Suren Poghosyan's Publications (Full profile)

Paper

  1. H. Zessin, S. Poghosyan, A central limit theorem for a classical gas, Advances in Continuous and Discrete Models, 2023, (47), pp. 13, (2023)
  2. S. Poghosyan, H. Zessin, Uniqueness and absence of percolation of classical gases, Journal of Mathematical Physics, 64, (2), pp. 20, (2023)
  3. S. Poghosyan, H. Zessin, Characterization and Uniqueness of Gibbs Processes by Means of Kirkwood–Salsburg Equations, Lobachevskii Journal of Mathematics, 42, (10), pp. 2427-2436, (2021)
  4. S. Poghosyan, H. Zessin, Penrose-Stable Interactions in Classical Statistical Mechanics, Annales Henri Poincaré, 2021, pp. 1-33, (2021)
  5. S. Poghosyan, H. Zessin, Construction of limiting Gibbs processes and the uniqueness of Gibbs processes, Proceedings of the XI international conference Stochastic and Analytic Methods in Mathematical Physics, Lecture Notes in Pure and Applied Mathematics, pp. 55-65, (2020)
  6. S. Poghosyan, H. Zessin, Cluster representation of classical and quantum processes, , Moscow Mathematical Journal, 19, (1), pp. 133-151, (2019)
  7. D. Gandolfo, S. Poghosyan, J. Ruiz, Geometric expansion of the log-partition of the anisotropic Heisenberg model, Journal of Mathematical Physics, 56, pp. 093302, (2015)
  8. S. Poghosyan, Gibbs distributions of quantum systems: Cluster expansions and asymptotics of the partition function (Doctoral Thesis, 126 pages), Armenian Journal of Mathematics, 5, (2013)
  9. B. Nehring, S. Poghosyan, H. Zessin, On the construction of point processes in statistical mechanics, Journal of Mathematical Physics, 54, pp. 063302, (2013)
  10. S. Poghosyan, Decay of correlations in quantum gas with hard core potential, Markov processes and related fields, 18, pp. 457-472, (2012)
  11. S. Poghosyan, On interacting Brownian loops, Proceedings of the International Mathematical Conference “50 Years of IITP”, (2011)
  12. S. Poghosyan, Asymptotic expansion of the log-partition function for a gas of interacting Brownian Loops. II, Journal of Mathematical Physics, 51, (1), (2010)
  13. S. Poghosyan, H. Zessin, An integral characterization of random permutations. A point process approach, Journal of Contemporary Mathematical Analysis, 45, (5), pp. 67-76, (2010)
  14. S. Poghosyan, Generalized Kac problem for a Bose gas in polygonal region, Journal of Contemporary Mathematical Analysis, 45, (1), pp. 61-72, (2010)
  15. S. Poghosyan, D. Ueltschi, Abstract cluster expansion with application to statistical mechanical systems, Journal of Mathematical Physics, 50, pp. 053509, (2009)
  16. S. Poghosyan, H. Zessin, Asymptotic expansion of the log-partition function for a gas of interacting Brownian loops, Journal of Mathematical Physics, 48, pp. 093301, (2007)
  17. S. Frigio, S. Poghosyan, Asymptotics of Brownian integrals and pressure. Bose–Einstein statistics, Journal of Contemporary Mathematical Analysis, 42, (3), pp. 125-138, (2007)
  18. S. Poghosyan, Strong cluster properties of Ginibre gas. Quantum statistics, Journal of Contemporary Mathematical Analysis, 40, (4), pp. 57-79, (2005)
  19. S. Poghosyan, H. Zessin, Existence of pressure for the Ginibre gas in n-connected domains, Journal of Contemporary Mathematical Analysis, 38, (1), pp. 63-73, (2003)
  20. S. Poghosyan, H.Zessin, Decay of correlations for the Ginibre gas obeying Maxwell-Boltzmann statistics, Markov Processes and Related Fields, 7, pp. 561-580, (2001)
