admitting generalized Lax representation, Teoery of funcions and applications, Collection of works dedicated to the memory of M. M. Djrbashian, Yerevan, pp. 83-86
  8. Artur Hovhannisyan, H. B. Nersesyan, On the correctness of the Cauchy problem for a certain class of weakly hyperbolic equation, Izv. Acad. Nauk Arm. SSR, ser. Math. v. VIII, (3), pp. 255-273
  9. Artur Hovhannisyan, Huygens principle in six dimensional space with the plane wave metric, J. Contemp. Math. Anal. , ser. Math. , 33, (6)
  10. Artur Hovhannisyan, On the Cauchy problem for high order weakly hyperbolic equations, Izv. Acad. Nauk Arm. SSR, ser. Math. v. X, (2), pp. 163-169
  11. Artur Hovhannisyan, On the Cauchy problem for weakly hyperbolic systems with data on the hyper plane of degeneracy, Dokl. Acad. Nauk Arm SSR, 61, (1), pp. 27-32
  12. Artur Hovhannisyan, H. B. Nersesyan, G. R. Oganesyan, On the method of investigation of Cauchy problem for weakly hyperbolic equations, Proc. of the Conf. on the Part. Diff. Eq. Devoted to Acad. I. G. Petrovsky at the 75-th anniversary of his birthday. Moscow Univ. Press, pp. 391-395
  13. Artur Hovhannisyan, On the local solvability and hypoellipticity for the class of second order equations, Dokl. Acad. Nauk Arm SSR, 70, (2), pp. 27-32
  14. Artur Hovhannisyan, Construction of a Parametrix for an Initial Value Problem for one Class Hyperbolic Equations with Unbounded Coefficients, Dokl. Acad. Nauk, Arm. SSR, 84, (1), pp. 13-16
  15. Artur Hovhannisyan, Construction of hyperbolic equations with variable coefficients, satisfying Huygens principle, Dokl. Acad. Nauk SSSR, 314, (5), pp. 1072-1075
  16. Artur Hovhannisyan, Huygens' Principle for one Class of Hyperbolic Equations with Variable Coefficients, Differ. Uravnenia, 27, (8), pp. 1402-1409
  17. Artur Hovhannisyan, Hierarchy of Huygens Equations in the Space with Nontrivial Conformal Group, Uspekhi Math. Nauk, 46, (3), pp. 111-146
  18. Artur Hovhannisyan, On the method for constructing the Huygens equations, J. Integr. Eq. and Math. Physics. , 1, (1), pp. 105-113

Book

  1. Artur Hovhannisyan, H. G. Kazaryan, F. G. Mamikonyan, G. A. Karapetyan, Ordinary Differential Equations, Yerevan, pp. 184
  2. Artur Hovhannisyan, B. G. Ararktzyan, R. L. Shahbagyan, Mathematical Physics, Yerevan, sec. ed., pp. 167
  3. Artur Hovhannisyan, H. G. Kazaryan, T. N. Harutunyan, G. A. Karapetyan, Ordinary Differential Equations, Yerevan, pp. 320
  4. Artur Hovhannisyan, B. G. Ararktzyan, R. L. Shahbagyan, Mathematical Physics, Yerevan, pp. 147