  21. S. Poghosyan, H.Zessin, A geometric expansion for the logarithm of the partition function for Ginibre gas, Markov Processes and Related Fields, 7, pp. 581-593, (2001)
  22. D. Marinucci, S. Poghosyan, Asymptotics for linear random fields, Statistics & Probability Letters, 51, pp. 131-141, (2000)
  23. S. Poghosyan, S. Roelly, Invariance principle for martingale-difference random fields, Statistics & Probability Letters, 38, pp. 235-245, (1998)
  24. B. Nahapetian, S. Poghosyan, Decay of correlations in classical lattice spin systems with vacuum, Journal of Contemporary Mathematical Analysis, 30, (6), pp. 31-46, (1995)
  25. S. Poghosyan, Functional central limit theorem for martingale-difference random field, Izvest. NAN Arm, Mathemat., 30, (6), pp. 77-83, (1995)
  26. B. Nahapetian, S. Poghosyan, Estimate of convergence rate in local limit theorem for the particle number in spin systems, Teor. Mat. Fiz., 95, pp. 497-512, (1993)
  27. V. Arzumanian, B.S. Nahapetian, S. Poghosyan, Classical spin lattice systems with vacuum, Acta Applicandae Mathematicae, 22, pp. 33-53, (1991)
  28. V. Arzumanian, B. Nahapetian, S. Poghosyan, Local limit theorem for a number of particles in lattice spin systems, Teor. Mat. Fiz., 89, pp. 178-189, (1991)
  29. S. Poghosyan, Probabilities of large deviations for Gibbs random fields, Izv. Akad. Nauk Arm SSR, 25, pp. 432-447, (1990)
  30. V. Arzumanian, B. Nahapetian, S. Poghosyan, Asymptotic expansion of the logarithm of the partition function for lattice spin system with vacuum, Teor. Mat. Fiz., 81, pp. 175-184, (1989)
  31. V. Arzumanian, B. Nahapetian, S. Poghosyan, Cluster properties of classical lattice spin systems, Teor. Mat. Fiz., 67, pp. 21-31, (1986)
  32. V. Arzumanian, B. Nahapetian, S. Poghosyan, Cluster properties of lattice systems with continuous spin, Dokl. Acad. Nauk Arm. SSR, 80, (5), pp. 195-199, (1985)
  33. S. Poghosyan, Asymptotic expansion of the logarithm of the partition function, Commun. Math. Phys, 95, pp. 227-245, (1984)
  34. S. Poghosyan, Large deviations for Gibbs random fields, Uspehi Math. Nauk, 36, (2), pp. 201–202, (1981)
  35. S. Poghosyan, Asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble, Colloquia Mathematica Societatis Janos Bolyai 27. Random fields Esztergom (Hungary), (1979)
  36. S. Poghosyan, Asymptotic expansion of the logarithm of the partition function (in Russian), Izv. AN Arm. SSR (Ser. Math.), 13, pp. 238-263, (1978)
  37. S. Poghosyan, Asymptotic distribution of the number of particles for a Gibbs ensemble, Dokl. Armyansk. Akad. Nauk, 66, pp. 142-144, (1978)
  38. R.A. Minlos S., Poghosyan, Estimates of Ursell functions, group functions and their derivatives (in Russian), Teor. Mat. Fiz , 31, pp. 199-213, (1977)
  39. S. Poghosyan, H. Zessin,, Cluster representation of classical and quantum processes, Moscow Mathematical Journal, 19, N1, 133 – 151, (2019)

Preprint

  1. S. Poghosyan, H. Zessin, Penrose-stable interactions in classical statistical mechanics, preprint at Potsdam University, pp. 1-35, (2021)

Book

  1. S. Poghosyan, H. Zessin, Quantum classical point processes,\\ in: Odile Macchi, Point processes and coincidences, Classical Lectures, \\Walter Warmuth Verlag, Nachst Neuendorf, 217 – 305, (2017), pp. 217-305, (2017)
  2. F.H. Abdulla-Zadeh, R.A. Minlos, S. Poghosyan, Cluster estimates for Gibbs random fields and some applications, Multicomponent random systems. Adv. Probab. Related Topics, 6, pp. 1-36, (1980)